JP2020107733A - Method of manufacturing magnetic powder and magnet - Google Patents

Method of manufacturing magnetic powder and magnet Download PDF

Info

Publication number
JP2020107733A
JP2020107733A JP2018245137A JP2018245137A JP2020107733A JP 2020107733 A JP2020107733 A JP 2020107733A JP 2018245137 A JP2018245137 A JP 2018245137A JP 2018245137 A JP2018245137 A JP 2018245137A JP 2020107733 A JP2020107733 A JP 2020107733A
Authority
JP
Japan
Prior art keywords
particles
magnetic
magnetic particles
magnetic field
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018245137A
Other languages
Japanese (ja)
Inventor
正宣 大塚
Masanori Otsuka
正宣 大塚
笹栗 大助
Daisuke Sasakuri
大助 笹栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018245137A priority Critical patent/JP2020107733A/en
Publication of JP2020107733A publication Critical patent/JP2020107733A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a magnetic powder 100 capable of developing an exchange interaction between a soft magnetic phase and a hard magnetic phase to obtain stable magnetic characteristics.SOLUTION: The method of manufacturing a magnetic powder containing hard magnetic particles 30 and soft magnetic particles 20 includes the steps of: preparing a mixed dispersion liquid in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed in a solvent; applying a magnetic field to the mixed dispersion liquid; and recovering a mixture containing the hard magnetic particles 30 and the soft magnetic particles 20 from the mixed dispersion liquid.SELECTED DRAWING: Figure 1

Description

本発明は、磁性粉および磁性粉が焼結された磁石の製造方法に関する。 The present invention relates to a magnetic powder and a method for manufacturing a magnet in which magnetic powder is sintered.

残留磁束密度(残留磁化)Brおよび保磁力Hcがともに大きい磁石として、ネオジム磁石が知られている。ネオジム磁石は、Nd−Fe−B系磁性粒子(ネオジム鉄ホウ素系磁性粒子)同士が結着材を介して焼結されたネオジム焼結磁石が知られている。Nd−Fe−B系の磁性粒子は組成としてNdFe14Bを含む。ネオジム磁石は、希土類元素と鉄の化合物を主相として含有する希土類−鉄系磁石の一つであると換言される。 A neodymium magnet is known as a magnet having a large residual magnetic flux density (residual magnetization) Br and a large coercive force Hc. As the neodymium magnet, a neodymium sintered magnet in which Nd-Fe-B based magnetic particles (neodymium iron boron based magnetic particles) are sintered via a binder is known. The Nd-Fe-B based magnetic particles contain Nd 2 Fe 14 B as a composition. A neodymium magnet is in other words one of rare earth-iron magnets containing a compound of a rare earth element and iron as a main phase.

ネオジム磁石以外の希土類鉄系磁石としては、Sm−Fe−N系化合物を主相として含有するSm−Fe−N系磁石(サマリウム鉄窒素系磁石)が知られている。 As a rare earth iron-based magnet other than the neodymium magnet, an Sm-Fe-N-based magnet (samarium iron-nitrogen-based magnet) containing an Sm-Fe-N-based compound as a main phase is known.

磁性粒子を含む磁石の実用性を高める手法として、残留磁化Brの高い軟磁性相と、保磁力Hcの高い硬磁性相とを、数十nm以下のスケールで混在させることにより、両相が磁気的に結合したナノコンポジット磁性体(磁性粉)が開発されている。 As a method of enhancing the practicality of a magnet containing magnetic particles, a soft magnetic phase having a high residual magnetization Br and a hard magnetic phase having a high coercive force Hc are mixed on a scale of several tens of nm or less so that both phases are magnetized. Nanocomposite magnetic materials (magnetic powder) that have been mechanically bonded have been developed.

特許文献1は、ネオジム粒子および鉄錯体のそれぞれを界面活性剤を用いて分散した分散溶液を混合した混合分散液に対して両親媒性のアセトンを添加することで、NdFe14B粒子の表面上にFe粒子を担持させて磁性粉を得る方法を開示している。 Patent Document 1 discloses adding Nd 2 Fe 14 B particles by adding amphipathic acetone to a mixed dispersion obtained by mixing dispersion solutions in which neodymium particles and iron complexes are dispersed using a surfactant. A method of supporting Fe particles on the surface to obtain magnetic powder is disclosed.

一方、特許文献2は、窒素プラズマ処理によりSmFe合金前駆体のナノ粒子を窒化し硬磁性を呈するSmFe17合金ナノ粒子を作成し、Fe粒子とSmFe17粒子の混合体を加熱成型して得たナノコンポジット磁石を開示している。特許文献1に記載の製造方法がSm錯体とFe錯体とを出発原料として還元する工程を含むことにより、SmFe合金前駆体の粒子の粒径を均一化できることを開示している。特許文献1は、さらに、乾燥後の硬磁性粒子と軟磁性粒子を磁界中で圧縮成形することを開示している。 On the other hand, in Patent Document 2, Sm 2 Fe 17 N 3 alloy nanoparticles exhibiting hard magnetism are produced by nitriding nanoparticles of SmFe alloy precursor by nitrogen plasma treatment, and mixing Fe particles and Sm 2 Fe 17 N 3 particles. Disclosed is a nanocomposite magnet obtained by heat-molding a body. It is disclosed that the production method described in Patent Document 1 includes a step of reducing the Sm complex and the Fe complex as starting materials to make the particle diameters of the particles of the SmFe alloy precursor uniform. Patent Document 1 further discloses that the hard magnetic particles and the soft magnetic particles after drying are compression-molded in a magnetic field.

特開2008−135634号公報JP, 2008-135634, A 特開2007−39794号公報JP 2007-39794 A

しかしながら、特許文献1の磁性粉の製造方法では、両親媒性溶媒の添加条件により混合分散溶液からの沈降過程において、硬磁性粒子同士または軟磁性粒子同士の凝集が支配的となる場合があった。回収された硬磁性粒子と軟磁性粒子の混合体中に界面活性剤が残渣として残る場合があり、硬磁性相と軟磁性相との間の交換相互作用が効果的に機能せず、混合組成から期待される磁気特性が得られないというおそれがあった。 However, in the method for producing magnetic powder of Patent Document 1, aggregation of hard magnetic particles or soft magnetic particles may become dominant in the precipitation process from the mixed dispersion solution depending on the addition condition of the amphipathic solvent. .. The surfactant may remain as a residue in the collected mixture of hard magnetic particles and soft magnetic particles, and the exchange interaction between the hard magnetic phase and the soft magnetic phase does not function effectively, resulting in a mixed composition. There was a fear that the magnetic characteristics expected from the above could not be obtained.

特許文献2に記載の磁性粉の製造方法では、超音波振動、圧縮加圧、乾燥後の磁場印加等の分散化処理を行ってはいるものの、硬磁性粒子と軟磁性粒子とを粉末状態で混合しているため、硬磁性粒子と軟磁性粒子の偏在が生じる場合があった。圧縮成形後の磁性粉は、硬磁性粒子と軟磁性粒子の分散状態に不均一が生じ、硬磁性相と軟磁性相との間の交換相互作用が効果的に機能せず、混合組成から期待される磁気特性を得られないという問題があった。 In the method for producing magnetic powder described in Patent Document 2, although the dispersion treatment such as ultrasonic vibration, compression/pressurization, and magnetic field application after drying is performed, the hard magnetic particles and the soft magnetic particles are in a powder state. Since they are mixed, uneven distribution of hard magnetic particles and soft magnetic particles may occur. The magnetic powder after compression molding has non-uniform dispersion state of hard magnetic particles and soft magnetic particles, the exchange interaction between the hard magnetic phase and the soft magnetic phase does not function effectively, and it is expected from the mixed composition. There is a problem in that the magnetic properties described above cannot be obtained.

本発明は、硬磁性相と軟磁性相との間の交換相互作用が効果的に機能するように、硬磁性粒子と軟磁性粒子とが均一に分散した磁性粉および磁性粉を提供することを目的とする。 The present invention provides a magnetic powder and a magnetic powder in which hard magnetic particles and soft magnetic particles are uniformly dispersed so that the exchange interaction between the hard magnetic phase and the soft magnetic phase functions effectively. To aim.

本発明の第一に係る磁性粉の製造方法は、硬磁性粒子及び軟磁性粒子が溶媒に分散した混合分散液を準備する混合分散工程と、前記混合分散液に磁場を印加する磁場印加工程と、前記混合分散液から前記硬磁性粒子及び前記軟磁性粒子を含む混合体を回収する回収工程と、を有することを特徴とする。 The manufacturing method of the magnetic powder according to the first of the present invention, a mixing and dispersion step of preparing a mixed dispersion liquid in which hard magnetic particles and soft magnetic particles are dispersed in a solvent, and a magnetic field application step of applying a magnetic field to the mixed dispersion liquid. And a recovery step of recovering a mixture containing the hard magnetic particles and the soft magnetic particles from the mixed dispersion liquid.

また、本発明の第二に係る磁性粉の製造方法は、硬磁性粒子及び軟磁性粒子を混合した混合粉体を準備する混合粉体工程と、前記混合粉体に磁場を印加する磁場印加工程と、前記混合粉体に振動を与える加振工程と、を有することを特徴とする。 Further, the method for producing magnetic powder according to the second of the present invention is a mixed powder step of preparing a mixed powder in which hard magnetic particles and soft magnetic particles are mixed, and a magnetic field applying step of applying a magnetic field to the mixed powder. And a vibrating step of applying vibration to the mixed powder.

本発明によれば、硬磁性相と軟磁性相との間の交換相互作用が効果的に機能するように、硬磁性粒子と軟磁性粒子とが均一に分散した磁性粉および磁性粉を提供することを提供することができる。 According to the present invention, a magnetic powder and a magnetic powder in which hard magnetic particles and soft magnetic particles are uniformly dispersed are provided so that the exchange interaction between the hard magnetic phase and the soft magnetic phase effectively functions. Can be provided.

第一の実施形態に係る磁性粉と磁性粉の製造方法を示すフローチャートである。It is a flow chart which shows the manufacturing method of magnetic powder and magnetic powder concerning a first embodiment. 第一の実施形態に係る製造方法の各工程を模式的に示す説明図(a)〜(e)である。It is explanatory drawing (a)-(e) which shows typically each process of the manufacturing method which concerns on 1st embodiment. 第二の実施形態に係る磁性粉と磁性粉の製造方法を示すフローチャートである。It is a flow chart which shows the manufacturing method of magnetic powder and magnetic powder concerning a second embodiment. 第二の実施形態に係る製造方法の各工程を模式的に示す説明図(a)〜(e)である。It is explanatory drawing (a)-(e) which shows typically each process of the manufacturing method which concerns on 2nd embodiment.

以下、本発明の実施の形態について説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments, and is appropriately modified with respect to the following embodiments based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Those with improvements and the like are also included in the scope of the present invention.

本発明の磁性粉の製造方法は、湿式法を含む第1の実施形態と、乾式法を含む第二の実施形態とが、含まれる。 The method for producing magnetic powder of the present invention includes the first embodiment including a wet method and the second embodiment including a dry method.

<第1の実施形態>
第1の実施形態に係る磁性粉100および磁石200の製造方法を図1、図2(a)〜(e)を用いて説明する。
<First Embodiment>
A method of manufacturing the magnetic powder 100 and the magnet 200 according to the first embodiment will be described with reference to FIGS. 1 and 2A to 2E.

本実施形態に係る磁性粉100の製造方法は、図1に示すように、硬磁性粒子30及び軟磁性粒子20が溶媒10に分散した混合分散液CDLを準備する混合分散工程S100と、混合分散液CDLに磁場Hを印加する磁場印加工程S200と、を有する。本実施形態に係る磁性粉100の製造方法は、さらに、図1に示すように、混合分散液CDLから硬磁性粒子30及び軟磁性粒子20を含む混合体CMを回収する回収工程S300と、を有する。本実施形態の磁性粉100の製造方法は、さらに、磁場印加工程S200の後に、印加した磁場Hを弱める磁場減弱工程S300を有している。 As shown in FIG. 1, the method for producing the magnetic powder 100 according to the present embodiment includes a mixing/dispersing step S100 of preparing a mixed dispersion liquid CDL in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed in the solvent 10, and a mixing/dispersing step. A magnetic field applying step S200 of applying a magnetic field H to the liquid CDL. The method for producing the magnetic powder 100 according to the present embodiment further includes, as shown in FIG. 1, a recovery step S300 of recovering a mixture CM containing the hard magnetic particles 30 and the soft magnetic particles 20 from the mixed dispersion liquid CDL. Have. The method for manufacturing the magnetic powder 100 of the present embodiment further includes a magnetic field weakening step S300 for weakening the applied magnetic field H after the magnetic field applying step S200.

また、本実施形態の磁石200の製造方法は、図1に示すように、磁性粉100の製造方法に加えて、焼結工程S500を、さらに備えている。 Moreover, as shown in FIG. 1, the method of manufacturing the magnet 200 of the present embodiment further includes a sintering step S500 in addition to the method of manufacturing the magnetic powder 100.

a)混合分散工程S100
混合分散工程S100は、硬磁性粒子30及び軟磁性粒子20が溶媒に分散した混合分散液CDLを準備する工程である。
a) Mixing and dispersing step S100
The mixed dispersion step S100 is a step of preparing a mixed dispersion liquid CDL in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed in a solvent.

硬磁性粒子30と軟磁性粒子20とのそれぞれが、収納容器50に収納された溶媒10に分散された状態にある。硬磁性粒子30と軟磁性粒子20が分散した分散体を作製する分散手順は、硬磁性粒子30が分散した溶媒と軟磁性粒子20が分散した溶媒を混合させてもよいし、乾燥したパウダー状態の硬磁性粒子30と軟磁性粒子20を混合した後に溶媒に分散させてもよい。また、硬磁性粒子30と軟磁性粒子20が分散した分散体を作製する分散手順は、片方の粒子が分散した状態で別の粒子を析出させ、共存させてもよい。 The hard magnetic particles 30 and the soft magnetic particles 20 are in a state of being dispersed in the solvent 10 contained in the container 50. The dispersion procedure for preparing the dispersion in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed may be performed by mixing the solvent in which the hard magnetic particles 30 are dispersed and the solvent in which the soft magnetic particles 20 are dispersed, or in a dry powder state. The hard magnetic particles 30 and the soft magnetic particles 20 may be mixed and then dispersed in a solvent. In addition, in the dispersion procedure for producing a dispersion in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed, another particle may be precipitated in the state where one particle is dispersed and coexist.

