JP2020107405A - Graphite material for battery electrode and method for manufacturing the same - Google Patents

Graphite material for battery electrode and method for manufacturing the same Download PDF

Info

Publication number
JP2020107405A
JP2020107405A JP2018242350A JP2018242350A JP2020107405A JP 2020107405 A JP2020107405 A JP 2020107405A JP 2018242350 A JP2018242350 A JP 2018242350A JP 2018242350 A JP2018242350 A JP 2018242350A JP 2020107405 A JP2020107405 A JP 2020107405A
Authority
JP
Japan
Prior art keywords
mass
less
graphite
graphite material
graphite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018242350A
Other languages
Japanese (ja)
Inventor
明央 利根川
Akio Tonegawa
明央 利根川
文香 井門
Fumika Imon
文香 井門
鎭碩 白
Jin Sok Back
鎭碩 白
安顕 脇坂
Yasuaki Wakisaka
安顕 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2018242350A priority Critical patent/JP2020107405A/en
Publication of JP2020107405A publication Critical patent/JP2020107405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a graphite material for a battery electrode, which is arranged for a battery having low-temperature and high-temperature cycle characteristics, a low-temperature rate characteristic, a high-temperature retention characteristic, a high-temperature recovery characteristic, and a high-coulomb efficiency characteristic in a propylene carbonate (PC) electrolyte solution at a time, and a manufacturing thereof.SOLUTION: A graphite material for a battery electrode comprises graphite particles (A1), (A2), (A3) and (A4) at the following rates of (13) to (16), which satisfy the requirements (1) to (12) concerning a 50%-particle size (D50) in a volume-based cumulative particle-size distribution, Lc(002) and a surface roughness: 3 mass%≤A1≤10 mass% (13); 6 mass%≤A2≤16 mass% (14); 8 mass%≤A3≤18 mass% (15); and 60 mass%≤A4≤80 mass% (16).SELECTED DRAWING: None

Description

本発明は、電池電極用黒鉛材料及びその製造方法に関する。 The present invention relates to a graphite material for battery electrodes and a method for manufacturing the same.

携帯電子機器などの電源としてリチウムイオン二次電池が使用されている。リチウムイオン二次電池は、当初、電池容量の不足、充放電サイクル寿命が短いなど多くの課題があった。現在ではそのような課題が克服され、リチウムイオン二次電池の用途は携帯電話、ノートブック型パソコン、デジタルカメラなどの弱電機器から、電動工具、電動自転車などのパワーを必要とする強電機器にも適用が広がってきている。さらに、リチウムイオン二次電池は、自動車の動力源への利用が特に期待されており、電極材料、セル構造などの研究開発が盛んにすすめられている。 Lithium ion secondary batteries are used as power sources for portable electronic devices and the like. Initially, lithium ion secondary batteries had many problems such as insufficient battery capacity and short charge/discharge cycle life. Nowadays, such problems have been overcome, and the applications of lithium-ion secondary batteries have changed from low-power devices such as mobile phones, notebook computers and digital cameras to high-power devices that require power such as power tools and electric bicycles. The application is spreading. Further, the lithium-ion secondary battery is particularly expected to be used as a power source for automobiles, and research and development of electrode materials, cell structures, etc. are actively pursued.

自動車の動力源として用いられるリチウムイオン二次電池は、低温サイクル特性、高温保存特性、高温サイクル特性、低抵抗、クーロン効率に優れることが求められ、それぞれの課題に対し様々な手法が講じられている。また、近年では負極電極の厚膜化によるエネルギー密度の向上も図られている。 Lithium-ion secondary batteries used as power sources for automobiles are required to have excellent low-temperature cycle characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low resistance, and Coulombic efficiency, and various methods have been taken to address each issue. There is. In recent years, the energy density has been improved by increasing the thickness of the negative electrode.

例えば、特許第5270050号公報(特許文献1)には、黒鉛表面に炭素質層を被覆し、低電流充放電時のサイクル特性、出入力特性、大電流サイクル特性が良好なリチウムイオン二次電池を得ることができる黒鉛材料として有用な複合黒鉛粒子、その製造方法、その複合黒鉛粒子を用いた電極シート及びリチウムイオン二次電池が開示されている。 For example, Japanese Patent No. 5270050 (Patent Document 1) discloses a lithium ion secondary battery in which a graphite surface is coated with a carbonaceous layer and good cycle characteristics at low current charge/discharge, input/output characteristics, and large current cycle characteristics are obtained. A composite graphite particle useful as a graphite material capable of obtaining the above, a method for producing the same, an electrode sheet using the composite graphite particle, and a lithium ion secondary battery are disclosed.

また、リチウムイオン二次電池に用いられる現状の黒鉛材料は、電解液の溶媒であるプロピレンカーボネート(以下、PC)を充電時に分解してしまうという問題があり、その結果クーロン効率の大幅低下を起こすことがある。 In addition, the current graphite materials used for lithium-ion secondary batteries have a problem that propylene carbonate (hereinafter, PC), which is a solvent of an electrolytic solution, is decomposed during charging, resulting in a large decrease in Coulombic efficiency. Sometimes.

特許第4781659号公報(特許文献2)ではバナジウムを含有する炭素質材料を3000℃以上で熱処理することにより、黒鉛の表面を不活性化しクーロン効率を向上させ、かつPCへの影響を抑制する黒鉛材料の開発を行っている。PCを電解液に用いることで低温での電池特性により優れたリチウムイオン二次電池を提供することが可能となる。 In Japanese Patent No. 4781659 (Patent Document 2), a carbonaceous material containing vanadium is heat-treated at 3000° C. or higher to inactivate the surface of the graphite, improve the Coulomb efficiency, and suppress the influence on PC. We are developing materials. By using PC as the electrolytic solution, it becomes possible to provide a lithium-ion secondary battery that has better battery characteristics at low temperatures.

特開2002−241118では炭素表面を酸化バナジウムでコーティングをしているが、クーロン効率の改善にとどまっている。 In Japanese Patent Laid-Open No. 2002-241118, the carbon surface is coated with vanadium oxide, but only the improvement of Coulombic efficiency is achieved.

特開2016−95897では複数の黒鉛の組み合わせにより長期サイクルの耐久性向上をさせているが、高温及び低温両条件下での特性改善を達成はしていない。 In JP-A-2016-95897, a combination of a plurality of graphites improves the durability in a long-term cycle, but does not achieve the property improvement under both high temperature and low temperature conditions.

特許第5270050号公報Japanese Patent No. 5270050 特許第4781659号公報Japanese Patent No. 4781659 特開2002−241118JP 2002-241118 A 特開2016−95897JP, 2016-95897, A

低温特性改善等のためにPCを用いた電解液は今後ますます使用されると予想され、PCへの影響の少ない電池電極用黒鉛材料を開発することが必要である。
しかし、上記のような従来の技術ではPC電解液への耐久性、低温サイクル特性、高温保存特性、高温サイクル特性、高クーロン効率を同時に備えた電池を得ることができなかった。
It is expected that the electrolytic solution using PC will be used more and more in the future for improving the low-temperature characteristics, and it is necessary to develop a graphite material for battery electrodes, which has little influence on PC.
However, with the conventional techniques as described above, it was not possible to obtain a battery having durability against a PC electrolyte solution, low temperature cycle characteristics, high temperature storage characteristics, high temperature cycle characteristics, and high Coulombic efficiency at the same time.

本発明は以下の構成からなる。
[1]下記(1)〜(12)を満たす黒鉛粒子(A1)、黒鉛粒子(A2)、黒鉛粒子(A3)、黒鉛粒子(A4)を下記(13)〜(16)の比率で含有する電池電極用黒鉛材料。
5.5(μm)≦D50(A1)≦7.5(μm) (1)
D50(A1)×1.5≦D50(A2)≦D50(A1)×2.0 (2)
D50(A1)×2.0≦D50(A3)≦D50(A1)×3.0 (3)
D50(A1)×3.5≦D50(A4)≦D50(A1)×5.0 (4)
50≦Lc(002)(A4)≦70(nm) (5)
Lc(002)(A4)×1.30≦Lc(002)(A1)≦Lc(002)(A4)×1.50 (6)
Lc(002)(A4)×1.20≦Lc(002)(A2)≦Lc(002)(A4)×1.30 (7)
Lc(002)(A4)×0.95≦Lc(002)(A3)≦Lc(002)(A4)×1.10 (8)
4.0≦表面粗さ(A1)≦5.0 (9)
表面粗さ(A1)×1.20≦表面粗さ(A2)≦表面粗さ(A1)×1.80 (10)
表面粗さ(A1)×1.80≦表面粗さ(A3)≦表面粗さ(A1)×2.50 (11)
表面粗さ(A1)×2.00≦表面粗さ(A4)≦表面粗さ(A1)×3.00 (12)
3質量%≦A1≦10質量% (13)
6質量%≦A2≦16質量% (14)
8質量%≦A3≦18質量% (15)
60質量%≦A4≦80質量% (16)
ここでD50は体積基準累積粒度分布における50%粒子径であり、Lc(002)は粉末X線回折法により求められる(002)回折線の結晶子サイズであ、表面粗さは体積基準累積粒度分布から算出された球換算面積に対するBET表面積の比(BET表面積/体積基準累積粒度分布から算出された球換算面積)により求められる値である。
[2]バナジウム(V)を50質量ppm以上1000質量ppm以下含有する前記1に記載の電池電極用黒鉛材料。
[3]レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が15μm以上35μm以下である前記1または2に記載の電池電極用黒鉛材料。
[4]400回目のタップ密度が0.80g/cm以上1.40g/cm以下である前記1〜3のいずれか1つに記載の電池電極用黒鉛材料。
[5]BET比表面積が1.5m/g以上3.5m/g以下である前記1〜4のいずれか1つに記載の電池電極用黒鉛材料。
[6]粒度分布から算出された球換算面積に対するBET表面積の比(BET表面積/粒度分布から算出された球換算面積)で表される表面粗さが5.0以上10.0以下である前記1〜5のいずれか1つに記載の電池電極用黒鉛材料。
[7]ラマンスペクトルで観測される1350cm−1付近のピーク強度(ID)と1580cm−1付近のピーク強度(IG)の強度比であるR値(ID/IG)が0.05以上0.30以下である前記1〜6のいずれか1つに記載の電池用黒鉛材料。
[8]c軸方向の結晶子サイズLc(002)(nm)が50nm以上80nm以下である前記1〜7のいずれか1つに記載の電池電極用黒鉛材料。
[9]式:
α=S1/S2
(式中、S1は、原料の揮発成分中のGC−MSチャートでのベンゼン環が4個縮合している芳香族炭化水素のピーク面積の和、S2は、GC−MSチャートでのベンゼン環が1〜4個縮合している芳香族炭化水素のピーク面積の和を表す。)で定義されるα値が0.25以上0.40以下の原料と、α値が0.40超過0.48以下の原料と、α値が0.48超過0.58以下の原料を粉砕し、原料とバナジウム化合物の合計100質量%対してバナジウム化合物をバナジウム換算で200質量ppm以上5000質量ppm以下となるよう添加して黒鉛化処理を行い、得られた4種の前記黒鉛粒子(A1)〜(A4)を混合する、前記1〜8のいずれか1つに記載の電池電極用黒鉛材料の製造方法。
[11]前記バナジウム化合物が、バナジウム炭化物またはバナジウム酸化物のいずれか1種を含む前記9または10に記載の電池電極用黒鉛材料の製造方法。
[12]予備黒鉛化処理後に、温度が1300℃以下となるように冷却する工程を含む前記9〜11のいずれか1つに記載の電池電極用黒鉛材料の製造方法。
[13]黒鉛化処理後の黒鉛粒子に、黒鉛粒子とカルシウム化合物の合計100質量%に対して、カルシウム化合物(CaO、Ca(OH)、CaCO、Ca(COO)、Ca(CHCOO)、Ca(NOから選ばれる少なくとも1種)をカルシウム換算で1質量ppm以上10000質量ppm以下となるよう添加し3000℃以上3200℃以下で再黒鉛化処理を行う請求項9〜12のいずれか1項に記載の電池電極用黒鉛材料の製造方法。
[14]前記1〜8のいずれか1つに記載の黒鉛材料を含む電極。
[15]前記14に記載の電極を用いたリチウムイオン二次電池。
The present invention has the following configurations.
[1] Graphite particles (A1), graphite particles (A2), graphite particles (A3), and graphite particles (A4) satisfying the following (1) to (12) are contained in the following ratios (13) to (16). Graphite material for battery electrodes.
5.5 (μm)≦D50 (A1)≦7.5 (μm) (1)
D50(A1)×1.5≦D50(A2)≦D50(A1)×2.0 (2)
D50(A1)×2.0≦D50(A3)≦D50(A1)×3.0 (3)
D50(A1)×3.5≦D50(A4)≦D50(A1)×5.0 (4)
50≦Lc (002) (A4)≦70 (nm) (5)
Lc(002)(A4)×1.30≦Lc(002)(A1)≦Lc(002)(A4)×1.50 (6)
Lc(002)(A4)×1.20≦Lc(002)(A2)≦Lc(002)(A4)×1.30 (7)
Lc(002)(A4)×0.95≦Lc(002)(A3)≦Lc(002)(A4)×1.10 (8)
4.0≦surface roughness (A1)≦5.0 (9)
Surface roughness (A1)×1.20≦surface roughness (A2)≦surface roughness (A1)×1.80 (10)
Surface roughness (A1)×1.80≦surface roughness (A3)≦surface roughness (A1)×2.50 (11)
Surface roughness (A1)×2.00≦surface roughness (A4)≦surface roughness (A1)×3.00 (12)
3% by mass≦A1≦10% by mass (13)
6% by mass≦A2≦16% by mass (14)
8 mass% ≤ A3 ≤ 18 mass% (15)
60 mass% ≤ A4 ≤ 80 mass% (16)
Here, D50 is the 50% particle size in the volume-based cumulative particle size distribution, Lc(002) is the crystallite size of the (002) diffraction line obtained by the powder X-ray diffraction method, and the surface roughness is the volume-based cumulative particle size. It is a value calculated by the ratio of the BET surface area to the sphere-converted area calculated from the distribution (BET surface area/sphere-converted area calculated from the volume-based cumulative particle size distribution).
[2] The graphite material for battery electrodes according to the above 1, which contains vanadium (V) in an amount of 50 mass ppm or more and 1000 mass ppm or less.
[3] The graphite material for a battery electrode according to 1 or 2, wherein the 50% particle diameter (D50) in the volume-based cumulative particle size distribution measured by a laser diffraction method is 15 μm or more and 35 μm or less.
[4] 400 th tap density 0.80 g / cm 3 or more 1.40 g / cm 3 or less cell electrode graphite material according to any one of the 1 to 3.
[5] The graphite material for a battery electrode according to any one of 1 to 4 above, which has a BET specific surface area of 1.5 m 2 /g or more and 3.5 m 2 /g or less.
[6] The surface roughness represented by the ratio of BET surface area to sphere-converted area calculated from particle size distribution (BET surface area/sphere-converted area calculated from particle size distribution) is 5.0 or more and 10.0 or less. The graphite material for battery electrodes according to any one of 1 to 5.
[7] The R value (ID/IG), which is the intensity ratio of the peak intensity (ID) near 1350 cm −1 and the peak intensity (IG) near 1580 cm −1 observed in the Raman spectrum, is 0.05 or more and 0.30. The graphite material for a battery according to any one of 1 to 6 below, which is as follows.
[8] The graphite material for a battery electrode according to any one of 1 to 7 above, wherein the crystallite size Lc(002) (nm) in the c-axis direction is 50 nm or more and 80 nm or less.
[9] Expression:
α=S1/S2
(In the formula, S1 is the sum of peak areas of aromatic hydrocarbons in which four benzene rings are condensed in the GC-MS chart in the volatile component of the raw material, and S2 is a benzene ring in the GC-MS chart. A raw material having an α value of 0.25 or more and 0.40 or less, and an α value of 0.48 or more and 0.48. The following raw materials and raw materials having an α value of more than 0.48 and 0.58 or less are crushed so that the vanadium compound is 200 mass ppm or more and 5000 mass ppm or less in terms of vanadium with respect to 100 mass% of the total of the raw material and vanadium compound 9. The method for producing a graphite material for a battery electrode according to any one of 1 to 8 above, wherein the graphite material is added and graphitized, and the obtained four types of graphite particles (A1) to (A4) are mixed.
[11] The method for producing a graphite material for a battery electrode according to the above 9 or 10, wherein the vanadium compound contains any one of vanadium carbide and vanadium oxide.
[12] The method for producing a graphite material for a battery electrode according to any one of 9 to 11 above, which includes a step of cooling to a temperature of 1300° C. or lower after the preliminary graphitization treatment.
[13] In the graphite particles after the graphitization treatment, calcium compounds (CaO, Ca(OH) 2 , CaCO 3 , Ca(COO) 2 , Ca(CH 3 ) are added to 100% by mass of the graphite particles and the calcium compound. COO) 2 and at least one selected from Ca(NO 3 ) 2 ) is added so as to be 1 mass ppm or more and 10000 mass ppm or less in terms of calcium, and regraphitization treatment is performed at 3000° C. or more and 3200° C. or less. 13. The method for producing the graphite material for battery electrodes according to any one of 1 to 12.
[14] An electrode containing the graphite material described in any one of 1 to 8 above.
[15] A lithium ion secondary battery using the electrode described in 14 above.

