JP2020106226A - Heat source device - Google Patents

Heat source device Download PDF

Info

Publication number
JP2020106226A
JP2020106226A JP2018245899A JP2018245899A JP2020106226A JP 2020106226 A JP2020106226 A JP 2020106226A JP 2018245899 A JP2018245899 A JP 2018245899A JP 2018245899 A JP2018245899 A JP 2018245899A JP 2020106226 A JP2020106226 A JP 2020106226A
Authority
JP
Japan
Prior art keywords
heating
hot water
water supply
burner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018245899A
Other languages
Japanese (ja)
Other versions
JP7267739B2 (en
Inventor
進 小泉
Susumu Koizumi
進 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2018245899A priority Critical patent/JP7267739B2/en
Publication of JP2020106226A publication Critical patent/JP2020106226A/en
Application granted granted Critical
Publication of JP7267739B2 publication Critical patent/JP7267739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

To provide a heat source device capable of sufficiently achieving hot water supply/heating capacities even though it is compact.SOLUTION: A combined heat exchanger for hot water supply/heating is constituted by arranging a one-kind pipe path arrangement portion in which only a liquid circulation pipe path for hot water supply is disposed, and a two-kind pipe path arrangement portion in which the liquid circulation pipe path for hot water supply is vertically held by liquid circulation pipe paths for heating while kept into contact with each other, in adjacent to each other. A burner device for hot water supply is disposed at a lower side of the one-kind pipe path arrangement portion, and a burner device for heating is disposed at a lower side of the two-kind pipe path arrangement portion. In a simultaneous operation for simultaneously performing a heating operation and a hot water supply operation, control of the number of burner stages, and uniform control of a proportional valve for gas supply to the burner devices for hot water supply and heating are performed in accordance with required combustion capacity. When a predetermined heating shortage determination condition is satisfies, the number of burner stages for control is reduced by one stage or more, and an opening of the gas proportional valve is increased (successively transmitted to Dd, A' and B' from point D as shown by arrows), to increase a combustion capacity of the burner device for heating and to eliminate insufficient heating.SELECTED DRAWING: Figure 13

Description

本発明は、暖房用と給湯用の液体流通管路を共通のバーナにより加熱する構成を備えた熱源装置に関するものである。 The present invention relates to a heat source device having a configuration in which a liquid distribution pipeline for heating and a liquid supply pipeline for hot water supply are heated by a common burner.

従来、例えば給湯交換器と風呂の追い焚き用の熱交換器とが一体化された一缶二水路型の熱交換器を備えて、その一缶二水路型の熱交換器を共通のバーナで加熱するタイプの熱源装置が用いられており、図10には、その一缶二水路型の熱交換器の断面構成が模式的に示されている(例えば特許文献1、参照)。 Conventionally, for example, a hot water exchanger and a heat exchanger for reheating the bath are integrated into a one-can, two-fluid heat exchanger, and the one-can, two-fluid heat exchanger is shared by a common burner. A heat source device of a heating type is used, and FIG. 10 schematically shows a cross-sectional configuration of the one-can two-channel heat exchanger (see, for example, Patent Document 1).

同図に示されるように、この一缶二水路型の熱交換器201は、給湯熱交換器を形成する給湯用伝熱管141が追い焚き用の熱交換器を形成する循環加熱用伝熱管142を上下に挟む態様で互いに接して設けられており、同図においては、これらの伝熱管141,142の外周側に共通のフィン143が設けられている。この一缶二水路型の熱交換器1においては、同図の矢印Aに示されるように、最下段に配置された給湯用伝熱管141の一端側から水が導入され、バーナによって加熱された水が最上段に配置された給湯用伝熱管141を通って導出されて給湯が行われると共に、風呂の追い焚き時には、中央段の循環加熱用伝熱管142を通る湯水が前記バーナによって加熱される。 As shown in the figure, in this one-can two-channel heat exchanger 201, a hot water supply heat transfer tube 141 forming a hot water supply heat exchanger is a circulation heating heat transfer tube 142 forming a reheating heat exchanger. Are provided so as to be in contact with each other in such a manner as to sandwich them above and below. In the figure, a common fin 143 is provided on the outer peripheral side of these heat transfer tubes 141, 142. In this one-can two-channel type heat exchanger 1, as shown by an arrow A in the figure, water is introduced from one end side of the hot water supply heat transfer tube 141 arranged at the lowermost stage and heated by the burner. The water is drawn out through the hot water supply heat transfer tube 141 arranged at the uppermost stage to supply hot water, and at the time of reheating the bath, the hot water passing through the circulation heat transfer tube 142 in the central stage is heated by the burner. ..

このような一缶二水路型の熱交換器201を設けて熱源装置を形成すると、風呂用の熱交換器と給湯用の熱交換器とを個別に形成する場合に比べて熱源装置の小型化が図れるといった利点がある。 When the heat source device is formed by providing such a one-can-two-water-channel heat exchanger 201, the heat source device can be downsized as compared with the case where the heat exchanger for bath and the heat exchanger for hot water supply are separately formed. The advantage is that

実公平8−7307号公報Japanese Utility Model Publication No. 8-7307

ところで、近年、温水マットや浴室乾燥機等の暖房装置に例えば温水等の液体の熱媒体を供給するために、暖房装置に接続される暖房回路を設けた熱源装置が広く用いられるようになってきている。このような暖房回路を有する熱源装置において、熱源装置の小型化を図るために、特許文献1に提案されているような構成において、風呂の追い焚き用の熱交換器の代わりに暖房装置に液体の熱媒体を供給するための暖房用の熱交換器を設けて一缶二水路型の熱交換器を形成することが考えられる。 By the way, in recent years, in order to supply a heating medium such as a hot water mat or a bathroom dryer with a liquid heat medium such as hot water, a heat source device provided with a heating circuit connected to the heating device has been widely used. ing. In the heat source device having such a heating circuit, in order to reduce the size of the heat source device, in the configuration as proposed in Patent Document 1, instead of the heat exchanger for reheating the bath, the liquid is added to the heating device. It is conceivable to provide a heat exchanger for heating to supply the heat medium of 1) to form a one-can two-channel heat exchanger.

つまり、例えば図10の構成にける追い焚き用の熱交換器を形成する循環加熱用伝熱管142の代わりに暖房用の熱交換器の伝熱管を設けることが考えられ、この場合、給湯用伝熱管141が暖房用の熱交換器の伝熱管を上下に挟む態様で設けられることになるが、そうすると、暖房能力は追い焚き能力と同程度しか得られないことになる。しかしながら、暖房に必要な能力は追い焚き能力よりも高い能力であるため、暖房の必要能力が不足してしまうといった問題が生じることになる。 That is, for example, it is conceivable to provide a heat transfer tube of a heating heat exchanger instead of the circulation heating heat transfer tube 142 forming the additional heating heat exchanger in the configuration of FIG. The heat pipes 141 are provided in such a manner that the heat transfer pipes of the heat exchanger for heating are vertically sandwiched, but if this is done, the heating capacity can be obtained to the same extent as the reheating capacity. However, since the capacity required for heating is higher than the reheating capacity, there arises a problem that the required capacity for heating becomes insufficient.

本発明は、上記課題を解決するためになされたものであり、その目的は、小型でも給湯能力と暖房能力とを十分に得ることができ、利用者が快適に利用できる熱源装置を提供することにある。 The present invention has been made to solve the above problems, and an object thereof is to provide a heat source device that can obtain a hot water supply capacity and a heating capacity sufficiently even in a small size, and that can be comfortably used by a user. It is in.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、給湯熱交換器と該給湯熱交換器によって液体の熱媒体である水を加熱して給湯先に給湯する機能を備えた給湯回路と、暖房用熱交換器と該暖房用熱交換器を通して液体の熱媒体を循環させる暖房用循環ポンプとを備えた暖房回路とを備え、外部に接続される暖房装置に前記暖房回路から前記熱媒体を供給して該熱媒体を前記暖房回路に通して循環させる構成を有し、前記給湯熱交換器は該給湯熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの給湯熱交換器を有し、前記暖房用熱交換器は該暖房用熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの暖房用熱交換器を有し、前記メインの給湯熱交換器を形成する給湯用の液体流通管路のみが配設された一種管路配設部と、前記メインの給湯熱交換器の液体流通管路が前記メインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設されて形成された二種管路配設部とを有して前記給湯熱交換器と前記暖房用熱交換器が複合熱交換器と成し、該複合熱交換器の下部側には給湯用バーナ装置と暖房用バーナ装置とが区分け配置されて前記給湯用バーナ装置によって前記一種管路配設部が加熱され前記暖房用バーナ装置によって前記二種管路配設部の二種の液体流通管路が加熱される構成と成しており、前記給湯用バーナ装置は複数のバーナ装置を備え、該複数のバーナ装置と前記暖房用バーナ装置のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁が設けられるとともに、全てのバーナ装置へのガス供給割合を一律に可変するガス比例弁が設けられており、要求される給湯能力に対応させて前記複数の給湯用バーナ装置のうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って前記要求給湯能力が大きくなるにつれて大きくし前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくするバーナ段数制御と前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを行う燃焼制御手段を有し、該燃焼制御手段は暖房運転と給湯運転とを同時に行う同時運転時に予め定められた暖房不足判断条件に達した時には前記バーナ段数可変プログラムに設定されているバーナ段数よりも1段以上バーナ段数を小さくして前記ガス比例弁の開度を大きくする構成をもって課題を解決する手段としている。 In order to achieve the above-mentioned object, the present invention has the following constitution as means for solving the problems. That is, a first aspect of the invention is to provide a hot water supply heat exchanger, a hot water supply circuit having a function of heating water, which is a liquid heat medium, by the hot water supply heat exchanger to supply hot water to a hot water supply destination, a heating heat exchanger, and a heating heat exchanger. A heating circuit having a heating circulation pump that circulates a liquid heating medium through a heating heat exchanger, and supplies the heating medium from the heating circuit to a heating device connected to the outside. The hot water supply heat exchanger has a configuration in which it is circulated through the heating circuit, and the hot water supply heat exchanger is a main hot water supply heat exchanger that recovers the sensible heat of the combustion gas of the burner device by a liquid flow pipe forming the hot water supply heat exchanger. The heating heat exchanger has a main heating heat exchanger that recovers the sensible heat of the combustion gas of the burner device by a liquid flow conduit forming the heating heat exchanger, and the main hot water supply A kind of conduit arrangement section in which only the hot water supply liquid distribution conduit forming the heat exchanger is arranged, and the main hot water supply heat exchanger liquid distribution conduit is the main heating heat exchanger liquid A hot water supply heat exchanger and a heating heat exchanger are combined heat exchangers having a two-kind pipe arrangement portion formed by being in contact with each other in such a manner as to be sandwiched vertically by a distribution pipe. And a hot water supply burner device and a heating burner device are separately arranged on the lower side of the composite heat exchanger, and the hot water supply burner device heats the one-kind conduit arrangement portion to provide the heating burner device. The two kinds of liquid distribution pipelines of the two-class pipeline arrangement section are configured to be heated, and the hot water supply burner device includes a plurality of burner devices, and the plurality of burner devices and the heating burner. A gas on-off valve for supplying and shutting off fuel gas to the burner device is provided corresponding to each device, and a gas proportional valve for uniformly varying the gas supply ratio to all burner devices is provided. In accordance with the required hot water supply capacity, the burner stage number, which is the number of combustion burners in the plurality of hot water supply burner devices, is increased as the required hot water supply capability increases in accordance with a predetermined burner stage number variable program. As the required hot water supply capacity increases, the opening of the gas proportional valve increases and the required hot water supply capacity decreases as the required hot water supply capacity increases in correspondence with the burner step number control for decreasing the burner step number as the capacity decreases. A combustion control means for performing proportional valve opening control for reducing the opening of the gas proportional valve is provided, and the combustion control means has a predetermined heating shortage determination condition at the time of simultaneous operation of simultaneously performing heating operation and hot water supply operation. The number of burner stages can be changed when The number of burner stages is smaller than the number of burner stages set in the program and the opening of the gas proportional valve is increased to solve the problem.

また、第2の発明は、前記第1の発明の構成に加え、前記暖房不足判断条件は、前記メインの暖房用熱交換器の熱媒体の温度が予め定められた設定温度以下の状態が予め定められた設定時間以上継続した時としたことを特徴とする。なお、前記メインの暖房用熱交換器の熱媒体の温度とは、メインの暖房用熱交換器の出側、入側、中間等、適宜の箇所における熱媒体の温度とすることができるものである。 In addition, in the second invention, in addition to the configuration of the first invention, the heating shortage determination condition is that the temperature of the heat medium of the main heating heat exchanger is equal to or lower than a predetermined set temperature in advance. It is characterized in that the time is set to continue for a set time or longer. The temperature of the heat medium of the main heating heat exchanger can be the temperature of the heat medium at an appropriate place such as the outlet side, the inlet side, and the middle of the main heating heat exchanger. is there.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記メインの給湯熱交換器と前記メインの暖房用熱交換器の少なくとも一方には前記バーナ装置の燃焼ガスの潜熱を回収する潜熱回収用熱交換器が接続されていることを特徴とする。 Furthermore, in addition to the structure of the said 1st or 2nd invention, the 3rd invention has latent heat of the combustion gas of the said burner apparatus in at least one of the said main water heating heat exchanger and the said main heating heat exchanger. Is connected to a latent heat recovery heat exchanger.

本発明によれば、給湯回路に設けられるメインの給湯熱交換器を形成する給湯用の液体流通管路のみが配設された一種管路配設部と、前記メインの給湯熱交換器と、暖房回路に設けられるメインの暖房用熱交換器の液体流通管路とが配設された二種管路配設部とを有して前記給湯熱交換器と前記暖房用熱交換器が複合熱交換器と成していることから、メインの給湯熱交換器とメインの暖房用熱交換器をそれぞれ別々に形成して設ける場合に比べて熱源装置の小型化が可能となり、二種管路配設部においてメインの給湯熱交換器の液体流通管路の上下に設けられた暖房用熱交換器の液体流通管路を暖房用バーナ装置によって加熱して暖房を行えるようにすることができる。 According to the present invention, a kind of conduit arrangement portion in which only the liquid flow conduit for hot water supply forming the main hot water heat exchanger provided in the hot water supply circuit is arranged, and the main hot water heat exchanger, The hot water supply heat exchanger and the heating heat exchanger have a combined heat with a second-kind pipe arranging portion in which the liquid circulation pipe of the main heating heat exchanger provided in the heating circuit is arranged. Since it is composed of an exchanger, the heat source device can be downsized compared to the case where the main hot water supply heat exchanger and the main heating heat exchanger are separately formed, and the two-kind pipeline It is possible to perform heating by heating the liquid distribution pipeline of the heating heat exchanger provided above and below the liquid circulation pipeline of the main hot water supply heat exchanger in the installation portion by the heating burner device.

また、本発明においては、二種管路配設部は前記メインの給湯熱交換器の液体流通管路が前記メインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設されているので、二種管路配設部における最下段(最下位置)の通路は暖房用の液体流通管路であり、この管路を流れる液体(熱媒体)は、加熱されて循環されている状態であれば温かく、また、その循環が停止されていても、給水側から冷たい水が導入される給湯用の液体流通管路のように冷たい状態であることは殆どないことから、複合熱交換器の液体流通管路に結露が発生することを防止できる。 Further, in the present invention, the two-kind conduit arrangement portion is in contact with each other in such a manner that the liquid distribution conduit of the main hot water supply heat exchanger is vertically sandwiched by the liquid distribution conduit of the main heating heat exchanger. Since the second type pipe line installation portion has the lowermost stage (lowermost position) passage, which is a liquid flow pipe for heating, the liquid (heat medium) flowing through this pipe line is not heated. It is warm when it is being circulated, and even when the circulation is stopped, it is rarely in a cold state like the liquid distribution pipe for hot water supply where cold water is introduced from the water supply side. Therefore, it is possible to prevent dew condensation from occurring in the liquid flow pipe of the composite heat exchanger.