硬磁性粒子30および軟磁性粒子20を分散させる方法は、超音波や超高速ホモジナイザー、ビーズミル、ボールミルが採用される。磁力を利用し撹拌子を回転させるマグネチックスターラは撹拌子からの磁力により硬磁性粒子30と軟磁性粒子20が吸着してしまい、作業効率が悪くなるために好ましくない。 As a method for dispersing the hard magnetic particles 30 and the soft magnetic particles 20, an ultrasonic wave, an ultra-high speed homogenizer, a bead mill, or a ball mill is adopted. A magnetic stirrer that uses a magnetic force to rotate the stirrer is not preferable because the magnetic force from the stirrer causes the hard magnetic particles 30 and the soft magnetic particles 20 to be adsorbed, resulting in poor work efficiency.

硬磁性粒子30は、高い保磁力Hcを有する磁性材料である硬質磁性材料を含む。硬磁性粒子30は、Nd−Fe−B系化合物およびSm−Fe−N系化合物を含む希土類元素と鉄とを含む窒化物または硼化物が適用される。硬磁性粒子30は、希土類元素と鉄とを含む合金の窒化物または硼化物が含まれると換言される。 The hard magnetic particles 30 include a hard magnetic material that is a magnetic material having a high coercive force Hc. As the hard magnetic particles 30, a nitride or boride containing iron and a rare earth element including an Nd-Fe-B-based compound and an Sm-Fe-N-based compound is applied. In other words, the hard magnetic particles 30 contain a nitride or boride of an alloy containing a rare earth element and iron.

硬磁性粒子30に適用されるNd−Fe−B系化合物の粒子は、Nd−Fe−Bアモルファスリボンを、カッターミルを用いて粉砕することにより得られる。Nd−Fe−Bアモルファスリボンは、グローブボックス内において単ロール炉で製造される。硬磁性粒子30の粒径は軟磁性相(軟磁性粒子20)を構成するFe粒子との複合化による効果を達成するためには100nm以上50μm以下であることが好ましい。 The particles of the Nd-Fe-B compound applied to the hard magnetic particles 30 are obtained by crushing the Nd-Fe-B amorphous ribbon with a cutter mill. The Nd-Fe-B amorphous ribbon is manufactured in a single roll furnace in a glove box. The particle size of the hard magnetic particles 30 is preferably 100 nm or more and 50 μm or less in order to achieve the effect of combining with the Fe particles constituting the soft magnetic phase (soft magnetic particles 20).

硬磁性粒子30に適用されるSm−Fe−N系化合物の粒子は、サマリウム酸化物、鉄粉から還元拡散法によりSm−Fe合金粉末を製造して、N2ガス、NH3ガス、N2とH2ガスの混合ガスなどの雰囲気で加熱処理(窒化処理)を施すことで得られる。かかる窒化処理の加熱温度は、Sm−Fe−N系化合物の熱分解温度を考慮して600℃以下が採用される。 The particles of the Sm-Fe-N-based compound applied to the hard magnetic particles 30 are Sm-Fe alloy powder produced from samarium oxide and iron powder by a reduction diffusion method, and are N2 gas, NH3 gas, N2 and H2 gas. It is obtained by performing heat treatment (nitriding treatment) in an atmosphere such as a mixed gas of. The heating temperature for the nitriding treatment is 600° C. or lower in consideration of the thermal decomposition temperature of the Sm—Fe—N compound.

また、硬磁性粒子30に適用されるSm−Fe−N系化合物の粒子は、Sm−Fe合金を、溶解法で製造し、粉砕して得られた粉末に上記と同様の窒化処理を施したものを用いてもよい。Sm−Fe−N系化合物粒子の粒径は、軟磁性粒子20との交換結合作用を考慮して、100nm以上50μm以下が選択される。軟磁性相を構成する軟磁性粒子20は、5nm以上500nm以下程度が採用される。 The particles of the Sm-Fe-N-based compound applied to the hard magnetic particles 30 are produced by smelting an Sm-Fe alloy by a melting method, and the powder obtained by pulverization is subjected to the same nitriding treatment as described above. You may use the thing. The particle size of the Sm-Fe-N-based compound particles is selected to be 100 nm or more and 50 μm or less in consideration of the exchange coupling action with the soft magnetic particles 20. The soft magnetic particles 20 constituting the soft magnetic phase have a size of 5 nm or more and 500 nm or less.

Nd−Fe−B系化合物粒子やSm−Fe−N粒子を所望の平均粒子径になるまで微粉砕する方法としては、特に制限はなく、公知の粉砕機を使用することができる。好ましくは、乾式ジェットミル、または、湿式ビーズミルを使用することができる。 The method for finely pulverizing the Nd-Fe-B-based compound particles and the Sm-Fe-N particles to a desired average particle size is not particularly limited, and a known pulverizer can be used. Preferably, a dry jet mill or a wet bead mill can be used.

軟磁性粒子20は、高い残留磁束密度Br(磁化)を有する磁性材料である軟質磁性材料を含み、Fe、Co、Niの少なくともいずれかを含むことができる。軟磁性粒子20は、FeまたはCoを含む純金属、FeMx合金、窒化物、酸化物が含まれる。Mは、Co、Ni、Al、Ga、Siからなる群から選択される少なくとも1つの元素を表す。軟磁性粒子20は、α−Fe(α鉄)を含むことがより好ましく、α−Fe単体からなることが特に好ましい。 The soft magnetic particles 20 include a soft magnetic material that is a magnetic material having a high residual magnetic flux density Br (magnetization), and may include at least one of Fe, Co, and Ni. The soft magnetic particles 20 include pure metals containing Fe or Co, FeMx alloys, nitrides, and oxides. M represents at least one element selected from the group consisting of Co, Ni, Al, Ga and Si. The soft magnetic particles 20 more preferably contain α-Fe (α iron), and particularly preferably consist of α-Fe alone.

なお、軟磁性粒子20は、必ずしも結晶性を有していなくても良い。また、Feの単金属は、α型以外の鉄でも良い。鉄(Fe)は、温度により、α−Fe(α鉄)、γ−Fe(γ鉄)、δ−Fe(δ鉄)の3つの形態に変化する。このうちα−Fe(α鉄)は、室温で磁化を示すため、α−Fe(α鉄)を用いるのが良い。また、窒化鉄は大きな磁化を有するため、軟磁性粒子20として、窒化鉄を主成分とする磁性材料を用いても良い。なお、軟磁性粒子20は、Ndなどの希土類元素を実質的に含まないことが好ましく、Nd元素の含有量は3質量%以下であることが好ましい。 The soft magnetic particles 20 do not necessarily have to have crystallinity. Further, the single metal of Fe may be iron other than α type. Iron (Fe) changes into three forms depending on the temperature: α-Fe (α iron), γ-Fe (γ iron), and δ-Fe (δ iron). Of these, α-Fe (α iron) exhibits magnetization at room temperature, so it is preferable to use α-Fe (α iron). Further, since iron nitride has large magnetization, a magnetic material containing iron nitride as a main component may be used as the soft magnetic particles 20. The soft magnetic particles 20 preferably contain substantially no rare earth element such as Nd, and the content of the Nd element is preferably 3% by mass or less.

α−Fe、Co単一金属粒子、Fe3O4酸化金属粒子は市販品を用いてもよいし、自ら調製してもよい。例えば、α−Feでは塩化鉄(II)や塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)、臭化鉄(II)や臭化鉄(III)などの溶液に還元剤を用いて粒子を得る方法がある。塩化鉄(II)水溶液中に還元剤であるNaBHを添加することで、塩化鉄(II)を鉄にまで還元して、α−Fe粒子を析出させることができる。還元剤を適切に選べば、Fe3O4酸化金属粒子を析出させることができる。 As the α-Fe, Co single metal particles, and Fe3O4 metal oxide particles, commercially available products may be used, or they may be prepared by themselves. For example, with α-Fe, a reducing agent is added to a solution of iron(II) chloride, iron(III) chloride, iron(III) sulfate, iron(III) nitrate, iron(II) bromide, or iron(III) bromide. There is a method of obtaining particles by using it. The addition of NaBH 4 as a reducing agent in an aqueous solution of iron chloride (II), iron (II) chloride is reduced to iron, the alpha-Fe particles can be precipitated. Fe3O4 metal oxide particles can be deposited by appropriately selecting a reducing agent.

α−Fe微粒子の析出において、還元剤の添加条件で粒子サイズを変化させることができる。例えば、添加する還元剤の液滴サイズを小さくすると還元反応を起こす領域を微小化することができ、α−Fe粒子を小粒径化することができる。また、還元剤を添加する際に、例えば塩化鉄(II)水溶液を用いる場合、その温度を変えても粒子サイズを変化させることができ、溶液温度を高くすることでα−Fe粒子のサイズを小粒径化することができる。複合磁性材料の作製においては、還元剤の小液滴化、鉄イオン溶液の高温化のいずれかを選択しても良いし、両方を同時に選択しても良く、必要なα−Fe粒子のサイズに合わせて選択することができる。 In the precipitation of α-Fe fine particles, the particle size can be changed by the addition condition of the reducing agent. For example, if the droplet size of the reducing agent to be added is reduced, the region where the reduction reaction occurs can be made smaller, and the α-Fe particles can be made smaller. Further, when the reducing agent is added, for example, when an aqueous solution of iron(II) chloride is used, the particle size can be changed by changing the temperature, and the size of the α-Fe particles can be changed by increasing the solution temperature. The particle size can be reduced. In the production of the composite magnetic material, it is possible to select either a small droplet of the reducing agent or a high temperature of the iron ion solution, or both of them can be selected at the same time. It can be selected according to.

また、α−Fe微粒子の析出において、遷移金属元素を含むイオンの溶液の溶媒条件によっても粒子サイズを変化させることができる。例えば、塩化鉄(II)を水ではなく、有機溶媒のメタノールに溶解させた後、還元剤を添加することでα−Fe粒子を小粒径化することができる。このような小粒形化をできる理由は定かではないが析出時のα−Fe粒子の表面エネルギーを低下させる効果が有機溶媒にあるために、小粒形化できると考えている。α−Fe粒子の表面エネルギーを低下させる効果がある。α−Feと濡れ性の良好な有機溶媒は、メタノール、エタノール、2−プロパノール、アセトン、ジメチルスルホオキシド、テトラヒドロフラン、エチレングリコール、ジエチレングリコールなどが挙げられる。これらの溶媒を一種類選択してもよいし、必要に応じて混合して使用しても良い。ただし、アセトン、ジメチルスルホオキシドといった溶媒は還元剤により一部が還元される性質を持っているので効率的ではない。複合磁性材料の作製においては、遷移金属元素を含むイオンの溶液の溶媒に有機溶媒を使用する場合は、硬磁性粒子30を分散させる分散溶媒と還元剤を溶解させる溶媒も有機溶媒を使う方が好ましく、事前に脱水処理や溶存酸素を除去しておく方が好ましい。 Further, in the precipitation of α-Fe fine particles, the particle size can be changed also by the solvent condition of the solution of the ion containing the transition metal element. For example, α-Fe particles can be reduced in size by dissolving iron(II) chloride in methanol as an organic solvent instead of water and then adding a reducing agent. Although the reason why such a small particle size can be obtained is not clear, it is considered that the small particle size can be obtained because the organic solvent has the effect of lowering the surface energy of the α-Fe particles at the time of precipitation. It has the effect of lowering the surface energy of the α-Fe particles. Examples of the organic solvent having good wettability with α-Fe include methanol, ethanol, 2-propanol, acetone, dimethyl sulfoxide, tetrahydrofuran, ethylene glycol and diethylene glycol. One of these solvents may be selected, or if desired, they may be mixed and used. However, solvents such as acetone and dimethyl sulfoxide are not efficient because they have the property of being partially reduced by the reducing agent. In the preparation of the composite magnetic material, when an organic solvent is used as a solvent for a solution of ions containing a transition metal element, it is better to use an organic solvent as the dispersion solvent for dispersing the hard magnetic particles 30 and the reducing agent. It is preferable to perform dehydration treatment or remove dissolved oxygen in advance.

このような混合分散工程S100を行うことにより、硬磁性粒子30と軟磁性粒子20が均一に分散された混合分散液CDLを用意することができる。 By carrying out such a mixing and dispersing step S100, a mixed dispersion liquid CDL in which the hard magnetic particles 30 and the soft magnetic particles 20 are uniformly dispersed can be prepared.

b)磁場印加工程S200
混合分散液CDLに磁場を印加する工程である。硬磁性粒子30と軟磁性粒子20が分散された混合分散液CDLに磁場を印加する。
b) Magnetic field applying step S200
It is a step of applying a magnetic field to the mixed dispersion liquid CDL. A magnetic field is applied to the mixed dispersion liquid CDL in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed.

不図示の磁場Hの印加手段は、ローレンツ力を利用した電磁石方式、あるいは永久磁石対の間隙に混合分散液CDLを通過させる方式(電源レス)等を利用することができる。電磁石方式は、コンデンサーに充電した電荷を瞬間的に放電するコンデンサー式着磁電源装置、電磁石を用いた静磁場着磁装置が適用可能である。磁場Hの印加手段は、混合分散液を収容する容器または流路の外部に配置しても良いし、有効な磁化領域が担保されれば、容器または流路の内部に配置しても良い。 As a means for applying a magnetic field H (not shown), an electromagnet method utilizing Lorentz force, a method of passing the mixed dispersion liquid CDL through a gap between a pair of permanent magnets (power sourceless), or the like can be used. As the electromagnet method, a capacitor-type magnetizing power supply device that instantaneously discharges the electric charge charged in the capacitor, and a static magnetic field magnetizing device that uses an electromagnet can be applied. The means for applying the magnetic field H may be arranged outside the container or channel for containing the mixed dispersion liquid, or may be arranged inside the container or channel as long as an effective magnetized region is secured.