本発明によれば、プロピレンカーボネート(PC)電解液での高クーロン効率特性、低温サイクル特性、高温サイクル特性、低温レート特性、高温保持特性、高温回復特性を同時に備える電池のための電池電極用黒鉛材料の製造方法を提供することができる。 According to the present invention, graphite for a battery electrode for a battery having high coulombic efficiency characteristics, low temperature cycle characteristics, high temperature cycle characteristics, low temperature rate characteristics, high temperature retention characteristics, and high temperature recovery characteristics in a propylene carbonate (PC) electrolyte solution at the same time. A method of manufacturing a material can be provided.

以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

[1]電池電極用黒鉛材料
本発明の一実施態様における電池電極用黒鉛材料は、黒鉛粒子(A1)、黒鉛粒子(A2)、黒鉛粒子(A3)、黒鉛粒子(A4)を含有する。
[1] Graphite Material for Battery Electrodes The graphite material for battery electrodes in one embodiment of the present invention contains graphite particles (A1), graphite particles (A2), graphite particles (A3), and graphite particles (A4).

[1−1]黒鉛粒子の50%粒子径(D50)
(1)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子の体積基準累積粒度分布における50%粒子径(D50)において、黒鉛粒子(A1)は5.5μm以上7.5μm以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から5.7μm以上が好ましく、6.0μm以上がより好ましい。また、7.2μm以下がより好ましく、7.0μm以下がより好ましい。
(2)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A2)の体積基準累積粒度分布における50%粒子径(D50)は黒鉛粒子(A1)のD50に対して1.5倍以上2.0倍以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から1.55倍以上が好ましく、1.60倍以上がより好ましい。また、1.90倍以下が好ましく、1.85倍以下がより好ましい。
(3)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A3)の体積基準累積粒度分布における50%粒子径(D50)は黒鉛粒子(A1)のD50に対して2.0倍以上3.0倍以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から2.10倍以上が好ましく、2.20倍以上がより好ましい。また、2.90倍以下が好ましく、2.80倍以下がより好ましい。
(4)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A4)の体積基準累積粒度分布における50%粒子径(D50)は黒鉛粒子(A1)のD50に対して3.5倍以上5.0倍以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から3.70倍以上が好ましく、4.00倍以上がより好ましい。また、4.80倍以下が好ましく、4.50倍以下がより好ましい。
[1-1] 50% particle diameter of graphite particles (D50)
(1) In 50% particle diameter (D50) in the volume-based cumulative particle size distribution of graphite particles contained in the graphite material for battery electrodes in one embodiment of the present invention, the graphite particles (A1) are 5.5 μm or more and 7.5 μm or less. Is. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, it is preferably 5.7 μm or more, more preferably 6.0 μm or more. Further, it is more preferably 7.2 μm or less, and more preferably 7.0 μm or less.
(2) The 50% particle diameter (D50) in the volume-based cumulative particle size distribution of the graphite particles (A2) contained in the graphite material for a battery electrode in one embodiment of the present invention is 1.50 with respect to D50 of the graphite particles (A1). It is 5 times or more and 2.0 times or less. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, it is preferably 1.55 times or more, more preferably 1.60 times or more. Further, it is preferably 1.90 times or less, more preferably 1.85 times or less.
(3) The 50% particle diameter (D50) in the volume-based cumulative particle size distribution of the graphite particles (A3) contained in the graphite material for a battery electrode in one embodiment of the present invention is 2.50 with respect to D50 of the graphite particles (A1). It is 0 times or more and 3.0 times or less. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, 2.10 times or more is preferable, and 2.20 times or more is more preferable. Further, it is preferably 2.90 times or less, more preferably 2.80 times or less.
(4) The 50% particle diameter (D50) in the volume-based cumulative particle size distribution of the graphite particles (A4) contained in the graphite material for battery electrodes in one embodiment of the present invention is 3.50 with respect to D50 of the graphite particles (A1). It is 5 times or more and 5.0 times or less. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, 3.70 times or more is preferable, and 4.00 times or more is more preferable. Further, 4.80 times or less is preferable, and 4.50 times or less is more preferable.

D50はレーザー回折式粒度分布測定装置により体積基準の粒子径分布を測定し、累積50%となる粒径を求めることで測定する。 D50 is measured by measuring a volume-based particle size distribution with a laser diffraction type particle size distribution measuring device, and obtaining a particle size with a cumulative 50%.

[1−2]黒鉛粒子のLc(002)
(5)粉末X線回折測定で得られる黒鉛結晶のc軸方向の大きさLc(002)において、本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A4)は50.0以上70.0nm以下である。この範囲内にあることで高い放電容量と高いPC電解液クーロン効率を同時に満たすことができる。同様の観点から52.0nm以上が好ましく、54.0nm以上がより好ましい。また、68.0nm以下が好ましく、66.0nm以下がより好ましい。
(6)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A1)のLc(002)は黒鉛粒子(A4)のLc(002)に対して1.30倍以上1.50倍以下である。この範囲内にあることで高い放電容量と高いPC電解液クーロン効率を同時に満たすことができる。同様の観点から1.32倍以上が好ましく、1.35倍以上がより好ましい。また、1.47倍以下が好ましく、1.45倍以下がより好ましい。
(7)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A2)のLc(002)は黒鉛粒子(A4)のLc(002)に対して1.20倍以上1.30倍以下である。この範囲内にあることで高い放電容量と高いPC電解液クーロン効率を同時に満たすことができる。同様の観点から1.21倍以上が好ましく、1.22倍以上がより好ましい。また、1.29倍以下が好ましく、1.28倍以下がより好ましい。
(8)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A2)のLc(002)は黒鉛粒子(A4)のLc(002)に対して0.95倍以上1.10倍以下である。この範囲内にあることで高い放電容量と高いPC電解液クーロン効率を同時に満たすことができる。同様の観点から、0.97倍以上が好ましく、1.00倍以上がより好ましい。また、1.08倍以下が好ましく、1.05倍以下がより好ましい。
[1-2] Lc(002) of graphite particles
(5) In the size Lc (002) in the c-axis direction of the graphite crystal obtained by powder X-ray diffraction measurement, the graphite particles (A4) contained in the graphite material for a battery electrode in one embodiment of the present invention are 50.0. It is 70.0 nm or less. Within this range, high discharge capacity and high PC electrolyte Coulombic efficiency can be simultaneously satisfied. From the same viewpoint, 52.0 nm or more is preferable, and 54.0 nm or more is more preferable. Moreover, 68.0 nm or less is preferable, and 66.0 nm or less is more preferable.
(6) Lc(002) of the graphite particles (A1) contained in the graphite material for a battery electrode in one embodiment of the present invention is 1.30 times or more and 1.50 times or more than Lc(002) of the graphite particles (A4). It is less than twice. Within this range, high discharge capacity and high PC electrolyte Coulombic efficiency can be simultaneously satisfied. From the same viewpoint, 1.32 times or more is preferable, and 1.35 times or more is more preferable. Further, it is preferably 1.47 times or less, more preferably 1.45 times or less.
(7) Lc(002) of graphite particles (A2) contained in the graphite material for battery electrodes in one embodiment of the present invention is 1.20 times or more 1.30 times as much as Lc(002) of graphite particles (A4). It is less than twice. Within this range, high discharge capacity and high PC electrolyte Coulombic efficiency can be simultaneously satisfied. From the same viewpoint, 1.21 times or more is preferable, and 1.22 times or more is more preferable. Further, it is preferably 1.29 times or less, and more preferably 1.28 times or less.
(8) Lc(002) of the graphite particles (A2) contained in the graphite material for a battery electrode in one embodiment of the present invention is 0.95 times or more 1.10 times as much as Lc(002) of the graphite particles (A4). It is less than twice. Within this range, high discharge capacity and high PC electrolyte Coulombic efficiency can be simultaneously satisfied. From the same viewpoint, 0.97 times or more is preferable, and 1.00 times or more is more preferable. Further, it is preferably 1.08 times or less, more preferably 1.05 times or less.

Lc(002)は、既知の粉末X線回折(XRD)法を用いて測定することができる(稲垣道夫他,日本学術振興会,第117委員会試料,117−121−C−5(1972)、Iwashita et al.,Carbon vol.42(2004),p.701−714参照)。 Lc(002) can be measured using a known powder X-ray diffraction (XRD) method (Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee sample, 117-121-C-5 (1972). , Iwashita et al., Carbon vol. 42 (2004), p.701-714).

[1−3]黒鉛粒子の表面粗さ
体積基準累積粒度分布から算出された球換算面積に対するBET表面積の比(BET表面積/体積基準累積粒度分布から算出された球換算面積)により表面粗さが求められる。
(9)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A1)の表面粗さは4.0以上5.0以下である。この範囲内にあることで高温保存特性、高温回復特性と低温レート特性同時に満たすことができる。同様の観点から4.1以上が好ましく、4.2以上がより好ましい。また、4.9以下が好ましく、4.8以下がより好ましい。
(10)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A2)の表面粗さは、黒鉛粒子(A1)の表面粗さに対して1.20倍以上1.80倍以下である。この範囲内にあることで高温保存特性、高温回復特性と低温レート特性同時に満たすことができる。同様の観点から1.25倍以上が好ましく、1.30倍以上がより好ましい。また、1.75倍以下が好ましく、1.70倍以下がより好ましい。
(11)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A3)の表面粗さは、黒鉛粒子(A1)の表面粗さに対して1.80倍以上2.50倍以下である。この範囲内にあることで高温保存特性、高温回復特性と低温レート特性同時に満たすことができる。同様の観点から1.90倍以上が好ましく、2.00倍以上がより好ましい。また、2.40倍以下が好ましく、2.30倍以下がより好ましい。
(12)本発明の一実施態様における電池電極用黒鉛材料に含まれる黒鉛粒子(A4)の表面粗さは、黒鉛粒子(A1)の表面粗さに対して2.00倍以上3.00倍以下である。この範囲内にあることで高温保存特性、高温回復特性と低温レート特性同時に満たすことができる。同様の観点から2.10倍以上が好ましく、2.20倍以上がより好ましい。また、2.90倍以下が好ましく、2.80倍以下がより好ましい。
[1-3] Surface Roughness of Graphite Particles The surface roughness is determined by the ratio of the BET surface area to the sphere-equivalent area calculated from the volume-based cumulative particle size distribution (BET surface area/sphere-equivalent area calculated from the volume-based cumulative particle size distribution). Desired.
(9) The surface roughness of the graphite particles (A1) contained in the graphite material for a battery electrode in one embodiment of the present invention is 4.0 or more and 5.0 or less. Within this range, high temperature storage characteristics, high temperature recovery characteristics and low temperature rate characteristics can be satisfied at the same time. From the same viewpoint, 4.1 or more is preferable, and 4.2 or more is more preferable. Moreover, 4.9 or less is preferable and 4.8 or less is more preferable.
(10) The surface roughness of the graphite particles (A2) contained in the graphite material for a battery electrode in one embodiment of the present invention is 1.20 times or more and 1.80 times the surface roughness of the graphite particles (A1). It is as follows. Within this range, high temperature storage characteristics, high temperature recovery characteristics and low temperature rate characteristics can be satisfied at the same time. From the same viewpoint, it is preferably 1.25 times or more, more preferably 1.30 times or more. Further, it is preferably 1.75 times or less, more preferably 1.70 times or less.
(11) The surface roughness of the graphite particles (A3) contained in the graphite material for a battery electrode in one embodiment of the present invention is 1.80 times or more and 2.50 times or more the surface roughness of the graphite particles (A1). It is as follows. Within this range, high temperature storage characteristics, high temperature recovery characteristics and low temperature rate characteristics can be satisfied at the same time. From the same viewpoint, 1.90 times or more is preferable, and 2.00 times or more is more preferable. Further, it is preferably 2.40 times or less, more preferably 2.30 times or less.
(12) The surface roughness of the graphite particles (A4) contained in the graphite material for a battery electrode in one embodiment of the present invention is 2.00 times or more and 3.00 times the surface roughness of the graphite particles (A1). It is as follows. Within this range, high temperature storage characteristics, high temperature recovery characteristics and low temperature rate characteristics can be satisfied at the same time. From the same viewpoint, 2.10 times or more is preferable, and 2.20 times or more is more preferable. Further, it is preferably 2.90 times or less, more preferably 2.80 times or less.

BET比表面積は、窒素ガス吸着法を用いた比表面積計(例えば、Quantachrome社製NOVA−1200)を用いて決定することできる。 The BET specific surface area can be determined using a specific surface area meter using a nitrogen gas adsorption method (for example, NOVA-1200 manufactured by Quantachrome).