さらに、本発明においては、複合熱交換器の下部側には給湯用バーナ装置と暖房用バーナ装置とが区分け配置されて前記給湯用バーナ装置によって前記一種管路配設部が加熱され前記暖房用バーナ装置によって前記二種管路配設部の二種の液体流通管路が加熱される構成と成し、以下に述べるような燃焼制御によって暖房運転と給湯運転とを、その能力不足による不快感を利用者に与えることなく的確に行うことができる。 Further, in the present invention, a hot water supply burner device and a heating burner device are separately arranged on the lower side of the composite heat exchanger, and the hot water supply burner device heats the type 1 pipe line arrangement portion to perform the heating operation. The burner device is configured to heat the two kinds of liquid distribution pipelines of the two-class pipeline arrangement portion, and the heating operation and the hot water supply operation are performed by the combustion control as described below, and the discomfort is caused by the insufficient capacity. Can be performed accurately without giving to the user.

つまり、本発明においては、前記給湯用バーナ装置は複数のバーナ装置を備えており、燃焼制御手段は、要求される給湯能力に対応させて前記複数の給湯用バーナ装置のうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って、前記要求給湯能力が大きくなるにつれて大きくし前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくするバーナ段数制御と、同じバーナ段数において前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを行うので、この制御によって給湯運転をきめ細かく的確に行うことができる。 That is, in the present invention, the hot water supply burner device is provided with a plurality of burner devices, and the combustion control means determines the number of combustion burners among the plurality of hot water supply burner devices corresponding to the required hot water supply capacity. According to a predetermined burner stage number variable program, a certain burner stage number is increased as the required hot water supply capacity is increased, and the burner stage number is decreased as the required hot water supply capacity is decreased, and the required burner stage number is controlled at the same burner stage number. Proportional valve opening control is performed to increase the opening of the gas proportional valve as the required hot water supply capacity increases corresponding to the hot water supply capacity, and decrease the opening of the gas proportional valve as the required hot water supply capacity decreases. Therefore, hot water supply operation can be performed finely and accurately by this control.

また、前記暖房用バーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁の開閉制御を適宜行ったり(例えば燃料ガスを継続して共有したり、間欠的に供給したり)、ガス比例弁の開弁量の制御を適宜行ったりすることにより、暖房用バーナ装置の燃焼制御による暖房単独運転を的確に行うことができる。 In addition, the open/close control of the gas on/off valve for supplying and shutting off the fuel gas to the heating burner device is appropriately performed (for example, the fuel gas is continuously shared or intermittently supplied), or the gas proportion is proportional. By appropriately controlling the opening amount of the valve, it is possible to accurately perform the independent heating operation by the combustion control of the heating burner device.

さらに、本発明では、前記暖房運転と給湯運転とを同時に行う同時運転時にも、前記ガス比例弁の開弁量制御と給湯と暖房のバーナ装置毎のガス開閉弁の制御とにより、給湯運転をきめ細かく行いつつ暖房運転も適宜良好に行うことができるが、予め定められた暖房不足判断条件に達した時には前記バーナ段数可変プログラムに設定されているバーナ段数よりも1段以上バーナ段数を小さくして前記ガス比例弁の開度を大きくする特徴的な制御を行うことで、より一層的確な制御を行うことができる。 Further, in the present invention, even during the simultaneous operation of simultaneously performing the heating operation and the hot water supply operation, the hot water supply operation is controlled by controlling the opening amount of the gas proportional valve and controlling the gas opening/closing valve for each hot water supply and heating burner device. Although the heating operation can be appropriately performed satisfactorily while performing finely, when the predetermined heating shortage determination condition is reached, the number of burner stages is reduced by one or more than the number of burner stages set in the burner stage variable program. By performing the characteristic control for increasing the opening of the gas proportional valve, more accurate control can be performed.

つまり、前記暖房運転と給湯運転とを同時に行う同時運転時には、例えば給湯運転を優先して行うことが行われるが、その制御時に、給湯運転制御に対応させてガス比例弁の開弁量が小さい状態とされることがあり、その場合には、暖房用バーナ装置で加熱される暖房用熱交換器の加熱量が小さくなってしまうことにより暖房運転における熱供給が不足する可能性がある。それに対し、本発明では、予め定められた暖房不足判断条件に達した時における特徴的なバーナ段数制御によって、暖房用バーナ装置の燃焼能力を高めることができるため、暖房用バーナ装置によって加熱される二種管路配設部の加熱量を大きくでき、暖房用熱交換器の加熱量を大きくすることで暖房不足を解消し、的確に暖房を行うことができる。 That is, in the simultaneous operation in which the heating operation and the hot water supply operation are simultaneously performed, for example, the hot water supply operation is preferentially performed, but at the time of the control, the opening amount of the gas proportional valve is small corresponding to the hot water supply operation control. In some cases, the heating amount of the heating heat exchanger heated by the heating burner device becomes small, which may cause insufficient heat supply in the heating operation. On the other hand, in the present invention, since the combustion capacity of the heating burner device can be increased by the characteristic burner stage number control when the predetermined heating shortage determination condition is reached, the heating is performed by the heating burner device. It is possible to increase the heating amount of the two-kind conduit arrangement portion, and to increase the heating amount of the heating heat exchanger, thereby solving the heating shortage and performing accurate heating.

つまり、本発明では、該燃焼制御手段は暖房運転と給湯運転とを同時に行う同時運転時に前記暖房不足判断条件に達した時には、前記バーナ段数可変プログラムに設定されているバーナ段数よりも1段以上バーナ段数を小さくして前記ガス比例弁の開度を大きくする制御を行うので、このガス比例弁開度の増大により前記暖房用バーナ装置の燃焼能力を高めることができ、二種管路配設部の加熱量を大きくでき、暖房用熱交換器の加熱量を大きくすることで暖房不足を解消し、的確に暖房を行うことができる。 In other words, in the present invention, when the heating shortage determination condition is reached during the simultaneous operation in which the heating operation and the hot water supply operation are performed simultaneously, the combustion control means is one or more stages higher than the number of burner stages set in the burner stage number variable program. Since the control is performed to decrease the number of burner stages and increase the opening of the gas proportional valve, the combustion capacity of the heating burner device can be increased by increasing the opening of the gas proportional valve. The heating amount of the part can be increased, and by increasing the heating amount of the heating heat exchanger, insufficient heating can be eliminated and heating can be performed accurately.

また、本発明において、前記暖房不足判断条件は、前記メインの暖房用熱交換器の熱媒体の温度が予め定められた設定温度以下の状態が予め定められた設定時間以上継続した時とすることにより、暖房不足判断を的確に行うことができ、的確に暖房を行うことができる。 Further, in the present invention, the heating shortage determination condition is that the temperature of the heat medium of the main heating heat exchanger is equal to or lower than a predetermined set temperature for a predetermined set time or longer. As a result, it is possible to accurately determine the heating shortage, and it is possible to accurately perform heating.

さらに、本発明において、前記メインの給湯熱交換器と前記メインの暖房用熱交換器の少なくとも一方には前記バーナ装置の燃焼ガスの潜熱を回収する潜熱回収用熱交換器を接続すると、効率の高い熱源装置の実現を可能とすることができる。 Further, in the present invention, if at least one of the main hot water supply heat exchanger and the main heating heat exchanger is connected to a latent heat recovery heat exchanger that recovers the latent heat of the combustion gas of the burner device, It is possible to realize a high heat source device.

本発明に係る熱源装置の実施例の制御方法を説明するための模式的なグラフである。It is a typical graph for explaining the control method of the example of the heat source device concerning the present invention. 実施例における複合熱交換器とバーナ装置との配設構成を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement structure of the composite heat exchanger and burner apparatus in an Example. 本発明に係る熱源装置の第1実施例の熱源装置のシステム構成を熱源装置に接続される暖房装置等と共に示す模式的な説明図である。It is a typical explanatory view showing the system configuration of the heat source device of the 1st example of the heat source device concerning the present invention with the heating device etc. which are connected to a heat source device. 実施例における潜熱回収用熱交換器の配設構成を模式的に示す説明図である。It is explanatory drawing which shows typically the disposition structure of the heat exchanger for latent heat recovery in an Example. 実施例の熱源装置に設けられている制御構成の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the control structure provided in the heat source device of an Example. 実施例の熱源装置に適用されている給湯用と暖房用のバーナ装置の構成を説明するための模式的な斜視図(a)と平面図(b)である。It is a typical perspective view (a) and a top view (b) for explaining the composition of the burner device for hot water supply and heating which are applied to the heat source device of the example. 実施例の熱源装置の給湯単独運転時におけるバーナ装置の燃焼面切り替え動作と給湯能力との関係を説明するためのグラフである。6 is a graph for explaining the relationship between the combustion surface switching operation of the burner device and the hot water supply capacity during the hot water supply independent operation of the heat source device of the embodiment. 第2実施例の熱源装置のシステム構成を説明するための模式的なシステム説明図である。It is a typical system explanatory view for explaining the system configuration of the heat source device of the second embodiment. 第3実施例の熱源装置のシステム構成を示す模式的な説明図である。It is a typical explanatory view showing the system configuration of the heat source device of the third example. 従来提案されている一缶二水路型の熱交換器の構成例を示す模式的な説明図である。It is a typical explanatory view showing the example of composition of the conventionally proposed one can two water channel type heat exchanger. 暖房用バーナと複数の給湯用バーナの段数制御を行って燃焼制御を行う一般的な制御方法を説明するための模式的なグラフである。5 is a schematic graph for explaining a general control method for performing combustion control by controlling the number of stages of a heating burner and a plurality of hot water supply burners. 実施例における給湯暖房同時運転時のガス比例弁の開度と給湯能力との関係を模式的に示すグラフである。5 is a graph schematically showing the relationship between the opening of the gas proportional valve and the hot water supply capacity during the simultaneous hot water supply and heating operation in the example. 実施例における図12のグラフに基づくバーナ段数とガス比例弁開度の制御例を説明するための模式的なグラフである。13 is a schematic graph for explaining an example of controlling the number of burner stages and the gas proportional valve opening degree based on the graph of FIG. 12 in the example. 実施例におけるバーナ段数とガス比例弁開度の制御の図13に示す制御例とは別の例を説明するための模式的なグラフである。14 is a schematic graph for explaining an example different from the control example shown in FIG. 13 for controlling the number of burner stages and the gas proportional valve opening degree in the embodiment. 実施例におけるガス比例弁開度の制御のさらに別の例を説明するための模式的なグラフである。7 is a schematic graph for explaining still another example of the control of the gas proportional valve opening degree in the embodiment. 実施例におけるガス比例弁開度の制御のさらに別の例を説明するための模式的なグラフである。7 is a schematic graph for explaining still another example of the control of the gas proportional valve opening degree in the embodiment. 熱源装置の暖房運転制御と風呂運転制御のための制御構成を示すブロック図である。It is a block diagram showing a control configuration for heating operation control and bath operation control of a heat source device. 浴槽への湯張りに用いられる浴槽の水位(P)と水量(Q)との関係データ(P−Qデータ)の例を示すグラフである。It is a graph which shows the example of the relational data (PQ data) of the water level (P) and water volume (Q) of the bathtub used for filling the bathtub.

以下、本発明の実施の形態を図面に基づき実施例によって説明する。なお、本実施例の説明において、これまでの説明の例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。 Embodiments of the present invention will be described below with reference to the accompanying drawings. In the description of the present embodiment, the same reference numerals will be given to the same names as those in the examples described above, and duplicate description thereof will be omitted or simplified.

図3には、本発明に係る熱源装置の第1実施例のシステム構成が模式的に示されている。同図に示されるように、本実施例の熱源装置は、器具ケース80内に、給湯回路45と暖房回路7とを設けて形成される複合型の熱源装置である。この熱源装置は燃焼室100を有し、燃焼室100内には給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置(暖房用バーナ装置)5とが設けられており、複合熱交換器1の下部側に区分け配置されている。なお、複合熱交換器1についての詳細構成は後述する。 FIG. 3 schematically shows the system configuration of the first embodiment of the heat source device according to the present invention. As shown in the figure, the heat source device of the present embodiment is a combined heat source device formed by providing the hot water supply circuit 45 and the heating circuit 7 in the equipment case 80. The heat source device has a combustion chamber 100, and a burner device 2 (2a, 2b, 2c) for hot water supply and a burner device (heating burner device) 5 for heating are provided in the combustion chamber 100. The composite heat exchanger 1 is divided and arranged on the lower side. The detailed configuration of the composite heat exchanger 1 will be described later.

給湯用のバーナ装置(給湯用バーナ装置)2は複数のバーナ装置2a,2b,2cを有し、バーナ装置2aの燃焼面とバーナ装置2bの燃焼面とバーナ装置2cの燃焼面によって区分される態様で形成された区分燃焼面を有している。言い換えれば、バーナ装置2a,2b,2cの各燃焼面によって区分された区分燃焼面が形成されており、熱源装置には、給湯用のバーナ装置2に要求される能力(給湯能力)が一段アップする毎に前記区分燃焼面を予め定められた順番(バーナ装置2a,2b,2cの順)で選択的に順次追加燃焼させる燃焼制御手段(図3には図示せず)が設けられている。給湯用のバーナ装置2と暖房用のバーナ装置5の下方側には、これらのバーナ装置2,5の給排気用の燃焼ファン15が設けられている。 The burner device 2 for hot water supply (burner device for hot water supply) has a plurality of burner devices 2a, 2b, 2c, and is divided by the combustion surface of the burner device 2a, the combustion surface of the burner device 2b, and the combustion surface of the burner device 2c. And a sectional combustion surface formed in a manner. In other words, a sectional combustion surface is formed by the combustion surfaces of the burner devices 2a, 2b, 2c, and the heat source device has a further increase in capacity (hot water supply capacity) required for the burner device 2 for hot water supply. Combustion control means (not shown in FIG. 3) is provided to selectively and additionally burn the divided combustion surfaces in a predetermined order (burner devices 2a, 2b, 2c) each time. Below the burner device 2 for hot water supply and the burner device 5 for heating, a combustion fan 15 for supplying and exhausting these burner devices 2 and 5 is provided.

また、燃焼室100には、給湯用のバーナ装置2と暖房用のバーナ装置5の上側に、給湯と暖房の複合熱交換器1が設けられており、この複合熱交換器1は、図2、図3に示されるように、メインの給湯熱交換器を形成する給湯用の液体流通管路13のみが配設された一種管路配設部(一種流路配設部)111と、給湯用の液体流通管路13がメインの暖房用熱交換器を形成する暖房用の液体流通管路12によって上下に挟まれる態様で(図2、参照)互いに接して配設された二種管路配設部112とを有しており、二種管路配設部(二種流路配設部)112と一種管路配設部111とは隣り合わせに配設されている。 Further, in the combustion chamber 100, a combined heat exchanger 1 for hot water supply and heating is provided above the burner device 2 for hot water supply and the burner device 5 for heating, and this combined heat exchanger 1 is shown in FIG. As shown in FIG. 3, a kind of conduit arrangement section (a kind of passage arrangement section) 111 in which only the hot water supply liquid flow conduit 13 forming the main hot water supply heat exchanger is arranged; Two-way conduit arranged in contact with each other in such a manner that the liquid distribution conduit 13 for heating is vertically sandwiched by the liquid distribution conduit 12 for heating which forms the main heating heat exchanger (see FIG. 2). The second-type conduit arrangement section (second-class channel arrangement section) 112 and the first-class conduit arrangement section 111 are arranged adjacent to each other.

このように、本実施例では、複合熱交換器1の二種管路配設部112がメインの給湯熱交換器の液体流通管路13をメインの暖房用熱交換器の液体流通管路12によって上下に挟む態様で互いに接して配設された構成と成して、この構成の二種管路配設部112が複合熱交換器1の一部と成している。二種管路配設部112の下方側には、二種管路配設部112を加熱するための暖房用のバーナ装置5が設けられ、二種管路配設部112の液体流通管路12,13は共通(1つ)のバーナ装置(暖房用のバーナ装置5)により加熱される構成と成している。 As described above, in the present embodiment, the second-kind conduit arrangement portion 112 of the composite heat exchanger 1 connects the liquid distribution conduit 13 of the main hot water heat exchanger to the liquid distribution conduit 12 of the main heating heat exchanger. Are arranged in contact with each other in such a manner as to be sandwiched vertically, and the two-kind pipe passage arrangement portion 112 of this constitution constitutes a part of the composite heat exchanger 1. A burner device 5 for heating for heating the second-kind conduit arrangement section 112 is provided below the second-kind conduit arrangement section 112, and the liquid distribution conduit of the second-kind conduit arrangement section 112 is provided. 12 and 13 are configured to be heated by a common (one) burner device (burner device 5 for heating).