発生した磁場強度は、コンデンサー式着磁電源装置や静磁場着磁する場合には制御モニターの値、ガウスメータの出力値に基づいて取得することができる。 The generated magnetic field intensity can be acquired based on the value of the control monitor and the output value of the Gauss meter when the condenser-type magnetizing power supply device or the static magnetic field is magnetized.

磁場を印加している時間、方向に特に制限はないが、混合分散液CDLを所望の磁場強度になっている状態で1秒以上継続されることが好ましい。印加磁場の方向は、所定の一方向に定められていることが作業容易性の観点から好ましい。 The time and direction of applying the magnetic field are not particularly limited, but it is preferable that the mixed dispersion liquid CDL is continued for 1 second or more in a state where the desired magnetic field strength is obtained. The direction of the applied magnetic field is preferably set in a predetermined direction from the viewpoint of workability.

磁場印加工程S200により、硬磁性粒子30のそれぞれに対して、軟磁性粒子20が局在して配向され、磁場Hを印加しない状態に比べると、硬磁性粒子30、軟磁性粒子20はそれぞれ単分散された状態に近づけられる。 By the magnetic field applying step S200, the soft magnetic particles 20 are localized and oriented with respect to each of the hard magnetic particles 30, so that the hard magnetic particles 30 and the soft magnetic particles 20 are separated from each other as compared with a state in which the magnetic field H is not applied. It can approach a dispersed state.

磁場印加工程S200を実行することにより、混合分散工程S100および磁場印加工程S200において、混合分散液CDLに界面活性剤を付与する工程が不要となる。界面活性剤を付与することで混合分散液CDLの分散性を制御する方法に比べて、可逆的な調整が可能でありロバスト性が向上する。 By performing the magnetic field applying step S200, the step of applying a surfactant to the mixed dispersion liquid CDL is not necessary in the mixing and dispersing step S100 and the magnetic field applying step S200. Compared with the method of controlling the dispersibility of the mixed dispersion liquid CDL by adding a surfactant, reversible adjustment is possible and robustness is improved.

c)磁場減弱工程S300
磁場減弱工程S300は、磁場印加工程S200の後に、混合分散液CDLに印加した磁場Hを弱める工程であり、磁場Hの強度を0とする磁場消去形態が含まれる。
c) Magnetic field attenuation step S300
The magnetic field weakening step S300 is a step of weakening the magnetic field H applied to the mixed dispersion CDL after the magnetic field applying step S200, and includes a magnetic field erasing mode in which the strength of the magnetic field H is zero.

磁場Hの減弱は、コンデンサー式着磁電源装置や電磁石を用いた静磁場着磁であれば、コイルへの通電量を減少することで実行される。また、磁場Hの減弱は、無電源着磁であれば磁場印加用の磁石と混合分散液CDLとの距離を十分に離せば達成できる。磁場Hの減弱は、磁場強度を実質的に0にすることであり、実際には0.01T未満とする態様が含まれる。 The weakening of the magnetic field H is executed by reducing the amount of electricity supplied to the coil in the case of static magnetic field magnetization using a condenser type magnetizing power supply device or an electromagnet. Further, the weakening of the magnetic field H can be achieved by magnetizing the magnetic field and the mixed dispersion liquid CDL with a sufficient distance in the case of magnetizing without power supply. Attenuation of the magnetic field H is to make the magnetic field strength substantially 0, and actually includes a mode of less than 0.01T.

磁場減弱工程S300により、磁場印加工程S200で磁場印加方向に局在した軟磁性粒子20が、硬磁性粒子30の周囲に亘り非局在化されるように再配列される。この結果、磁場減弱工程S300により、硬磁性粒子30同士の間隙に軟磁性粒子20が介在するように、均一な両粒子の分散状態が実現される。 In the magnetic field weakening step S300, the soft magnetic particles 20 localized in the magnetic field applying direction in the magnetic field applying step S200 are rearranged so as to be delocalized around the hard magnetic particles 30. As a result, the magnetic field weakening step S300 realizes a uniform dispersion state of both particles such that the soft magnetic particles 20 are present in the gaps between the hard magnetic particles 30.

d)回収工程S400
回収工程S400は、混合分散液CDLから硬磁性粒子30及び軟磁性粒子20を含む混合体CMを回収する工程である。回収工程S400は、混合分散液CDLから溶媒10を乾燥させる乾燥法、混合分散液CDLの分散状態を壊す沈殿法、等を利用できる。乾燥法は、減圧留去、高温漕内の真空乾燥、自然乾燥が利用できる。
d) Recovery step S400
The collecting step S400 is a step of collecting the mixture CM containing the hard magnetic particles 30 and the soft magnetic particles 20 from the mixed dispersion liquid CDL. In the collecting step S400, a drying method of drying the solvent 10 from the mixed dispersion liquid CDL, a precipitation method of breaking the dispersed state of the mixed dispersion liquid CDL, or the like can be used. As the drying method, vacuum distillation, vacuum drying in a high temperature tank, and natural drying can be used.

回収工程S400を行うことにより、硬磁性粒子30と軟磁性粒子20が分散した混合分散液CDLから、硬磁性粒子30と軟磁性粒子20を含む混合体CMを回収できる。混合体CMは、硬磁性粒子30と軟磁性粒子20を含む磁性粉であるため、回収工程S400を行うことにより、硬磁性粒子30と軟磁性粒子20を含む磁性粉100が得られる。 By performing the collecting step S400, the mixture CM containing the hard magnetic particles 30 and the soft magnetic particles 20 can be collected from the mixed dispersion liquid CDL in which the hard magnetic particles 30 and the soft magnetic particles 20 are dispersed. Since the mixture CM is a magnetic powder containing the hard magnetic particles 30 and the soft magnetic particles 20, the magnetic powder 100 containing the hard magnetic particles 30 and the soft magnetic particles 20 can be obtained by performing the collecting step S400.

e)焼結工程S500
焼結工程S500は、磁性粉100を焼結する焼結工程を含み、焼結の結果、硬磁性粒子30と軟磁性粒子20とが焼結された磁石200を得ることができる。
e) Sintering step S500
The sintering step S500 includes a sintering step of sintering the magnetic powder 100, and as a result of the sintering, the magnet 200 in which the hard magnetic particles 30 and the soft magnetic particles 20 are sintered can be obtained.

焼結工程S500は、磁性粉100に熱処理を加える工程を含み、軟磁性粒子20を溶融させ硬磁性粒子30同士が軟磁性粒子20を介して接着した焼結体を得ることができる。このとき、磁性粉100を圧縮成形してから熱処理を行っても良いし、熱処理後に圧縮成形を行っても良いし、圧縮成形中に熱処理しても良い。 The sintering step S500 includes a step of heat-treating the magnetic powder 100, and the soft magnetic particles 20 are melted to obtain a sintered body in which the hard magnetic particles 30 are bonded to each other via the soft magnetic particles 20. At this time, the magnetic powder 100 may be subjected to compression molding and then heat treatment, may be subjected to heat treatment after compression molding, or may be heat treated during compression molding.

焼結工程S500は、軟磁性粒子が鉄などの酸化されやすい材料を含む場合、不活性ガス雰囲気下、還元雰囲気下、真空下のいずれかで行うことが好ましい。また、焼結工程S500は、硬磁性粒子のキュリー点、熱分解温度等の耐熱性を考慮して、加熱処理だけではなく、他のエネルギー源により焼結処理を含めることができる。焼結工程S500は、低温プロセスとするために、プラズマ活性化焼結(PAS:Plasma Activated Sintering)、または放電プラズマ焼結(SPS:Spark Plasma Sintering)を行うことができる。焼結工程S500は、PAS,SPSを行うことで磁気特性を劣化せずに成形体を焼結することが可能となる。プラズマ活性化焼結(PAS)や放電プラズマ焼結(SPS)は、圧縮成形中に熱処理を行う焼結方法の一つである。 When the soft magnetic particles include a material such as iron that is easily oxidized, the sintering step S500 is preferably performed in an inert gas atmosphere, a reducing atmosphere, or a vacuum. Further, in the sintering step S500, in consideration of heat resistance such as Curie point and thermal decomposition temperature of the hard magnetic particles, not only heat treatment but also sintering treatment by other energy source can be included. In the sintering step S500, plasma activated sintering (PAS: Plasma Activated Sintering) or discharge plasma sintering (SPS: Spark Plasma Sintering) may be performed in order to obtain a low temperature process. By performing PAS and SPS in the sintering step S500, it becomes possible to sinter the molded body without deteriorating the magnetic characteristics. Plasma activated sintering (PAS) and spark plasma sintering (SPS) are one of the sintering methods in which heat treatment is performed during compression molding.

圧縮成形用の金型は、タングステンカーバイドとグラファイトカーボン等の高耐熱性の材料が採用される。耐圧縮成形時の耐圧力の観点から超硬合金製のタングステンカーバイドが好ましい。焼結する際の圧縮成形圧は、100MPaから1GPaが採用される。焼結中の圧縮成形圧を100MPaよりも低くしてしまうと、サンプルとダイセットの接触が不十分になることがあり、局所的に通電することで成形体全体が加熱されない。また、1GPaよりも高くすると金型が破損する恐れがある。より好ましくは300MPaから800MPaが好ましい。 A highly heat resistant material such as tungsten carbide and graphite carbon is used for the compression molding die. From the viewpoint of pressure resistance during compression molding, tungsten carbide made of cemented carbide is preferable. The compression molding pressure at the time of sintering is 100 MPa to 1 GPa. If the compression molding pressure during sintering is lower than 100 MPa, contact between the sample and the die set may become insufficient, and the entire compact is not heated by locally energizing. If it is higher than 1 GPa, the mold may be damaged. More preferably, 300 MPa to 800 MPa is preferable.

また、圧縮成形中の焼結温度は150℃から500℃が好ましく、200℃から300℃の間から選択されることがより好ましい。圧縮成形中の焼結温度が150℃未満であると、軟磁性粒子20の溶融が不完全で硬磁性粒子30との接着が不十分で、所望の磁気特性を得難い。500℃より高いと硬磁性粒子30としてのNd−Fe−B系化合物およびSm−Fe−N系化合物の磁気特性が劣化する。ここでいう「焼結温度」とは金型に挿入された熱電対によるモニター温度であり、サンプル自身の温度とは厳密には異なっている。 The sintering temperature during compression molding is preferably 150°C to 500°C, more preferably 200°C to 300°C. If the sintering temperature during compression molding is less than 150° C., the soft magnetic particles 20 are not completely melted and adhered to the hard magnetic particles 30 insufficiently, making it difficult to obtain desired magnetic characteristics. If the temperature is higher than 500°C, the magnetic properties of the Nd-Fe-B-based compound and the Sm-Fe-N-based compound as the hard magnetic particles 30 deteriorate. The "sintering temperature" here is a temperature monitored by a thermocouple inserted in the mold and is strictly different from the temperature of the sample itself.

<第2の実施形態>
第2の実施形態に係る磁性粉100および磁石200の製造方法を図3、図4(a)〜(e)を用いて説明する。
<Second Embodiment>
A method for manufacturing the magnetic powder 100 and the magnet 200 according to the second embodiment will be described with reference to FIGS. 3 and 4A to 4E.

本実施形態に係る磁性粉100の製造方法は、図3に示すように、硬磁性粒子30及び軟磁性粒子20を混合した混合粉体CPを準備する混合粉体工程S110と、混合粉体CPに磁場Hを印加する磁場印加工程S220と、を有する。本実施形態に係る磁性粉100の製造方法は、さらに、混合粉体CPに振動を与える加振工程S440、を有する。本実施形態の磁性粉100の製造方法は、さらに、磁場印加工程S220の後に、印加した磁場Hを弱める磁場減弱工程S330を有している。 As shown in FIG. 3, the method of manufacturing the magnetic powder 100 according to the present embodiment includes a mixed powder step S110 of preparing a mixed powder CP in which hard magnetic particles 30 and soft magnetic particles 20 are mixed, and a mixed powder CP. A magnetic field applying step S220 of applying a magnetic field H to the. The method for manufacturing the magnetic powder 100 according to the present embodiment further includes a vibrating step S440 of vibrating the mixed powder CP. The method for manufacturing the magnetic powder 100 of the present embodiment further includes a magnetic field weakening step S330 for weakening the applied magnetic field H after the magnetic field applying step S220.

また、本実施形態の磁石200の製造方法は、図1に示すように、磁性粉100の製造方法に加えて、焼結工程S550を、さらに備えている。 Moreover, as shown in FIG. 1, the manufacturing method of the magnet 200 of the present embodiment further includes a sintering step S550 in addition to the manufacturing method of the magnetic powder 100.

a)混合粉体工程S110
混合粉体工程S110は、硬磁性粒子30及び軟磁性粒子20を混合した混合粉体CPを準備する工程である。
a) Mixed powder step S110
The mixed powder step S110 is a step of preparing a mixed powder CP in which the hard magnetic particles 30 and the soft magnetic particles 20 are mixed.

混合粉体工程S110は、粉体状の硬磁性粒子30と粉体状の軟磁性粒子20を混合する。混合粉体工程S110は、ロータリー型シェーカーやシーソー型シェーカーを使用することができる。 In the mixed powder step S110, the powdery hard magnetic particles 30 and the powdery soft magnetic particles 20 are mixed. A rotary shaker or a seesaw shaker can be used in the mixed powder step S110.

混合粉体工程S110を実行することで、硬磁性粒子30及び軟磁性粒子20を混合した乾燥状態の混合粉体CPを用意することができる。 By performing the mixed powder step S110, it is possible to prepare the dry mixed powder CP in which the hard magnetic particles 30 and the soft magnetic particles 20 are mixed.

b)磁場印加工程S220
磁場印加工程S220は、混合粉体CPに磁場Hを印加する工程である。磁場印加工程S220は、第1の実施形態に係る磁場印加工程S200に準じて、使用する磁場印加手段を採用することができる。
b) Magnetic field applying step S220
The magnetic field applying step S220 is a step of applying a magnetic field H to the mixed powder CP. In the magnetic field applying step S220, the magnetic field applying means to be used can be adopted according to the magnetic field applying step S200 according to the first embodiment.