体積基準累積粒度分布から算出される球換算面積(S)は、レーザー回折式粒度分布測定装置(例えば、マルバーン社製マスターサイザー)を用いて得られる粒度分布のデータに基づいて次式によって算出することができる。
Viは粒径区分i(平均径d)の相対体積、ρは粒子密度、Dは粒径をそれぞれ表す。
The sphere-converted area ( SD ) calculated from the volume-based cumulative particle size distribution is calculated by the following formula based on the particle size distribution data obtained by using a laser diffraction particle size distribution measuring device (for example, Mastersizer manufactured by Malvern Instruments Ltd.). can do.
Vi is the relative volume of the particle size category i (average diameter d i ), ρ is the particle density, and D is the particle size.

[1−4]電池電極用黒鉛材料を構成する黒鉛粒子(A1)〜(A4)の比率
(13)本発明の一実施態様における電池電極用黒鉛材料を100質量%としたとき構成する黒鉛粒子(A1)の混合比率は3質量%以上10質量%以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から4質量%以上が好ましく、5質量%以上がより好ましい。また、9質量%以下が好ましく、10質量%以下がより好ましい。
(14)本発明の一実施態様における電池電極用黒鉛材料を100質量%としたとき構成する黒鉛粒子(A2)の混合比率は7質量%以上15質量%以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から6質量%以上が好ましく、7質量%以上がより好ましい。また16質量%以下が好ましく、15質量%以下がより好ましい。
(15)本発明の一実施態様における電池電極用黒鉛材料を100質量%としたとき構成する黒鉛粒子(A3)の混合比率は9質量%以上17質量%以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から8質量%以上が好ましく、9質量%以上がより好ましい。また18質量%以下が好ましく、17質量%以下がさらに好ましい。
(16)本発明の一実施態様における電池電極用黒鉛材料を100質量%としたとき構成する黒鉛粒子(A4)の混合比率は60質量%以上80質量%以下である。この範囲内にあることで高温保存特性、高温回復特性と低温サイクル特性がともに優れた材料となる。同様の観点から62質量%以上が好ましく、65質量%以上がより好ましい。また78質量%以下が好ましく75質量%以下がより好ましい。
[1-4] Ratio of graphite particles (A1) to (A4) constituting the graphite material for battery electrodes (13) Graphite particles constituting when the graphite material for battery electrodes in one embodiment of the present invention is 100% by mass. The mixing ratio of (A1) is 3% by mass or more and 10% by mass or less. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, 4% by mass or more is preferable, and 5% by mass or more is more preferable. Moreover, 9 mass% or less is preferable and 10 mass% or less is more preferable.
(14) The mixing ratio of the graphite particles (A2) constituting the graphite material for battery electrode in one embodiment of the present invention is 7% by mass or more and 15% by mass or less when the mass is 100% by mass. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, 6% by mass or more is preferable, and 7% by mass or more is more preferable. Moreover, 16 mass% or less is preferable and 15 mass% or less is more preferable.
(15) When the graphite material for battery electrodes in one embodiment of the present invention is 100% by mass, the mixing ratio of the graphite particles (A3) is 9% by mass or more and 17% by mass or less. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, it is preferably 8% by mass or more, more preferably 9% by mass or more. It is preferably 18% by mass or less, more preferably 17% by mass or less.
(16) The mixing ratio of the graphite particles (A4) constituting the graphite material for battery electrode in one embodiment of the present invention is 60% by mass or more and 80% by mass or less when the mass is 100% by mass. Within this range, the material has excellent high temperature storage characteristics, high temperature recovery characteristics, and low temperature cycle characteristics. From the same viewpoint, 62% by mass or more is preferable, and 65% by mass or more is more preferable. Further, it is preferably 78% by mass or less, more preferably 75% by mass or less.

[2]電池電極用黒鉛材料の物性
本発明の一実施態様における電池電極用黒鉛材料は以下の物性を有する。
[2] Physical Properties of Graphite Material for Battery Electrodes The graphite material for battery electrodes in one embodiment of the present invention has the following physical properties.

[2−1][バナジウム含有量]
本発明の一実施態様における電池電極用黒鉛材料は、バナジウムを50質量ppm以上含むことが好ましい。50質量ppm以上であるとクーロン効率が優れる。同様の観点から100質量ppm以上含むことがより好ましく、200質量ppm以上含むことがさらに好ましい。また、バナジウムを1000質量ppm以下含むことが好ましく、750質量ppm以下含むことが好ましく、500質量ppm以下含むことがさらに好ましい。バナジウム含有量の測定は実施例に記載の方法による。
[2-1] [Vanadium content]
The graphite material for battery electrodes in one embodiment of the present invention preferably contains vanadium in an amount of 50 mass ppm or more. Coulomb efficiency is excellent when it is 50 mass ppm or more. From the same viewpoint, it is more preferable to contain 100 mass ppm or more, further preferably 200 mass ppm or more. Further, vanadium is preferably contained in an amount of 1000 mass ppm or less, more preferably 750 mass ppm or less, and further preferably 500 mass ppm or less. The vanadium content is measured by the method described in Examples.

[2−2]体積基準累積粒度分布における50%粒子径(D50)
本発明の一実施態様における電池電極用黒鉛材料のレーザー回折法による体積基準累積粒度分布における50%粒子径(D50)は15μm以上が好ましい。15μm以上であると電極内部の空隙が適切に配置されリチウムイオンの拡散が優れる、低温条件下における入力特性に優れる。同様の観点から17μm以上がより好ましく、19μm以上がさらに好ましい。50%粒子径(D50)は35μm以下が好ましい。35μm以下であると、電極を薄く製造することができ、電池の高密度化に有利である。同様の観点から33μm以下がより好ましく、30μm以下がさらに好ましい。
[2-2] 50% particle diameter (D50) in volume-based cumulative particle size distribution
The 50% particle diameter (D50) in the volume-based cumulative particle size distribution by the laser diffraction method of the graphite material for battery electrodes in one embodiment of the present invention is preferably 15 μm or more. When it is 15 μm or more, the voids inside the electrode are appropriately arranged, the diffusion of lithium ions is excellent, and the input characteristics under low temperature conditions are excellent. From the same viewpoint, 17 μm or more is more preferable, and 19 μm or more is further preferable. The 50% particle diameter (D50) is preferably 35 μm or less. When the thickness is 35 μm or less, the electrode can be thinly manufactured, which is advantageous for increasing the density of the battery. From the same viewpoint, 33 μm or less is more preferable, and 30 μm or less is further preferable.

[2−3]タップ密度(400回)
本発明の一実施態様における電池電極用黒鉛材料の400回タッピングを行った際のタップ密度は0.80g/cm以上が好ましい。0.80g/cm以上の場合、プレス時に到達する電極密度を充分高くすることが可能となり高エネルギー密度の電池が得られる。同様の観点から0.85g/cm以上がより好ましく、0.90g/cm以上がさらに好ましい。タップ密度は1.40g/cm以下が好ましい。1.40g/cm以下の場合、得られた電極の電解液浸透性を充分高くすることが可能となり入出力特性の高い電池が得られる。同様の観点から、1.35g/cm以下がより好ましく、1.30g/cm以下がさらに好ましい。
[2-3] Tap density (400 times)
In one embodiment of the present invention, the tap density when the graphite material for battery electrodes is tapped 400 times is preferably 0.80 g/cm 3 or more. When it is 0.80 g/cm 3 or more, the electrode density reached at the time of pressing can be sufficiently increased, and a battery having a high energy density can be obtained. From the same viewpoint, 0.85 g/cm 3 or more is more preferable, and 0.90 g/cm 3 or more is still more preferable. The tap density is preferably 1.40 g/cm 3 or less. When it is 1.40 g/cm 3 or less, the electrolyte permeability of the obtained electrode can be made sufficiently high, and a battery having high input/output characteristics can be obtained. From the same viewpoint, 1.35 g/cm 3 or less is more preferable, and 1.30 g/cm 3 or less is further preferable.

[2−4]BET比表面積
本発明の一実施態様における電池電極用黒鉛材料のBET比表面積は1.5m/g以上が好ましい。1.5m/g以上であると比表面積が高く低抵抗の電極が得られる。同様の観点から1.7m/g以上がより好ましく、1.9m/g以上がさらに好ましい。BET比表面積が3.5m/g以下が好ましい。3.5m/g以下であると、凝集が発生しやすくスラリー作製が困難になり、また電池としたときに副反応が増加して、クーロン効率の低下、高温保存性や高温サイクル特性が悪化する問題がある。同様の観点から3.4m/g以下がより好ましく、3.3m/g以下がさらに好ましい。BET比表面積の測定は実施例に記載の方法による。
[2-4] BET Specific Surface Area The BET specific surface area of the graphite material for battery electrodes in one embodiment of the present invention is preferably 1.5 m 2 /g or more. When it is 1.5 m 2 /g or more, an electrode having a high specific surface area and low resistance can be obtained. From the same viewpoint, 1.7 m 2 /g or more is more preferable, and 1.9 m 2 /g or more is further preferable. The BET specific surface area is preferably 3.5 m 2 /g or less. If it is 3.5 m 2 /g or less, agglomeration is likely to occur, which makes it difficult to prepare a slurry, and when a battery is used, side reactions increase, which deteriorates Coulomb efficiency and deteriorates high-temperature storability and high-temperature cycle characteristics. There is a problem to do. More preferably 3.4 m 2 / g or less from the same viewpoint, more preferably not more than 3.3 m 2 / g. The BET specific surface area is measured by the method described in Examples.

[2−5]電池電極用黒鉛材料のレーザーラマンのピーク強度比(R値)
レーザーラマン分光測定で観測される1350cm−1付近のピーク強度(ID)と1580cm−1付近のピーク強度(IG)の強度比であるR値(ID/IG)を求めることにより電池電極用黒鉛材料表面の状態を推測することができる。R値が大きい程表面の黒鉛化度が低いことを示す。
本発明の一実施態様における電池電極用黒鉛材料のR値は0.05以上が好ましい。0.05以上であると低抵抗性に優れ、さらにPC電解液への耐久性が上がる傾向が見られる。同様の観点から0.10以上がより好ましく、0.15以上がさらに好ましい。R値は0.30以下が好ましい。0.30以下であると高温保存、高温サイクル特性に優れた電池が得られる。同様の観点から0.25以下がより好ましく、0.25以下がさらに好ましい。
[2-5] Laser Raman peak intensity ratio (R value) of the graphite material for battery electrodes
Graphite material for battery electrode by obtaining R value (ID/IG) which is the intensity ratio of the peak intensity (ID) near 1350 cm −1 and the peak intensity (IG) near 1580 cm −1 observed by laser Raman spectroscopy The surface condition can be inferred. The higher the R value, the lower the degree of graphitization on the surface.
The R value of the graphite material for battery electrodes in one embodiment of the present invention is preferably 0.05 or more. When it is 0.05 or more, the resistance is excellent, and the durability to the PC electrolytic solution tends to increase. From the same viewpoint, 0.10 or more is more preferable, and 0.15 or more is further preferable. The R value is preferably 0.30 or less. When it is 0.30 or less, a battery excellent in high temperature storage and high temperature cycle characteristics can be obtained. From the same viewpoint, 0.25 or less is more preferable, and 0.25 or less is further preferable.

[2−6]d002、Lc(002)
本発明の一実施態様における電池電極用黒鉛材料のX線回折法によって求められる黒鉛結晶面間隔d002は0.3360nm以上が好ましい。0.3360nm以上であると黒鉛結晶組織が発達しすぎていないため、PC耐性に優れる。同様の観点から0.3361以上がより好ましい。d002は0.3370nm以下が好ましい。0.3370nm以下であると放電容量が大きくなる。同様の観点から、0.3368nm以下が好ましく、0.3365nm以下がさらに好ましい。
本発明の一実施態様における電池電極用黒鉛材料のX線回折法によって求められる(002)回折線の結晶子サイズLc(002)は50nm以上が好ましい。50nm以上であると、放電容量が大きくなり、大型電池に要求されるエネルギー密度を満足する電池が得られる。同様の観点から55nm以上がより好ましく、58nm以上がさらに好ましい。Lc(002)は80nm以下が好ましい。80nm以下であると、黒鉛結晶組織が発達しすぎていないため、PC耐性に優れる。同様の観点から70nm以下がより好ましく、65nm以下がさらに好ましい。
黒鉛結晶面間隔d002、結晶子サイズLc(002)は粉末X線回折(XRD)法を用いて測定することができる(Iwashita et al.,Carbon vol.42(2004),p.701−714参照)。
[2-6] d002, Lc (002)
The graphite crystal plane spacing d002 of the graphite material for battery electrodes in one embodiment of the present invention determined by X-ray diffraction is preferably 0.3360 nm or more. When it is 0.3360 nm or more, the graphite crystal structure is not overdeveloped, and therefore the PC resistance is excellent. From the same viewpoint, 0.3361 or more is more preferable. d002 is preferably 0.3370 nm or less. If it is 0.3370 nm or less, the discharge capacity becomes large. From the same viewpoint, 0.3368 nm or less is preferable, and 0.3365 nm or less is more preferable.
The crystallite size Lc(002) of the (002) diffraction line of the graphite material for battery electrodes in one embodiment of the present invention, which is determined by the X-ray diffraction method, is preferably 50 nm or more. When it is 50 nm or more, the discharge capacity becomes large, and a battery satisfying the energy density required for a large battery can be obtained. From the same viewpoint, 55 nm or more is more preferable, and 58 nm or more is further preferable. Lc(002) is preferably 80 nm or less. When it is 80 nm or less, the graphite crystal structure is not overdeveloped, and therefore the PC resistance is excellent. From the same viewpoint, 70 nm or less is more preferable, and 65 nm or less is further preferable.
The graphite crystal plane spacing d002 and the crystallite size Lc(002) can be measured by a powder X-ray diffraction (XRD) method (see Iwashita et al., Carbon vol. 42 (2004), p. 701-714). ).

[2−7]表面粗さ
本発明の一実施態様における電池電極用黒鉛材料の表面粗さは5.0以上が好ましい。5.0以上であると抵抗が下がり、低温特性が向上する傾向が見られる。同様の観点から5.5以上がより好ましく、6.0以上がさらに好ましい。表面粗さは10.0以下が好ましい。10.0以下であると高温保存、高温サイクルが優れる。同様の観点から9.5以下がより好ましく、9.0以下がさらに好ましい。
[2-7] Surface Roughness The graphite material for a battery electrode in one embodiment of the present invention preferably has a surface roughness of 5.0 or more. When it is 5.0 or more, the resistance tends to decrease and the low temperature characteristics tend to improve. From the same viewpoint, 5.5 or more is more preferable, and 6.0 or more is further preferable. The surface roughness is preferably 10.0 or less. When it is 10.0 or less, high temperature storage and high temperature cycle are excellent. From the same viewpoint, 9.5 or less is more preferable, and 9.0 or less is further preferable.

[2−8]カルシウム含有量
本発明の一実施態様における電池電極用黒鉛材料のカルシウム含有量は50質量ppm以下が好ましい。50質量ppm以下であるとクーロン効率に優れた電池が得られる。同様の観点から20質量ppm以下がより好ましく10質量ppm未満がさらに好ましい。
[2-8] Calcium Content The calcium content of the graphite material for battery electrodes in one embodiment of the present invention is preferably 50 mass ppm or less. When it is 50 mass ppm or less, a battery having excellent Coulombic efficiency can be obtained. From the same viewpoint, 20 mass ppm or less is more preferable, and less than 10 mass ppm is further preferable.