一方、一種管路配設部111の下方側には、該一種管路配設部111を加熱するための給湯用のバーナ装置2が配設されているが、図2に示されるように、二種管路配設部112において一種管路配設部111に隣接する側の一部分に配設されている液体流通管路12,13が、給湯用のバーナ装置2の上方側にはみ出す態様で配設されている。 On the other hand, a burner device 2 for hot water supply for heating the first-kind pipeline installation section 111 is arranged below the first-class pipeline installation section 111. As shown in FIG. In a mode in which the liquid distribution pipelines 12 and 13 arranged in a part of the second-kind conduit arrangement portion 112 adjacent to the first-kind conduit arrangement portion 111 protrude to the upper side of the burner device 2 for hot water supply. It is arranged.

本実施例では、この構成によって、暖房用のバーナ装置5のみの燃焼時に暖房用のバーナ装置5の燃焼ガスが一種管路配設部111側に広がっても、その広がり部分には給湯用のバーナ装置2の上方側にはみ出す態様で配設された二種管路配設部112の液体流通管路12,13が配設されているので、広がった燃焼ガスによって加熱されるのは、この二種管路配設部112の液体流通管路12,13となる。 In this embodiment, with this configuration, even when the combustion gas of the heating burner device 5 spreads to the side of the conduit passage arrangement portion 111 side when only the heating burner device 5 burns, the expanded portion is used for hot water supply. Since the liquid distribution pipelines 12 and 13 of the second-kind pipeline arranging portion 112 are arranged above the burner device 2 in such a manner as to protrude, the heating by the spread combustion gas is caused by this. The liquid distribution pipelines 12 and 13 of the second-kind pipeline installation portion 112 are provided.

そして、二種管路配設部112は、暖房用の液体流通管路12によって給湯用の液体流通管路13を上下に挟む態様で配設されているので、暖房用のバーナ装置5の燃焼ガスの広がりによって加熱されるのは、給湯用の液体流通管路13の下側に配設されている暖房用の液体流通管路12である。したがって、一種管路配設部111側に配設されている給湯用の液体流通管路13が暖房単独運転時に暖房用のバーナ装置5によって加熱されてしまうことを防ぐことができ、一種管路配設部111側に配設されている給湯用の液体流通管路13内に滞留している水等の熱媒体が沸騰してしまうことを抑制できる。 Since the second-kind conduit arrangement portion 112 is arranged in such a manner that the hot water supply liquid distribution conduit 12 vertically sandwiches the hot water supply liquid distribution conduit 12, the combustion of the heating burner device 5 is performed. What is heated by the spread of the gas is the heating liquid distribution conduit 12 disposed below the liquid distribution conduit 13 for hot water supply. Therefore, it is possible to prevent the liquid distribution pipeline 13 for hot water supply arranged on the side of the first-kind pipeline arranging portion 111 from being heated by the burner device 5 for heating during the independent heating operation. It is possible to suppress boiling of the heat medium such as water staying in the liquid flow pipe 13 for hot water supply arranged on the arrangement portion 111 side.

複合熱交換器1はフィン43を有しており、このフィン43は、給湯用のバーナ装置2と暖房用のバーナ装置5の上側に立ち上がる態様で設けられて、図4の紙面に垂直な方向に(図3では左右方向に)互いに間隔を介して複数配設されており、各フィン43の面方向が給湯用のバーナ装置2a,2b,2cの配列方向とは直交(または略直交)する方向となるような態様と成している。一種管路配設部111の液体流通管路13と二種管路配設部112の液体流通管路12,13は共に、これらの複数の共通のフィン43に形成された対応する管路挿入孔103,104に挿入され(液体流通管路13は管路挿入孔103に、液体流通管路12は管路挿入孔104に挿入され)ており、複合熱交換器1をこのような態様に形成すると非常に製造しやすい。 The composite heat exchanger 1 has fins 43. The fins 43 are provided above the burner device 2 for hot water supply and the burner device 5 for heating, and are arranged in a direction perpendicular to the plane of FIG. (In FIG. 3, a plurality of fins 43 are arranged at intervals in the left-right direction), and the surface direction of each fin 43 is orthogonal (or substantially orthogonal) to the arrangement direction of the burner devices 2a, 2b, 2c for hot water supply. The mode is such that it becomes a direction. Both the liquid distribution pipeline 13 of the first-kind conduit arrangement portion 111 and the liquid distribution conduits 12 and 13 of the second-class conduit arrangement portion 112 are corresponding conduit insertions formed in these plural common fins 43. The composite heat exchanger 1 is inserted into the holes 103 and 104 (the liquid circulation pipe line 13 is inserted into the pipe line insertion hole 103 and the liquid circulation pipe line 12 is inserted into the pipe line insertion hole 104). Once formed, it is very easy to manufacture.

また、二種管路配設部112において、上下方向に配設される3つの管路(暖房用の液体流通管路12と給湯用の液体流通管路13)のうち、真ん中の管路を、低温の水が導入される液体流通管路13とすることにより、以下の効果を奏することができる。つまり、二種管路配設部112における暖房用の液体流通管路12と給湯用の液体流通管路13の配列態様によって、暖房用の液体流通管路12の吸熱量と給湯用の液体流通管路13側の吸熱量とに違いが生じ、二種管路配設部112において上下方向の真ん中の管路を給湯用の液体流通管路13として互いに接する態様で設けることにより、給湯用の液体流通管路13の1本あたりの吸熱量を高くできる構成と成している。 In addition, in the second-kind pipeline arranging section 112, of the three pipelines arranged vertically (the liquid circulation pipeline 12 for heating and the liquid circulation pipeline 13 for hot water supply), the middle pipeline is The following effects can be achieved by using the liquid distribution pipeline 13 into which low-temperature water is introduced. That is, the heat absorption amount of the heating liquid distribution conduit 12 and the hot water supply liquid distribution are determined by the arrangement mode of the heating liquid distribution conduit 12 and the hot water supply liquid distribution conduit 13 in the two-kind conduit arrangement portion 112. A difference occurs in the amount of heat absorption on the side of the pipe line 13, and by providing the middle pipe line in the up-down direction in the second-kind pipe line arrangement portion 112 as the liquid circulation pipe line 13 for hot water supply, the two pipes for hot water supply are provided. The configuration is such that the amount of heat absorption per one of the liquid distribution pipelines 13 can be increased.

なお、図3はシステム図であるために、図2の態様と異なるように示されているが、実際には図2に示される断面構成図のような態様で一種管路配設部111の液体流通管路13と二種管路配設部112の液体流通管路12,13等が配設されている。ただし、図2も模式的な構成図であるために、液体流通管路12,13等の本数等は正確に示されているとは限らず、液体流通管路12,13の本数や配設間隔等は図1に示されるものに限定されるものではなく、適宜設定されるものである。また、図3および後述する図9においては、バーナ装置2a,2b,2c,5のバーナ本数も図2とは異なる態様に示されているが、実際には、図2に示される本数のバーナにより、各バーナ装置2a,2b,2c,5が設けられている。 3 is shown as being different from the embodiment of FIG. 2 because it is a system diagram, but in actuality, the one-way conduit arranging portion 111 is shown in the manner of the sectional configuration view shown in FIG. The liquid distribution conduit 13 and the liquid distribution conduits 12 and 13 of the two-kind conduit arrangement portion 112 are arranged. However, since FIG. 2 is also a schematic configuration diagram, the number and the like of the liquid distribution pipelines 12 and 13 are not necessarily shown accurately, and the number and arrangement of the liquid distribution pipelines 12 and 13 are not shown. The intervals and the like are not limited to those shown in FIG. 1 and may be set appropriately. Further, in FIG. 3 and FIG. 9 described later, the number of burners of the burner devices 2a, 2b, 2c, 5 is also shown in a mode different from that of FIG. 2, but in reality, the number of burners of the number shown in FIG. Therefore, each burner device 2a, 2b, 2c, 5 is provided.

本実施例において、メインの給湯熱交換器を形成する給湯用の液体流通管路13には、バーナ装置2,5の燃焼ガスの潜熱を回収する潜熱回収用の給湯熱交換器4が接続されており、メインの暖房用熱交換器を形成する暖房用の液体流通管路12には、バーナ装置2,5の燃焼ガスの潜熱を回収する潜熱回収用の暖房用熱交換器6が接続されている。なお、これらの潜熱回収用の給湯熱交換器4と暖房用熱交換器6は、それぞれの熱交換器を形成する液体流通管路を通る熱媒体(ここでは水)によりバーナ装置2,5の燃焼ガスの潜熱を回収するものであるが、潜熱回収用の給湯熱交換器4と暖房用熱交換器6は共に、バーナ装置2,5の燃焼ガスの潜熱のみならず顕熱も回収するものである。 In this embodiment, a hot water supply heat exchanger 4 for recovering the latent heat of the combustion gas of the burner devices 2, 5 is connected to the hot water supply liquid flow conduit 13 forming the main hot water heat exchanger. Therefore, a heating heat exchanger 6 for recovering latent heat for recovering the latent heat of the combustion gas of the burner devices 2, 5 is connected to the liquid flow conduit 12 for heating which forms the main heating heat exchanger. ing. The latent heat recovery hot water supply heat exchanger 4 and the heating heat exchanger 6 are connected to the burner units 2 and 5 by a heat medium (water in this case) passing through a liquid distribution pipe forming each heat exchanger. Although the latent heat of the combustion gas is recovered, both the hot water heat exchanger 4 for recovering the latent heat and the heat exchanger 6 for heating recover not only the latent heat of the combustion gas of the burner devices 2 and 5 but also the sensible heat. Is.

また、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6は共に、複合熱交換器1の上部側に配設され、図4に示されるように、潜熱回収用の給湯熱交換器4の配設空間と潜熱回収用の暖房用熱交換器6の配設空間とを仕切る仕切り115が複合熱交換器1の上部側に設けられている。この仕切り115によって、暖房用のバーナ装置5の燃焼ガス(排気ガス)が複合熱交換器1を通った後に潜熱回収用の暖房用熱交換器6の配設空間を通り、その後、潜熱回収用の給湯熱交換器4の配設空間を通って排気口116から排出される態様と成している。つまり、複合熱交換器1を通った暖房用のバーナ装置5の燃焼ガスが流れる流れの上流側に潜熱回収用の暖房用熱交換器6が配設され、流れの下流側に潜熱回収用の給湯熱交換器4が配設されている。 Further, both the hot-water supply heat exchanger 4 for recovering latent heat and the heating heat exchanger 6 for recovering latent heat are arranged on the upper side of the composite heat exchanger 1, and as shown in FIG. A partition 115 for partitioning the installation space of the hot water supply heat exchanger 4 and the installation space of the heating heat exchanger 6 for recovering latent heat is provided on the upper side of the composite heat exchanger 1. By this partition 115, the combustion gas (exhaust gas) of the heating burner device 5 passes through the composite heat exchanger 1 and then passes through the installation space of the heating heat exchanger 6 for recovering latent heat, and thereafter, for recovering latent heat. The hot water supply heat exchanger 4 is discharged from the exhaust port 116 through the installation space. That is, the heating heat exchanger 6 for recovering latent heat is arranged on the upstream side of the flow of the combustion gas of the heating burner device 5 that has passed through the composite heat exchanger 1, and the heating heat exchanger 6 for recovering latent heat is arranged on the downstream side of the flow. A hot water supply heat exchanger 4 is provided.

このような構成によって、暖房用のバーナ装置5の燃焼時の燃焼ガスが、複合熱交換器1を通った後に約160〜約250℃で潜熱回収用の暖房用熱交換器6の配設領域を通って潜熱回収されて冷やされた後、潜熱回収用の給湯熱交換器4の配設領域を通ることになるため、暖房用のバーナ装置5の単独燃焼時であっても、潜熱回収用の給湯熱交換器4内の水が沸騰することを抑制できる。また、潜熱回収用の暖房用熱交換器6は、仕切り115を介して潜熱回収用の給湯熱交換器4の上側に配設されており、給湯用のバーナ装置2の単独燃焼時であっても、潜熱回収用の暖房用熱交換器6内の水の沸騰は抑制できる。 With such a configuration, the combustion gas at the time of combustion in the heating burner device 5 passes through the composite heat exchanger 1 and then is provided at an area where the heating heat exchanger 6 for recovering latent heat is provided at about 160 to about 250° C. After the latent heat is recovered by passing through and is cooled, it passes through the area where the hot-water supply heat exchanger 4 for recovering latent heat is disposed. Therefore, even when the burner device 5 for heating is burned independently, the latent heat is recovered. It is possible to suppress boiling of water in the hot water supply heat exchanger 4. Further, the heating heat exchanger 6 for recovering latent heat is disposed above the hot water heat exchanger 4 for recovering latent heat via the partition 115, and is used when the burner device 2 for hot water supply burns independently. Also, boiling of water in the heating heat exchanger 6 for recovering latent heat can be suppressed.

なお、図3および後述する図9は、システム図であるために、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の配設構成も図4の態様と異なるように示されているが、実際には図4に示される模式的な断面構成図のような態様で潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6等が配設されている。ただし、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の本数や配設間隔等は図4に示されるものに限定されるものではなく、適宜設定されるものである。 Since FIG. 3 and FIG. 9 which will be described later are system diagrams, the arrangement configuration of the hot water supply heat exchanger 4 for recovering latent heat and the heating heat exchanger 6 for recovering latent heat may be different from that of FIG. However, in actuality, the hot water supply heat exchanger 4 for recovering latent heat, the heat exchanger 6 for heating for recovering latent heat, etc. are arranged in such a manner as shown in the schematic sectional configuration diagram of FIG. Has been done. However, the number of hot-water supply heat exchangers 4 for recovering latent heat and the heat exchanger 6 for heating for latent heat recovery are not limited to those shown in FIG. 4 and may be set appropriately. is there.

図3に示されるように、メインの暖房用熱交換器の出側には該メインの暖房用熱交換器(暖房用の液体流通管路12)を通った液体(温水)を暖房装置70,71側に向けて流通させる往き側の通路としての管路60が形成され、暖房装置70,71を通った液体(水)を潜熱回収用の暖房用熱交換器に戻す戻り側の通路としての管路61が形成され、管路60から分岐された分岐通路65の先端側が管路61に接続されており、分岐通路65には、該分岐通路65を前記メインの給湯熱交換器の入側の通路と出側の通路のいずれか(ここでは入側)に熱的に接続する給湯暖房熱的接続用液−水熱交換器33が設けられている。 As shown in FIG. 3, on the outlet side of the main heating heat exchanger, the liquid (hot water) that has passed through the main heating heat exchanger (heating liquid distribution conduit 12) is heated by the heating device 70, The conduit 60 is formed as a passage on the forward side for flowing toward the 71 side, and serves as a passage on the return side for returning the liquid (water) that has passed through the heating devices 70, 71 to the heating heat exchanger for recovering latent heat. A pipe line 61 is formed, and a tip end side of a branch passage 65 branched from the pipe line 60 is connected to the pipe line 61. The branch passage 65 is provided with the branch passage 65 at the inlet side of the main hot water heat exchanger. A liquid/water heat exchanger 33 for hot water supply/heating thermal connection, which is thermally connected to either of the passage and the outlet side (here, the inlet side) is provided.

なお、給湯暖房熱的接続用液−水熱交換器33は潜熱回収用の給湯熱交換器4と前記メインの給湯熱交換器との間の管路に熱的に接続されており、給湯暖房熱的接続用液−水熱交換器33を通った水の温度を検出する熱交換後水温検出手段133が設けられている。 The hot-water supply/heating thermal connection liquid-water heat exchanger 33 is thermally connected to the conduit between the hot-water supply heat exchanger 4 for recovering latent heat and the main hot-water supply heat exchanger. A post-heat exchange water temperature detecting means 133 for detecting the temperature of the water that has passed through the liquid-water heat exchanger 33 for thermal connection is provided.