磁場印加工程S220を行うことにより、第1の実施形態と同様に、硬磁性粒子30のそれぞれに対して、軟磁性粒子20が局在して配向され、磁場Hを印加しない状態に比べると、硬磁性粒子30、軟磁性粒子20はそれぞれ単分散された状態に近づけられる。 By performing the magnetic field applying step S220, as in the first embodiment, the soft magnetic particles 20 are locally oriented with respect to each of the hard magnetic particles 30, and compared with the state in which the magnetic field H is not applied, The hard magnetic particles 30 and the soft magnetic particles 20 are brought close to a monodispersed state.

c)磁場減弱工程S330
磁場減弱工程S330は、磁場印加工程S220の後に、混合粉体CPに印加した磁場Hを弱める工程であり、磁場Hの強度を0とする磁場消去形態が含まれる。磁場減弱工程S330は、第1の実施形態に係る磁場減弱工程S300に準じて実行される。
c) Magnetic field attenuation step S330
The magnetic field weakening step S330 is a step of weakening the magnetic field H applied to the mixed powder CP after the magnetic field applying step S220, and includes a magnetic field erasing mode in which the strength of the magnetic field H is zero. The magnetic field weakening step S330 is executed according to the magnetic field weakening step S300 according to the first embodiment.

磁場減弱工程S330により、磁場印加工程S220で磁場印加方向に局在した軟磁性粒子20が、硬磁性粒子30の周囲に亘り非局在化されるように再配列される。この結果、磁場減弱工程S330により、硬磁性粒子30同士の間隙に軟磁性粒子20が介在するように、均一な両粒子の分散状態が実現される。 In the magnetic field weakening step S330, the soft magnetic particles 20 localized in the magnetic field applying direction in the magnetic field applying step S220 are rearranged so as to be delocalized around the hard magnetic particles 30. As a result, the magnetic field weakening step S330 realizes a uniform dispersed state of both particles such that the soft magnetic particles 20 are present in the gaps between the hard magnetic particles 30.

d)加振工程S440
加振工程S440は、混合粉体CPに振動を与える工程である。
d) Excitation step S440
The vibrating step S440 is a step of vibrating the mixed powder CP.

加振工程S440は、ロッキングシェーカーやペイントシェーカーなどの高速に対象物を加振できる装置が採用される。加振は、振とうに換言される場合がある。 In the vibrating step S440, a device capable of vibrating the object at high speed such as a rocking shaker or a paint shaker is adopted. Excitation may be paraphrased as shaking.

加振工程S440を行うことにより、磁場印加工程S220と磁場減弱工程S330により高められた混合粉体CP中の軟磁性粒子20と硬磁性粒子30の分散性がより一層高められる。 By performing the vibrating step S440, the dispersibility of the soft magnetic particles 20 and the hard magnetic particles 30 in the mixed powder CP enhanced by the magnetic field applying step S220 and the magnetic field weakening step S330 is further enhanced.

加振工程S440を行うことにより、第一の実施形態に係る混合分散液CDLに対して流動性が制限された混合粉体CPに対しても、軟磁性粒子20の再配列する効果が得られる。この結果、磁性粒子の流動性が制限された混合粉体CPに対しても硬磁性粒子30と軟磁性粒子20とが均一に分散した状態を実現することができる。混合粉体CPは、硬磁性粒子30と軟磁性粒子20を含む磁性粉であるため、加振工程S440を行うことにより、硬磁性粒子30と軟磁性粒子20を含む磁性粉100が得られる。 By performing the vibrating step S440, the effect of rearranging the soft magnetic particles 20 can be obtained even for the mixed powder CP whose fluidity is limited to that of the mixed dispersion liquid CDL according to the first embodiment. .. As a result, it is possible to realize a state in which the hard magnetic particles 30 and the soft magnetic particles 20 are uniformly dispersed even in the mixed powder CP in which the fluidity of the magnetic particles is limited. Since the mixed powder CP is a magnetic powder containing the hard magnetic particles 30 and the soft magnetic particles 20, the magnetic powder 100 containing the hard magnetic particles 30 and the soft magnetic particles 20 is obtained by performing the vibration step S440.

e)焼結工程S500
焼結工程S500は、第一の実施形態と同様にして、磁性粉100を焼結する焼結工程を含み、焼結の結果、硬磁性粒子30と軟磁性粒子20とが焼結された磁石200を得ることができる。
e) Sintering step S500
Similar to the first embodiment, the sintering step S500 includes a sintering step of sintering the magnetic powder 100, and as a result of the sintering, the hard magnetic particles 30 and the soft magnetic particles 20 are magnetized. 200 can be obtained.

なお、本願明細書において、硬磁性粒子と軟磁性粒子とが分散された固体の分散状態を磁性粉と称する場合がある。磁性粉は、硬磁性粒子に対応する硬磁性相と、軟磁性粒子に対応する軟磁性相との交換相互作用が働いている状態に対応している。硬磁性相と軟磁性相との交換相互作用が働いていない状態は、硬磁性粒子が粒子径オーダの距離では分散しておらず、硬磁性粒子同士の凝集塊(二次粒子)が支配的に存在している状態が含まれる。本願明細書において支配的に存在しているとは、質量%で50%以上を意味する。硬磁性相と軟磁性相との交換相互作用が働いていない状態は、硬磁性粒子と軟磁性粒子とに対して分散処理がされずに、単に混合された状態が含まれる。または、硬磁性相と軟磁性相との交換相互作用が働いていない状態は、硬磁性粒子のみ、軟磁性粒子のみを含む形態が含まれる。 In the present specification, a solid dispersion state in which hard magnetic particles and soft magnetic particles are dispersed may be referred to as magnetic powder. The magnetic powder corresponds to a state in which the exchange interaction between the hard magnetic phase corresponding to the hard magnetic particles and the soft magnetic phase corresponding to the soft magnetic particles is working. In the state where the exchange interaction between the hard magnetic phase and the soft magnetic phase does not work, the hard magnetic particles are not dispersed at the distance on the order of particle size, and the agglomerates (secondary particles) of the hard magnetic particles are dominant. States that are present in. The term “predominantly present” in the present specification means 50% or more by mass %. The state in which the exchange interaction between the hard magnetic phase and the soft magnetic phase does not work includes a state in which the hard magnetic particles and the soft magnetic particles are not mixed and simply mixed. Alternatively, the state in which the exchange interaction between the hard magnetic phase and the soft magnetic phase is not working includes the form including only the hard magnetic particles and the soft magnetic particles.

また、本願明細書において、磁石は、硬磁性粒子と軟磁性粒子との交換相互作用を発現する硬磁性粒子と軟磁性粒子との分散状態が固定化された複合磁性体の焼結体に対応し、複合磁性体と換言される場合がある。かかる磁石は、微細化した状態で溶媒に分散し磁性流体を構成する場合が含まれる。 Further, in the specification of the present application, the magnet corresponds to a sintered body of a composite magnetic body in which the dispersed state of the hard magnetic particles and the soft magnetic particles that express the exchange interaction between the hard magnetic particles and the soft magnetic particles is fixed. However, it may be referred to as a composite magnetic body. Such magnets include the case where they are made fine and dispersed in a solvent to form a magnetic fluid.

現在までに得られている知見に基づき本発明者らが推定する「第1および第2の実施形態に係る硬磁性粒子30と軟磁性粒子20の分散化のメカニズム」について以下に説明する。 The “mechanism of dispersion of the hard magnetic particles 30 and the soft magnetic particles 20 according to the first and second embodiments” estimated by the present inventors based on the knowledge obtained to date will be described below.

図1は湿式法を採用する第一の実施形態に係る磁性粉100の製造工程を示すフローチャートである。図2(a)は、硬磁性粒子30と軟磁性粒子20とが溶媒10中に共存してウェットに分散している態様を模式的に示す図であり、混合分散工程S100が行われた状態に対応している。 FIG. 1 is a flowchart showing a manufacturing process of the magnetic powder 100 according to the first embodiment which employs the wet method. FIG. 2A is a diagram schematically showing an embodiment in which the hard magnetic particles 30 and the soft magnetic particles 20 coexist in the solvent 10 and are dispersed in a wet state, in which the mixing and dispersing step S100 is performed. It corresponds to.

図2(b)は、混合分散工程S100で分散された混合分散液CDLに対して、外部から磁場Hを印加した状態を示している模式図である。本工程により、硬磁性粒子30および軟磁性粒子20は、磁化容易方向に倣うように配向し、磁場Hの印加方向に倣って連鎖した連鎖状態になる。 FIG. 2B is a schematic diagram showing a state in which a magnetic field H is externally applied to the mixed dispersion liquid CDL dispersed in the mixing/dispersing step S100. By this step, the hard magnetic particles 30 and the soft magnetic particles 20 are oriented so as to follow the easy magnetization direction, and become a chained state that follows the application direction of the magnetic field H.

なお、磁場印加工程S200において印加される磁場Hの強度が0.01T以上20T以下であることが好ましい。印加する磁場強度が0.01Tよりも低いと硬磁性粒子30が着磁され難いために硬磁性粒子30を誘引、再配列する効果が低い。印加する磁場強度が20Tよりも強いと硬磁性粒子30および軟磁性粒子20が強固に連鎖してしまい、印加磁場を消去しても軟磁性粒子20が硬磁性粒子30の周囲に吸着する再配列が生じ難いためである。印加する磁場強度は0.05T以上1.0T以下がより一層好ましい。 The strength of the magnetic field H applied in the magnetic field applying step S200 is preferably 0.01 T or more and 20 T or less. When the applied magnetic field strength is lower than 0.01 T, the hard magnetic particles 30 are hard to be magnetized, and therefore the effect of attracting and rearranging the hard magnetic particles 30 is low. When the applied magnetic field strength is higher than 20 T, the hard magnetic particles 30 and the soft magnetic particles 20 are strongly chained, and the soft magnetic particles 20 are adsorbed around the hard magnetic particles 30 even if the applied magnetic field is erased. Is less likely to occur. The applied magnetic field strength is more preferably 0.05 T or more and 1.0 T or less.

図2(c)は、磁場減弱工程S300により、印加された磁場Hが実質的に消去された状態を示す模式図である。本工程により、硬磁性粒子30は保磁力Hcを有する着磁状態になる一方、軟磁性粒子20は速やかに磁気がなくなり、元の分散状態に戻ろうとする。着磁状態の硬磁性粒子30から発生する磁束密度は距離の二乗に反比例するため(磁気力のクーロンの法則)、磁性粒子の流動性を有する分散液中において、軟磁性粒子20は硬磁性粒子30の周囲に吸着するように再配列する。再配列効果は、混合分散液CDLに超音波振動を印加したり、超高速ホモジナイザーで混合分散液CDLを撹拌したりして、硬磁性粒子30同士の接触の機会を低減することで、強化される。 FIG. 2C is a schematic diagram showing a state in which the applied magnetic field H is substantially erased by the magnetic field weakening step S300. By this step, the hard magnetic particles 30 are brought into a magnetized state having a coercive force Hc, while the soft magnetic particles 20 quickly lose their magnetism and try to return to the original dispersed state. Since the magnetic flux density generated from the hard magnetic particles 30 in the magnetized state is inversely proportional to the square of the distance (Coulomb's law of magnetic force), the soft magnetic particles 20 are hard magnetic particles in the liquid dispersion of the magnetic particles. Rearrange so as to adsorb around 30. The rearrangement effect is enhanced by applying ultrasonic vibration to the mixed dispersion liquid CDL or stirring the mixed dispersion liquid CDL with an ultra-high speed homogenizer to reduce the chance of contact between the hard magnetic particles 30. It

図2(d)は、回収工程S400により、混合分散液CDLに含まれる溶媒10を乾燥により除去し固形分である磁性粉100を作製した状態を示す模式図である。本工程において、軟磁性粒子20を介した状態で硬磁性粒子30同士は磁気的に誘引されており、溶媒10を除去しても軟磁性粒子20は硬磁性粒子30の周囲に吸着した状態を維持しており、軟磁性粒子20と硬磁性粒子30とが分散した磁性粉100が得られる。なお、所望の磁気特性が得られる範囲であれば、硬質磁性粒子30同士が接する部分が含まれていてもよいし、硬質磁性粒子30間に複数個の軟磁性粒子20が介在していてもよい。 FIG. 2D is a schematic diagram showing a state in which the solvent 10 contained in the mixed dispersion CDL is removed by drying in the recovery step S400 to produce the magnetic powder 100 as a solid content. In this step, the hard magnetic particles 30 are magnetically attracted to each other via the soft magnetic particles 20, and the soft magnetic particles 20 remain adsorbed around the hard magnetic particles 30 even if the solvent 10 is removed. The magnetic powder 100, which is maintained and in which the soft magnetic particles 20 and the hard magnetic particles 30 are dispersed, is obtained. In addition, as long as desired magnetic characteristics are obtained, a portion where the hard magnetic particles 30 are in contact with each other may be included, or a plurality of soft magnetic particles 20 may be interposed between the hard magnetic particles 30. Good.

図3は、乾式法を採用する第二の実施形態に係る磁性粉100の製造工程を示すフローチャートである。図4(a)は、硬磁性粒子30と軟磁性粒子20とがドライな粉体状態で混合された態様を模式的に示す図であり、混合粉体工程S110が行われた状態に対応している。図4(b)は、硬磁性粒子30と軟磁性粒子20との混合粉体CPに対して、外部から磁場Hが印加された態様を模式的に示す図であり、磁場印加工程S220が行われた状態に対応している。本工程において、硬磁性粒子30および軟磁性粒子20が磁化容易方向に向きを変え、磁場の方向と同じ方向に連鎖状態になる。 FIG. 3 is a flowchart showing a manufacturing process of the magnetic powder 100 according to the second embodiment which adopts the dry method. FIG. 4A is a diagram schematically showing an embodiment in which the hard magnetic particles 30 and the soft magnetic particles 20 are mixed in a dry powder state, and corresponds to a state in which the mixed powder step S110 is performed. ing. FIG. 4B is a diagram schematically showing an aspect in which a magnetic field H is externally applied to the mixed powder CP of the hard magnetic particles 30 and the soft magnetic particles 20, and the magnetic field applying step S220 is performed. It corresponds to the broken state. In this step, the hard magnetic particles 30 and the soft magnetic particles 20 turn to the direction of easy magnetization and become a chain state in the same direction as the direction of the magnetic field.