本発明の一実施態様における電池電極用黒鉛材料は、特にリチウムイオン二次電池電極用黒鉛材料として用いることが好ましい。この電池電極用黒鉛材料は低温での電池特性向上に有効な電解液と組み合わせることが可能であり、高温保存特性、高温充放電サイクル特性に加え、低温サイクル特性、低温入力特性が優れた電池が得られる。 The graphite material for a battery electrode in one embodiment of the present invention is particularly preferably used as a graphite material for a lithium ion secondary battery electrode. This graphite material for battery electrodes can be combined with an electrolyte that is effective in improving battery characteristics at low temperatures, and it is possible to obtain batteries with excellent low temperature cycle characteristics and low temperature input characteristics in addition to high temperature storage characteristics and high temperature charge/discharge cycle characteristics. can get.

[3]電池電極用黒鉛材料の製造方法
本発明の一実施態様における製造方法に用いられる電池電極用黒鉛材料の製造方法は限定されない。例えば原料を粉砕する工程と、粉砕した原料を黒鉛化する工程と、黒鉛化によって得られた黒鉛粒子を混合する工程を含む。
[3] Method for Producing Graphite Material for Battery Electrodes The method for producing the graphite material for battery electrodes used in the production method according to one embodiment of the present invention is not limited. For example, it includes a step of pulverizing the raw material, a step of graphitizing the pulverized raw material, and a step of mixing the graphite particles obtained by the graphitization.

[3−1]原料
本発明の一実施態様における製造方法に用いられる原料は限定されないが、コークスまたはピッチが好ましい。特に揮発成分を5質量%以上含むコークスを用いることが好ましい。コークスを加熱する際に発生する揮発成分のガスクロマトグラフ質量分析(GC−MS)において、GC−MSのチャートにおけるピレン等のベンゼン環が4個縮合した構造を持つ芳香族炭化水素のピーク面積の和(S1)と、ベンゼン環が1〜4個が縮合した構造を持つ芳香族炭化水素のピーク面積の和(S2)との割合(S1/S2)をαとしたとき、αの値が0.25以上0.40以下のコークスと0.41超過0.48以下のコークスと0.49超過0.58以下のコークスを用いることが好ましい。
[3-1] Raw Material The raw material used in the production method in one embodiment of the present invention is not limited, but coke or pitch is preferable. It is particularly preferable to use coke containing 5% by mass or more of a volatile component. In gas chromatograph mass spectrometry (GC-MS) of volatile components generated when coke is heated, the sum of peak areas of aromatic hydrocarbons having a structure in which four benzene rings such as pyrene are condensed in the chart of GC-MS. When the ratio (S1/S2) of (S1) to the sum (S2) of the peak areas of aromatic hydrocarbons having a structure in which 1 to 4 benzene rings are condensed is α, the value of α is 0. It is preferable to use coke of 25 or more and 0.40 or less, coke of 0.41 or more and 0.48 or less, and coke of 0.49 or more and 0.58 or less.

上記αの値が0.25〜0.40のコークスを用いると粉砕後の形状が球状に近くアスペクト比が1.0以上1.3以下となる。αの値が0.25〜0.40であるコークスは粉砕後に球状に近い形状になるため、電極に用いた際にリチウムイオンの拡散性が優れるが、比表面積が低い傾向があり反応抵抗が高く、黒鉛粉末同士の接点が少ない為電子移動抵抗が高いため、粒径が比較的大きい場合は単体で使用しても入力特性が劣る傾向にある。 When coke having a value of α of 0.25 to 0.40 is used, the shape after crushing is close to a sphere, and the aspect ratio is 1.0 or more and 1.3 or less. Coke having an α value of 0.25 to 0.40 has a nearly spherical shape after crushing, and therefore has excellent lithium ion diffusivity when used as an electrode, but tends to have a low specific surface area and a low reaction resistance. Since it is high and the number of contacts between graphite powders is small, the electron transfer resistance is high. Therefore, when the particle size is relatively large, the input characteristics tend to be poor even when used alone.

上記αの値が0.41〜0.48の場合、粉砕後の形状はやや鱗片状になりアスペクト比が1.3超過1.7以下となる。αの値が0.41〜0.48であるコークスはやや鱗片状であるため、粒径をやや細かくし混合することにより黒鉛粉末同士の接点が増え電子移動抵抗を下げることが出来る。 When the value of α is 0.41 to 0.48, the shape after pulverization is somewhat scale-like and the aspect ratio is more than 1.3 and 1.7 or less. Since the coke having a value of α of 0.41 to 0.48 is a little scaly, it is possible to reduce the electron transfer resistance by increasing the number of contacts between the graphite powders by slightly reducing the particle size and mixing.

上記αの値が0.49〜0.58の場合、粉砕後の形状はより鱗片状になりアスペクト比が1.7超過2.3以下となる。αの値が0.49〜0.58であるコークスは鱗片状であるため、粒径を細かくすることで高比表面積を得ることが出来、混合することで反応抵抗を下げることやエネルギー密度を向上させることが出来る。
上記3つのコークスを粉砕、黒鉛化して得られた黒鉛粒子を混合して電池電極用黒鉛材料とすることが好ましい。
When the value of α is 0.49 to 0.58, the shape after pulverization becomes more scale-like, and the aspect ratio becomes more than 1.7 and 2.3 or less. Since the coke having an α value of 0.49 to 0.58 is scaly, it is possible to obtain a high specific surface area by making the particle size fine, and by mixing it, the reaction resistance is lowered and the energy density is increased. Can be improved.
It is preferable to mix graphite particles obtained by crushing and graphitizing the above three cokes to obtain a graphite material for battery electrodes.

[3−2]粉砕工程
本発明の一実施態様における製造方法に用いられる粉砕手法は限定されずジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等の公知の粉砕機を用いて行うことができる。
[3-2] Pulverizing Step The pulverizing method used in the manufacturing method in one embodiment of the present invention is not limited, and may be performed using a known pulverizer such as a jet mill, a hammer mill, a roller mill, a pin mill and a vibration mill. it can.

[3−3]黒鉛化工程
本発明の一実施態様における製造方法に用いられる黒鉛化方法は限定されず、公知のアチソン炉や誘導加熱炉、連続黒鉛化を用いることができる。
[3-3] Graphitization Step The graphitization method used in the manufacturing method in one embodiment of the present invention is not limited, and a known Acheson furnace, induction heating furnace, or continuous graphitization can be used.

[3−3−1]黒鉛化方法
本発明の一実施態様における製造方法において、原料にバナジウム化合物を添加して混合分散させ、黒鉛化することが好ましい。原料とバナジウム化合物の合計100質量%に対してバナジウム化合物を、バナジウム換算で200質量ppm以上5000質量ppm以下添加することが好ましい。この黒鉛化により表面が不活性化してR値が上昇し、クーロン効率が向上し、かつPCの耐久性を高めることが可能となる。同様の観点から1000質量ppm以上4500質量ppm以下がより好ましく、2000質量ppm以上4000質量ppm以下がさらに好ましい。
[3-3-1] Graphitization Method In the production method according to one embodiment of the present invention, it is preferable to add a vanadium compound to the raw material, mix and disperse it, and graphitize. The vanadium compound is preferably added in an amount of 200 mass ppm or more and 5000 mass ppm or less in terms of vanadium with respect to 100 mass% of the total amount of the raw material and the vanadium compound. By this graphitization, the surface is inactivated, the R value is increased, the Coulomb efficiency is improved, and the durability of the PC can be increased. From the same viewpoint, 1000 mass ppm or more and 4500 mass ppm or less are more preferable, and 2000 mass ppm or more and 4000 mass ppm or less are still more preferable.

バナジウム化合物はバナジウム酸化物及びバナジウム炭化物から選ばれる少なくとも1種が用いられることが好ましい。バナジウム酸化物は、VO、V、V、VO及びV13が好ましい。バナジウム炭化物はVC、V及びVCが好ましい。 As the vanadium compound, at least one selected from vanadium oxide and vanadium carbide is preferably used. The vanadium oxide is preferably VO, V 2 O 3 , V 2 O 5 , VO 2 and V 6 O 13 . The vanadium carbide is preferably VC, V 4 C 3 and V 5 C.

バナジウム化合物と原料の混合方法は限定されず、市販の混合機、攪拌機を用いることができる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を挙げることができる。 The method of mixing the vanadium compound and the raw material is not limited, and a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers and Nauta mixers.

[3−3−2]黒鉛化処理温度
本発明の一実施態様における製造方法の黒鉛化方法における黒鉛化処理温度は3000℃以上で行うことが好ましい。3000℃以上であると黒鉛結晶が成長し、リチウムイオンを高容量で蓄えることが可能な電極を得ることができる。同様の観点から3100℃以上がさらに好ましい。黒鉛化処理温度は3200℃以下が好ましい。3200℃以下であると黒鉛粒子の昇華が抑えられ高い収率で黒鉛粒子材料が得られると共に、バナジウムが適度に残留する。
[3-3-2] Graphitization temperature It is preferable that the graphitization temperature in the graphitization method of the production method according to one embodiment of the present invention is 3000° C. or higher. When the temperature is 3000° C. or higher, graphite crystals grow, and an electrode capable of storing lithium ions in a high capacity can be obtained. From the same viewpoint, 3100° C. or higher is more preferable. The graphitization temperature is preferably 3200°C or lower. When the temperature is 3200° C. or less, sublimation of graphite particles is suppressed, a graphite particle material can be obtained with a high yield, and vanadium appropriately remains.

[3−3−3]予備黒鉛化処理
本発明の一実施態様における製造方法において、上記黒鉛化処理の前に予備黒鉛化処理を行うことが好ましい。予備黒鉛化処理温度は2000℃以上が好ましい。2000℃以上であると黒鉛内部の細孔が少なくなり、高温保存特性が向上する。予備黒鉛化処理温度は2400℃以下が好ましい。2400℃以下であると、段階的に黒鉛化することができ、表面状態を制御しやすい。同様の観点から予備黒鉛化処理温度は2200℃以下がより好ましい。
[3-3-3] Preliminary graphitization treatment In the production method according to one embodiment of the present invention, it is preferable to perform preliminary graphitization treatment before the above graphitization treatment. The pre-graphitization treatment temperature is preferably 2000° C. or higher. When the temperature is 2000°C or higher, the number of pores inside the graphite is reduced, and the high temperature storage characteristics are improved. The pre-graphitization treatment temperature is preferably 2400° C. or lower. When the temperature is 2400° C. or lower, it can be graphitized in stages and the surface condition can be easily controlled. From the same viewpoint, the pre-graphitization treatment temperature is more preferably 2200°C or lower.

本発明の一実施態様における製造方法において、予備黒鉛化処理後に冷却工程を設けることが好ましい。冷却工程では1300℃以下にすることが好ましい。この冷却工程により、発生したガスがコークス表面に付着し、コーティング同等の役割を果たし、クーロン効率やPC耐久性の向上、低抵抗化などの効果を得ることができる。同様の観点から1100℃以下がより好ましい。 In the manufacturing method according to one embodiment of the present invention, it is preferable to provide a cooling step after the preliminary graphitization treatment. In the cooling step, the temperature is preferably set to 1300°C or lower. By this cooling step, the generated gas adheres to the surface of the coke and plays a role equivalent to coating, and it is possible to obtain effects such as improvement of Coulomb efficiency and PC durability, and reduction of resistance. From the same viewpoint, 1100° C. or lower is more preferable.

[3−3−4]再黒鉛化処理
本発明の一実施態様における製造方法において、黒鉛化処理によって得られた黒鉛粒子に再黒鉛化処理を行うことが好ましい。再黒鉛化処理の温度は2900℃以上が好ましい。2900℃以上であるとCaが蒸発し、粒子中に残留せず、クーロン効率が高くなる。同様の観点から3000℃以上がより好ましく、3100℃以上がさらに好ましい。再黒鉛化処理の温度は3200℃以下が好ましい。3200℃以下であると粒子の昇華が抑えられ高い収率で粒子が得られる。さらにバナジウムが適度に残留し、電池特性が向上する。
[3-3-4] Regraphitization Treatment In the production method according to one embodiment of the present invention, it is preferable to subject the graphite particles obtained by the graphitization treatment to a regraphitization treatment. The regraphitizing temperature is preferably 2900° C. or higher. When the temperature is 2900° C. or higher, Ca evaporates and does not remain in the particles, and the Coulomb efficiency becomes high. From the same viewpoint, 3000°C or higher is more preferable, and 3100°C or higher is further preferable. The temperature of the regraphitization treatment is preferably 3200°C or lower. When the temperature is 3200° C. or less, sublimation of particles is suppressed, and particles can be obtained in high yield. Furthermore, vanadium remains in an appropriate amount, improving the battery characteristics.

再黒鉛化処理はCaO、Ca(OH)、CaCO、Ca(COO)、Ca(CHCOO)、Ca(NOから選ばれる少なくとも1種であるカルシウム化合物を添加して行うことが好ましい。これにより粒子の表面粗さを適切な範囲に制御することが可能である。 The regraphitization treatment is performed by adding at least one calcium compound selected from CaO, Ca(OH) 2 , CaCO 3 , Ca(COO) 2 , Ca(CH 3 COO) 2 , and Ca(NO 3 ) 2. It is preferable to carry out. This makes it possible to control the surface roughness of the particles within an appropriate range.

このとき黒鉛粒子とカルシウム化合物の合計100質量%に対して、カルシウム化合物をカルシウム換算で1質量ppm以上10000質量ppm以下を添加することが好ましい。100質量ppm以上5000質量ppm以下がより好ましく、100質量ppm以上3000質量ppm以下がさらに好ましい。 At this time, it is preferable to add 1 mass ppm or more and 10000 mass ppm or less of the calcium compound in terms of calcium with respect to the total 100 mass% of the graphite particles and the calcium compound. 100 mass ppm or more and 5000 mass ppm or less are more preferable, and 100 mass ppm or more and 3000 mass ppm or less are still more preferable.

[3−4]混合工程
本発明の一実施態様における製造方法において、黒鉛粒子(A1)、黒鉛粒子(A2)、黒鉛粒子(A3)、黒鉛粒子(A4)を混合して得ることが好ましい。混合する方法は限定されないが、例えば市販の混合機、攪拌機を用いて混合することで得られる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を用いることができる。
[3-4] Mixing step In the production method according to the embodiment of the present invention, it is preferable to obtain the graphite particles (A1), the graphite particles (A2), the graphite particles (A3), and the graphite particles (A4) by mixing. The method of mixing is not limited, but it can be obtained, for example, by mixing using a commercially available mixer or stirrer. As a specific example, a mixer such as a ribbon mixer, a V-type mixer, a W-type mixer, a one-blade mixer, and a Nauta mixer can be used.