図6(a)、(b)に示されるように、本実施例において、給湯用のバーナ装置2(2a,2b,2c)は、複数の炎口110が長手方向に沿って配列配置された炎口列を一列以上(ここでは一列)配設して成る燃焼面を備えたバーナ107が、前記炎口列と直交する方向に並ぶ態様で複数配置されて形成されている。バーナ装置2aは3本のバーナ107によって形成され(燃焼面はA面)、バーナ装置2bは5本のバーナ107によって形成され(燃焼面はB面)、バーナ装置2cは4本のバーナ107によって形成されており(燃焼面はC面)、したがって、それぞれのバーナ装置2a,2b,2cの燃焼面により形成される区分燃焼面の面積比はおおよそ、3:5:4と成している。暖房用のバーナ装置5は、給湯用のバーナ装置2を形成するバーナ107と同方向に炎口110を配列配置したバーナ109を4本配置して形成されている(燃焼面はD面)。 As shown in FIGS. 6A and 6B, in the present embodiment, the burner device 2 (2a, 2b, 2c) for hot water supply has a plurality of flame ports 110 arranged in an array along the longitudinal direction. A plurality of burners 107, each having a combustion surface formed by arranging one or more rows of flame ports (here, one column), are formed in a manner that they are arranged in a direction orthogonal to the flame port rows. The burner device 2a is formed by three burners 107 (combustion surface is A surface), the burner device 2b is formed by five burners 107 (combustion surface is B surface), and the burner device 2c is formed by four burners 107. Are formed (combustion surface is C surface), and therefore the area ratio of the divided combustion surfaces formed by the combustion surfaces of the respective burner devices 2a, 2b, 2c is approximately 3:5:4. The burner device 5 for heating is formed by arranging four burners 109 in which flame ports 110 are arranged in the same direction as the burner 107 forming the burner device 2 for hot water supply (combustion surface is D surface).

これらの給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置5には、図3に示されるガス供給通路16を通して燃料ガスが供給される。また、複数の給湯用のバーナ装置2a,2b,2cと暖房用のバーナ装置5のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁(ガス電磁弁)17,14が設けられるとともに、全てのバーナ装置へのガス供給割合を一律に可変するガス比例弁18が設けられている。 Fuel gas is supplied to the burner device 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating through a gas supply passage 16 shown in FIG. Further, a gas on-off valve (gas solenoid valve) 17, which supplies and shuts off the fuel gas to and from the burner device in association with each of the plurality of hot water supply burner devices 2a, 2b, 2c and the heating burner device 5, 14 is provided, and a gas proportional valve 18 that uniformly changes the gas supply ratio to all burner devices is provided.

また、図6と図2とを共に参照すると分かるように、給湯用のバーナ装置2(2a,2b,2c)および暖房用のバーナ装置5の各燃焼面の上側に設けられている複合熱交換器1の給湯用の液体流通管路13と複合熱交換器1の暖房用の液体流通管路12は、これらの液体流通管路12,13の下方側に配設されている対応する暖房用のバーナ装置5と給湯用のバーナ装置2(2a,2b,2c)の炎口110の列と平行または略平行に伸長した管路部位を有して配設されている。潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の液体流通管路もバーナ装置2,5の炎口110の列と平行または略平行に伸長した管路部位を有して配設されており、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の液体流通管路は、全体としては両方のバーナ装置2,5の上面側に配設されている。 Further, as can be seen by referring to both FIG. 6 and FIG. 2, the combined heat exchange provided on the upper side of each combustion surface of the burner device 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating. The liquid distribution pipeline 13 for hot water supply of the heater 1 and the liquid distribution pipeline 12 for heating of the composite heat exchanger 1 are provided for heating corresponding to the liquid distribution pipelines 12 and 13 arranged below. Of the burner device 5 and the burner device 2 (2a, 2b, 2c) for hot water supply are provided with a conduit portion extending in parallel or substantially parallel to the row of the flame ports 110. The liquid flow conduits of the hot water heat exchanger 4 for recovering latent heat and the heat exchanger 6 for heating for recovering latent heat also have conduit parts extending in parallel or substantially parallel to the rows of the flame ports 110 of the burner devices 2, 5. The liquid flow passages of the hot water heat exchanger 4 for recovering latent heat and the heat exchanger 6 for heating for recovering latent heat are arranged on the upper surface side of both burner devices 2, 5 as a whole. It is set up.

図3に示されるように、本実施例において、前記給湯回路45は、潜熱回収用の給湯熱交換器4と、潜熱回収用の給湯熱交換器4の入水側に設けられた給水通路46と、潜熱回収用の給湯熱交換器4の出水側に設けられた通路34と、複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)と、複合熱交換器1の給湯用の液体流通管路13の出水側に設けられた給湯通路47とを有して形成されている。 As shown in FIG. 3, in the present embodiment, the hot water supply circuit 45 includes a hot water heat exchanger 4 for recovering latent heat and a water supply passage 46 provided on the water inlet side of the hot water heat exchanger 4 for recovering latent heat. , The passage 34 provided on the outlet side of the hot water heat exchanger 4 for recovering latent heat, the liquid flow pipe 13 for hot water supply of the complex heat exchanger 1 (main hot water heat exchanger), and the complex heat exchanger 1 The hot water supply passage 47 is provided on the water outlet side of the hot water supply pipe 13.

給湯回路45は、給水通路46から導入されて潜熱回収用の給湯熱交換器4を通って加熱された液体の熱媒体である複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)に導入して加熱した後、その加熱した水を、給湯通路47を介して給湯先に導く回路である。給湯回路45において、給水通路46には、該給水通路46を通る水の水量を検出する流量検出手段としての水量センサ19が設けられており、通路34には給湯ハイリミットスイッチ36が設けられ、複合熱交換器1の給湯用の液体流通管路13の途中部には給湯水管サーミスタ151が設けられている。 The hot water supply circuit 45 is a liquid distribution pipe line 13 for hot water supply of the composite heat exchanger 1 which is a liquid heat medium introduced from the water supply passage 46 and heated through the hot water supply heat exchanger 4 for recovering latent heat (main This is a circuit for introducing the heated water into the hot water supply heat exchanger) and then heating the heated water to the hot water supply destination via the hot water supply passage 47. In the hot water supply circuit 45, the water supply passage 46 is provided with a water amount sensor 19 as a flow rate detecting means for detecting the amount of water passing through the water supply passage 46, and the passage 34 is provided with a hot water supply high limit switch 36. A hot water supply water pipe thermistor 151 is provided in the middle of the liquid flow pipe 13 for hot water supply of the composite heat exchanger 1.

また、給湯通路47には、複合熱交換器1の給湯用の液体流通管路13の出側の温度を検出する熱交出側サーミスタ23と、給湯温度を検出する出湯サーミスタ24とが設けられている。なお、本実施例では、給湯用の入水温度を検出する入水温検出手段を設けずに入水温度を演算によって求める方式を適用しており(図示されていないが、給水温度を算出する給水温度検出手段を有しており)、例えば給湯バーナ装置2の安定燃焼時に燃焼量と水量と出湯温度から入水温度を逆算し、これを記憶するようにしている。演算によって給湯用の入水温度を求める方式の熱源装置については周知であるので、その説明は省略するが、適宜の方法により給湯用の入水温度を求めることができるものである。 Further, the hot water supply passage 47 is provided with a heat exchange side thermistor 23 that detects the temperature on the outlet side of the liquid flow pipe 13 for hot water supply of the composite heat exchanger 1, and a hot water supply thermistor 24 that detects the hot water supply temperature. ing. In the present embodiment, a method of calculating the incoming water temperature by calculation is provided without providing the incoming water temperature detecting means for detecting the incoming water temperature for hot water supply (not shown, but the water temperature detection for calculating the incoming water temperature is used. For example, when the hot water supply burner device 2 is in stable combustion, the incoming water temperature is back-calculated from the combustion amount, the water amount, and the hot water temperature, and this is stored. A heat source device of a type that obtains a hot water supply temperature by calculation is well known, and thus description thereof will be omitted, but the hot water supply temperature can be obtained by an appropriate method.

給湯通路47には給湯回路45を通って給湯される給湯の総水量を可変調節するための水量サーボ20が設けられており、給湯通路47は、給湯バイパス通路22を介して給水通路46に接続され、該バイパス通路22の給水通路46との接続部にはバイパスサーボ21が設けられている。バイパスサーボ21は、給湯用の液体流通管路13からの出側の温度(熱交出側サーミスタ23で検出する例えば60℃)と、前記入水温度と、リモコン装置53に設定されている給湯設定温度とに基づいて演算されるバイパス比で制御されると共に、出湯サーミスタ24で検出される温度と給湯設定温度とを比較して、給湯温度が給湯設定温度となるように、さらに制御する。 The hot water supply passage 47 is provided with a water amount servo 20 for variably adjusting the total amount of hot water supplied through the hot water supply circuit 45. The hot water supply passage 47 is connected to the water supply passage 46 via the hot water supply bypass passage 22. The bypass servo 21 is provided at the connection portion of the bypass passage 22 with the water supply passage 46. The bypass servo 21 has a temperature on the outlet side from the liquid flow pipe 13 for hot water supply (for example, 60° C. detected by the heat exchange side thermistor 23), the water inlet temperature, and the hot water supply set on the remote controller 53. The temperature is controlled by a bypass ratio calculated based on the set temperature, and the hot water supply temperature is further controlled by comparing the temperature detected by the hot water outlet thermistor 24 with the hot water supply set temperature.

前記暖房回路7は暖房用液体循環通路8を有し、暖房用液体循環通路8には、前記潜熱回収用の暖房用熱交換器6と、暖房用循環ポンプ(暖房用液体循環ポンプ)9と、シスターン10と、暖房高温サーミスタ40、暖房ハイリミットスイッチ77、暖房水管サーミスタ52、暖房低温サーミスタ41が設けられており、暖房用循環ポンプ9は、潜熱回収用の暖房用熱交換器6と複合熱交換器1の暖房用の液体流通管路12とを通して液体の熱媒体(例えば水)を循環させる機能を備えている。 The heating circuit 7 has a heating liquid circulation passage 8, and the heating liquid circulation passage 8 includes a heating heat exchanger 6 for recovering the latent heat, a heating circulation pump (heating liquid circulation pump) 9, and , Cistern 10, heating high temperature thermistor 40, heating high limit switch 77, heating water pipe thermistor 52, and heating low temperature thermistor 41. The circulation pump 9 for heating is combined with the heat exchanger 6 for heating for recovering latent heat. The heat exchanger 1 has a function of circulating a liquid heat medium (for example, water) through the heating liquid flow conduit 12.

暖房用液体循環通路8は、通路(管路)59〜65,108を有しており、通路108は、暖房回路7内の熱媒体(例えば水)を潜熱回収用の暖房用熱交換器6には通さずに循環させるための潜熱熱交バイパス通路として機能する。通路108には、低温能力切り替え弁118を備えた通路119が設けられており、通路108には、図のRの部分にオリフィスが設けられている。なお、通路119や低温能力切り替え弁118は場合によっては省略できる。 The heating liquid circulation passage 8 has passages (pipes) 59 to 65, 108, and the passage 108 heats the heat medium (for example, water) in the heating circuit 7 to recover latent heat from the heating heat exchanger 6. It functions as a latent heat exchange bypass passage for circulation without passing through. The passage 108 is provided with a passage 119 provided with a low temperature capacity switching valve 118, and the passage 108 is provided with an orifice at a portion R in the drawing. The passage 119 and the low temperature capacity switching valve 118 may be omitted in some cases.

暖房高温サーミスタ40は、メインの暖房用熱交換器(メインの暖房用熱交換器を形成する暖房用の液体流通管路12)の出側の熱媒体の温度を検出するものであり、暖房低温サーミスタ41は、メインの暖房用熱交換器の入側の熱媒体の温度を検出するものである。 The heating high temperature thermistor 40 detects the temperature of the heat medium on the outlet side of the main heating heat exchanger (the heating liquid distribution pipe 12 forming the main heating heat exchanger), and the heating low temperature The thermistor 41 detects the temperature of the heat medium on the inlet side of the main heating heat exchanger.

シスターン10の容量は例えば1800ccであり、シスターン10には水位電極44とオーバーフロー通路66とが設けられている。シスターン10は、補給水電磁弁42と水補給用通路165を介して給水通路46に接続されている。 The capacity of the cistern 10 is, for example, 1800 cc, and the cistern 10 is provided with the water level electrode 44 and the overflow passage 66. The cistern 10 is connected to the water supply passage 46 via the makeup water solenoid valve 42 and the water supply passage 165.

なお、暖房回路7には適宜の暖房装置が接続されるものである。この図では、暖房回路7には、暖房装置70,71が外部通路72,73,74を介して接続されており、暖房回路7は、暖房装置70,71への熱媒体の供給機能を有する。暖房装置70は例えば浴室乾燥機等の高温暖房装置であり、暖房装置70には熱動弁76が設けられている。一方、暖房装置71は温水マット等の低温暖房装置であり、暖房用液体循環通路8の器具ケース80内の通路と外部通路73との接続を選択的に切り替える熱動弁48が設けられて、暖房装置71への熱媒体の供給が制御される。 An appropriate heating device is connected to the heating circuit 7. In this figure, heating devices 70, 71 are connected to the heating circuit 7 via external passages 72, 73, 74, and the heating circuit 7 has a function of supplying a heat medium to the heating devices 70, 71. .. The heating device 70 is, for example, a high temperature heating device such as a bathroom dryer, and the heating device 70 is provided with a thermal valve 76. On the other hand, the heating device 71 is a low-temperature heating device such as a hot water mat, and is provided with a thermal valve 48 that selectively switches the connection between the passage in the appliance case 80 of the heating liquid circulation passage 8 and the external passage 73. The supply of the heat medium to the heating device 71 is controlled.

また、本実施例の熱源装置において、暖房回路7の暖房用液体循環通路8は、追い焚き用液−水熱交換器25を介して風呂の追い焚き循環通路26と熱的に接続されている。追い焚き循環通路26には、追い焚き循環ポンプ27と風呂サーミスタ28、流水スイッチ29、水位センサ30、風呂往きサーミスタ31が設けられており、追い焚き循環通路26は、循環金具81を介して浴槽75に接続されている。 Further, in the heat source device of the present embodiment, the heating liquid circulation passage 8 of the heating circuit 7 is thermally connected to the bath reheating circulation passage 26 via the reheating liquid-water heat exchanger 25. .. The reheating circulation passage 26 is provided with a reheating circulation pump 27, a bath thermistor 28, a running water switch 29, a water level sensor 30, and a bath going thermistor 31, and the reheating circulation passage 26 is connected to the bath via a circulation fitting 81. It is connected to 75.

また、追い焚き用液−水熱交換器25は、給湯暖房熱的接続用液−水熱交換器33よりも分岐通路65における液体の流れの上流側に設けられており、追い焚き用液−水熱交換器25の入口側には、追い焚き用液体流量制御弁32が設けられている。追い焚き用液体流量制御弁32は、暖房回路7を循環する熱媒体(ここでは水)の、分岐通路65側への導入の有無と導入量の調整とを、弁の開閉および弁の開弁量により切り替える液体分岐可変手段として機能するものである。 Further, the reheating liquid-water heat exchanger 25 is provided on the upstream side of the liquid flow in the branch passage 65 with respect to the hot-water supply/heating thermal connection liquid-water heat exchanger 33, and the reheating liquid-water heat exchanger- A liquid flow control valve 32 for reheating is provided on the inlet side of the water heat exchanger 25. The refueling liquid flow rate control valve 32 opens and closes the valve and opens the valve to determine whether or not the heat medium (water in this case) circulating in the heating circuit 7 is introduced to the side of the branch passage 65 and the amount of the introduced heat medium. It functions as a liquid branching variable unit that switches depending on the amount.