図4(c)は、硬磁性粒子30と軟磁性粒子20とを含む混合粉体CPに対して印加した磁場Hが減弱された態様を模式的に示す図であり、磁場減弱工程S330が行われた状態に対応している。ここで印加された磁場Hを減弱すると、粉体状の硬磁性粒子30と軟磁性粒子20は連鎖状態のまま、硬磁性粒子30は保磁力を有する着磁状態になる一方、軟磁性粒子20は速やかに磁気がなくなる。この状態では、混合粉体CPに流動性より、軟磁性粒子20と硬磁性粒子30との磁気的引力が支配的であるため、軟磁性粒子20と硬磁性粒子30の分散状態は図4(b)の状態を実施的に保存している。 FIG. 4C is a diagram schematically showing a mode in which the magnetic field H applied to the mixed powder CP containing the hard magnetic particles 30 and the soft magnetic particles 20 is weakened, and the magnetic field weakening step S330 is performed. It corresponds to the broken state. When the magnetic field H applied here is weakened, the powdery hard magnetic particles 30 and the soft magnetic particles 20 remain in a chain state, while the hard magnetic particles 30 become a magnetized state having a coercive force, while the soft magnetic particles 20. Quickly loses its magnetism. In this state, since the magnetic attraction between the soft magnetic particles 20 and the hard magnetic particles 30 is dominant due to the fluidity of the mixed powder CP, the dispersion state of the soft magnetic particles 20 and the hard magnetic particles 30 is shown in FIG. The state of b) is saved practically.

図4(d)は、硬磁性粒子30と軟磁性粒子20とを含む混合粉体CPに対して振動エネルギーを印加する加振された態様を模式的に示す図であり、加振工程S440が行われた状態に対応している。連鎖状態で局所的に分散性が低下した混合粉体CPを加振させることで連鎖状態が緩和され、軟磁性粒子20は着磁した硬磁性粒子30の周囲に吸着するように再配列する。 FIG. 4D is a diagram schematically showing a vibrated mode in which vibration energy is applied to the mixed powder CP containing the hard magnetic particles 30 and the soft magnetic particles 20, and the vibrating step S440 is Corresponds to the state that was done. By vibrating the mixed powder CP having locally reduced dispersibility in the chain state, the chain state is relaxed, and the soft magnetic particles 20 are rearranged so as to be adsorbed around the magnetized hard magnetic particles 30.

なお、硬磁性粒子30および軟磁性粒子20の平均粒径は、複合磁性材料の走査型電子顕微鏡画像から取得することができる。具体的には、エネルギー分散型X線(EDX)分析装置が付帯した走査型電子顕微鏡(EDX−SEM)を用いて複合磁性材料の試料表面の元素情報を取得した上で電子顕微鏡画像を取得する。次に、電子顕微鏡画像をもとに画像処理によって、硬磁性粒子30および軟磁性粒子20の平均粒径を測定すればよい。なおこの場合、1つの電子顕微鏡画像中に少なくとも10個、好ましくは数十〜数百個の対象粒子が存在するように倍率を調整して電子顕微鏡画像を取得することが好ましい。複数視野について上記測定を行って平均粒径および平均間隔を算出してもよいが、1つの視野内に統計的に十分な量の粒子が写っていれば、1つの視野内で平均粒径を算出してもよい。 The average particle diameters of the hard magnetic particles 30 and the soft magnetic particles 20 can be obtained from the scanning electron microscope image of the composite magnetic material. Specifically, a scanning electron microscope (EDX-SEM) attached to an energy dispersive X-ray (EDX) analyzer is used to acquire elemental information on the sample surface of the composite magnetic material and then acquire an electron microscope image. .. Next, the average particle size of the hard magnetic particles 30 and the soft magnetic particles 20 may be measured by image processing based on the electron microscope image. In this case, it is preferable to adjust the magnification so that at least 10 particles, preferably several tens to several hundreds, of target particles are present in one electron microscope image to acquire the electron microscope image. The above measurement may be performed for a plurality of visual fields to calculate the average particle size and the average interval. However, if a statistically sufficient amount of particles is captured in one visual field, the average particle size in one visual field is calculated. It may be calculated.

複合磁性材料中の硬磁性粒子30および軟磁性粒子20の局在状態は複合磁性材料の透過型電子顕微鏡画像から取得することができる。具体的には、エネルギー分散型X線(EDX)分析装置が付帯した透過型電子顕微鏡(EDX−TEM)を用いて複合磁性材料の試料断面の元素情報を取得した上で、電子顕微鏡画像を取得する。次に、電子顕微鏡画像から、硬磁性粒子30および軟磁性粒子20の局在状態を評価することができる。なおこの場合、1つの電子顕微鏡画像中に少なくとも10個、好ましくは数十〜数百個の対象粒子が存在するように倍率を調整して電子顕微鏡画像を取得することが好ましい。 The localized states of the hard magnetic particles 30 and the soft magnetic particles 20 in the composite magnetic material can be obtained from a transmission electron microscope image of the composite magnetic material. Specifically, the transmission electron microscope (EDX-TEM) attached to the energy dispersive X-ray (EDX) analyzer is used to acquire the elemental information of the sample cross section of the composite magnetic material, and then the electron microscope image is acquired. To do. Next, the localized states of the hard magnetic particles 30 and the soft magnetic particles 20 can be evaluated from the electron microscope image. In this case, it is preferable to adjust the magnification so that at least 10 particles, preferably several tens to several hundreds, of target particles are present in one electron microscope image to acquire the electron microscope image.

また必要に応じて、得られた Also, if necessary, obtained

以下、実施例を用いて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下に使用される「%」は、特に示さない限りすべて質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. All "%" used below are based on mass unless otherwise specified.

[実施例1]
(α−Fe粒子分散液の作製)
臭化鉄(II)(FeBr)を2.43g秤量し、メタノール10mLに溶解させて、臭化鉄メタノール溶液を得た。還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し、脱水処理したメタノール20mLに溶解させた還元剤溶液を準備した。次に、上記臭化鉄メタノール溶液を撹拌しながら、還元剤溶液を滴下添加した。これにより臭化鉄(II)を還元し、α−Fe粒子の分散液を得た。続いて、余剰量の未反応テトラヒドロホウ酸ナトリウムや還元反応の副生成物が完全に除去されるまで遠心分離でメタノール洗浄を行った。得られたα−Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α−Fe粒子の粒径は10nmであった。
[Example 1]
(Preparation of α-Fe particle dispersion liquid)
2.43 g of iron (II) bromide (FeBr 2 ) was weighed and dissolved in 10 mL of methanol to obtain a methanol solution of iron bromide. 2 g of sodium tetrahydroborate (NaBH 4 ) as a reducing agent was weighed and a reducing agent solution prepared by dissolving it in 20 mL of dehydrated methanol was prepared. Next, the reducing agent solution was added dropwise while stirring the methanol solution of iron bromide. This reduced iron (II) bromide to obtain a dispersion liquid of α-Fe particles. Then, methanol washing was performed by centrifugation until the excess amount of unreacted sodium tetrahydroborate and the by-product of the reduction reaction were completely removed. When the particle diameter of the obtained α-Fe was observed with a scanning electron microscope (SEM), the particle diameter of the α-Fe particles was 10 nm.

(SmFe17粒子分散液の作製)
次に、SmFe17粒子(住友金属鉱山製、平均粒子径:5μm)2.45gを秤量し、脱水処理したメタノール溶液100mLを添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of Sm 2 Fe 17 N 3 Particle Dispersion Liquid)
Next, 2.45 g of Sm 2 Fe 17 N 3 particles (manufactured by Sumitomo Metal Mining Co., Ltd., average particle size: 5 μm) were weighed, 100 mL of dehydrated methanol solution was added, and the dispersion was sufficiently dispersed by an ultrasonic disperser. A liquid was prepared.

(2種の分散液の混合)
SmFe17粒子分散液を高速ホモジナイザー(IKA製、T−25−digital−ULTRA−TURRAX)にて10,000rpmの条件で撹拌しながら、得られたα−Fe粒子分散液を添加した。これにより、SmFe17粒子とα−Fe粒子が分散した混合分散液CDLを作製した。
(Mixing of two kinds of dispersion liquid)
The obtained α-Fe particle dispersion was added while stirring the Sm 2 Fe 17 N 3 particle dispersion with a high-speed homogenizer (manufactured by IKA, T-25-digital-ULTRA-TURRAX) at 10,000 rpm. .. Thereby, a mixed dispersion liquid CDL in which the Sm 2 Fe 17 N 3 particles and the α-Fe particles were dispersed was prepared.

(磁場Hの印加および消去)
得られたSmFe17粒子及びα−Fe粒子が分散した混合分散液CDLに対してネオジム焼結磁石を近接させ、混合分散液CDLに磁場Hを印加した。ガウスメータを用いて、磁場強度を測定すると0.5Tであった。そのあと、超音波をかけながら混合分散液CDLとネオジム焼結磁石の距離を引き離し、混合分散液CDLに印加されていた磁場Hを実質的に消去した。
(Applying and erasing magnetic field H)
A neodymium sintered magnet was brought close to the obtained mixed dispersion liquid CDL in which Sm 2 Fe 17 N 3 particles and α-Fe particles were dispersed, and a magnetic field H was applied to the mixed dispersion liquid CDL. When the magnetic field strength was measured using a Gauss meter, it was 0.5T. After that, while applying ultrasonic waves, the distance between the mixed dispersion liquid CDL and the neodymium sintered magnet was separated, and the magnetic field H applied to the mixed dispersion liquid CDL was substantially erased.

(磁性粉100の作製)
その後、不活性ガスであるアルゴンガス置換したグローブボックス内でメタノールを乾燥させ、α−Fe粒子とSmFe17粒子から構成される磁性粉100を得た。
(Preparation of magnetic powder 100)
Then, methanol was dried in a glove box in which argon gas, which was an inert gas, was substituted to obtain magnetic powder 100 composed of α-Fe particles and Sm 2 Fe 17 N 3 particles.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察の結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. As a result of TEM observation, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

(熱処理工程)
次の工程の熱処理行程は、以下の手順により行い、磁性粒子100が焼結された磁石200を作製した。
(Heat treatment process)
The heat treatment step of the next step was performed according to the following procedure to manufacture the magnet 200 in which the magnetic particles 100 were sintered.

アルゴン雰囲気に保持されたグローブボックス内で、α−Fe粒子とSmFe17粒子から構成される磁性粉末を1.0g秤量し、内径10mmの超硬合金製ダイセットに充填した。そして、大気暴露することなく加圧機構を備えたパルス通電焼結装置(LABOX−650F:シンターランド社製)内にセットした。 In a glove box maintained in an argon atmosphere, 1.0 g of magnetic powder composed of α-Fe particles and Sm 2 Fe 17 N 3 particles was weighed and filled in a cemented carbide die set having an inner diameter of 10 mm. Then, it was set in a pulse current sintering apparatus (LABOX-650F: manufactured by Sinterland Co.) equipped with a pressurizing mechanism without being exposed to the atmosphere.

次いで、焼結室内を2Pa以下の真空雰囲気としたのち、複合磁性材料粉末に500MPaの圧縮圧力を負荷し、ただちに除荷した。再び500MPaの圧縮圧力を印加し、この圧力を保持したまま、昇温速度 50℃/minにて室温から200℃まで昇温させ、200℃に到達後、1分間保持して直ちに冷却を行った。室温まで冷却したことを確認したのち、大気圧に戻し、ダイセットを取り出した。 Next, after the inside of the sintering chamber was set to a vacuum atmosphere of 2 Pa or less, a compressive pressure of 500 MPa was applied to the composite magnetic material powder to immediately unload it. A compression pressure of 500 MPa was applied again, and while maintaining this pressure, the temperature was raised from room temperature to 200° C. at a heating rate of 50° C./min, and after reaching 200° C., holding for 1 minute and immediately cooling. .. After confirming that the die set was cooled to room temperature, the pressure was returned to atmospheric pressure, and the die set was taken out.

(焼結体の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、SmFe17の回折ピークとα−Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of sintered body)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of Sm 2 Fe 17 N 3 and a diffraction peak of α-Fe were respectively confirmed, and diffraction peaks derived from other crystal structures were confirmed. Was not done.

(焼結体の磁気特性評価)
得られた焼結体の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Evaluation of magnetic properties of sintered body)
The magnetic properties (residual magnetization and coercive force) of the obtained sintered body were evaluated. The results are shown in Table 1 below. The magnetic characteristics are shown as values standardized with respect to Comparative Example 5 described later.

[実施例2]
磁場印加工程S200における磁場Hの磁場強度が0.05Tであったこと以外は実施例1と同様にして焼結体を製造、磁気特性評価を行った。
[Example 2]
A sintered body was manufactured and magnetic properties were evaluated in the same manner as in Example 1 except that the magnetic field strength of the magnetic field H in the magnetic field applying step S200 was 0.05T.

得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。 A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

[実施例3]
α−Fe粒子分散液の作製、SmFe17粒子分散液の作製、2種の分散液の混合までの工程は実施例1と同様にして行った。
[Example 3]
The steps up to the preparation of the α-Fe particle dispersion, the preparation of the Sm 2 Fe 17 N 3 particle dispersion, and the mixing of the two dispersions were performed in the same manner as in Example 1.