[4]電極
本発明の一実施態様におけるリチウムイオン二次電池の電極は、活物質及びバインダーを含む合剤層と集電体を含む。例えば活物質とバインダーと溶媒を含むペーストを集電体上に塗布し、乾燥し、加圧成形することによって得られる。
[4] Electrode The electrode of the lithium-ion secondary battery in one embodiment of the present invention includes a mixture layer containing an active material and a binder, and a current collector. For example, it can be obtained by applying a paste containing an active material, a binder, and a solvent onto a current collector, drying and pressing.

集電体としては、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。 Examples of the current collector include foils such as aluminum, nickel, copper, and stainless steel, meshes, and the like.

加圧成形法としては、ロール加圧、プレス加圧等の成形法を用いることができる。 As the pressure molding method, a molding method such as roll pressure or press pressure can be used.

[5]リチウムイオン二次電池
リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造を有する。
[5] Lithium Ion Secondary Battery A lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte.

リチウムイオン二次電池の負極には、負極活物質として黒鉛材料を含むことが好ましい。 The negative electrode of the lithium ion secondary battery preferably contains a graphite material as a negative electrode active material.

リチウムイオン二次電池の正極には、正極活物質として通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属元素に対するモル比が0.3〜2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属に対するモル比が0.3〜2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LiMO(MはCo、Ni、Fe、Mnの少なくとも1種、x=0〜1.2)、またはLi(Nは少なくともMnを含む。y=0〜2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。 For a positive electrode of a lithium ion secondary battery, a lithium-containing transition metal oxide is usually used as a positive electrode active material, and preferably at least one selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W. An oxide mainly containing a certain kind of transition metal element and lithium, and a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, and more preferably V, Cr, Mn, Fe. An oxide mainly containing at least one transition metal element selected from Co, Ni and lithium and having a molar ratio of lithium to transition metal of 0.3 to 2.2 is used. In addition, you may contain Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B etc. in the range of less than 30 mol% with respect to the mainly existing transition metal. Among the above positive electrode active materials, the general formula Li x MO 2 (M is at least one of Co, Ni, Fe, and Mn, x=0 to 1.2) or Li y N 2 O 4 (N is at least It is preferable to use at least one material containing Mn and having a spinel structure represented by y=0 to 2).

リチウムイオン二次電池では正極と負極との間にセパレーターを設けることがある。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。 In a lithium ion secondary battery, a separator may be provided between the positive electrode and the negative electrode. Examples of the separator include non-woven fabric containing polyolefin such as polyethylene and polypropylene as a main component, cloth, a microporous film, or a combination thereof.

リチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。低温での電池特性を向上させるために、PC(プロピレンカーボネート)を含むことが好ましい。 As the electrolytic solution and the electrolyte that compose the lithium ion secondary battery, known organic electrolytic solutions, inorganic solid electrolytes, and polymer solid electrolytes can be used. In order to improve the battery characteristics at low temperature, it is preferable to contain PC (propylene carbonate).

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
なお、実施例及び比較例の電池電極用黒鉛材料についての組成、物性及びこれを電極に使用した電池の特性の測定方法は以下の通りである。
The present invention will be described in more detail below by showing typical examples. It should be noted that these are merely examples for description, and the present invention is not limited to these.
The compositions and physical properties of the graphite materials for battery electrodes of Examples and Comparative Examples and the methods for measuring the characteristics of batteries using the same are as follows.

[6]黒鉛材料及び電池電極用黒鉛材料の評価
[6−1]粉末X線回折
試料粉末と標準シリコン(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下のような条件で測定を行った。
XRD装置:Rigaku製SmartLab
X線種:Cu−Kα線
Kβ線除去方法:Niフィルター
X線出力:45kV、200mA
測定範囲:24.0〜30.0deg.
スキャンスピード:2.0deg./min.
得られた波形に対し、学振法を適用し面間隔(d002)及びc軸方向の結晶子サイズ(Lc(002))の値を求めた。
[6] Evaluation of Graphite Material and Graphite Material for Battery Electrodes [6-1] Powder X-ray Diffraction A mixture of sample powder and standard silicon (manufactured by NIST) in a mass ratio of 9:1 was used to prepare a glass sample plate. (Sample plate window 18×20 mm, depth 0.2 mm) was filled, and measurement was performed under the following conditions.
XRD device: SmartLab manufactured by Rigaku
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measuring range: 24.0 to 30.0 deg.
Scan speed: 2.0 deg. /Min.
The Gakushin method was applied to the obtained waveforms to determine the values of the interplanar spacing (d002) and the crystallite size in the c-axis direction (Lc(002)).

[6−2]体積基準累積粒度分布における50%粒子径(D50)、球換算面積
粒度測定装置:Marvern製Mastersizer2000
5mgの試料粉末を容器に入れ、界面活性剤が0.04質量%含まれた水を加えて5分間超音波処理を行った後に測定を行った。
[6-2] 50% particle diameter (D50) in volume-based cumulative particle size distribution, sphere-converted area Particle size measuring device: Mastersizer2000 manufactured by Marvern
5 mg of sample powder was placed in a container, water containing 0.04% by mass of a surfactant was added, and ultrasonic treatment was performed for 5 minutes, and then measurement was performed.

[6−3]タップ密度
タップ密度測定装置:Quantachrome製Autotap
250mLのガラスシリンダーに50gの試料粉末を入れ、400回タップ後の密度を測定した。タッピングの落下高さは5mmとした。
[6-3] Tap Density Tap Density Measuring Apparatus: Quantachrome Autotap
50 g of the sample powder was put into a 250 mL glass cylinder, and the density after 400 taps was measured. The drop height of tapping was 5 mm.

[6−4]BET比表面積
BET比表面積測定装置:Quantachrome製NOVA2200e
測定セル(9mm×135mm)に3gの試料粉末を入れ、300℃、真空条件下で1時間乾燥後、測定を行った。BET比表面積測定用のガスはNを用いた。
[6-4] BET specific surface area BET specific surface area measuring device: NOVA2200e manufactured by Quantachrome
3 g of the sample powder was put into a measuring cell (9 mm×135 mm), dried at 300° C. under a vacuum condition for 1 hour, and then measured. N 2 was used as the gas for measuring the BET specific surface area.

[6−5]ラマン分光分析
ラマン分光装置:日本分光株式会社NRS−5100
試料粉末に対して励起波長532.36nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行い、1300〜1400cm−1の範囲にあるピークの強度(ID)と1580〜1620cm−1の範囲にあるピークの強度(IG)の強度比をR値(ID/IG)とした。
[6-5] Raman spectroscopic analysis Raman spectroscopic apparatus: JASCO Corporation NRS-5100
Excitation wavelength 532.36nm the sample powder, the entrance slit width 200 [mu] m, the exposure time of 15 seconds, the number of integrations twice, was measured under the conditions of the diffraction grating 600 / mm, the peak in the range of 1300~1400Cm -1 The intensity ratio of the intensity (ID) and the intensity (IG) of the peak in the range of 1580 to 1620 cm −1 was defined as the R value (ID/IG).

[6−6]バナジウム及びカルシウム含有量
ICP測定装置:SII製SPS3500Series
試料粉末に含まれる炭素成分は硝酸と硫酸との混合物の加熱により除去を行った。
試料粉末0.1gを石英ビーカーに採取し、硝酸(電子工業用)0.5ml及び硫酸(有害金属測定用)5mlを添加し、480℃に設定したホットプレートにて加熱した。次いで放冷し、これに硝酸0.5mlを添加しさらに過熱した。内容物が目視で見えなくなるまで硝酸添加と加熱を繰り返した。
室温まで冷却後、超純水でポリプロピレン製容器に移し50mlに定容し、ICP測定装置にてバナジウム及びカルシウムの含有量を定量した。
[6-6] Vanadium and Calcium Content ICP Measuring Device: SII SPS3500 Series
The carbon component contained in the sample powder was removed by heating a mixture of nitric acid and sulfuric acid.
0.1 g of the sample powder was sampled in a quartz beaker, 0.5 ml of nitric acid (for electronics industry) and 5 ml of sulfuric acid (for measurement of harmful metals) were added, and heated on a hot plate set at 480°C. Then, the mixture was allowed to cool, 0.5 ml of nitric acid was added thereto, and further heated. The addition of nitric acid and heating were repeated until the contents became invisible.
After cooling to room temperature, it was transferred to a polypropylene container with ultrapure water and the volume was adjusted to 50 ml, and the vanadium and calcium contents were quantified with an ICP measuring device.

[6−7]GC−MS
熱抽出装置:フロンティア・ラボ株式会社製PY−2010
GC装置:アジレント・テクノロジー株式会社製GC6890
MS装置:日本電子株式会社製AutomassII
試料粉末100gを200℃から800℃まで20℃/分の速度で昇温し、発生する揮発成分を液体窒素で捕集し、抽出終了後に成分のGC−MS測定を行った。
GC−MSのチャートにおいて、ピレン、テトラセン、トリフェニレン、クリセン、テトラフェンを骨格とするベンゼン環が4個縮合した構造を持つ芳香族炭化水素が示すピークの面積の和をS1、ベンゼン環1〜4個が縮合した構造を持つ芳香族炭化水素のピーク面積の和をS2とし、α=S1/S2として試料粉末のα値を算出した。
[6-7] GC-MS
Heat extractor: PY-2010 made by Frontier Lab Co., Ltd.
GC device: GC6890 manufactured by Agilent Technology Co., Ltd.
MS device: Automass II manufactured by JEOL Ltd.
100 g of the sample powder was heated from 200° C. to 800° C. at a rate of 20° C./min, the generated volatile components were collected by liquid nitrogen, and GC-MS measurement of the components was performed after the extraction was completed.
In the GC-MS chart, the sum of peak areas of aromatic hydrocarbons having a structure in which four benzene rings having pyrene, tetracene, triphenylene, chrysene, and tetraphene as a skeleton are condensed is S1, and benzene rings 1 to 4 are The sum of the peak areas of aromatic hydrocarbons having a condensed structure of S was set as S2, and α value of the sample powder was calculated by α=S1/S2.

[6−8]電池評価
[6−8−1]ペースト作製:
電池電極用黒鉛材料100質量部に増粘剤としてカルボキシメチルセルロース(CMC)1.5質量部及び水を適宜加えて粘度を調節し、固形分比40%のスチレン−ブタジエンゴム(SBR)微粒子の分散した分散液3.8質量部を加え撹拌・混合し、充分な流動性を有するスラリー状の分散液を作製し、主剤原液とした。
[6-8] Battery evaluation [6-8-1] Paste preparation:
To 100 parts by mass of the graphite material for battery electrodes, 1.5 parts by mass of carboxymethyl cellulose (CMC) as a thickening agent and water are appropriately added to adjust the viscosity, and dispersion of styrene-butadiene rubber (SBR) fine particles having a solid content ratio of 40%. 3.8 parts by mass of the dispersion thus prepared was added and stirred and mixed to prepare a slurry-like dispersion having sufficient fluidity, which was used as a base material stock solution.

[6−8−2]負極作製:
主剤原液を高純度銅箔上で250μmギャップのドクターブレード用いて塗布し、70℃で12時間真空乾燥した。塗布部が20cmとなるように打ち抜いた後、超鋼製プレス板で挟み、プレス圧が約1×10〜3×10N/mm(1×10〜3×10kg/cm)となるようにプレスし、負極1を作製した。また、前記の塗布部を16mmφに打ち抜いた後、負極1と同様の方法で、プレス圧が1×10N/mm(1×10kg/cm)となるようにプレスし、負極2を作製した。
[6-8-2] Preparation of negative electrode:
The base material stock solution was applied onto a high-purity copper foil using a doctor blade with a gap of 250 μm, and vacuum dried at 70° C. for 12 hours. After punching out so that the coating part becomes 20 cm 2 , it is sandwiched by press plates made of super steel, and the press pressure is about 1×10 2 to 3×10 2 N/mm 2 (1×10 3 to 3×10 3 kg/ The negative electrode 1 was produced by pressing so that the negative electrode 1 had a thickness of 2 cm2. In addition, after punching the coated portion to 16 mmφ, the negative electrode was pressed in the same manner as the negative electrode 1 so that the pressing pressure was 1×10 2 N/mm 2 (1×10 3 kg/cm 2 ). 2 was produced.

[6−8−3]正極作製
LiNi1/3Mn1/3Co1/3(D50:7μm)を90g、導電助剤としてのカーボンブラック(TIMCAL社製、C45)を5g、結着材としてのポリフッ化ビニリデン(PVdF)を5g、N−メチル−ピロリドンを適宜加えながら撹拌・混合し、スラリー状の分散液を作製した。
この分散液を厚み20μmのアルミ箔上に厚さが均一となるようにロールコーターにより塗布し、乾燥後、ロールプレスを行い、塗布部が20cmとなるように打ち抜き、正極を得た。
[6-8-3] Preparation of Positive Electrode 90 g of Li 3 Ni 1/3 Mn 1/3 Co 1/3 O 2 (D50:7 μm), 5 g of carbon black (manufactured by TIMCAL, C45) as a conduction aid, 5 g of polyvinylidene fluoride (PVdF) as a binder and N-methyl-pyrrolidone were appropriately added and stirred to prepare a slurry-like dispersion liquid.
This dispersion was applied on an aluminum foil having a thickness of 20 μm by a roll coater so as to have a uniform thickness, dried and roll-pressed to obtain a positive electrode by punching so that the applied portion was 20 cm 2 .

[6−8−4]電池作製:
[6−8−4−1]二極セル
上記負極1、正極に対し、それぞれAl箔にAlタブ、Cu箔にNiタブをとりつけた。ポリプロピレン製フィルム微多孔膜を介してこれらを対向させ積層、アルミラミネートによりパックし後述の電解液Aを注液後、開口部を熱融着により封止し、電池を作製した。
[6-8-4] Battery preparation:
[6-8-4-1] Bipolar Cell An Al tab was attached to an Al foil and an Ni tab was attached to a Cu foil for the negative electrode 1 and the positive electrode, respectively. A polypropylene film was laminated so as to be opposed to each other with a microporous film interposed therebetween, packed with an aluminum laminate, and after pouring an electrolyte solution A described below, the opening was sealed by heat fusion to manufacture a battery.

[6−8−4−2]対極リチウムセル
ポリプロピレン製のねじ込み式フタつきのセル(内径約18mm)内において、上記負極2と16mmφに打ち抜いた金属リチウム箔をセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層し、後述の電解液AまたはBを加えて試験用セルとした。
[6-8-4-2] Counter Lithium Cell In a cell made of polypropylene with a screw-in lid (inner diameter of about 18 mm), the negative electrode 2 and a metallic lithium foil punched into 16 mmφ were separated into separators (polypropylene microporous film (Cell Guard 2400). )), it laminated|stacked and electrolyte solution A or B mentioned later was added, and it was set as the test cell.