追い焚き用液体流量制御弁32は、後述する分岐対応給湯側温度可変手段(図5の符号51)の制御によって制御され、前記熱媒体の分岐通路65側への導入の有無と導入量の調整とによって、追い焚き用液−水熱交換器25および給湯暖房熱的接続用液−水熱交換器33への前記熱媒体の導入の有無と導入量の調整とが行われる。また、追い焚き用液−水熱交換器25において、分岐通路65側から導入される熱媒体と追い焚き循環通路26を循環する水との熱交換が行われることによって浴槽湯水の追い焚きが行われ、給湯暖房熱的接続用液−水熱交換器33において、分岐通路65側から熱媒体が導入されると、その熱媒体と給湯回路との熱交換が行われる。 The reheating liquid flow rate control valve 32 is controlled by the control of the branch-compatible hot water supply side temperature varying means (reference numeral 51 in FIG. 5) described later, and the presence or absence of the introduction of the heat medium into the branch passage 65 side and the adjustment of the introduction amount. The presence or absence of introduction of the heat medium to the reheating liquid-water heat exchanger 25 and the hot-water supply/heating thermal connection liquid-water heat exchanger 33 and the amount of introduction thereof are adjusted by. Further, in the reheating liquid-water heat exchanger 25, heat exchange between the heat medium introduced from the branch passage 65 side and the water circulating in the reheating circulation passage 26 is performed to reheat the bath water. When the heat medium is introduced from the side of the branch passage 65 in the hot water supply/room heating thermal connection liquid-water heat exchanger 33, heat exchange between the heat medium and the hot water supply circuit is performed.

なお、前記の如く、追い焚き用液体流量制御弁32を開いて追い焚き用液−水熱交換器25への水(温水)の導入を行いながら追い焚き循環ポンプ27を駆動することによって風呂の追い焚きが行われるが、追い焚き循環ポンプ27を停止していれば暖房回路7を通る熱媒体と追い焚き循環通路26内の水との熱交換は行われない(正確に言えば追い焚き循環通路26に滞留している水の一部は熱交換されるが殆ど熱交換は行われない)。 As described above, the reheating liquid flow control valve 32 is opened to introduce water (warm water) into the reheating liquid-water heat exchanger 25, and the reheating circulation pump 27 is driven to drive the bath. Reheating is performed, but if the reheating circulation pump 27 is stopped, heat exchange between the heat medium passing through the heating circuit 7 and the water in the reheating circulation passage 26 is not performed (to be exact, reheating circulation. Part of the water staying in the passage 26 is heat-exchanged, but almost no heat-exchange is performed).

なお、図3の図中、符号49は注湯通路、符号50は注湯電磁弁、符号79は注湯量センサ、符号37はドレン回収手段、符号38はドレン通路、符号39はドレン中和器をそれぞれ示している。 3, reference numeral 49 is a pouring passage, reference numeral 50 is a pouring solenoid valve, reference numeral 79 is a pouring amount sensor, reference numeral 37 is a drain collecting means, reference numeral 38 is a drain passage, and reference numeral 39 is a drain neutralizer. Are shown respectively.

また、図3にはリモコン装置が図示されていないが、熱源装置の制御装置にはリモコン装置が信号接続されており、以下の説明において、リモコン装置には、適宜、符号53を付して説明する。また、家庭等の住居において、給湯を行う台所や浴室には、給湯温度設定、追い焚きスイッチ、自動スイッチ(自動湯張りのための操作スイッチ)等の付いたリモコン装置53が設けられ、洗面所には浴室乾燥(暖房装置)を行うスイッチ等の付いたリモコン装置53が設けられ、居間には床暖房(暖房装置)スイッチ等の付いたリモコン装置53が設けられる等、異なる機能をもったリモコンが複数設けられることが多いが、それらを総称してリモコン装置53と称することとし、また、後述する図17を用いての説明においては、リモコン装置167,168,169と称して説明を行う。 Although the remote control device is not shown in FIG. 3, the remote control device is signal-connected to the control device of the heat source device. In the following description, the remote control device is appropriately denoted by reference numeral 53 for description. To do. In addition, in a home or other residence, a kitchen or a bathroom where hot water is supplied is provided with a remote control device 53 having a hot water temperature setting, a reheating switch, an automatic switch (an operation switch for automatic water filling), and a washroom. A remote controller 53 having different functions, such as a remote controller 53 with a switch for bathroom drying (heating device) and a remote controller 53 with a floor heating (heating device) switch in the living room. Although a plurality of remote control devices are often provided, they will be generically referred to as remote control device 53, and will be described as remote control devices 167, 168, 169 in the description using FIG. 17 described later.

本実施例において、給湯動作は例えば以下のようにして行われる。つまり、リモコン装置53の運転がオンの状態において、例えば熱源装置の利用者によって、給湯通路47の先端側に設けられている給湯栓(図示せず)が開かれると、給水通路46から導入される水が、潜熱回収用の給湯熱交換器4と複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)とを通って給湯通路47に導入され、水量センサ19が予め定められている給湯の作動流量に達するとバーナ装置2の燃焼制御および燃焼ファン15の回転制御等が制御手段によって適宜行われ、予めリモコン装置53に設定されている給湯設定温度の湯が形成されて給湯先に供給される(通常、給湯設定温度と水量センサ19の検出流量と入水温度の検出手段による検出温度または入水温度推定手段による推定温度に基づいてフィードフォワード制御が行われる)。なお、必要に応じ、暖房用のバーナ装置5の燃焼も行われるが、この動作についての詳細説明は後述する。 In the present embodiment, the hot water supply operation is performed as follows, for example. That is, when the remote control device 53 is turned on and the user of the heat source device opens a hot water supply plug (not shown) provided at the tip side of the hot water supply passage 47, the water supply passage 46 is introduced. Water is introduced into the hot water supply passage 47 through the hot water supply heat exchanger 4 for recovering latent heat and the liquid flow pipe 13 (main hot water supply heat exchanger) for hot water supply of the composite heat exchanger 1, and the water amount sensor 19 When a predetermined hot water supply flow rate is reached, the control means appropriately performs combustion control of the burner device 2, rotation control of the combustion fan 15, etc., and the hot water having the hot water supply set temperature preset in the remote control device 53 is supplied. It is formed and supplied to the hot water supply destination (normally, feedforward control is performed based on the hot water supply set temperature, the flow rate detected by the water amount sensor 19, and the temperature detected by the water temperature detection means or the temperature estimated by the water temperature estimation means). If necessary, the burner device 5 for heating is also burned, but a detailed description of this operation will be given later.

また、リモコン装置53に設けられている自動スイッチがオンとなると、前記給湯動作時と同様にして、予めリモコン装置53に設定されている給湯設定温度の湯が形成され、その湯が、注湯電磁弁50が開かれることにより、給湯通路47から注湯通路49を通して浴槽75への注湯による湯張りが行われる。 When the automatic switch provided in the remote control device 53 is turned on, hot water of the preset hot water supply temperature set in the remote control device 53 is formed in the same manner as during the hot water supply operation, and the hot water is poured. When the electromagnetic valve 50 is opened, the hot water is supplied from the hot water supply passage 47 to the bathtub 75 through the pouring passage 49.

一方、給湯は行わずに、暖房用液体循環通路8から暖房装置70、71に暖房用の熱媒体(液体)を供給する際(例えば衣類乾燥機、浴室暖房乾燥機、床暖房等の運転による暖房単独運転時)には、暖房用循環ポンプ9の駆動によって、液体(ここでは温水)を循環させるものであり、暖房用循環ポンプ9の吐出側から吐出される液体が、図3の矢印Aに示されるように、通路59を通って複合熱交換器1の暖房用の液体流通管路12(メインの暖房用熱交換器)に導入される。このときには暖房用のバーナ装置5の燃焼および燃焼ファン15の回転制御等が適宜行われて液体の加熱が行われる。 On the other hand, when supplying a heating heat medium (liquid) from the heating liquid circulation passage 8 to the heating devices 70 and 71 without hot water supply (for example, by operating clothes dryer, bathroom heating dryer, floor heating, etc.). During the heating only operation), the liquid (here, hot water) is circulated by driving the heating circulation pump 9, and the liquid discharged from the discharge side of the heating circulation pump 9 is indicated by an arrow A in FIG. As shown in (3), the liquid is introduced into the liquid distribution pipeline 12 for heating of the composite heat exchanger 1 (main heating heat exchanger) through the passage 59. At this time, the combustion of the heating burner device 5 and the rotation control of the combustion fan 15 are appropriately performed to heat the liquid.

複合熱交換器1の暖房用の液体流通管路12を通った液体は、その後、矢印Cに示されるように管路60を通り、分岐点を通り、例えば暖房用液体循環通路8に接続されている高温側の暖房装置70が作動する際には、矢印Dに示されるようにして、高温側の暖房装置に供給され、高温側の暖房装置70を通った後に、矢印D’に示されるように管路61側に戻って、矢印Fに示されるようにシスターン10に導入される。このとき、例えば浴室暖房乾燥機の暖房スイッチ(SW)がオン(ON)されると、それに対応する高温側の暖房装置70内の熱動弁76が開弁され、高温側の暖房装置10内の制御装置からの信号を受けて暖房用の熱媒体の往き温度は(例えば80℃といった)高温に維持される。 The liquid that has passed through the heating liquid circulation pipe 12 of the composite heat exchanger 1 is then connected to the heating liquid circulation passage 8 through the pipe 60 and the branch point as shown by arrow C. When the heating device 70 on the high temperature side is operating, it is supplied to the heating device on the high temperature side as shown by the arrow D, and after passing through the heating device 70 on the high temperature side, it is shown by the arrow D′. Thus, it returns to the side of the conduit 61 and is introduced into the cistern 10 as shown by arrow F. At this time, for example, when the heating switch (SW) of the bathroom heating dryer is turned on (ON), the corresponding thermal valve 76 in the heating device 70 on the high temperature side is opened, and the heating device 10 on the high temperature side is opened. The forward temperature of the heating heat medium is maintained at a high temperature (for example, 80° C.) in response to the signal from the control device.

高温側の暖房装置70が作動していないときには、高温側の暖房装置70内の熱動弁76が閉弁され、矢印Dに示されるようにして通路64を通った液体は、矢印Hに示されるように潜熱熱交バイパス通路108を通り、シスターン10に導入され、矢印Gに示されるように通路62を通って暖房用循環ポンプ9の吸入側に戻る。 When the heating device 70 on the high temperature side is not operating, the thermal valve 76 in the heating device 70 on the high temperature side is closed, and the liquid that has passed through the passage 64 as indicated by the arrow D is indicated by the arrow H. As described above, the latent heat exchange bypass passage 108 is introduced to the cistern 10, and the passage 62 is returned to the suction side of the heating circulation pump 9 as indicated by an arrow G.

また、例えば浴室で追い焚きスイッチ(SW)がオン(ON)されると、それに対応する追い焚き用液体流量制御弁32が開状態となり、管路60を通った後に分岐された液体(熱媒体)は、矢印E’に示されるように、分岐通路65を通り、追い焚き用液−水熱交換器25と給湯暖房熱的接続用液−水熱交換器33とを順に通って管路61側に向かう。このように、高温に維持される液体を追い焚き用液−水熱交換器25に通しながら、追い焚き循環通路26において浴槽76の湯水を循環させることにより、風呂の追い焚きが適宜行われる。なお、管路61を通った液体は、前記の如く、管路62、シスターン10、管路64を通って暖房用循環ポンプ9の吸入側に戻ってくる。 Further, for example, when the reheating switch (SW) is turned on in the bathroom, the corresponding reheating liquid flow rate control valve 32 is opened, and the liquid (heat medium that has been branched after passing through the pipeline 60 is ) Passes through the branch passage 65, passes through the reheating liquid-water heat exchanger 25 and the hot water supply/room heating thermal connection liquid-water heat exchanger 33 in this order, as indicated by the arrow E′, and then the pipeline 61. Head to the side. In this way, the hot water of the bath is appropriately heated by circulating the hot and cold water in the bathtub 76 in the hot water circulating passage 26 while passing the liquid maintained at a high temperature through the liquid-water heat exchanger 25 for hot water heating. The liquid that has passed through the conduit 61 returns to the suction side of the heating circulation pump 9 through the conduit 62, the cistern 10, and the conduit 64 as described above.

なお、浴槽湯水にはレジオネラ菌や大腸菌が発生する可能性がある。しかしながら、本実施例では、浴槽水は追い焚き用液−水熱交換器25で暖房側の回路を通る湯水と絶縁され、さらに、給湯回路45を通る給湯用の湯水(市水)と暖房回路7を通る熱媒体(ここでは湯水)とは給湯暖房熱的接続用液−水熱交換器33によって絶縁されているため、浴槽湯水と給湯用の湯水とは給湯暖房熱的接続用液−水熱交換器33と追い焚き用液−水熱交換器25とで2重絶縁されている。しかも、暖房回路7を循環する熱媒体は60℃以上で循環させるように構成されていることから、万が一、追い焚き用液−水熱交換器25にピンホール等が空いて絶縁状態が維持できないといった状態が生じて浴槽湯水で発生した菌類が暖房回路7側に混入したとしても、熱殺菌されるので、菌類が給湯回路45側の湯水に混入するおそれはない。 Note that Legionella bacteria and Escherichia coli may occur in the bath water. However, in the present embodiment, the bath water is insulated from the hot water passing through the heating side circuit by the reheating liquid-water heat exchanger 25, and the hot water for hot water supply (city water) passing through the hot water supply circuit 45 and the heating circuit. Since the heat medium (here, hot and cold water) passing through 7 is insulated by the hot water supply and heating thermal connection liquid-water heat exchanger 33, the bath water and the hot water for hot water supply are the hot water supply and heating thermal connection liquid-water. The heat exchanger 33 and the reheating liquid-water heat exchanger 25 are doubly insulated. Moreover, since the heat medium circulating in the heating circuit 7 is configured to circulate at 60° C. or higher, a pinhole or the like is vacant in the reheating liquid-water heat exchanger 25, and the insulation state cannot be maintained. Even if the fungus generated in the hot water of the bathtub mixes into the heating circuit 7 side due to such a situation, it is sterilized by heat, so that there is no possibility that the fungus will mix into the hot water of the hot water supply circuit 45 side.

また、暖房用循環ポンプ9の吐出側には、例えば温水マット等の低温側の暖房装置71に液体を供給するための通路63も接続されており、例えば居室にあるリモコン装置53で床暖房がONされると、それに対応する熱動弁48の開閉に応じて適宜の低温側暖房装置71(例えば温水マット等)に暖房用の(例えば往き温度60℃といった)低温に維持された液体が供給される。 A passage 63 for supplying liquid to a low temperature side heating device 71 such as a hot water mat is also connected to the discharge side of the heating circulation pump 9, and floor heating is performed by a remote control device 53 in a living room, for example. When turned on, a liquid maintained at a low temperature (for example, a forward temperature of 60° C.) for heating is supplied to an appropriate low-temperature side heating device 71 (for example, a hot water mat or the like) in accordance with opening/closing of the corresponding thermal valve 48. To be done.

なお、高温側の暖房装置70に液体を供給する際の温度制御と低温側の暖房装置71に液体を供給する際の温度制御、暖房用液体循環通路8の通路が冷えている状態で作動するコールドスタート時の温度制御、風呂の追い焚き時の制御等、必要に応じて暖房用のバーナ装置5の燃焼制御や燃焼ファン15の回転制御等の適宜の制御が行われる。暖房運転制御および浴槽75への湯張りと追い焚き制御の一例として、図17に示されるような制御構成を用いた制御例があり、以下に簡単に説明するが、本発明においては、この制御例をはじめとし、公知の適宜の制御方法および、今後提案される適宜の制御方法が適用されるものである。 It should be noted that the temperature control when supplying the liquid to the heating device 70 on the high temperature side, the temperature control when supplying the liquid to the heating device 71 on the low temperature side, and the operation of the heating liquid circulation passage 8 are performed in a cold state. If necessary, appropriate control such as temperature control during cold start, control during bath reheating, combustion control of the burner device 5 for heating, rotation control of the combustion fan 15, and the like are performed. As an example of the heating operation control and the filling of the bathtub 75 and the reheating control, there is a control example using a control configuration as shown in FIG. 17, which will be briefly described below. A known appropriate control method and an appropriate control method proposed in the future are applied, including examples.