(磁場Hの印加および消去)
得られたSmFe17粒子及びα−Fe粒子が分散した混合分散液CDLを磁場中成形油圧プレス機(玉川製作所製、TM−MPH10525−10A2TM型)を用いて、プレス圧をかけることなく、混合分散液CDLに磁場Hを印加した。その際の磁場強度は2.5Tであった。そのあと、混合分散液CDLに印加されていた磁場強度を0Tにし、磁場中成形油圧プレス機から混合分散液CDLを取り出した後、混合分散液CDLに超音波振動を印加した。
(Applying and erasing magnetic field H)
Applying a pressing pressure to the obtained mixed dispersion liquid CDL in which Sm 2 Fe 17 N 3 particles and α-Fe particles are dispersed by using a hydraulic press machine in a magnetic field (TM-MPH10525-10A2TM type manufactured by Tamagawa Seisakusho). Instead, the magnetic field H was applied to the mixed dispersion liquid CDL. The magnetic field strength at that time was 2.5T. After that, the magnetic field strength applied to the mixed dispersion liquid CDL was set to 0 T, the mixed dispersion liquid CDL was taken out from the magnetic field forming hydraulic press machine, and then ultrasonic vibration was applied to the mixed dispersion liquid CDL.

磁性粉100の作製、熱処理工程、焼結体の磁気特性評価は実施例1と同様にして行った。 The production of the magnetic powder 100, the heat treatment step, and the evaluation of the magnetic properties of the sintered body were performed in the same manner as in Example 1.

得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しているが、その配置はわずかに偏っており、SmFe17粒子同士が直接接触している態様がごく稀に観察された。 A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. As a result of TEM observation, a plurality of α-Fe particles were arranged around the Sm 2 Fe 17 N 3 particles, but the arrangement was slightly biased, and the Sm 2 Fe 17 N 3 particles were in direct contact with each other. In some rare cases, the above aspect was observed.

[実施例4]
(α−Fe粒子分散液の作製)
塩化鉄(II)水和物(FeCl・4HO)を2.24g秤量し、純水30mLに溶解させて、塩化鉄水溶液を得た。還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し純水20mLに溶解させた還元剤水溶液を準備した。上記塩化鉄水溶液をホットスターラにて撹拌しながら加熱し、還元剤溶液を滴下添加し、α−Fe粒子の分散液を得た。この時、塩化鉄水溶液の水温は95℃であった。続いて、余剰量の未反応テトラヒドロホウ酸ナトリウムや還元反応の副生成物が完全に除去されるまで遠心分離で純水洗浄を行った。得られたα−Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α−Fe粒子の粒径は50nmであった。
[Example 4]
(Preparation of α-Fe particle dispersion liquid)
2.24 g of iron (II) chloride hydrate (FeCl 2 .4H 2 O) was weighed and dissolved in 30 mL of pure water to obtain an aqueous iron chloride solution. 2 g of sodium tetrahydroborate (NaBH 4 ) serving as a reducing agent was weighed and dissolved in 20 mL of pure water to prepare a reducing agent aqueous solution. The iron chloride aqueous solution was heated with stirring with a hot stirrer, and the reducing agent solution was added dropwise to obtain a dispersion liquid of α-Fe particles. At this time, the water temperature of the iron chloride aqueous solution was 95°C. Subsequently, pure water was washed by centrifugation until the excess amount of unreacted sodium tetrahydroborate and byproducts of the reduction reaction were completely removed. When the particle size of the obtained α-Fe was observed with a scanning electron microscope (SEM), the particle size of the α-Fe particles was 50 nm.

(SmFe17粒子分散液の作製)
次に、SmFe17粒子(住友金属鉱山製、平均粒子径:5μm)4.90gを秤量し、純水100mLを添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of Sm 2 Fe 17 N 3 Particle Dispersion Liquid)
Next, 4.90 g of Sm 2 Fe 17 N 3 particles (manufactured by Sumitomo Metal Mining Co., Ltd., average particle size: 5 μm) was weighed, 100 mL of pure water was added, and a dispersion liquid sufficiently dispersed by an ultrasonic disperser was prepared. did.

(2種の分散液の混合)
SmFe17粒子分散液を高速ホモジナイザー(IKA製、T−25−digital−ULTRA−TURRAX)にて10,000rpmの条件で撹拌しながら、上記で得られたα−Fe粒子分散液を添加した。これにより、SmFe17粒子とα−Fe粒子が分散した混合分散液CDLを作製した。
(Mixing of two kinds of dispersion liquid)
While stirring the Sm 2 Fe 17 N 3 particle dispersion liquid with a high-speed homogenizer (manufactured by IKA, T-25-digital-ULTRA-TURRAX) at 10,000 rpm, the α-Fe particle dispersion liquid obtained above was stirred. Was added. Thereby, a mixed dispersion liquid CDL in which the Sm 2 Fe 17 N 3 particles and the α-Fe particles were dispersed was prepared.

(磁場Hの印加および消去)
得られたSmFe17粒子及びα−Fe粒子が分散した分散液に対してネオジム焼結磁石を近接させ、混合分散液CDLに磁場Hを印加した。ガウスメータを用いて、磁場強度を測定すると0.5Tであった。そのあと、超音波振動を印加しながら混合分散液CDLとネオジム焼結磁石200の距離を引き離し、混合分散液CDLに印加されていた磁場Hを実質的に消去した。
(Applying and erasing magnetic field H)
A neodymium sintered magnet was brought close to the obtained dispersion liquid in which the Sm 2 Fe 17 N 3 particles and α-Fe particles were dispersed, and a magnetic field H was applied to the mixed dispersion liquid CDL. When the magnetic field strength was measured using a Gauss meter, it was 0.5T. Then, while applying ultrasonic vibration, the distance between the mixed dispersion liquid CDL and the neodymium sintered magnet 200 was separated, and the magnetic field H applied to the mixed dispersion liquid CDL was substantially erased.

(磁性粉100の作製)
その後、遠心分離にて分散媒である純水をメタノールに置換し、不活性ガスであるアルゴンガス置換したグローブボックス内でメタノールを乾燥させ、α−Fe粒子とSmFe17粒子から構成される磁性粉100を得た。
(Preparation of magnetic powder 100)
Then, pure water as a dispersion medium was replaced with methanol by centrifugation, and the methanol was dried in a glove box in which an argon gas as an inert gas was replaced, to form α-Fe particles and Sm 2 Fe 17 N 3 particles. Magnetic powder 100 was obtained.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

(熱処理工程)
次の工程の熱処理行程は、以下の手順により行い、磁性粉100が焼結された磁石200を作製した。
(Heat treatment process)
The heat treatment step of the next step was performed according to the following procedure to manufacture the magnet 200 in which the magnetic powder 100 was sintered.

アルゴン雰囲気に保持されたグローブボックス内で、α−Fe粒子とSmFe17粒子から構成される磁性粉末を1.0g秤量し、内径10mmの超硬合金製ダイセットに充填した。そして、大気暴露することなく加圧機構を備えたパルス通電焼結装置(LABOX−650F:シンターランド社製)内にセットした。 In a glove box maintained in an argon atmosphere, 1.0 g of magnetic powder composed of α-Fe particles and Sm 2 Fe 17 N 3 particles was weighed and filled in a cemented carbide die set having an inner diameter of 10 mm. Then, it was set in a pulse current sintering apparatus (LABOX-650F: manufactured by Sinterland Co.) equipped with a pressurizing mechanism without being exposed to the atmosphere.

次いで、焼結室内を2Pa以下の真空雰囲気としたのち、複合磁性材料粉末に500MPaの圧縮圧力を負荷し、ただちに除荷した。再び500MPaの圧縮圧力を印加し、この圧力を保持したまま、昇温速度 50℃/minにて室温から300℃まで昇温させ、300℃に到達後、1分間保持して直ちに冷却を行った。室温まで冷却したことを確認したのち、大気圧に戻し、ダイセットを取り出した。 Next, after the inside of the sintering chamber was set to a vacuum atmosphere of 2 Pa or less, a compressive pressure of 500 MPa was applied to the composite magnetic material powder to immediately unload it. A compression pressure of 500 MPa was applied again, and while maintaining this pressure, the temperature was raised from room temperature to 300° C. at a heating rate of 50° C./min, and after reaching 300° C., holding for 1 minute and immediately cooling. .. After confirming that the die set was cooled to room temperature, the pressure was returned to atmospheric pressure, and the die set was taken out.

(焼結体の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、SmFe17の回折ピークとα−Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(焼結体の磁気特性評価)
得られた焼結体の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Structural analysis of sintered body)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of Sm 2 Fe 17 N 3 and a diffraction peak of α-Fe were respectively confirmed, and diffraction peaks derived from other crystal structures were confirmed. Was not done.
(Evaluation of magnetic properties of sintered body)
The magnetic properties (residual magnetization and coercive force) of the obtained sintered body were evaluated. The results are shown in Table 1 below. The magnetic characteristics are shown as values standardized with respect to Comparative Example 5 described later.

[実施例5]
α−Fe粒子分散液の作製、SmFe17粒子分散液の作製、2種の分散液の混合までは実施例1と同様にして行った。その後、遠心分離操作にてメタノールをアセトンに置換した。
[Example 5]
Preparation of the α-Fe particle dispersion, preparation of the Sm 2 Fe 17 N 3 particle dispersion, and mixing of the two dispersions were performed in the same manner as in Example 1. Thereafter, the methanol was replaced with acetone by a centrifugation operation.

(磁場Hの印加および消去)
得られたSmFe17粒子及びα−Fe粒子が分散した分散液に所定方向に磁場Hが生じるようにネオジム焼結磁石を近接させ、混合分散液CDLに磁場Hを印加した。ガウスメータを用いて、磁場強度を測定すると0.5Tであった。そのあと、超音波をかけながら混合分散液CDLとネオジム焼結磁石200の距離を引き離し、混合分散液CDLに印加されていた磁場Hを実質的に消去した。
(Applying and erasing magnetic field H)
The neodymium sintered magnet was brought close to the dispersion liquid in which the obtained Sm 2 Fe 17 N 3 particles and α-Fe particles were dispersed so that the magnetic field H was generated in a predetermined direction, and the magnetic field H was applied to the mixed dispersion liquid CDL. When the magnetic field strength was measured using a Gauss meter, it was 0.5T. After that, the distance between the mixed dispersion liquid CDL and the neodymium sintered magnet 200 was separated while applying ultrasonic waves, and the magnetic field H applied to the mixed dispersion liquid CDL was substantially erased.

(磁性粉100の作製)
その後、不活性ガスであるアルゴンガス置換したグローブボックス内でアセトンを乾燥させ、α−Fe粒子とSmFe17粒子から構成される磁性粉100を得た。
(Preparation of magnetic powder 100)
Then, acetone was dried in a glove box in which an argon gas as an inert gas was replaced to obtain magnetic powder 100 composed of α-Fe particles and Sm 2 Fe 17 N 3 particles.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

熱処理工程、焼結体の磁気特性評価は実施例1と同様に行った。 The heat treatment process and the evaluation of the magnetic properties of the sintered body were performed in the same manner as in Example 1.

(焼結体の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、SmFe17の回折ピークとα−Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of sintered body)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of Sm 2 Fe 17 N 3 and a diffraction peak of α-Fe were respectively confirmed, and diffraction peaks derived from other crystal structures were confirmed. Was not done.

[実施例6]
α−Fe粒子分散液の作製は実施例1と同様にして行った。
[Example 6]
The α-Fe particle dispersion liquid was prepared in the same manner as in Example 1.

(SmFe17粒子分散液の作製)
次に、SmFe17粒子(住友金属鉱山製、平均粒子径:5μm)2.45gを秤量し、脱水処理したメタノール溶液100mLを添加し、超音波分散機で十分に分散させた分散液を作製した。SmFe17粒子は公知の手法(特開平6−251920)にてジェットミル粉砕した粒子を用いた。なお、粉砕後のSmFe17粒子を走査型電子顕微鏡(SEM)で観察すると、SmFe17粒子の平均粒子径は2μmであった。
(Preparation of Sm 2 Fe 17 N 3 Particle Dispersion Liquid)
Next, 2.45 g of Sm 2 Fe 17 N 3 particles (manufactured by Sumitomo Metal Mining Co., Ltd., average particle size: 5 μm) were weighed, 100 mL of dehydrated methanol solution was added, and the dispersion was sufficiently dispersed by an ultrasonic disperser. A liquid was prepared. As the Sm 2 Fe 17 N 3 particles, particles that were jet-milled by a known method (JP-A-6-251920) were used. When the Sm 2 Fe 17 N 3 particles after pulverization were observed with a scanning electron microscope (SEM), the average particle diameter of the Sm 2 Fe 17 N 3 particles was 2 μm.

2種の分散液の混合、磁場Hの印加および消去、磁性粉100の作製は実施例1と同様にして行った。 The mixing of the two kinds of dispersion liquid, the application and deletion of the magnetic field H, and the production of the magnetic powder 100 were performed in the same manner as in Example 1.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

(熱処理工程)
次の工程の熱処理行程は、以下の手順により行い、焼結磁石200を作製した。
(Heat treatment process)
The heat treatment step of the next step was performed according to the following procedure to manufacture the sintered magnet 200.

アルゴン雰囲気に保持されたグローブボックス内で、α−Fe粒子とSmFe17粒子から構成される磁性粉末を0.3g秤量し、内径4mmの超硬合金製ダイセットに充填した。そして、大気暴露することなく加圧機構を備えたパルス通電焼結装置(LABOX−650F:シンターランド社製)内にセットした。 In a glove box maintained in an argon atmosphere, 0.3 g of magnetic powder composed of α-Fe particles and Sm 2 Fe 17 N 3 particles was weighed and filled in a cemented carbide die set having an inner diameter of 4 mm. Then, it was set in a pulse current sintering apparatus (LABOX-650F: manufactured by Sinterland Co.) equipped with a pressurizing mechanism without being exposed to the atmosphere.