[6−8−5]電解液:
電解液A;EC(エチレンカーボネート)2質量部及びEMC(エチルメチルカーボネート)3質量部の混合液に、電解質としてLiPFを1モル/リットル溶解した。
電解液B;EC(エチレンカーボネート)1質量部及びEMC(エチルメチルカーボネート)3質量部及びPC(プロピレンカーボネート)1質量部の混合液に、電解質としてLiPFを1モル/リットル溶解した。
[6-8-5] Electrolyte:
Electrolyte solution A: LiPF 6 as an electrolyte was dissolved at 1 mol/liter in a mixed solution of 2 parts by mass of EC (ethylene carbonate) and 3 parts by mass of EMC (ethyl methyl carbonate).
Electrolyte solution B: LiPF 6 as an electrolyte was dissolved at 1 mol/liter in a mixed solution of 1 part by mass of EC (ethylene carbonate), 3 parts by mass of EMC (ethyl methyl carbonate) and 1 part by mass of PC (propylene carbonate).

[6−8−6]放電容量(電解液A)、クーロン効率(電解液A)の測定:
電解液Aを用いた対極リチウムセルを用いて試験を行った。レストポテンシャルから0.002Vまで0.4mAでCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、カットオフ電流値50.8μAで充電を行った。
上限電圧1.5VとしてCCモードで0.4mAで放電を行った。
試験は25℃に設定した恒温槽内で行った。この際、初回放電時の電気量を電池電極用黒鉛材料の重量で割った値を放電容量(電解液A)とした。また初回充電時の充電容量と初回放電時の放電容量比率、すなわち初回放電容量/初回充電容量を百分率で表した値をクーロン効率(電解液A)とした。
[6-8-6] Measurement of discharge capacity (electrolyte A) and coulombic efficiency (electrolyte A):
The test was conducted using a counter electrode lithium cell using the electrolytic solution A. CC (constant current: constant current) charging was performed at 0.4 mA from a rest potential to 0.002V. Next, it was switched to CV (constant volt: constant voltage) charging at 0.002 V, and charging was performed at a cutoff current value of 50.8 μA.
Discharge was performed at 0.4 mA in CC mode with an upper limit voltage of 1.5 V.
The test was conducted in a constant temperature bath set at 25°C. At this time, the value obtained by dividing the quantity of electricity at the time of initial discharge by the weight of the graphite material for battery electrodes was used as the discharge capacity (electrolyte A). In addition, the ratio of the charge capacity at the time of the first charge and the discharge capacity at the time of the first discharge, that is, the value obtained by expressing the ratio of the initial discharge capacity/the initial charge capacity in percentage was taken as the Coulombic efficiency (electrolyte A).

[6−8−7]PC電解液クーロン効率:
電解液Bを用いた以外は上記と同一の条件で対極リチウムセルを用いて試験を行った。得られたクーロン効率をPC電解液クーロン効率(電解質B)とした。
[6-8-7] PC electrolyte Coulombic efficiency:
A test was performed using a counter electrode lithium cell under the same conditions as above except that the electrolytic solution B was used. The obtained coulombic efficiency was defined as the PC electrolytic solution coulombic efficiency (electrolyte B).

[6−8−8]二極セルの容量:
25℃の恒温槽内で、セルを上限電圧4.15V、カットオフ電流値2.5mAとしてCC、CVモードにより0.2C(0.2C=約10mA)で充電し、下限電圧2.8VでCCモードにより0.2C放電を行った。上記操作を計4回繰り返し、4回目の放電容量を二極セルの基準容量(a)とした。
[6-8-8] Bipolar cell capacity:
In a constant temperature bath at 25°C, the cell was charged at 0.2C (0.2C = about 10mA) in CC and CV mode with an upper limit voltage of 4.15V and a cutoff current value of 2.5mA, and a lower limit voltage of 2.8V. 0.2C discharge was performed by CC mode. The above operation was repeated 4 times in total, and the discharge capacity at the 4th time was used as the reference capacity (a) of the bipolar cell.

[6−8−9]低温サイクル容量維持率(0℃):
二極セルを用いて試験を行った。充電はレストポテンシャルから上限電圧を4.15Vとして定電流値50mA(2C相当)でCCモード充電を行ったのち、CVモードでカットオフ電流値2.5mAで充電を行った。
放電は下限電圧2.8Vとして、CCモードで100mAの放電を行った。
上記条件で、0℃の恒温槽中で500サイクル充放電を繰り返し、500回目の放電容量を低温サイクル放電容量(b)とした。上記条件で測定した高温サイクル放電容量(b)/二極セルの基準容量(a)を百分率で表した値、すなわち100×(b)/(a)を低温サイクル容量維持率とした。
[6-8-9] Low temperature cycle capacity retention rate (0°C):
The test was performed using a bipolar cell. Regarding charging, CC mode charging was performed at a constant current value of 50 mA (corresponding to 2 C) with an upper limit voltage of 4.15 V from the rest potential, and then charging was performed at a cutoff current value of 2.5 mA in CV mode.
The discharge was carried out at a lower limit voltage of 2.8 V, and 100 mA was discharged in CC mode.
Under the above conditions, 500 cycles of charge and discharge were repeated in a constant temperature bath at 0° C., and the discharge capacity at the 500th cycle was defined as the low temperature cycle discharge capacity (b). The high temperature cycle discharge capacity (b)/reference capacity (a) of the bipolar cell measured under the above conditions was expressed as a percentage, that is, 100×(b)/(a) was taken as the low temperature cycle capacity retention rate.

[6−8−10]高温サイクル容量維持率(50℃):
二極セルを用いて試験を行った。充電はレストポテンシャルから上限電圧を4.15Vとして定電流値50mA(2C相当)でCCモード充電を行ったのち、CVモードでカットオフ電流値2.5mAで充電を行った。
放電は下限電圧2.8Vとして、CCモードで100mAの放電を行った。
上記条件で、50℃の恒温槽中で500サイクル充放電を繰り返し、500回目の放電容量を高温サイクル放電容量(c)とした。上記条件で測定した高温サイクル放電容量(b)/二極セルの基準容量(a)を百分率で表した値、すなわち100×(c)/(a)を高温サイクル容量維持率とした。
[6-8-10] High temperature cycle capacity retention rate (50°C):
The test was performed using a bipolar cell. Regarding charging, CC mode charging was performed at a constant current value of 50 mA (corresponding to 2 C) with an upper limit voltage of 4.15 V from the rest potential, and then charging was performed at a cutoff current value of 2.5 mA in CV mode.
The discharge was carried out at a lower limit voltage of 2.8 V, and 100 mA was discharged in CC mode.
Under the above conditions, 500 cycles of charge and discharge were repeated in a constant temperature bath at 50° C., and the discharge capacity at the 500th cycle was defined as the high temperature cycle discharge capacity (c). The high temperature cycle discharge capacity (b) measured under the above conditions/the reference capacity (a) of the bipolar cell was expressed as a percentage, that is, 100×(c)/(a) was taken as the high temperature cycle capacity retention rate.

[6−8−11]低温レート特性
初期電池容量で得られた電池容量(1C=50mAh)を基準として、放電状態から2時間0.5CのCC充電をした(4.15V休止)。充電したセルを−20℃に設定した恒温槽にて下限電圧2V、1Cで定電流放電し、放電容量を測定した。この放電容量を低温放電容量(h)とし、100×(d)/(a)を低温放電レート特性の値とした。
[6-8-11] Low temperature rate characteristic Based on the battery capacity (1 C = 50 mAh) obtained at the initial battery capacity, 0.5 C CC charging was performed for 2 hours from the discharged state (4.15 V rest). The charged cell was subjected to constant current discharge at a lower limit voltage of 2 V and 1 C in a constant temperature bath set at -20°C, and the discharge capacity was measured. This discharge capacity was defined as the low temperature discharge capacity (h), and 100×(d)/(a) was defined as the value of the low temperature discharge rate characteristic.

[6−8−12]高温保存容量維持率、高温回復容量維持率:
二極セルを用いて試験を行った。セルを上限電圧4.15V、カットオフ電流値2.5mAとしてCC、CVモードにより0.2C(0.2C=約10mA)で充電した。充電したセルを60℃に設定した恒温槽で1ヶ月間静置後、下限電圧2.8VでCCモードにより0.2C放電し、容量を測定した。このときの容量を高温保存容量(e)とし、100×(e)/(a)から高温保存容量維持率を得た。
さらにそのセルを25℃の恒温槽内で、上限電圧4.15V、カットオフ電流値2.5mAとしてCC、CVモードにより0.2C(0.2C=約10mA)で充電し、下限電圧2.8VでCCモードにより0.2C放電を行い容量を測定した。このときの容量を高温回復容量(f)とし、100×(f)/(a)から高温回復容量維持率を得た。
[6-8-12] High temperature storage capacity retention rate, high temperature recovery capacity retention rate:
The test was performed using a bipolar cell. The cell was charged at 0.2 C (0.2 C=about 10 mA) in CC and CV modes with an upper limit voltage of 4.15 V and a cutoff current value of 2.5 mA. The charged cell was allowed to stand for 1 month in a constant temperature bath set at 60° C., then 0.2 C was discharged in CC mode at a lower limit voltage of 2.8 V, and the capacity was measured. The capacity at this time was defined as the high temperature storage capacity (e), and the high temperature storage capacity retention rate was obtained from 100×(e)/(a).
Further, the cell was charged in a constant temperature bath at 25° C. with an upper limit voltage of 4.15 V and a cutoff current value of 2.5 mA at CC and CV mode at 0.2 C (0.2 C=about 10 mA), and a lower limit voltage of 2. 0.2C discharge was performed in CC mode at 8V, and the capacity was measured. The capacity at this time was defined as the high temperature recovery capacity (f), and the high temperature recovery capacity retention rate was obtained from 100×(f)/(a).

実施例1:
中国遼寧省産原油(API28、ワックス含有率17質量%、硫黄含有率0.66質量%)を常圧蒸留し、重質溜分に対して、十分な量のY型ゼオライト触媒を用い、510℃、常圧で流動床接触分解を行った。得られたオイルが澄明となるまで触媒等の固形分を遠心分離し、デカントオイルを得た。このオイルを小型ディレイドコーキングプロセスに投入した。ドラム入り口温度は505℃、ドラム内圧は600kPa(6kgf/cm)に10時間維持した後、水冷して黒色塊を得た。黒色塊を最大5cm程度になるように金槌で粉砕した後、キルンにて200℃で乾燥を行い、コークス1を得た。このコークス1のα値は0.32であった。
得られたコークス1をホソカワミクロン製バンタムミルで粉砕した。次に、日清エンジニアリング製ターボクラシファイアーTC−15Nで気流分級し、D50=33.5μmである粉砕されたコークス1を得た。この粉砕されたコークス1とV(高純度化学研究所製:75μm以下)の合計を100質量%としたときに、Vをバナジウム換算で3000質量ppmとなるよう混合して黒鉛ルツボに充填し、アチソン炉にて最高到達温度が約2100℃となるよう予備黒鉛化処理を行った。その後止電し、1000℃に下がるまで自然放冷し、再度通電をして最高到達温度が3100℃になるよう黒鉛化処理を行った。得られた黒鉛粒子に対して、黒鉛粒子とCaO(高純度化学研究所製)の合計を100質量%としたときに、CaOをカルシウム換算で1500質量ppmになるように添加し3100℃で再黒鉛化処理を行い黒鉛粒子(A4)を得た。
D50=18.1μmに粒度調整したこと、CaOをカルシウム換算で2000質量ppm添加した以外は黒鉛粒子(A4)と同様にして黒鉛粒子(A3)を得た。
α値が0.45であるコークス2を用いD50=12.6μmに粒度調整したこと以外は黒鉛粒子(A4)と同様にして黒鉛粒子(A2)を得た。
α値が0.51であるコークス3を用いD50=7.3μmに粒度調整されたこと以外は黒鉛粒子(A4)と同様にして黒鉛粒子(A1)を得た。
得られた黒鉛粒子(A1)、(A2)、(A3)、(A4)に対し、バナジウム含有量、タップ密度、50%粒子径(D50)、d002、Lc(002)、BET比表面積、表面粗さを測定した。
黒鉛粒子(A1)、(A2)、(A3)、(A4)がそれぞれ6質量%、11質量%、13質量%、70質量%になるようにV型混合機で混合し、電池電極用黒鉛材料を得た。
得られた電池電極用黒鉛材料に対し、50%粒子径(D50)測定、球換算面積算出、粉末XRD測定による面間隔(d002)及びc軸方向の大きさ(Lc002)の算出、BET比表面積測定、表面粗さ、ラマン分光分析方法によるR値測定を行った。また、電池電極用黒鉛材料を用いて電池作製を行い、放電容量測定、クーロン効率測定、サイクル容量維持率測定(0℃及び50℃)、保存・容量維持率測定(60℃)、充電レート測定(−20℃)を行った。
Example 1:
Crude oil (API 28, wax content 17% by mass, sulfur content 0.66% by mass) produced in Liaoning Province, China is distilled under atmospheric pressure, and a sufficient amount of Y-type zeolite catalyst is used for heavy fractions. Fluidized bed catalytic cracking was carried out at ℃ and atmospheric pressure. The solid content such as the catalyst was centrifuged until the obtained oil became clear to obtain decant oil. This oil was put into a small delayed coking process. After maintaining the drum inlet temperature at 505° C. and the drum internal pressure at 600 kPa (6 kgf/cm 2 ) for 10 hours, water cooling was performed to obtain a black lump. The black mass was crushed with a hammer so that the maximum size was about 5 cm, and then dried at 200° C. in a kiln to obtain coke 1. The α value of Coke 1 was 0.32.
The obtained coke 1 was pulverized with a bantam mill manufactured by Hosokawa Micron. Next, air flow classification was carried out with a turbo classifier TC-15N manufactured by Nisshin Engineering to obtain crushed coke 1 having D50=33.5 μm. When the total of the crushed coke 1 and V 2 O 5 (manufactured by Kojundo Chemical Laboratory: 75 μm or less) is 100 mass %, V 2 O 5 is mixed so as to be 3000 mass ppm in terms of vanadium. The graphite crucible was filled and pregraphitized in an Acheson furnace so that the maximum temperature reached was about 2100°C. After that, the electricity was stopped, the mixture was naturally cooled until the temperature dropped to 1000° C., and the electricity was supplied again to perform graphitization treatment so that the maximum temperature reached 3100° C. When the total of the graphite particles and CaO (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was 100 mass% with respect to the obtained graphite particles, CaO was added to 1500 mass ppm in terms of calcium and re-added at 3100°C. Graphitization treatment was performed to obtain graphite particles (A4).
Graphite particles (A3) were obtained in the same manner as the graphite particles (A4) except that the particle size was adjusted to D50=18.1 μm and CaO was added in an amount of 2000 mass ppm in terms of calcium.
Graphite particles (A2) were obtained in the same manner as the graphite particles (A4), except that the coke 2 having an α value of 0.45 was used and the particle size was adjusted to D50=12.6 μm.
Graphite particles (A1) were obtained in the same manner as the graphite particles (A4), except that the coke 3 having an α value of 0.51 was used and the particle size was adjusted to D50=7.3 μm.
Vanadium content, tap density, 50% particle size (D50), d002, Lc(002), BET specific surface area, and surface of the obtained graphite particles (A1), (A2), (A3), and (A4) The roughness was measured.
Graphite for battery electrodes is prepared by mixing graphite particles (A1), (A2), (A3), and (A4) with a V-type mixer so as to be 6% by mass, 11% by mass, 13% by mass, and 70% by mass, respectively. Got the material.
For the obtained graphite material for battery electrodes, 50% particle diameter (D50) measurement, sphere-converted area calculation, interplanar spacing (d 002 ) and size in the c-axis direction (Lc 002 ) by powder XRD measurement, BET Specific surface area measurement, surface roughness, and R value measurement by Raman spectroscopic analysis method were performed. In addition, batteries are manufactured using graphite materials for battery electrodes, discharge capacity measurement, coulomb efficiency measurement, cycle capacity retention rate measurement (0°C and 50°C), storage/capacity retention rate measurement (60°C), charge rate measurement. (-20°C).