図17に示す制御構成は、燃焼制御手段52を有する制御装置54が熱源装置のリモコン装置167,168,169に信号接続されて形成されている。同図において、リモコン装置167は風呂リモコン装置であり、リモコン装置168は、暖房装置(高温暖房装置)70のリモコン装置であり、リモコン装置169は、暖房装置(低温暖房装置)71のリモコン装置である。リモコン装置167には、風呂設定温度入力操作部163と追い焚きスイッチ160と風呂自動スイッチ164とが設けられ、リモコン装置168には暖房運転スイッチ161が、リモコン装置169には暖房運転スイッチ166がそれぞれ設けられている。 The control configuration shown in FIG. 17 is formed by connecting a control device 54 having the combustion control means 52 to remote control devices 167, 168, 169 of the heat source device in signal connection. In the figure, remote control device 167 is a bath remote control device, remote control device 168 is a remote control device for heating device (high temperature heating device) 70, and remote control device 169 is a remote control device for heating device (low temperature heating device) 71. is there. The remote control device 167 is provided with a bath set temperature input operation unit 163, a reheating switch 160, and a bath automatic switch 164, a remote control device 168 has a heating operation switch 161, and a remote control device 169 has a heating operation switch 166. It is provided.

暖房運転スイッチ161,166は、対応する暖房装置70,71の運転のオンオフ動作指令を行うスイッチであり、暖房運転スイッチ161,166のオンオフ信号は、いずれも燃焼制御手段52に加えられる。なお、暖房運転スイッチ161がオンされると、暖房装置70の熱動弁76への通電が行われて所定時間(例えば1分)経過後に熱動弁76が開き(PTC( positive temperature coefficient;正特性)サーミスタ)を発熱させてサーモアクチュエータを動作させる)、暖房運転スイッチ161がオフされると、前記熱動弁76への通電が停止して所定時間(例えば20秒)経過後に熱動弁76が閉じる。また、暖房運転スイッチ166がオンされると、燃焼制御手段52により熱動弁48が開かれ、暖房運転スイッチ166がオフされると、燃焼制御手段52により熱動弁48が閉じられる。 The heating operation switches 161 and 166 are switches that issue an ON/OFF operation command for the operation of the corresponding heating devices 70 and 71, and the ON/OFF signals of the heating operation switches 161 and 166 are both applied to the combustion control means 52. When the heating operation switch 161 is turned on, the thermal valve 76 of the heating device 70 is energized and the thermal valve 76 opens (PTC (positive temperature coefficient; positive temperature coefficient; positive temperature coefficient; (Characteristic) Thermistor) is caused to generate heat to operate the thermoactuator), and when the heating operation switch 161 is turned off, energization of the thermal valve 76 is stopped and after a predetermined time (for example, 20 seconds) elapses, the thermal valve 76 Closes. Further, when the heating operation switch 166 is turned on, the combustion control means 52 opens the thermal valve 48, and when the heating operation switch 166 is turned off, the combustion control means 52 closes the thermal valve 48.

燃焼制御手段52は、暖房運転スイッチ161のオン信号を受けて、バーナ5の燃焼制御(ガス電磁弁14の開弁、ガス比例弁18の開弁量制御等による燃焼量制御を含む)および燃焼ファン15の回転制御を行うと共に、暖房用循環ポンプ9を駆動させる。燃焼制御手段52は、高温暖房装置70の運転を行うときには80℃の液体を供給できるように(暖房高温サーミスタ40の検出温度が80℃となるようにFB;フィードバック制御して)バーナ5の燃焼制御および燃焼ファン18の回転制御等を行って、暖房用熱交換器(メインの暖房用熱交換器を形成する暖房用の液体流通管路12と潜熱回収用の暖房用熱交換器6)を加熱し、暖房用液体循環通路7を循環する液体を加熱する。加熱された液体は、メインの暖房用熱交換器から約80℃で導出され、図3の矢印Cに示すように管路60を通り、追い焚き用液体流量制御弁32の閉状態においては、図3の矢印Dに示すように、管路60,72を順に通って暖房装置70に供給される。 The combustion control means 52 receives the ON signal of the heating operation switch 161, and performs combustion control of the burner 5 (including combustion amount control by opening the valve of the gas solenoid valve 14, controlling the opening amount of the gas proportional valve 18, etc.) and combustion. The rotation control of the fan 15 is performed, and the heating circulation pump 9 is driven. The combustion control means 52 burns the burner 5 so that a liquid of 80° C. can be supplied when the high temperature heating device 70 is operated (FB: feedback control so that the temperature detected by the heating high temperature thermistor 40 becomes 80° C.). Control and rotation control of the combustion fan 18 to perform the heating heat exchanger (the heating liquid flow conduit 12 forming the main heating heat exchanger and the heating heat exchanger 6 for recovering latent heat). The liquid that is heated and circulates in the heating liquid circulation passage 7 is heated. The heated liquid is discharged from the main heating heat exchanger at about 80° C., passes through the pipe line 60 as shown by an arrow C in FIG. 3, and in the closed state of the reheating liquid flow control valve 32, As shown by the arrow D in FIG. 3, the heating fluid is supplied to the heating device 70 through the pipelines 60 and 72 in order.

暖房装置70に供給された液体は、暖房装置70内の管路を通るときに放熱して、その温度が例えば60℃程度に下がった状態で、管路72、74を通り、図3の矢印D’に示すように、管路61を通って暖房用熱交換器6(潜熱熱交換器)に導入され、暖房用熱交換器6によって加温される。この加温された液体は図3の矢印Fに示すように管路62を通って導出されてシスターン装置10に導入され、シスターン装置10を通った後に、図3の矢印Gに示すように、管路62を通り、暖房用循環ポンプ9に導入される。その後、液体は、図3の矢印Aに示すように、管路59を通ってメインの暖房用熱交換器(顕熱熱交換器)(液体流通管路12)に導入され、メインの暖房用熱交換器によって加熱されて、前記と同様にして暖房用液体循環通路7を循環する。 The liquid supplied to the heating device 70 radiates heat when passing through the pipeline in the heating device 70, passes through the pipelines 72 and 74 in a state where the temperature of the liquid drops to about 60° C., and the arrow in FIG. As indicated by D′, the heat is introduced into the heating heat exchanger 6 (latent heat exchanger) through the pipeline 61 and heated by the heating heat exchanger 6. The heated liquid is led out through the conduit 62 and introduced into the cistern device 10 as shown by an arrow F in FIG. 3, and after passing through the cistern device 10, as shown by an arrow G in FIG. It is introduced into the heating circulation pump 9 through the pipe line 62. Then, the liquid is introduced into the main heat exchanger for heating (sensible heat exchanger) (liquid distribution pipe 12) through the pipe 59 as shown by an arrow A in FIG. It is heated by the heat exchanger and circulates in the heating liquid circulation passage 7 in the same manner as described above.

なお、前記追い焚き用液体流量制御弁32が開いている状態(=追い焚き時。追い焚き高温暖房となる)においては、管路60を通った液体は、前記の如く、矢印Dに示したように暖房装置(高温暖房装置)70側に導入されてから管路61に導入される流れと、矢印E’に示すように、管路(分岐通路)65、追い焚き用液−水熱交換器25を通って、管路61に導入される流れとに分かれる。 In the state where the reheating liquid flow rate control valve 32 is open (=when reheating, which is high temperature heating for reheating), the liquid that has passed through the conduit 60 is indicated by the arrow D as described above. As described above, the flow is introduced to the heating device (high temperature heating device) 70 side and then to the pipe line 61, and as shown by an arrow E′, the pipe line (branch passage) 65, the reheating liquid-water heat exchange. Through the vessel 25 and the flow introduced into the conduit 61.

また、高温暖房装置70の動作時に、燃焼制御手段52は、低温暖房装置71の運転を行うときには熱動弁48を開き、通常、60℃の液体を低温暖房装置71に供給できるようにする。なお、このときも、バーナ5の燃焼制御および燃焼ファン18の回転制御等は、高温暖房装置70の運転時と同様であり、メインの暖房用熱交換器11からは暖房高温サーミスタ40の温度を参照して適宜の温度(例えば約80℃)の液体が導出される。そして、この液体は図3の矢印C、Dのように流れて、矢印Hのようなシスターン10側への流れと高温暖房装置70側とに別れ、シスターン10側に流れた液体がシスターン10で混合されて、管路64、暖房用循環ポンプ9、管路63を順に通って低温暖房装置71に供給される。 Further, during operation of the high-temperature heating device 70, the combustion control means 52 opens the thermal valve 48 when operating the low-temperature heating device 71, so that the liquid at 60° C. can be normally supplied to the low-temperature heating device 71. Note that, also at this time, the combustion control of the burner 5, the rotation control of the combustion fan 18, and the like are the same as when the high temperature heating device 70 is operating, and the temperature of the heating high temperature thermistor 40 is changed from the main heating heat exchanger 11. A liquid at an appropriate temperature (for example, about 80° C.) is extracted with reference to the liquid. Then, this liquid flows as shown by arrows C and D in FIG. 3, and is separated into the flow toward the cistern 10 side as shown by the arrow H and the high temperature heating device 70 side, and the liquid flowing to the cisturn 10 side is the cisturn 10. It is mixed and supplied to the low temperature heating device 71 through the pipe 64, the heating circulation pump 9 and the pipe 63 in order.

高温暖房装置70の動作時には、暖房用循環ポンプ9から吐出された液体が高温暖房装置70の管路を通るときに放熱することから、例えば60℃程度に下がっており、その液体がシスターン10に導入され、シスターン10で混合された液体が、熱動弁48の開状態において、図3の矢印に示すように管路73を通って低温暖房装置71に導入されることで、メインの暖房用熱交換器から直接的に液体が導入されるよりも液体の温度が低くなる。低温暖房装置71を通って放熱し、例えば40℃以下の低温となった液体は、管路74を通り、管路61に導入され、前記と同様に、暖房用液体循環通路7を循環する。 During operation of the high-temperature heating device 70, the liquid discharged from the heating circulation pump 9 radiates heat when passing through the pipeline of the high-temperature heating device 70, so that the temperature drops to, for example, about 60° C. The liquid introduced and mixed in the cistern 10 is introduced into the low temperature heating device 71 through the pipe line 73 as shown by an arrow in FIG. The temperature of the liquid will be lower than if the liquid was introduced directly from the heat exchanger. The liquid that has radiated heat through the low-temperature heating device 71 and has a low temperature of, for example, 40° C. or less is introduced into the pipe 61 through the pipe 74, and circulates in the heating liquid circulation passage 7 as described above.

高温暖房装置70が動作していない時には、低温暖房装置71に導入される液体の温度調節は、暖房低温サーミスタ41の検出温度に基づき、燃焼制御手段52の制御によって行われるものである。つまり、低温暖房装置71の通常運転時には、暖房低温サーミスタ41の検出温度が例えば60℃になるようにして(FB;フィードバック制御して)管路73に送られる。なお、このとき、低温能力切り替え弁(熱動弁)118を開弁してメインの暖房用熱交換器からシスターン10に送る熱媒体量を増やすと同時にバーナ5の燃焼量の調節が行われ、管路73に送られる。 When the high temperature heating device 70 is not operating, the temperature of the liquid introduced into the low temperature heating device 71 is controlled by the combustion control means 52 based on the temperature detected by the heating low temperature thermistor 41. That is, during the normal operation of the low-temperature heating device 71, the temperature detected by the low-temperature heating thermistor 41 is sent to the conduit 73 such that the detected temperature is 60° C. (FB; feedback control is performed). At this time, the low-temperature capacity switching valve (heat valve) 118 is opened to increase the amount of heat medium sent from the main heating heat exchanger to the cistern 10, and at the same time, the combustion amount of the burner 5 is adjusted. It is sent to the pipeline 73.

また、低温暖房装置71の運転開始直後には、これらの低温暖房装置71の内部通路や管路73内の液体が冷えている状態であり、このように液体を冷たい状態から加熱する場合のホットダッシュ運転(コールドスタート)では、例えば30分といった予め定められたホットダッシュ設定時間だけ、暖房高温サーミスタ40の検出温度が例えば80℃になるように低温能力切り替え弁(熱動弁)118を開弁してバーナ5の燃焼量を調節(制御)し、管路60に送られる。 Immediately after the operation of the low-temperature heating device 71 is started, the liquid in the internal passages and the pipeline 73 of the low-temperature heating device 71 is in a cold state. In the dash operation (cold start), the low-temperature capacity switching valve (thermal valve) 118 is opened so that the temperature detected by the heating high temperature thermistor 40 is, for example, 80° C. only for a predetermined hot dash setting time such as 30 minutes. Then, the combustion amount of the burner 5 is adjusted (controlled) and sent to the pipe 60.

なお、低温暖房装置71のみが運転されるときも、低温暖房装置71を通った液体は、低温暖房装置71の出側の管路73と管路74を通って管路61に導入される。 Even when only the low-temperature heating device 71 is operated, the liquid that has passed through the low-temperature heating device 71 is introduced into the pipe line 61 through the pipe line 73 and the pipe line 74 on the outlet side of the low-temperature heating device 71.

図17に示されている風呂設定温度入力操作部163は、浴槽湯水の温度を設定する操作部であり、浴槽湯水温度は、例えば40℃前後の適宜の値に設定される。設定された温度の情報は、燃焼制御手段52に加えられる。風呂自動スイッチ164は、浴槽75への自動湯張り、保温、保水動作のオンオフスイッチであり、風呂自動スイッチ164のオン信号は、いずれも燃焼制御手段52に加えられ、自動湯張り後、4時間保温と保水を行った後、自動的にオフとなる。また、追い焚きスイッチ160は、浴槽湯水の追い焚き単独動作のオンスイッチであり、追い焚きスイッチ160のオン信号は、燃焼制御手段52に加えられる。なお、燃焼制御手段52により追い焚き動作が終了すると、追い焚きスイッチ160は自動的にオフとなる。 The bath set temperature input operation unit 163 shown in FIG. 17 is an operation unit that sets the temperature of the hot water of the bathtub, and the hot water temperature of the bathtub is set to an appropriate value of about 40° C., for example. Information on the set temperature is added to the combustion control means 52. The bath automatic switch 164 is an on/off switch for the automatic bath filling, heat retention, and water retention operations for the bathtub 75, and the ON signal of the bath automatic switch 164 is applied to the combustion control means 52 for 4 hours after the automatic bath filling. After keeping warm and water, it will automatically turn off. Further, the reheating switch 160 is an ON switch for a single operation of reheating the bath water, and the ON signal of the reheating switch 160 is added to the combustion control means 52. When the combustion control means 52 finishes the reheating operation, the reheating switch 160 is automatically turned off.

燃焼制御手段52は、風呂自動スイッチ164のオン信号が加えられると、例えばバーナ2の燃焼によってメインの給湯熱交換器の液体流通管路13を通る水を加熱し、給湯通路47から注湯通路49を通して湯を浴槽75に注ぐ。この際、例えば図18に示すような、予めメモリ部4に与えられている浴槽の水位(P)と水量(Q)との関係データ(P−Qデータ)と、水位センサ30により検出される検出水位とに基づき、浴槽の設定水位まで注湯する。また、浴槽湯水循環ポンプ(追い焚き循環ポンプ)27を駆動して得られる風呂サーミスタ28により検出される浴槽湯水温が風呂設定温度よりも低いときには、前記のようなバーナ5の燃焼や暖房用循環ポンプ9の駆動を行いながら、風呂設定温度となるように、追い焚き用液体流量制御弁32を開、浴槽湯水循環ポンプ27をオンとして、浴槽湯水の追い焚き動作を行う。なお、燃焼制御手段52は、追い焚きスイッチ160のオン信号が加えられたときも、風呂サーミスタ28により検出される浴槽湯水温が風呂設定温度となるように、浴槽湯水の追い焚き動作を行う。 When the ON signal of the bath automatic switch 164 is applied, the combustion control means 52 heats the water passing through the liquid distribution pipe line 13 of the main hot water supply heat exchanger by burning the burner 2, and the hot water supply passage 47 to the pouring passage. Hot water is poured into the bathtub 75 through 49. At this time, for example, as shown in FIG. 18, the relationship data (PQ data) between the water level (P) and the water amount (Q) of the bathtub, which is previously given to the memory unit 4, and the water level sensor 30 detect the relationship data. Based on the detected water level, pour up to the set water level in the bathtub. Further, when the bathtub hot and cold water temperature detected by the bath thermistor 28 obtained by driving the bathtub hot and cold water circulation pump (reheating circulation pump) 27 is lower than the bath set temperature, the burner 5 is circulated for combustion or heating as described above. While the pump 9 is being driven, the reheating liquid flow rate control valve 32 is opened and the bath water recirculation pump 27 is turned on so as to reach the bath set temperature, and the bath water reheating operation is performed. It should be noted that the combustion control means 52 performs the reheating operation of the hot water of the bathtub so that the hot water temperature of the bathtub detected by the bath thermistor 28 becomes the bath preset temperature even when the ON signal of the reheating switch 160 is applied.