次いで、焼結室内を2Pa以下の真空雰囲気としたのち、複合磁性材料粉末に1GPaの圧縮圧力を負荷し、ただちに除荷した。再び1GPaの圧縮圧力を印加し、この圧力を保持したまま、昇温速度 50℃/minにて室温から200℃まで昇温させ、200℃に到達後、1分間保持して直ちに冷却を行った。室温まで冷却したことを確認したのち、大気圧に戻し、ダイセットを取り出した。 Next, after the inside of the sintering chamber was set to a vacuum atmosphere of 2 Pa or less, a compression pressure of 1 GPa was applied to the composite magnetic material powder to immediately unload it. A compressive pressure of 1 GPa was applied again, while maintaining this pressure, the temperature was raised from room temperature to 200° C. at a temperature rising rate of 50° C./min, and after reaching 200° C., holding for 1 minute and immediately cooling. .. After confirming that the die set was cooled to room temperature, the pressure was returned to atmospheric pressure, and the die set was taken out.

焼結体の磁気特性評価は実施例1と同様に行った。 The magnetic properties of the sintered body were evaluated in the same manner as in Example 1.

(焼結体の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、SmFe17の回折ピークとα−Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of sintered body)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of Sm 2 Fe 17 N 3 and a diffraction peak of α-Fe were respectively confirmed, and diffraction peaks derived from other crystal structures were confirmed. Was not done.

[実施例7]
α−Fe粒子分散液の作製は実施例1と同様にして行った。
[Example 7]
The α-Fe particle dispersion liquid was prepared in the same manner as in Example 1.

(NdFe14B粒子分散液の作製)
次に、NdFe14B粒子2.94gを秤量し、脱水処理したメタノール溶液100mLを添加し、超音波分散機で十分に分散させた分散液を作製した。NdFe14B粒子は市販品(平均粒子径:500μm)を公知の手法(特開平6−251920)にてジェットミル粉砕した粒子を用いた。なお、粉砕後のNdFe14B粒子を走査型電子顕微鏡(SEM)で観察すると、NdFe14B粒子の平均粒子径は4μmであった。
(Preparation of Nd 2 Fe 14 B Particle Dispersion Liquid)
Next, 2.94 g of Nd 2 Fe 14 B particles were weighed, 100 mL of dehydrated methanol solution was added, and a dispersion liquid sufficiently dispersed by an ultrasonic disperser was prepared. As the Nd 2 Fe 14 B particles, commercially available products (average particle diameter: 500 μm) were jet-milled by a known method (JP-A-6-251920). When the Nd 2 Fe 14 B particles after pulverization were observed with a scanning electron microscope (SEM), the average particle size of the Nd 2 Fe 14 B particles was 4 μm.

上記のようにSmFe17粒子分散液を作製する換わりに、NdFe14B粒子分散液を作製した以外は、実施例1と同様に行った。 The procedure of Example 1 was repeated, except that the Nd 2 Fe 14 B particle dispersion liquid was prepared instead of the Sm 2 Fe 17 N 3 particle dispersion liquid as described above.

(α−Fe粒子とNdFe14B粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、NdFe14B粒子の周囲に複数個のα−Fe粒子が配置しており、NdFe14B粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Nd 2 Fe 14 B particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Nd 2 Fe 14 a plurality of alpha-Fe particles have been placed around the B particles, aspects Nd 2 Fe 14 B grains are in direct contact was observed.

[実施例8]
熱処理工程を実施しなかった以外は実施例1と同様に行った。
[Example 8]
The same procedure as in Example 1 was performed except that the heat treatment step was not performed.

[実施例9]
(α−Fe粒子分散液の作製)
塩化鉄(II)水和物(FeCl・4HO)を2.24g秤量し、純水30mLに溶解させて、塩化鉄水溶液を得た。還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し純水20mLに溶解させた還元剤水溶液を準備した。上記塩化鉄水溶液をホットスターラにて撹拌しながら加熱し、還元剤溶液を滴下添加し、α−Fe粒子の分散液を得た。この時、塩化鉄水溶液の水温は25℃であった。続いて、余剰量の未反応テトラヒドロホウ酸ナトリウムや還元反応の副生成物が完全に除去されるまで遠心分離で純水洗浄を行った。得られたα−Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α−Fe粒子の粒径は100nmであった。
[Example 9]
(Preparation of α-Fe particle dispersion liquid)
2.24 g of iron (II) chloride hydrate (FeCl 2 .4H 2 O) was weighed and dissolved in 30 mL of pure water to obtain an aqueous iron chloride solution. 2 g of sodium tetrahydroborate (NaBH 4 ) serving as a reducing agent was weighed and dissolved in 20 mL of pure water to prepare a reducing agent aqueous solution. The iron chloride aqueous solution was heated with stirring with a hot stirrer, and the reducing agent solution was added dropwise to obtain a dispersion liquid of α-Fe particles. At this time, the water temperature of the iron chloride aqueous solution was 25°C. Subsequently, pure water was washed by centrifugation until the excess amount of unreacted sodium tetrahydroborate and byproducts of the reduction reaction were completely removed. When the particle size of the obtained α-Fe was observed with a scanning electron microscope (SEM), the particle size of the α-Fe particles was 100 nm.

α−Fe粒子分散液の作製方法を変更した以外は実施例1と同様にして行った。 The same procedure as in Example 1 was performed except that the method for producing the α-Fe particle dispersion liquid was changed.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

[実施例10]
(α−Fe粒子粉体の作製)
実施例1で作製したα−Fe粒子分散液をアルゴン雰囲気中で乾燥させ、α−Fe粒子粉体を得た。
[Example 10]
(Production of α-Fe particle powder)
The α-Fe particle dispersion liquid produced in Example 1 was dried in an argon atmosphere to obtain α-Fe particle powder.

(2種の粉体の混合)
得られたα−Fe粒子粉体500mgとSmFe17粒子粉体(住友金属鉱山製、平均粒子径:5μm)2.0gを混合、ガラス容器に封入し、シーソー式シェーカー(ATTO製、WSC−2400)にて12時間加振した。
(Mixing of two powders)
The obtained α-Fe particle powder (500 mg) and Sm 2 Fe 17 N 3 particle powder (Sumitomo Metal Mining Co., Ltd., average particle size: 5 μm) (2.0 g) were mixed, enclosed in a glass container, and then a seesaw shaker (ATTO product). , WSC-2400) for 12 hours.

(磁場Hの印加および消去)
得られたSmFe17粒子及びα−Fe粒子の混合粉体CPを収容したガラス容器にネオジム焼結磁石を近接させ、混合粉体CPに磁場Hを印加した。ガウスメータを用いて、磁場強度を測定すると0.5Tであった。そのあと、ネオジム焼結磁石200の距離を引き離し、混合粉体CPに印加されていた磁場Hを実質的に消去した。その後、粉体が封入されたガラス容器をロッキングシェーカー(セイワ技研製、RS−05W)にセットし、750rpmの条件で1時間加振し、α−Fe粒子とSmFe17粒子から構成される磁性粉100を得た。
(Applying and erasing magnetic field H)
A neodymium sintered magnet was brought close to a glass container containing the mixed powder CP of the obtained Sm 2 Fe 17 N 3 particles and α-Fe particles, and a magnetic field H was applied to the mixed powder CP. When the magnetic field strength was measured using a Gauss meter, it was 0.5T. After that, the neodymium sintered magnet 200 was separated from the magnetic powder H to substantially erase the magnetic field H applied to the mixed powder CP. Then, the glass container in which the powder was enclosed was set on a rocking shaker (RS-05W manufactured by Seiwa Giken), and was shaken for 1 hour at 750 rpm to be composed of α-Fe particles and Sm 2 Fe 17 N 3 particles. Magnetic powder 100 was obtained.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉100の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、SmFe17粒子の周囲に複数個のα−Fe粒子が配置しており、SmFe17粒子同士が直接接触している態様は観察されなかった。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 100 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. TEM observation revealed that, Sm 2 Fe 17 N 3 a plurality of alpha-Fe particles are disposed about the particle, aspects Sm 2 Fe 17 N 3 grains are in direct contact was observed.

(熱処理工程)
次の工程の熱処理行程は、以下の手順により行い、焼結磁石200を作製した。
(Heat treatment process)
The heat treatment step of the next step was performed according to the following procedure to manufacture the sintered magnet 200.

アルゴン雰囲気に保持されたグローブボックス内で、α−Fe粒子とSmFe17粒子から構成される磁性粉100末1.0g秤量し、内径10mmの超硬合金製ダイセットに充填した。そして、大気暴露することなく加圧機構を備えたパルス通電焼結装置(LABOX−650F:シンターランド社製)内にセットした。 In a glove box held in an argon atmosphere, 1.0 g of 100 powder of magnetic powder composed of α-Fe particles and Sm 2 Fe 17 N 3 particles was weighed and filled in a cemented carbide die set having an inner diameter of 10 mm. Then, it was set in a pulse current sintering apparatus (LABOX-650F: manufactured by Sinterland Co.) equipped with a pressurizing mechanism without being exposed to the atmosphere.

次いで、焼結室内を2Pa以下の真空雰囲気としたのち、複合磁性材料粉末に500MPaの圧縮圧力を負荷し、ただちに除荷した。再び500MPaの圧縮圧力を印加し、この圧力を保持したまま、昇温速度 50℃/minにて室温から200℃まで昇温させ、200℃に到達後、1分間保持して直ちに冷却を行った。室温まで冷却したことを確認したのち、大気圧に戻し、ダイセットを取り出した。 Next, after the inside of the sintering chamber was set to a vacuum atmosphere of 2 Pa or less, a compressive pressure of 500 MPa was applied to the composite magnetic material powder to immediately unload it. A compression pressure of 500 MPa was applied again, and while maintaining this pressure, the temperature was raised from room temperature to 200° C. at a heating rate of 50° C./min, and after reaching 200° C., holding for 1 minute and immediately cooling. .. After confirming that the die set was cooled to room temperature, the pressure was returned to atmospheric pressure, and the die set was taken out.

(焼結体の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、SmFe17の回折ピークとα−Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of sintered body)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of Sm 2 Fe 17 N 3 and a diffraction peak of α-Fe were respectively confirmed, and diffraction peaks derived from other crystal structures were confirmed. Was not done.

(焼結体の磁気特性評価)
得られた焼結体の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Evaluation of magnetic properties of sintered body)
The magnetic properties (residual magnetization and coercive force) of the obtained sintered body were evaluated. The results are shown in Table 1 below. The magnetic characteristics are shown as values standardized with respect to Comparative Example 5 described later.

[比較例1]
SmFe17粒子分散液を用意せず、混合分散工程S100を行わなかったこと以外は実施例1と同様にして磁性粉110を作製した。
[Comparative Example 1]
Magnetic powder 110 was produced in the same manner as in Example 1 except that the Sm 2 Fe 17 N 3 particle dispersion liquid was not prepared and the mixing and dispersing step S100 was not performed.

[比較例2]
α−Fe粒子を用意せず、混合分散工程S100を行わなかったこと以外は実施例1と同様にして磁性粉120を作製した。
[Comparative example 2]
Magnetic powder 120 was produced in the same manner as in Example 1 except that the α-Fe particles were not prepared and the mixing and dispersing step S100 was not performed.

[比較例3]
(α−Fe粒子粉体の作製)
臭化鉄(II)(FeBr)を2.43g秤量し、メタノール10mLに溶解させて、臭化鉄メタノール溶液を得た。還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し、脱水処理したメタノール20mLに溶解させた還元剤溶液を準備した。次に、上記臭化鉄メタノール溶液を撹拌しながら、還元剤溶液を滴下添加した。これにより臭化鉄(II)を還元し、α−Fe粒子の分散液を得た。続いて、余剰量の未反応テトラヒドロホウ酸ナトリウムや還元反応の副生成物が完全に除去されるまで遠心分離でメタノール洗浄を行った。不活性ガスであるアルゴンガス置換したグローブボックス内でメタノールを乾燥させ、α−Fe粒子を得た。得られたα−Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α−Fe粒子の粒径は10nmであった。
[Comparative Example 3]
(Production of α-Fe particle powder)
2.43 g of iron (II) bromide (FeBr 2 ) was weighed and dissolved in 10 mL of methanol to obtain a methanol solution of iron bromide. 2 g of sodium tetrahydroborate (NaBH 4 ) as a reducing agent was weighed and a reducing agent solution prepared by dissolving it in 20 mL of dehydrated methanol was prepared. Next, the reducing agent solution was added dropwise while stirring the methanol solution of iron bromide. This reduced iron (II) bromide to obtain a dispersion liquid of α-Fe particles. Then, methanol washing was performed by centrifugation until the excess amount of unreacted sodium tetrahydroborate and the by-product of the reduction reaction were completely removed. Methanol was dried in a glove box in which argon gas, which was an inert gas, was replaced to obtain α-Fe particles. When the particle diameter of the obtained α-Fe was observed with a scanning electron microscope (SEM), the particle diameter of the α-Fe particles was 10 nm.

(2種の粉体の混合)
不活性ガスであるアルゴンガス置換したグローブボックス内で上記で得られたα−Fe粒子粉体とSmFe17粒子(住友金属鉱山製、平均粒子径:5μm)粉体2.45gをメノウ乳鉢に入れ、十分に混合し、ガラス瓶に蓋をして封入した。
(Mixing of two powders)
2.45 g of the α-Fe particle powder and the Sm 2 Fe 17 N 3 particles (Sumitomo Metal Mining Co., Ltd., average particle size: 5 μm) powder obtained above in a glove box substituted with argon gas which is an inert gas. The mixture was placed in an agate mortar, mixed well, and the glass bottle was covered with a lid and sealed.

(磁場Hの印加および消去)
得られたSmFe17粒子及びα−Fe粒子混合粉末をガラス瓶に封入した状態で混合粉体にネオジム焼結磁石を近接させ、複合磁性粉末に磁場Hを印加した。ガウスメータを用いて、磁場強度を測定すると0.5Tであった。そのあと、ガラス瓶とネオジム焼結磁石200の距離を引き離し、ガラス瓶内に印加されていた磁場Hを実質的に消去し、磁性粉130を作製した。
(Applying and erasing magnetic field H)
A neodymium sintered magnet was brought close to the mixed powder in a state where the obtained mixed powder of Sm 2 Fe 17 N 3 particles and α-Fe particles was enclosed in a glass bottle, and a magnetic field H was applied to the composite magnetic powder. When the magnetic field strength was measured using a Gauss meter, it was 0.5T. After that, the glass bottle and the neodymium sintered magnet 200 were separated from each other, and the magnetic field H applied in the glass bottle was substantially erased to produce the magnetic powder 130.