実施例2:
予備黒鉛化処理の最高到達温度をいずれも2000℃とした以外は実施例1と同様の製造方法を用いた。
Example 2:
The same manufacturing method as in Example 1 was used except that the highest temperature reached in the pre-graphitization treatment was 2000°C.

実施例3:
予備黒鉛化処理の最高到達温度をいずれも2400℃とした以外は実施例1と同様の製造方法を用いた。
Example 3:
The same manufacturing method as in Example 1 was used except that the highest temperature reached in the pre-graphitization treatment was 2400°C.

実施例4:
一回目の予備黒鉛化処理の最高到達温度をいずれも2000℃とし、その後1000℃に下がるまで自然放冷後、二回目の予備黒鉛化処理の最高到達温度を2400℃で行い、再度1000℃に自然放冷した後に、黒鉛化処理を行った以外は実施例1と同様の製造方法を用いた。
Example 4:
The maximum temperature reached in the first pre-graphitization treatment was set at 2000°C, after which it was naturally cooled until it dropped to 1000°C, then the highest temperature reached in the second pre-graphitization treatment was performed at 2400°C, and the temperature was raised to 1000°C again. The same manufacturing method as in Example 1 was used except that the graphitization treatment was carried out after spontaneous cooling.

実施例5:
コークス1,2,3に添加する各Vの量をバナジウム換算で200質量ppmとし、黒鉛粒子(A2)原料、黒鉛粒子(A3)原料、黒鉛粒子(A4)に対する添加CaOの量をカルシウム換算で3000、3000、2500質量ppmとし、黒鉛粒子(A1)原料にもCaOをカルシウム換算で1500質量ppm添加し3100℃で再黒鉛化したこと以外は実施例1と同様の製造方法を用いた。
Example 5:
The amount of each V 2 O 5 added to the cokes 1, 2, 3 was set to 200 mass ppm in terms of vanadium, and the amount of added CaO with respect to the graphite particle (A2) raw material, the graphite particle (A3) raw material, and the graphite particle (A4) was adjusted. The same production method as in Example 1 was used except that the amount of calcium converted was 3000, 3000 and 2500 mass ppm, and that the graphite particle (A1) raw material was also regraphitized at 3100° C. by adding 1500 mass ppm of CaO calculated as calcium. I was there.

実施例6:
黒鉛粒子(A1)の原料に添加するVの量をバナジウム換算で4000質量ppm、黒鉛粒子(A2)、(A3)、(A4)のそれぞれの原料に対する添加するVの量をバナジウム換算で5000質量ppmとした以外は実施例1と同様の製造方法を用いた。
Example 6:
The amount of V 2 O 5 added to the raw material of the graphite particles (A1) is 4000 mass ppm in terms of vanadium, and the amount of V 2 O 5 added to each raw material of the graphite particles (A2), (A3), and (A4). Was used in the same manner as in Example 1 except that the amount was changed to 5000 mass ppm in terms of vanadium.

実施例7
コークス1,2,3に添加するバナジウムとして炭化バナジウム(VC)を用いたこと以外は実施例1と同様の製造方法を用いた。
Example 7
The same manufacturing method as in Example 1 was used, except that vanadium carbide (VC) was used as vanadium added to the cokes 1, 2, and 3.

実施例8:
粉砕条件を変更し黒鉛粒子(A1)原料のD50を6.5μm、黒鉛粒子(A2)原料のD50を9.9μm、黒鉛粒子(A3)原料のD50を12.5μm、黒鉛粒子(A4)原料のD50を21.1μmとした以外は実施例1と同様の製造方法を用いた。
Example 8:
D50 of graphite particle (A1) raw material is 6.5 μm, D50 of graphite particle (A2) raw material is 9.9 μm, D50 of graphite particle (A3) raw material is 12.5 μm, graphite particle (A4) raw material The same manufacturing method as in Example 1 was used except that the D50 of 2 was set to 21.1 μm.

実施例9:
粉砕条件を変更し黒鉛粒子(A1)原料のD50を8.6μm、黒鉛粒子(A2)原料のD50を15.2μm、黒鉛粒子(A3)原料のD50を23.2μm、黒鉛粒子(A4)原料のD50を38.9μmとし、添加するVの量をバナジウム換算で200質量ppmとし、黒鉛粒子(A1)、(A2)、(A3)、(A4)をそれぞれ3質量%、6質量%、11質量%、80質量%になるように混合し、黒鉛粒子(A1)にも黒鉛粒子(A2)、黒鉛粒子(A3)、黒鉛粒子(A4)同様にCaOをカルシウム換算で1000質量ppm添加し3100℃で再黒鉛化したことたこと以外は実施例1と同様の製造方法を用いた。
Example 9:
D50 of graphite particle (A1) raw material was changed to 8.6 μm, D50 of graphite particle (A2) raw material was 15.2 μm, D50 of graphite particle (A3) raw material was 23.2 μm, graphite particle (A4) raw material D50 of 38.9 μm, the amount of V 2 O 5 added is 200 mass ppm in terms of vanadium, and the graphite particles (A1), (A2), (A3), and (A4) are 3 mass% and 6 mass, respectively. %, 11% by mass, 80% by mass, and CaO is 1000 mass ppm in terms of calcium in the same manner as graphite particles (A1), graphite particles (A2), graphite particles (A3) and graphite particles (A4). The same manufacturing method as in Example 1 was used, except that it was added and regraphitized at 3100°C.

実施例10:
黒鉛粒子(A1)、(A2)、(A3)、(A4)をそれぞれ10質量%、16質量%、14質量%、60質量%になるように混合したこと以外は実施例6と同様の製造方法を用いた。
Example 10:
Production similar to that in Example 6 except that graphite particles (A1), (A2), (A3), and (A4) were mixed so as to be 10% by mass, 16% by mass, 14% by mass, and 60% by mass, respectively. The method was used.

実施例11:
黒鉛粒子(A1)の黒鉛化処理の最高到達温度を3000℃、黒鉛粒子(A2)の一回目の加熱工程の最高到達温度を2000℃、黒鉛粒子(A3)の一回目の加熱工程の最高到達温度を2400℃、二回目の加熱工程の最高到達温度を3000℃としたこと以外は実施例1と同様の製造方法を用いた。
Example 11:
The maximum temperature reached in the graphitization treatment of graphite particles (A1) is 3000°C, the maximum temperature reached in the first heating step of graphite particles (A2) is 2000°C, the maximum temperature reached in the first heating step of graphite particles (A3) The same manufacturing method as in Example 1 was used, except that the temperature was 2400° C. and the maximum temperature reached in the second heating step was 3000° C.

実施例12:
黒鉛粒子(A1)の一回目の加熱工程の最高到達温度を2400℃、黒鉛粒子(A2)の予備黒鉛化処理の最高到達温度を2400℃、黒鉛粒子(A3)の予備黒鉛化処理の最高到達温度を2400℃、黒鉛化処理の最高到達温度を3000℃としたこと以外は実施例1と同様の製造方法を用いた。
Example 12:
The highest temperature reached in the first heating step of the graphite particles (A1) is 2400°C, the highest temperature reached in the preliminary graphitization treatment of the graphite particles (A2) is 2400°C, the highest temperature reached in the preliminary graphitization treatment of the graphite particles (A3). The same manufacturing method as in Example 1 was used, except that the temperature was 2400° C. and the maximum temperature for graphitization was 3000° C.

比較例1:
コークスに対する予備黒鉛化処理の最高到達温度をいずれも1600℃とした以外は実施例1と同様の製造方法を用いた。
Comparative Example 1:
The same manufacturing method as in Example 1 was used except that the highest temperature reached in the pre-graphitization treatment on the coke was 1600°C.

比較例2:
コークスに対する黒鉛化処理の最高到達温度をいずれも3300℃とした以外は実施例1と同様の製造方法を用いた。
Comparative Example 2:
The same manufacturing method as in Example 1 was used, except that the highest temperature reached by the graphitization treatment of coke was 3300°C.

比較例3:
コークスに予備黒鉛化処理を行わない以外は実施例1と同様の製造方法を用いた。
Comparative Example 3:
The same manufacturing method as in Example 1 was used except that the coke was not pre-graphitized.

比較例4:
コークス1,2,3に添加するVの量をバナジウム換算で50質量ppmとした以外は実施例1と同様の製造方法を用いた。
Comparative Example 4:
The same manufacturing method as in Example 1 was used, except that the amount of V 2 O 5 added to the cokes 1, 2, and 3 was 50 mass ppm in terms of vanadium.

比較例5:
コークス1,2,3に添加するVの量をバナジウム換算で10000質量ppmとした以外は実施例1と同様の製造方法を用いた。
Comparative Example 5:
The same manufacturing method as in Example 1 was used except that the amount of V 2 O 5 added to the cokes 1, 2, and 3 was changed to 10000 ppm by mass in terms of vanadium.

比較例6:
粉砕条件を変更し黒鉛粒子(A1)の原料のD50を9.4μm、黒鉛粒子(A2)の原料のD50を17.8μm、黒鉛粒子(A3)の原料のD50を25.2μm、黒鉛粒子(A4)の原料のD50を41.5μmとした以外は実施例1と同様の製造方法を用いた。
Comparative Example 6:
The pulverization conditions were changed so that the D50 of the raw material of the graphite particles (A1) was 9.4 μm, the D50 of the raw material of the graphite particles (A2) was 17.8 μm, the D50 of the raw material of the graphite particles (A3) was 25.2 μm, and the graphite particles ( The same manufacturing method as in Example 1 was used except that the D50 of the raw material of A4) was 41.5 μm.

比較例7:
黒鉛粒子(A4)の原料にα値が0.45のコークスを用い、D50を33.2μmにした以外は実施例1と同様の製造方法を用いた。
Comparative Example 7:
The same manufacturing method as in Example 1 was used, except that coke having an α value of 0.45 was used as the raw material for the graphite particles (A4) and D50 was 33.2 μm.

比較例8:
黒鉛粒子(A3)の原料にα値が0.45のコークスを用い、D50を17.8μmにした以外は実施例1と同様の製造方法を用いた。
Comparative Example 8:
The same manufacturing method as in Example 1 was used, except that coke having an α value of 0.45 was used as a raw material for the graphite particles (A3) and D50 was set to 17.8 μm.

比較例9:
黒鉛粒子(A2)の原料にα値が0.51のコークスを用い、D50を12.4μmにした以外は実施例1と同様の製造方法を用いた。
Comparative Example 9:
A production method similar to that of Example 1 was used, except that coke having an α value of 0.51 was used as a raw material of the graphite particles (A2) and D50 was set to 12.4 μm.

比較例10:
黒鉛粒子(A1)の原料にα値が0.64のコークスを用い、D50を7.2μmにした以外は実施例1と同様の製造方法を用いた。
Comparative Example 10:
The same manufacturing method as in Example 1 was used, except that coke having an α value of 0.64 was used as the raw material of the graphite particles (A1) and D50 was set to 7.2 μm.

比較例11:
黒鉛粒子(A4)の原料にα値が0.24のコークスを用い、D50を33.8μmにした以外は実施例1と同様の製造方法を用いた。
Comparative Example 11:
The same manufacturing method as in Example 1 was used, except that coke having an α value of 0.24 was used as the raw material of the graphite particles (A4) and D50 was 33.8 μm.

比較例12:
黒鉛粒子(A1)を3質量%、黒鉛粒子(A2)を6質量%、黒鉛粒子(A3)を1質量%、黒鉛粒子(A4)を90質量%混合したこと以外は実施例1と同様の製造方法を用いた。
Comparative Example 12:
Same as Example 1 except that 3% by mass of graphite particles (A1), 6% by mass of graphite particles (A2), 1% by mass of graphite particles (A3) and 90% by mass of graphite particles (A4) were mixed. The manufacturing method was used.

比較例13:
黒鉛粒子(A1)を3質量%、黒鉛粒子(A2)を6質量%、黒鉛粒子(A3)を25質量%、黒鉛粒子(A4)を60質量%混合したこと以外は実施例1と同様の製造方法を用いた。
Comparative Example 13:
The same as Example 1 except that 3% by mass of the graphite particles (A1), 6% by mass of the graphite particles (A2), 25% by mass of the graphite particles (A3) and 60% by mass of the graphite particles (A4) were mixed. The manufacturing method was used.

比較例14:
黒鉛粒子(A1)を3質量%、黒鉛粒子(A2)を25質量%、黒鉛粒子(A3)を12質量%、黒鉛粒子(A4)を60質量%混合したこと以外は実施例1と同様の製造方法を用いた。
Comparative Example 14:
Similar to Example 1 except that 3% by mass of the graphite particles (A1), 25% by mass of the graphite particles (A2), 12% by mass of the graphite particles (A3) and 60% by mass of the graphite particles (A4) were mixed. The manufacturing method was used.

比較例15:
黒鉛粒子(A1)を15質量%、黒鉛粒子(A2)を6質量%、黒鉛粒子(A3)を9質量%、黒鉛粒子(A4)を70質量%混合したこと以外は実施例1と同様の製造方法を用いた。
Comparative Example 15:
The same as Example 1 except that 15% by mass of the graphite particles (A1), 6% by mass of the graphite particles (A2), 9% by mass of the graphite particles (A3) and 70% by mass of the graphite particles (A4) were mixed. The manufacturing method was used.

比較例16:
黒鉛粒子(A1)を10質量%、黒鉛粒子(A2)を16質量%、黒鉛粒子(A3)を24質量%、黒鉛粒子(A4)を50質量%混合したこと以外は実施例1と同様の製造方法を用いた。
Comparative Example 16:
Similar to Example 1 except that 10% by mass of the graphite particles (A1), 16% by mass of the graphite particles (A2), 24% by mass of the graphite particles (A3) and 50% by mass of the graphite particles (A4) were mixed. The manufacturing method was used.

比較例17:
バナジウム化合物を添加しなかったこと以外は実施例1と同様の製造方法を用いた
Comparative Example 17:
The same manufacturing method as in Example 1 was used except that the vanadium compound was not added.

比較例18:
黒鉛粒子(A1)の原料のD50を5.6μm、黒鉛粒子(A2)の原料のD50を8.1μm、黒鉛粒子(A3)の原料のD50を11.2μm、黒鉛粒子(A4)の原料のD50を18.1μmとした以外は実施例1と同様の製造方法を用いた。
Comparative Example 18:
The D50 of the raw material of the graphite particles (A1) is 5.6 μm, the D50 of the raw material of the graphite particles (A2) is 8.1 μm, the D50 of the raw material of the graphite particles (A3) is 11.2 μm, and the D50 of the raw material of the graphite particles (A4) is The same manufacturing method as in Example 1 was used except that D50 was set to 18.1 μm.