図5には、本実施例の熱源装置の制御構成がブロック図により示されており、同図に示されるように、熱源装置の制御装置54は、分岐対応給湯側温度可変手段51、燃焼制御手段52、ポンプ駆動制御手段55を有している。また、制御装置54は、リモコン装置53と、出湯サーミスタ24、水量センサ(流量センサ)19、熱交換後水温検出手段133、追い焚き用液体流量制御弁32、ガス電磁弁14,17、ガス比例弁18、燃焼ファン15、暖房用循環ポンプ9、暖房高温サーミスタ40、暖房低温サーミスタ41、熱交出側サーミスタ23に信号接続されている。 FIG. 5 is a block diagram showing the control configuration of the heat source device of the present embodiment. As shown in FIG. 5, the control device 54 of the heat source device includes a branch-compatible hot water supply side temperature varying means 51, combustion control. It has means 52 and pump drive control means 55. Further, the control device 54 includes a remote control device 53, a hot water thermistor 24, a water amount sensor (flow rate sensor) 19, a water temperature detecting means 133 after heat exchange, a reheating liquid flow rate control valve 32, gas solenoid valves 14 and 17, a gas proportional. Signal connection is made to the valve 18, the combustion fan 15, the heating circulation pump 9, the heating high temperature thermistor 40, the heating low temperature thermistor 41, and the heat exchange side thermistor 23.

分岐対応給湯側温度可変手段51は、追い焚き用液体流量制御弁32を制御することにより、分岐通路65側に分岐する液体の有無と流量の少なくとも一方を可変し、それにより、給湯暖房熱的接続用液−水熱交換器33を介して暖房回路7側から給湯回路45側に与える熱量を可変することにより該給湯回路45側を流れる水の温度を可変する。なお、分岐対応給湯側温度可変手段51は、浴槽湯水の追い焚き時に、追い焚き循環ポンプ27を動かすと共に、追い焚き用液体流量制御弁32を開いて追い焚き終了後には追い焚き用液体流量制御弁32を閉じる制御も行う。 The branch-compatible hot water supply side temperature varying means 51 controls at least one of the presence and the flow rate of the liquid branched to the branch passage 65 side by controlling the reheating liquid flow rate control valve 32, whereby the hot water supply, heating and heating are performed. By varying the amount of heat applied from the heating circuit 7 side to the hot water supply circuit 45 side via the connection liquid-water heat exchanger 33, the temperature of the water flowing through the hot water supply circuit 45 side is varied. The branch-compatible hot water supply side temperature varying means 51 moves the reheating circulation pump 27 at the time of reheating the bath water, and opens the reheating liquid flow rate control valve 32 to control the reheating liquid flow rate after the completion of the reheating. It also controls to close the valve 32.

分岐対応給湯側温度可変手段51は、給湯回路45側を流れる水の温度を高めるときには、追い焚き循環ポンプ27を動かすことなく、メインの暖房用熱交換器を通った液体を分岐通路65側に通すようにするか通す液体流量を多くするように、追い焚き用液体流量制御弁32の制御を行う。一方、給湯回路45側を流れる水の温度を高くする必要がないときにはメインの暖房用熱交換器11を通った液体を分岐通路65側に通さないか通す熱媒体流量を少なくするように追い焚き用液体流量制御弁32の制御を行う。 When increasing the temperature of the water flowing through the hot water supply circuit 45 side, the branch-compatible hot water supply side temperature varying means 51 moves the liquid that has passed through the main heating heat exchanger to the branch passage 65 side without moving the reheating circulation pump 27. The reheating liquid flow rate control valve 32 is controlled so that the liquid is passed through or the flow rate of the passed liquid is increased. On the other hand, when it is not necessary to raise the temperature of the water flowing through the hot water supply circuit 45 side, the liquid that has passed through the main heating heat exchanger 11 is not passed through the branch passage 65 side or is reheated to reduce the flow rate of the heat medium. The liquid flow rate control valve 32 is controlled.

分岐対応給湯側温度可変手段51は、熱交換後水温検出手段133により検出される熱交換後水温の検出温度と、水量センサ19の検出流量と、前記給水温度検出手段の検出温度とに基づいて、給湯暖房熱的接続用液−水熱交換器33の熱交換能力を推定する熱交換能力推定手段を有している(図示せず)。そして、該熱交換能力推定手段により推定される熱交換能力に基づいて、例えば給湯回路45側を流れる水の温度を高くするための追い焚き用液体流量制御弁32の開弁量調節等、追い焚き用液体流量制御弁32の開閉や開弁量の制御を行う。 The branch-compatible hot water supply side temperature varying means 51 is based on the detected temperature of the post-heat-exchange water temperature detected by the post-heat-exchange water temperature detection means 133, the detected flow rate of the water amount sensor 19, and the detected temperature of the water supply temperature detection means. It has a heat exchange capacity estimation means for estimating the heat exchange capacity of the liquid/water heat exchanger 33 for hot water supply/heating/thermal connection (not shown). Then, on the basis of the heat exchange capacity estimated by the heat exchange capacity estimating means, for example, the opening amount adjustment of the liquid heating flow rate control valve 32 for increasing the temperature of the water flowing through the hot water supply circuit 45 side is adjusted. The opening/closing of the liquid flow rate control valve 32 for burning and control of the valve opening amount are performed.

具体的には、例えば熱交換能力推定手段は、熱交換後水温検出手段133により検出される熱交換後水温の検出温度がTout、水量センサ19の検出流量と給湯回路45におけるバイパス比により求められる給湯暖房熱的接続用液−水熱交換器33を通る水の流量がQ、前記給水温度検出手段の検出温度がTinであった場合、給水温度が潜熱回収用の給湯熱交換器4によって加温される温度ΔT(例えば1〜2℃の範囲内の予め与えられる温度)に基づき、給湯暖房熱的接続用液−水熱交換器33の熱交換能力を、{Tout−(Tin+ΔT)}Qの式により求め、この値に基づき、分岐対応給湯側温度可変手段51によって追い焚き用液体流量制御弁32の開弁量の制御を行う。 Specifically, for example, in the heat exchange capacity estimation means, the detected temperature of the post-heat exchange water temperature detected by the post-heat exchange water temperature detection means 133 is Tout, the detected flow rate of the water amount sensor 19 and the bypass ratio in the hot water supply circuit 45. When the flow rate of water passing through the liquid/water heat exchanger 33 for hot water supply/heating thermal connection is Q and the temperature detected by the water supply temperature detecting means is Tin, the water supply temperature is increased by the hot water heat exchanger 4 for recovering latent heat. Based on the temperature ΔT to be heated (for example, a predetermined temperature within the range of 1 to 2° C.), the heat exchange capacity of the liquid/water heat exchanger 33 for hot water supply/heating thermal connection is calculated as {Tout−(Tin+ΔT)}Q. The branching-compatible hot water supply side temperature varying means 51 controls the valve opening amount of the reheating liquid flow rate control valve 32 based on this value.

なお、暖房回路7の熱媒体(温水)を分岐通路65側に流す際に、浴槽湯水の追い焚きが行われると、給湯暖房熱的接続用液−水熱交換器33を介して暖房回路7側から給湯回路45側に与える熱量が小さくなってしまうが、そのようなタイミングになることは多くはなく、追い焚き循環回路26における水の循環動作を停止したまま熱媒体を分岐通路65側に流すようにしており、このようにすることによって、暖房回路7の熱媒体から追い焚き循環回路26側に熱を殆ど移動させることなく暖房回路7の熱媒体の熱を給湯側に伝えて給湯能力の補充を行うことができる。 If the hot water in the bathtub is reheated when the heat medium (warm water) of the heating circuit 7 flows to the side of the branch passage 65, the heating circuit 7 is supplied via the liquid/water heat exchanger 33 for hot water supply/heating/thermal connection. Although the amount of heat given from the side to the hot water supply circuit 45 side becomes small, such a timing does not often occur, and the heat medium is supplied to the branch passage 65 side with the circulation operation of water in the reheating circulation circuit 26 stopped. By doing so, the heat of the heat medium of the heating circuit 7 is transferred to the hot water supply side with almost no heat being transferred from the heat medium of the heating circuit 7 to the reheating circulation circuit 26 side. Can be replenished.

燃焼制御手段52は、リモコン装置53の信号(指令や設定温度の値等)に基づき、出湯サーミスタ24、水量センサ(流量センサ)19、熱交出側サーミスタ23、暖房高温サーミスタ40、暖房低温サーミスタ41等の検出信号を参照し、ガス電磁弁14,17の開閉制御とガス比例弁18の開弁量制御とを行って、給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ5の燃焼制御を行うものである。また、燃焼制御手段52は、これらのバーナ装置2,5の燃焼時には燃焼ファン15を駆動させ、例えばその回転数をバーナ装置2,5の燃焼量に対応させる等して適宜の制御を行う。なお、その詳細は前述の記載の通りである。 The combustion control means 52 is based on a signal (a command, a set temperature value, etc.) from the remote control device 53, the hot water discharge thermistor 24, the water amount sensor (flow rate sensor) 19, the heat exchange side thermistor 23, the heating high temperature thermistor 40, and the heating low temperature thermistor. The open/close control of the gas solenoid valves 14 and 17 and the valve opening amount control of the gas proportional valve 18 are performed with reference to the detection signals of 41 and the like, and the burner device 2 (2a, 2b, 2c) for hot water supply and the heater for heating are supplied. The combustion control of the burner 5 is performed. Further, the combustion control means 52 drives the combustion fan 15 at the time of combustion of these burner devices 2 and 5, and performs appropriate control, for example, by making the rotation speed correspond to the combustion amount of the burner devices 2 and 5. The details are as described above.

本実施例では、給湯運転のみを行う給湯単独運転時と、暖房運転のみを行う暖房単独運転時と、暖房運転と給湯運転とを同時に行う同時運転とにおいて、それぞれ、各運転に対応させて、対応する給湯用のバーナ装置2(2a,2b,2c)、暖房用のバーナ装置5の燃焼を切り替える構成を有している。つまり、燃焼制御手段52が、給湯用の複数のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置5のそれぞれに対応させてガス開閉弁17,14の開閉制御を行うと共に、ガス比例弁18の制御によって行われる全てのバーナ装置2,5へのガス供給割合を一律に制御することによって、給湯単独運転と暖房単独運転と給湯と暖房の同時運転とを適宜行うようにしている。 In the present embodiment, in the hot water supply only operation that performs only the hot water supply operation, in the heating only operation that performs only the heating operation, and in the simultaneous operation that simultaneously performs the heating operation and the hot water supply operation, respectively, in correspondence with each operation, The burner device 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating corresponding to each other are configured to switch combustion. That is, the combustion control means 52 controls the opening/closing of the gas opening/closing valves 17 and 14 in association with the burner devices 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating, respectively. By uniformly controlling the gas supply ratios to all the burner devices 2 and 5 controlled by the proportional valve 18, the hot water supply independent operation, the heating independent operation, and the simultaneous hot water supply and heating operation are appropriately performed. ..

本実施例において、燃焼制御手段52は、要求される給湯能力に対応させて、複数の給湯用のバーナ装置2a,2b,2cのうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って制御するバーナ段数制御を行う。この制御は、前記要求給湯能力が大きくなるにつれてバーナ段数を大きくし、前記要求給湯能力が小さくなるにつれて前記バーナ段数を小さくする制御と、同じバーナ段数において、前記要求給湯能力に対応させて、該要求給湯能力が大きくなるにつれてガス比例弁18の開度を大きくし、前記要求給湯能力が小さくなるにつれてガス比例弁18の開度を小さくする比例弁開度制御を行う。 In the present embodiment, the combustion control means 52 has a predetermined number of burner stages, which is the number of combustion burners among the plurality of hot-water supply burner devices 2a, 2b, 2c, corresponding to the required hot water supply capacity. The number of burner stages is controlled according to a variable program. In this control, the number of burner stages is increased as the required hot water supply capacity increases, and the number of burner stages is decreased as the required hot water supply capability decreases, and in the same number of burner stages, the required hot water supply capability is made to correspond, Proportional valve opening control is performed in which the opening of the gas proportional valve 18 is increased as the required hot water supply capacity is increased, and the opening of the gas proportional valve 18 is decreased as the required hot water supply capacity is decreased.

燃焼制御手段52によって行われる給湯用のバーナ装置2(2a,2b,2c)の燃焼制御は、図4に示したような給湯用のそれぞれのバーナ装置2a,2b,2cを形成する複数本ずつのバーナ107によって区分された燃焼面(区分燃焼面A,B.C)を、給湯用のバーナ装置2に要求される燃焼能力が一段アップする毎に予め定められた順番で選択的に順次追加燃焼させるものである。 The combustion control of the burner device 2 (2a, 2b, 2c) for hot water supply performed by the combustion control means 52 is performed by a plurality of burner devices 2a, 2b, 2c for hot water supply as shown in FIG. The combustion surfaces (divisional combustion surfaces A and BC) divided by the burner 107 are selectively and additionally burned in a predetermined order each time the combustion capacity required for the hot water supply burner device 2 is further increased. It is a thing.

例えば給湯単独運転におけるバーナ燃焼においては、表1の切り替え段数(1)の蘭に示されているように、最初に燃焼させる燃焼面は給湯用のバーナ装置2aの3本のバーナ107の燃焼面である。なお、表1の切替段数はバーナ装置2,5の切り替え段数であり、バーナ段数である。また、表1においては、図2に示されるように、給湯用のバーナ装置2aの燃焼面をA、給湯用のバーナ装置2bの燃焼面をB、給湯用のバーナ装置2cの燃焼面をC、暖房用のバーナ装置5の燃焼面をDと示している。 For example, in burner combustion in the hot water supply independent operation, as shown in the ord of the number of switching stages (1) in Table 1, the combustion surface to be burned first is the combustion surface of the three burners 107 of the burner device 2a for hot water supply. Is. The number of switching stages in Table 1 is the number of switching stages of the burner devices 2 and 5, and is the number of burner stages. Further, in Table 1, as shown in FIG. 2, the burning surface of the burner apparatus 2a for hot water supply is A, the burning surface of the burner apparatus 2b for hot water supply is B, and the burning surface of the burner apparatus 2c for hot water supply is C. The combustion surface of the heating burner device 5 is indicated by D.

Figure 2020106226
Figure 2020106226

給湯用のバーナ装置2aのみの燃焼により得られる給湯特性(出湯特性)は、例えば給湯回路45への入水温度が15℃の場合には、給湯設定温度に応じて、図7の特性線aと特性線aとに挟まれた領域内の給湯が可能となる。つまり、給湯用のバーナ装置2aのみを燃焼させる場合でも、ガス比例弁18の開弁量に応じて給湯特性が異なる態様となり、ガス比例弁18の開弁量が最小開度のときには図7の特性線aの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線a側に近づき、最大開度のときに特性線aの特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 The hot water supply characteristics (hot water discharge characteristics) obtained by burning only the burner device 2a for hot water supply are, for example, when the temperature of the water entering the hot water supply circuit 45 is 15° C., the characteristic line a 1 in FIG. It is possible to supply hot water in the area sandwiched between the characteristic line a 2 and the characteristic line a 2 . That is, even when only the burner device 2a for hot water supply is burned, the hot water supply characteristics differ depending on the opening amount of the gas proportional valve 18, and when the opening amount of the gas proportional valve 18 is at the minimum opening, as shown in FIG. It becomes the characteristic of the characteristic line a 1 and approaches the characteristic line a 2 side of FIG. 7 as the valve opening amount of the gas proportional valve 18 increases, and the characteristic of the characteristic line a 2 is obtained at the maximum opening, so the combustion control The means 52 controls the opening amount of the gas proportional valve 18 in accordance with the hot water supply set temperature and the hot water supply flow rate to proportionally control the supply gas amount.