(α−Fe粒子とSmFe17粒子の局在状態)
得られた磁性粉130の一部を、100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、α−Fe粒子同士で粗大化した数10μm規模の粒塊やSmFe17粒子同士が直接接触している態様が観察された。
(Localized state of α-Fe particles and Sm 2 Fe 17 N 3 particles)
A part of the obtained magnetic powder 130 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. As a result of TEM observation, it was observed that agglomerates of several tens of μm in size that were coarsened between the α-Fe particles and the Sm 2 Fe 17 N 3 particles were in direct contact with each other.

熱処理工程、焼結体の構造分析、焼結体の磁気特性評価は実施例1と同様にして行った。 The heat treatment step, the structural analysis of the sintered body, and the magnetic property evaluation of the sintered body were performed in the same manner as in Example 1.

[比較例4]
回収工程S400において混合分散液CDLを乾燥させる回収工程S400において0.5Tの磁場Hを印加し、乾燥完了後に磁場Hを減弱する減弱工程S200を行ったこと以外は実施例1と同様にして行い磁性粉140を得た。なお、回収工程S400においては、混合分散液CDLに対して超音波を印加していない。
[Comparative Example 4]
Drying is performed in the same manner as in Example 1 except that the magnetic field H of 0.5 T is applied in the collecting step S400 for drying the mixed dispersion CDL in the collecting step S400 and the magnetic field H is attenuated after the completion of drying. Magnetic powder 140 was obtained. In addition, in the collecting step S400, ultrasonic waves are not applied to the mixed dispersion liquid CDL.

得られた磁性粉140の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、α−Fe粒子同士で粗大化した数10μm規模の粒塊やSmFe17粒子同士が直接接触している態様が観察された。本比較例の磁性粉140は、流動性が制限される回収工程S400において磁場Hが印加され続け、磁場Hが減弱される過程S200において加振も行われていないため、硬磁性粒子と軟磁性粒子の再配列が行われなかったものと推定される。 A part of the obtained magnetic powder 140 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. As a result of TEM observation, it was observed that agglomerates of several tens of μm in size that were coarsened between the α-Fe particles and the Sm 2 Fe 17 N 3 particles were in direct contact with each other. In the magnetic powder 140 of this comparative example, the magnetic field H is continuously applied in the recovery step S400 in which the fluidity is limited, and no vibration is performed in the step S200 in which the magnetic field H is attenuated. It is presumed that the particles were not rearranged.

[比較例5]
磁場Hを印加する磁場印加工程S200および磁場減弱工程S300を実施しなかったこと以外は実施例1と同様に行って磁性粉150を作成した。なお、この比較例5に係る磁性粉150の磁気特性(残留磁化、保磁力)を100として、他の実施例1〜10および他の比較例1−4、6、7の磁気特性を規格化した。この結果を表1に示す。
[Comparative Example 5]
Magnetic powder 150 was prepared in the same manner as in Example 1 except that the magnetic field applying step S200 of applying the magnetic field H and the magnetic field weakening step S300 were not performed. The magnetic properties (remanent magnetization, coercive force) of the magnetic powder 150 according to Comparative Example 5 are set to 100, and the magnetic properties of the other Examples 1 to 10 and the other Comparative Examples 1-4, 6 and 7 are standardized. did. The results are shown in Table 1.

得られた磁性粉150の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、α−Fe粒子同士で粗大化した数10μm規模の粒塊やSmFe17粒子同士が直接接触している態様が観察された。 A part of the obtained magnetic powder 150 was compression-molded at 100 MPa, thinned by a focused ion beam (FIB), and the FIB cross section was observed by TEM. As a result of TEM observation, it was observed that agglomerates of several tens of μm in size that were coarsened between the α-Fe particles and the Sm 2 Fe 17 N 3 particles were in direct contact with each other.

[比較例6]
磁場Hを印加しなかった以外は実施例7と同様に行い磁性粉160を得た。
[Comparative Example 6]
Magnetic powder 160 was obtained in the same manner as in Example 7 except that the magnetic field H was not applied.

得られた磁性粉160の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、α−Fe粒子同士で粗大化した数10μm規模の粒塊やNdFe14B粒子同士が直接接触している態様が観察された。 A part of the obtained magnetic powder 160 was compression-molded at 100 MPa, thinned with a focused ion beam (FIB), and the FIB cross section was observed with a TEM. As a result of TEM observation, it was observed that agglomerates of several 10 μm scale coarsened between α-Fe particles and Nd 2 Fe 14 B particles were in direct contact with each other.

[比較例7]
磁場Hを印加しなかった以外は実施例10と同様に行い磁性粉170を得た。 得られた磁性粉170の一部を100MPaにて圧縮成形後、収束イオンビーム(FIB)にて薄片化し、FIB断面をTEM観察した。TEM観察した結果、α−Fe粒子同士で粗大化した数10μm規模の粒塊やSmFe17粒子同士が直接接触している態様が観察された。
[Comparative Example 7]
Magnetic powder 170 was obtained in the same manner as in Example 10 except that the magnetic field H was not applied. A part of the obtained magnetic powder 170 was compression-molded at 100 MPa, thinned with a focused ion beam (FIB), and the FIB cross section was observed with a TEM. As a result of TEM observation, it was observed that agglomerates of several tens of μm in size that were coarsened between the α-Fe particles and the Sm 2 Fe 17 N 3 particles were in direct contact with each other.

Figure 2020107733
Figure 2020107733

表1に示すように、実施例1〜10においては残留磁化と保磁力の両方が比較例1〜6に対して向上した。以上の結果から、軟磁性粒子20と硬磁性粒子30が溶媒に分散した状態で、磁場を印加し、磁場を消去後に乾燥させることで、高い性能の磁性材料を製造することができると分かった。 As shown in Table 1, in Examples 1 to 10, both the residual magnetization and the coercive force were improved as compared with Comparative Examples 1 to 6. From the above results, it was found that a high-performance magnetic material can be manufactured by applying a magnetic field in a state where the soft magnetic particles 20 and the hard magnetic particles 30 are dispersed in a solvent, and then drying the magnetic field after the magnetic field is erased. ..

10: 溶媒
20: 軟磁性粒子
30: 硬磁性粒子
50: 収納容器
100: 磁性粉
H: 印加磁場
10: Solvent 20: Soft magnetic particles 30: Hard magnetic particles 50: Storage container 100: Magnetic powder H: Applied magnetic field

Claims (12)

硬磁性粒子及び軟磁性粒子が溶媒に分散した混合分散液を準備する混合分散工程と、前記混合分散液に磁場を印加する磁場印加工程と、前記混合分散液から前記硬磁性粒子及び前記軟磁性粒子を含む混合体を回収する回収工程と、を有することを特徴とする硬磁性粒子と軟磁性粒子とを含む磁性粉の製造方法。 A mixing/dispersing step of preparing a mixed dispersion in which hard magnetic particles and soft magnetic particles are dispersed in a solvent, a magnetic field applying step of applying a magnetic field to the mixed dispersion, and the hard magnetic particles and the soft magnetic particles from the mixed dispersion. A method for producing magnetic powder containing hard magnetic particles and soft magnetic particles, which comprises: a collection step of collecting a mixture containing particles. 前記混合分散工程および前記磁場印加工程において、前記混合分散液に界面活性剤を付与する工程を有さないことを特徴とする請求項1に記載の磁性粉の製造方法。 The method for producing magnetic powder according to claim 1, wherein the mixing and dispersing step and the magnetic field applying step do not include a step of applying a surfactant to the mixed dispersion. 硬磁性粒子及び軟磁性粒子を混合した混合粉体を準備する混合粉体工程と、前記混合粉体に磁場を印加する磁場印加工程と、前記混合粉体に振動を与える加振工程と、を有することを特徴とする硬磁性粒子と軟磁性粒子とを含む磁性粉の製造方法。 A mixed powder step of preparing a mixed powder in which hard magnetic particles and soft magnetic particles are mixed, a magnetic field applying step of applying a magnetic field to the mixed powder, and a vibrating step of vibrating the mixed powder. A method for producing a magnetic powder containing hard magnetic particles and soft magnetic particles. 前記磁場印加工程の後に、前記磁場を弱める磁場減弱工程が行われることを特徴とする請求項1乃至3のいずれか1項に記載の磁性粉の製造方法。 The method for producing magnetic powder according to claim 1, wherein a magnetic field weakening step of weakening the magnetic field is performed after the magnetic field applying step. 前記硬磁性粒子は、希土類元素と鉄とを含む窒化物または硼化物であることを特徴とする請求項1乃至4のいずれか1項に記載の磁性粉の製造方法。 The method for producing magnetic powder according to claim 1, wherein the hard magnetic particles are a nitride or a boride containing a rare earth element and iron. 前記硬磁性粒子は、Nd−Fe−B系化合物、または、Sm−Fe−N系化合物を含むことを特徴とする請求項5に記載の磁性粉の製造方法。 The method for producing magnetic powder according to claim 5, wherein the hard magnetic particles include an Nd-Fe-B-based compound or an Sm-Fe-N-based compound. 前記軟磁性粒子は、Fe、Co、Niの少なくともいずれかを含むことを特徴とする請求項1乃至6のいずれか1項に記載の磁性粉の製造方法。 The method for producing magnetic powder according to claim 1, wherein the soft magnetic particles contain at least one of Fe, Co, and Ni. 前記磁場印加工程において印加される磁場の強度が0.01T以上20T以下であることを特徴とする請求項1乃至7のいずれか1項記載の磁性粉の製造方法。 8. The method for producing magnetic powder according to claim 1, wherein the intensity of the magnetic field applied in the magnetic field applying step is 0.01 T or more and 20 T or less. 前記軟磁性粒子は、平均粒径が5nm以上500nm以下であることを特徴とする請求項1乃至8のいずれか1項に記載の磁性粉の製造方法。 The method for producing magnetic powder according to any one of claims 1 to 8, wherein the soft magnetic particles have an average particle size of 5 nm or more and 500 nm or less. 前記硬磁性粒子は、平均粒径が100nm以上50μm以下であることを特徴とする請求項1乃至9のいずれか1項に記載の磁性粉の製造方法。 The method for producing magnetic powder according to any one of claims 1 to 9, wherein the hard magnetic particles have an average particle size of 100 nm or more and 50 µm or less. 請求項1乃至10のいずれか1項に記載の磁性粉の製造方法と、
前記磁性粉を焼結する焼結工程と、を有することを特徴とする磁石の製造方法。
A method for producing the magnetic powder according to any one of claims 1 to 10,
A method of manufacturing a magnet, comprising: a sintering step of sintering the magnetic powder.
前記焼結工程は、パルス通電焼結を含むことを特徴とする請求項11に記載の磁石の製造方法。 The method of manufacturing a magnet according to claim 11, wherein the sintering step includes pulse current sintering.
JP2018245137A 2018-12-27 2018-12-27 Method of manufacturing magnetic powder and magnet Pending JP2020107733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245137A JP2020107733A (en) 2018-12-27 2018-12-27 Method of manufacturing magnetic powder and magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245137A JP2020107733A (en) 2018-12-27 2018-12-27 Method of manufacturing magnetic powder and magnet

Publications (1)

Publication Number Publication Date
JP2020107733A true JP2020107733A (en) 2020-07-09

Family

ID=71450987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245137A Pending JP2020107733A (en) 2018-12-27 2018-12-27 Method of manufacturing magnetic powder and magnet

Country Status (1)

Country Link
JP (1) JP2020107733A (en)

Similar Documents

Publication Publication Date Title
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
Gandha et al. High energy product developed from cobalt nanowires
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP5201144B2 (en) R-Fe-B anisotropic sintered magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
KR101165937B1 (en) Permanent magnet and manufacturing method for permanent magnet
JP6037093B1 (en) Method for producing RTB-based sintered magnet
JP2011228666A (en) Permanent magnet and method for manufacturing the same
Saito Production of Sm–Fe–N bulk magnets by spark plasma sintering method
Rahimi et al. On the magnetic and structural properties of neodymium iron boron nanoparticles
Saito Magnetic properties of Sm–Fe–N anisotropic magnets produced by magnetic-field-assisted spark plasma sintering
Otogawa et al. Consolidation of Sm2Fe17N3 magnets with Sm-based eutectic alloy binder
Saito et al. Production of Sm–Fe–N bulk magnets by the spark plasma sintering method with dynamic compression
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
JP6512150B2 (en) Method of manufacturing RTB based sintered magnet
JP2021150547A (en) Method for manufacturing r-t-b based sintered magnet
JP2015212415A (en) CORE-SHELL-SHELL FeCo/SiO2/MnBi NANOPARTICLE PREPARATION METHOD AND CORE-SHELL-SHELL FeCo/SiO2/MnBi NANOPARTICLE
Pei et al. Effect of reduction-diffusion time on microstructure and properties of Nd-Fe-B nanoparticles prepared by low-energy chemical method
Yuping et al. Sintered Nd-Fe-B magnet with core–shell structures fabricated through the intergranular addition of ultra-fine as-disproportionated (Nd, Dy)–Fe–B–Cu powder
JP2020107733A (en) Method of manufacturing magnetic powder and magnet
Sreenivasulu et al. Spark plasma sintered Sm2Co17–FeCo nanocomposite permanent magnets synthesized by high energy ball milling
JPWO2018101409A1 (en) Rare earth sintered magnet
Yonekura et al. Relationship between Nd content and magnetic properties of Nd2Fe14B/Nd nanocomposites chemically synthesized using self-assembled block copolymer templates
Cha et al. Coercivity enhancement of Nd-Fe-B HDDR powder by grain boundary diffusion process with rare-earth hydride
JP2010024479A (en) Flat fine particle of iron alloy and method for producing the same