実施例1〜12の製造条件を表1、表3、比較例1〜18の製造条件を表2、表3、電池電極用黒鉛材料の物性を表4、電池特性測定結果を表5に示す。 The production conditions of Examples 1 to 12 are shown in Table 1 and Table 3, the production conditions of Comparative Examples 1 to 18 are shown in Table 2 and Table 3, the physical properties of the graphite material for battery electrodes are shown in Table 4, and the battery characteristic measurement results are shown in Table 5. ..

構成する黒鉛粒子の物性とその比率を調整して得られた電池電極用黒鉛材料は、各電池評価の結果がすべて向上する(実施例1〜12)。熱処理条件の調整が適切でない場合、表面状態や黒鉛化度が望ましい状態ではなくなり、電池特性が悪化する(比較例1〜3)。バナジウムおよびカルシウム化合物の添加量が適切でない場合も表面状態が望ましい状態でなくなり、電池特性が悪化する(比較例4、5、17)。粒度の調整が適切でない場合、一部の電池特性の悪化が見られる(比較例6、18)。原料コークスが適切でない場合、電池電極用黒鉛材料の構成が望ましい状態でなくなり電池特性が悪化する(比較例7〜11)。同様に構成する黒鉛粒子の比率が適切でない場合も電池特性が悪化する(比較例12〜16)。

The graphite materials for battery electrodes obtained by adjusting the physical properties of the constituent graphite particles and the ratio thereof improve all the results of each battery evaluation (Examples 1 to 12). When the heat treatment conditions are not properly adjusted, the surface condition and the degree of graphitization are not desired, and the battery characteristics deteriorate (Comparative Examples 1 to 3). Even when the addition amounts of vanadium and calcium compounds are not appropriate, the surface state becomes undesired and the battery characteristics deteriorate (Comparative Examples 4, 5, 17). When the particle size is not properly adjusted, some battery characteristics are deteriorated (Comparative Examples 6 and 18). If the raw material coke is not appropriate, the composition of the graphite material for battery electrodes is not in a desired state, and the battery characteristics deteriorate (Comparative Examples 7 to 11). The battery characteristics are also deteriorated when the ratio of the graphite particles similarly configured is not appropriate (Comparative Examples 12 to 16).

Claims (15)

下記(1)〜(12)を満たす黒鉛粒子(A1)、黒鉛粒子(A2)、黒鉛粒子(A3)、黒鉛粒子(A4)を下記(13)〜(16)の比率で含有する電池電極用黒鉛材料。
5.5(μm)≦D50(A1)≦7.5(μm) (1)
D50(A1)×1.5≦D50(A2)≦D50(A1)×2.0 (2)
D50(A1)×2.0≦D50(A3)≦D50(A1)×3.0 (3)
D50(A1)×3.5≦D50(A4)≦D50(A1)×5.0 (4)
50≦Lc(002)(A4)≦70(nm) (5)
Lc(002)(A4)×1.30≦Lc(002)(A1)≦Lc(002)(A4)×1.50 (6)
Lc(002)(A4)×1.20≦Lc(002)(A2)≦Lc(002)(A4)×1.30 (7)
Lc(002)(A4)×0.95≦Lc(002)(A3)≦Lc(002)(A4)×1.10 (8)
4.0≦表面粗さ(A1)≦5.0 (9)
表面粗さ(A1)×1.20≦表面粗さ(A2)≦表面粗さ(A1)×1.80 (10)
表面粗さ(A1)×1.80≦表面粗さ(A3)≦表面粗さ(A1)×2.50 (11)
表面粗さ(A1)×2.00≦表面粗さ(A4)≦表面粗さ(A1)×3.00 (12)
3質量%≦A1≦10質量% (13)
6質量%≦A2≦16質量% (14)
8質量%≦A3≦18質量% (15)
60質量%≦A4≦80質量% (16)
ここでD50は体積基準累積粒度分布における50%粒子径であり、Lc(002)は粉末X線回折法により求められる(002)回折線の結晶子サイズであり、表面粗さは体積基準累積粒度分布から算出された球換算面積に対するBET表面積の比(BET表面積/体積基準累積粒度分布から算出された球換算面積)により求められる値である。
For a battery electrode containing graphite particles (A1), graphite particles (A2), graphite particles (A3) and graphite particles (A4) satisfying the following (1) to (12) in the following ratios (13) to (16). Graphite material.
5.5 (μm)≦D50 (A1)≦7.5 (μm) (1)
D50(A1)×1.5≦D50(A2)≦D50(A1)×2.0 (2)
D50(A1)×2.0≦D50(A3)≦D50(A1)×3.0 (3)
D50(A1)×3.5≦D50(A4)≦D50(A1)×5.0 (4)
50≦Lc (002) (A4)≦70 (nm) (5)
Lc(002)(A4)×1.30≦Lc(002)(A1)≦Lc(002)(A4)×1.50 (6)
Lc(002)(A4)×1.20≦Lc(002)(A2)≦Lc(002)(A4)×1.30 (7)
Lc(002)(A4)×0.95≦Lc(002)(A3)≦Lc(002)(A4)×1.10 (8)
4.0≦surface roughness (A1)≦5.0 (9)
Surface roughness (A1)×1.20≦surface roughness (A2)≦surface roughness (A1)×1.80 (10)
Surface roughness (A1)×1.80≦surface roughness (A3)≦surface roughness (A1)×2.50 (11)
Surface roughness (A1)×2.00≦surface roughness (A4)≦surface roughness (A1)×3.00 (12)
3% by mass≦A1≦10% by mass (13)
6% by mass≦A2≦16% by mass (14)
8 mass% ≤ A3 ≤ 18 mass% (15)
60 mass% ≤ A4 ≤ 80 mass% (16)
Here, D50 is the 50% particle size in the volume-based cumulative particle size distribution, Lc(002) is the crystallite size of the (002) diffraction line obtained by the powder X-ray diffraction method, and the surface roughness is the volume-based cumulative particle size. It is a value calculated by the ratio of the BET surface area to the sphere-converted area calculated from the distribution (BET surface area/sphere-converted area calculated from the volume-based cumulative particle size distribution).
バナジウム(V)を50質量ppm以上1000質量ppm以下含有する請求項1に記載の電池電極用黒鉛材料。 The graphite material for a battery electrode according to claim 1, which contains vanadium (V) in an amount of 50 mass ppm or more and 1000 mass ppm or less. レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が15μm以上35μm以下である請求項1または2に記載の電池電極用黒鉛材料。 The graphite material for a battery electrode according to claim 1 or 2, wherein a 50% particle diameter (D50) in a volume-based cumulative particle size distribution measured by a laser diffraction method is 15 μm or more and 35 μm or less. 400回目のタップ密度が0.80g/cm以上1.40g/cm以下である請求項1〜3のいずれか1項に記載の電池電極用黒鉛材料。 400 th cell electrode graphite material according to any one of claims 1 to 3 tap density is less than 0.80 g / cm 3 or more 1.40 g / cm 3. BET比表面積が1.5m/g以上3.5m/g以下である請求項1〜4のいずれか1項に記載の電池電極用黒鉛材料。 Cell electrode graphite material according to any one of claims 1 to 4 BET specific surface area is less than 1.5 m 2 / g or more 3.5 m 2 / g. 粒度分布から算出された球換算面積に対するBET表面積の比(BET表面積/粒度分布から算出された球換算面積)で表される表面粗さが5.0以上10.0以下である請求項1〜5のいずれか1項に記載の電池電極用黒鉛材料。 The surface roughness represented by the ratio of the BET surface area to the sphere-converted area calculated from the particle size distribution (BET surface area/sphere-converted area calculated from the particle size distribution) is 5.0 or more and 10.0 or less. 5. The graphite material for battery electrodes according to any one of 5 above. ラマンスペクトルで観測される1350cm−1付近のピーク強度(ID)と1580cm−1付近のピーク強度(IG)の強度比であるR値(ID/IG)が0.05以上0.30以下である請求項1〜6のいずれか1項に記載の電池用黒鉛材料。 The R value (ID/IG), which is the intensity ratio of the peak intensity (ID) near 1350 cm −1 and the peak intensity (IG) near 1580 cm −1 observed by Raman spectrum, is 0.05 or more and 0.30 or less. The graphite material for a battery according to any one of claims 1 to 6. c軸方向の結晶子サイズLc(002)(nm)が50nm以上80nm以下である請求項1〜7のいずれか1項に記載の電池電極用黒鉛材料。 The graphite material for a battery electrode according to any one of claims 1 to 7, which has a crystallite size Lc(002) (nm) in the c-axis direction of 50 nm or more and 80 nm or less. 式:
α=S1/S2
(式中、S1は、原料の揮発成分中のGC−MSチャートでのベンゼン環が4個縮合している芳香族炭化水素のピーク面積の和、S2は、GC−MSチャートでのベンゼン環が1〜4個縮合している芳香族炭化水素のピーク面積の和を表す。)で定義されるα値が0.25以上0.40以下の原料と、α値が0.40超過0.48以下の原料と、α値が0.48超過0.58以下の原料を粉砕し、原料とバナジウム化合物の合計100質量%対してバナジウム化合物をバナジウム換算で200質量ppm以上5000質量ppm以下となるよう添加して黒鉛化処理を行い、得られた4種の前記黒鉛粒子(A1)〜(A4)を混合する、請求項1〜8のいずれか1項に記載の電池電極用黒鉛材料の製造方法。
formula:
α=S1/S2
(In the formula, S1 is the sum of peak areas of aromatic hydrocarbons in which four benzene rings are condensed in the GC-MS chart in the volatile component of the raw material, and S2 is a benzene ring in the GC-MS chart. A raw material having an α value of 0.25 or more and 0.40 or less, and an α value of 0.48 or more and 0.48. The following raw materials and raw materials having an α value of more than 0.48 and 0.58 or less are crushed so that the vanadium compound is 200 mass ppm or more and 5000 mass ppm or less in terms of vanadium with respect to 100 mass% of the total of the raw material and the vanadium compound. The method for producing a graphite material for a battery electrode according to any one of claims 1 to 8, wherein the four types of the obtained graphite particles (A1) to (A4) are mixed by adding and graphitizing the mixture. ..
各コークスの前記黒鉛化処理の温度がそれぞれ独立に3000℃以上3200℃以下であり、それぞれ独立に2000以上2400℃以下の予備黒鉛化処理を行う請求項9に記載の電池電極用黒鉛材料の製造方法。 The production of the graphite material for battery electrodes according to claim 9, wherein the temperature of the graphitization treatment of each coke is independently 3000° C. or more and 3200° C. or less, and the preliminary graphitization treatment of 2000 or more and 2400° C. or less is independently performed. Method. 前記バナジウム化合物が、バナジウム炭化物またはバナジウム酸化物のいずれか1種を含む請求項9または10に記載の電池電極用黒鉛材料の製造方法。 The method for producing a graphite material for a battery electrode according to claim 9 or 10, wherein the vanadium compound contains any one of vanadium carbide and vanadium oxide. 予備黒鉛化処理後に、温度がそれぞれ独立に1300℃以下となるように冷却する工程を含む請求項9〜11のいずれか1項に記載の電池電極用黒鉛材料の製造方法。 The method for producing a graphite material for a battery electrode according to any one of claims 9 to 11, which includes a step of cooling so that the temperature becomes 1300°C or less independently after the preliminary graphitization treatment. 黒鉛化処理後の黒鉛粒子に、黒鉛粒子とカルシウム化合物の合計100質量%に対して、カルシウム化合物(CaO、Ca(OH)、CaCO、Ca(COO)、Ca(CHCOO)、Ca(NOから選ばれる少なくとも1種)をカルシウム換算で1質量ppm以上10000質量ppm以下となるよう添加し3000℃以上3200℃以下で再黒鉛化処理を行う請求項9〜12のいずれか1項に記載の電池電極用黒鉛材料の製造方法。 In the graphite particles after the graphitization treatment, the calcium compound (CaO, Ca(OH) 2 , CaCO 3 , Ca(COO) 2 , Ca(CH 3 COO) 2 was added to 100% by mass of the total amount of the graphite particles and the calcium compound. , Ca(NO 3 ) 2 ) in an amount of 1 mass ppm or more and 10000 mass ppm or less in terms of calcium, and regraphitizing at 3000° C. or more and 3200° C. or less. A method for producing the graphite material for a battery electrode according to any one of items. 請求項1〜8のいずれか1項に記載の黒鉛材料を含む電極。 An electrode comprising the graphite material according to claim 1. 請求項14に記載の電極を用いたリチウムイオン二次電池。

A lithium ion secondary battery using the electrode according to claim 14.

JP2018242350A 2018-12-26 2018-12-26 Graphite material for battery electrode and method for manufacturing the same Pending JP2020107405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018242350A JP2020107405A (en) 2018-12-26 2018-12-26 Graphite material for battery electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018242350A JP2020107405A (en) 2018-12-26 2018-12-26 Graphite material for battery electrode and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2020107405A true JP2020107405A (en) 2020-07-09

Family

ID=71449300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242350A Pending JP2020107405A (en) 2018-12-26 2018-12-26 Graphite material for battery electrode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2020107405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115509A1 (en) * 2021-12-24 2023-06-29 宁德时代新能源科技股份有限公司 Artificial graphite and preparation method therefor, and secondary battery and electrical device comprising artificial graphite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115509A1 (en) * 2021-12-24 2023-06-29 宁德时代新能源科技股份有限公司 Artificial graphite and preparation method therefor, and secondary battery and electrical device comprising artificial graphite

Similar Documents

Publication Publication Date Title
EP3133678B1 (en) Negative electrode material for lithium-ion battery, and use therefor
TWI457278B (en) Production method of electrode material for lithium ion battery
JPWO2018047939A1 (en) Negative electrode material for lithium ion secondary battery
WO2007066673A1 (en) Graphite material, carbon material for battery electrode and battery
KR101993625B1 (en) Carbon material, production method thereof and use thereof
WO2014092141A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
JP2011142021A (en) Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor
US9284192B2 (en) Method for producing electrode material for lithium ion batteries
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
JP2019012646A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017062974A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode material for nonaqueous electrolyte secondary battery
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
WO2019131862A1 (en) Negative electrode material for lithium-ion secondary cells
WO2019131864A1 (en) Negative electrode material for lithium ion secondary battery
WO2019131861A1 (en) Negative electrode material for lithium-ion secondary cells
WO2020213628A1 (en) Composite carbon particles, method for manufacturing same and use thereof
WO2019131860A1 (en) Negative electrode material for lithium ion secondary battery
WO2020105598A1 (en) Composite carbon particles, method for producing same, and lithium ion secondary battery
JP2020107405A (en) Graphite material for battery electrode and method for manufacturing the same
JP2020187988A (en) Manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3896758A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
WO2020105599A1 (en) Composite carbon particles, method for producing same, and lithium ion secondary battery
WO2019131863A1 (en) Negative electrode material for lithium-ion secondary cells