燃焼制御手段52は、給湯要求能力に対応する燃焼能力が一段アップすると、バーナ装置2aの3本のバーナ107の燃焼面に加えてバーナ装置2bの5本のバーナ107の、合計8本のバーナ107の燃焼面の燃焼を行う(表1の切替段数(2)を参照)。バーナ装置2a,2bの燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図7の特性線bと特性線bとに挟まれた領域内の給湯が可能となる。 When the combustion capacity corresponding to the hot water supply required capacity is further increased, the combustion control means 52 has a total of eight burners, namely, the five burners 107 of the burner apparatus 2b in addition to the combustion surfaces of the three burners 107 of the burner apparatus 2a. Combustion of the combustion surface of 107 is performed (see the number of switching stages (2) in Table 1). The hot water supply characteristic obtained by the combustion of the burner devices 2a and 2b is, for example, when the temperature of the water entering the hot water supply circuit 45 is 15° C., the hot water supply in the region between the characteristic line b 1 and the characteristic line b 2 in FIG. Is possible.

つまり、バーナ装置2a,2bの燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図7の特性線bの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線b側に近づき、最大開度のときに特性線bの特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 That is, hot water characteristic obtained burner device 2a, by the combustion of 2b, in response to the amount of opening of the gas proportional valve 18, the characteristics of the characteristic line b 1 of FIG. 7 when the minimum opening is the amount of opening of the gas proportional valve 18 Therefore, as the opening amount of the gas proportional valve 18 increases, the characteristic curve b 2 in FIG. 7 approaches and the characteristic curve b 2 is obtained at the maximum opening. Therefore, the combustion control means 52 sets the hot water supply setting. The opening amount of the gas proportional valve 18 is controlled according to the temperature and the hot water supply flow rate to proportionally control the supply gas amount.

また、燃焼制御手段52は、給湯要求能力に対応する燃焼能力がさらに一段アップすると、バーナ装置2aの4本のバーナ107の燃焼面とバーナ装置2bの3本のバーナ107とバーナ装置2cの7本のバーナ107の合計12本のバーナ107の燃焼面燃焼面の燃焼を行う(表1の切替段数(3)、を参照)。これらのバーナ装置2a,2b,2cの燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図7の特性線cと特性線cとに挟まれた領域内の給湯が可能となる。 Further, when the combustion capacity corresponding to the hot water supply required capacity is further increased, the combustion control means 52 further increases the combustion surfaces of the four burners 107 of the burner apparatus 2a, the three burners 107 of the burner apparatus 2b, and the burner apparatus 7 of the burner apparatus 2c. Combustion surface of a total of 12 burners 107 of the book burner 107 The combustion surface is burned (see the number of switching stages (3) in Table 1). The hot water supply characteristics obtained by the combustion of these burner devices 2a, 2b, 2c are sandwiched between the characteristic line c 1 and the characteristic line c 2 in FIG. 7 when the temperature of entering the hot water supply circuit 45 is 15° C., for example. Hot water can be supplied within the area.

つまり、バーナ装置2a,2b,2cの燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図7の特性線cの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線c側に近づき、最大開度のときに特性線cの特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 That is, the hot water supply characteristics obtained by the combustion of the burner devices 2a, 2b, 2c depend on the opening amount of the gas proportional valve 18, and when the opening amount of the gas proportional valve 18 is the minimum opening, the characteristic line c 1 in FIG. becomes characteristic approaches a characteristic line c 2 side of FIG. 7 as the greater the opening amount of the gas proportional valve 18, the characteristics of the characteristic lines c 2 at the time of maximum opening is obtained, combustion control means 52, The opening amount of the gas proportional valve 18 is controlled according to the hot water supply set temperature and the hot water supply flow rate to proportionally control the supply gas amount.

さらに、燃焼制御手段52は、給湯単独運転時に、給湯要求能力に対応する燃焼能力が前記水路配設部切り替え基準能力(例えば16.5号)以上となったときには給湯用のバーナ装置2(2a,2b,2c)に加えて二種管路配設部112の下方側の暖房用のバーナ装置5を燃焼させる(表1の切替段数(4)を参照)。また、このとき、燃焼制御手段52は、ポンプ駆動制御手段55に指令を加えて暖房用循環ポンプ9を駆動させる。 Further, the combustion control means 52, when the hot water supply operation is performed independently, when the combustion capacity corresponding to the hot water supply required capacity becomes equal to or higher than the water channel disposition part switching reference capacity (for example, 16.5), the hot water supply burner device 2 (2a). , 2b, 2c), the burner device 5 for heating below the second-kind conduit installation portion 112 is burned (see the number of switching stages (4) in Table 1). Further, at this time, the combustion control means 52 applies a command to the pump drive control means 55 to drive the heating circulation pump 9.

給湯用のバーナ装置2a,2b,2cと暖房用のバーナ装置5の燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図7の特性線dと特性線dとに挟まれた領域内の給湯が可能となる。つまり、バーナ装置2a,2b,2cと暖房用のバーナ装置5の燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図7の特性線dの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線d側に近づき、最大開度のときに特性線dの特性が得られるので、燃焼制御手段52は給湯設定温度と給湯流量に対応させてガス比例弁18を制御する。 The hot water supply characteristics obtained by the combustion of the hot water supply burner devices 2a, 2b, 2c and the heating burner device 5 are the same as the characteristic line d 1 of FIG. 7 when the temperature of entering the hot water supply circuit 45 is 15° C., for example. Hot water can be supplied in the region sandwiched by the line d 2 . In other words, the hot water supply characteristic obtained by the combustion of the burner devices 2a, 2b, 2c and the heating burner device 5 depends on the opening amount of the gas proportional valve 18 when the opening amount of the gas proportional valve 18 is the minimum opening amount. It becomes the characteristic of the characteristic line d 1 of FIG. 7, and as the amount of opening of the gas proportional valve 18 increases, it approaches the characteristic line d 2 side of FIG. 7, and the characteristic of the characteristic line d 2 is obtained at the maximum opening. The combustion control means 52 controls the gas proportional valve 18 according to the hot water supply set temperature and the hot water supply flow rate.

また、給湯単独運転時であっても、暖房用のバーナ装置5の燃焼を行う時には液体循環ポンプ9を駆動させて暖房回路7内の熱媒体(温水)を循環させ、給湯暖房熱的接続用液−水熱交換器33を介して暖房回路7側の熱を給湯側に吸熱させて回収することにより、図7の特性線dと特性線dとに挟まれた領域内の高い給湯能力による給湯を行うことができるものである。 Further, even during the hot water supply independent operation, when the burner device 5 for heating is burned, the liquid circulation pump 9 is driven to circulate the heat medium (hot water) in the heating circuit 7 for hot water supply and heating thermal connection. High heat supply in the region between the characteristic line d 1 and the characteristic line d 2 of FIG. 7 by absorbing and recovering the heat of the heating circuit 7 side to the hot water supply side via the liquid-water heat exchanger 33. Hot water can be supplied according to the ability.

つまり、本実施例では、給湯用のバーナ装置2と暖房用のバーナ装置5の全ての燃焼面を燃焼させ、ガス比例弁18の開弁量制御を行うことに加え、暖房回路7の熱媒体を循環させ、このとき、分岐対応給湯側温度可変手段51が追い焚き用液体流量制御弁32を適宜開き、給湯暖房熱的接続用液−水熱交換器33を介して暖房回路7側から給湯回路45側へ熱を移動させることにより、図7の特性線dと特性線dとに挟まれた領域内の高い給湯能力による給湯を行うことができる。 That is, in the present embodiment, all the combustion surfaces of the burner device 2 for hot water supply and the burner device 5 for heating are burned to control the opening amount of the gas proportional valve 18, and the heat medium of the heating circuit 7 is also added. At this time, the branch-compatible hot water supply side temperature varying means 51 appropriately opens the reheating liquid flow rate control valve 32, and supplies hot water from the heating circuit 7 side through the hot water supply/heating thermal connection liquid-water heat exchanger 33. By moving the heat to the circuit 45 side, it is possible to perform hot water supply with a high hot water supply capacity in the region between the characteristic line d 1 and the characteristic line d 2 in FIG. 7.

燃焼制御手段52は、暖房単独運転時には、暖房運転動作に必要な必要燃焼能力が予め定められる暖房制御切り替え基準能力(例えば7.3kw)未満の時には、二種管路配設部112の下方側の暖房用のバーナ装置5の4本のバーナ109をオンオフ制御し(予め定められるオンオフタイミング毎にオンとオフとを繰り返すオンオフ燃焼(間欠燃焼)を行い)、このとき、ガス比例弁18の開弁量を最小とする。 The combustion control means 52 is located below the two-kind conduit arrangement section 112 when the required combustion capacity required for the heating operation is less than the predetermined heating control switching reference capacity (for example, 7.3 kw) during the heating only operation. ON/OFF control of the four burners 109 of the heating burner device 5 is performed (on/off combustion (intermittent combustion) in which ON and OFF are repeated at predetermined ON/OFF timings is performed), and at this time, the gas proportional valve 18 is opened. Minimize valve volume.

一方、暖房運転動作に必要な必要燃焼能力が前記暖房制御切り替え基準能力以上の時には、暖房用のバーナ装置5の4本のバーナ109の燃焼を継続して行い、このときには、前記必要燃焼能力に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 On the other hand, when the required combustion capacity required for the heating operation operation is equal to or higher than the heating control switching reference capacity, the four burners 109 of the heating burner device 5 are continuously burned. Correspondingly, the valve opening amount of the gas proportional valve 18 is controlled to proportionally control the supply gas amount.

また、本実施例において、暖房運転と給湯運転とを同時に行う同時運転時には、以下に述べるような制御が行われるものである。つまり、本実施例では、暖房運転と給湯運転とを同時に行う同時運転時においては、給湯単独運転時とは異なるバーナ段数可変プログラムが設定されていて、燃焼制御手段52がそのバーナ段数可変プログラムに従ったバーナ燃焼制御を行うが、暖房運転と給湯運転とを同時に行う同時運転時に予め定められた暖房不足判断条件に達した時には、前記バーナ段数可変プログラムに設定されているバーナ段数よりも1段以上バーナ段数を小さくしてガス比例弁18の開度を大きくする制御を行う。なお、その詳細については図12〜図16等を用いて後述する。 Further, in the present embodiment, the control as described below is performed during the simultaneous operation in which the heating operation and the hot water supply operation are simultaneously performed. That is, in the present embodiment, during the simultaneous operation in which the heating operation and the hot water supply operation are simultaneously performed, a burner stage number variable program different from that in the hot water supply single operation is set, and the combustion control means 52 is set to the burner stage number variable program. Although the burner combustion control is performed in accordance with the above, when a predetermined heating shortage determination condition is reached during the simultaneous operation in which the heating operation and the hot water supply operation are simultaneously performed, the burner stage number is set to one stage higher than the burner stage number set in the burner stage number variable program. As described above, control is performed to reduce the number of burner stages and increase the opening of the gas proportional valve 18. The details will be described later with reference to FIGS.

前記バーナ段数可変プログラムに設定されているバーナ段数とバーナ燃焼面およびバーナ燃焼本数との関係は、例えば表2に示されるものである。表1と同様に、表2における燃焼面Aは給湯用のバーナ装置2aの燃焼面、燃焼面Bは給湯用のバーナ装置2bの燃焼面、燃焼面Cは給湯用のバーナ装置2cの燃焼面は、燃焼面Dは暖房用のバーナ装置5の燃焼面を示す。 The relationship between the number of burner stages set in the burner stage number variable program and the burner combustion surface and the number of burner combustion lines is shown in Table 2, for example. Similar to Table 1, the combustion surface A in Table 2 is the combustion surface of the hot water supply burner apparatus 2a, the combustion surface B is the combustion surface of the hot water supply burner apparatus 2b, and the combustion surface C is the combustion surface of the hot water supply burner apparatus 2c. Indicates a combustion surface D of the burner device 5 for heating.

Figure 2020106226
Figure 2020106226

図11には、この給湯と暖房の同時運転時におけるバーナ段数制御方法と給湯号数との関連が簡略化して示されている。なお、図11および後述する図1において、特性線Saはバーナ段数1段、特性線Sbはバーナ段数2段、特性線Scはバーナ段数3段、特性線Sdはバーナ段数4段におけるバーナ燃焼本数と要求される給湯能力(給湯号数)の関係を示している。これらの特性線Sa〜Sdは、いずれも、給湯用の液体流通管路13からの出側の温度が60℃で、暖房用の液体流通管路12の出側温度(高温サーミスタ40により検出される熱媒体温度)が60℃の場合について示されている FIG. 11 shows a simplified relationship between the burner stage number control method and the number of hot water supplies during the simultaneous operation of hot water supply and heating. In FIG. 11 and FIG. 1 to be described later, the characteristic line Sa is 1 burner stage, the characteristic line Sb is 2 burner stages, the characteristic line Sc is 3 burner stages, and the characteristic line Sd is 4 burner stages. And the required hot water supply capacity (number of hot water supply). In each of these characteristic lines Sa to Sd, the temperature on the outlet side from the liquid flow conduit 13 for hot water supply is 60° C., and the outlet temperature on the liquid flow conduit 12 for heating (detected by the high temperature thermistor 40). The heat medium temperature) is 60°C.

また、図11および後述する図1において、範囲Rabが特性線Saと特性線Sbとがオーバーラップしている範囲を示しており、範囲Rbcが特性線Sbと特性線Scとがオーバーラップしている範囲を示しており、範囲Rcdが特性線Scと特性線Sdとがオーバーラップしている範囲を示している。 In addition, in FIG. 11 and FIG. 1 described later, the range Rab indicates a range where the characteristic line Sa and the characteristic line Sb overlap, and the range Rbc overlaps the characteristic line Sb and the characteristic line Sc. The range Rcd indicates the range in which the characteristic line Sc and the characteristic line Sd overlap.

ところで、燃焼装置において、熱効率を向上させることは重要な点の一つであり、熱効率はバーナ段数と関係がある。本実施例において、給湯単独運転時と給湯と暖房の同時運転時におけるバーナ段数の切り替えは、いずれも4段となっており、例えば給湯単独A面燃焼の場合(給湯バーナ装置2aのみの燃焼時)には、他のバーナ装置(給湯用のバーナ装置2b、2cおよび暖房用のバーナ装置5)の燃焼面BCD面では燃焼が行われておらず、空気のみが流れ、A面に対応する熱交換部で湯が作られても、BCD面に対応する熱交換部で空冷されることになる。このような結果、熱効率はABCD面の全面燃焼が最も高く、A面のみの燃焼が最も低くなる。 By the way, in the combustion apparatus, improving the thermal efficiency is one of the important points, and the thermal efficiency is related to the number of burner stages. In this embodiment, the number of burner stages is switched between four stages during the hot water supply single operation and during the simultaneous hot water supply and heating operation. For example, in the case of the hot water supply single A-side combustion (when only the hot water supply burner device 2a burns). ), the combustion surface BCD surface of the other burner devices (burner devices 2b, 2c for hot water supply and the burner device 5 for heating) is not combusted, only air flows and heat corresponding to surface A is generated. Even if hot water is produced in the exchange part, it will be air-cooled in the heat exchange part corresponding to the BCD surface. As a result, the thermal efficiency is highest in the entire combustion on the ABCD surface and lowest in the combustion on the A surface only.

また、暖房運転と給湯運転とを同時に行う同時運転時には、バーナ段数制御は表2に示したように、1段目は暖房バーナ装置5の燃焼面Dのみ燃焼、2段目は暖房バーナ装置5の燃焼面Dと給湯バーナ装置2aの燃焼面Aの燃焼、3段目は暖房バーナ装置5の燃焼面Dと給湯バーナ装置2a,2bの燃焼面A、Bの燃焼、4段目はABCD面の全面燃焼になるため、熱効率は4段目のABCD面の全面燃焼が最も高く、1段目のD面のみの燃焼が最も低くなる。 Further, during the simultaneous operation of performing the heating operation and the hot water supply operation at the same time, the burner stage number control burns only the combustion surface D of the heating burner device 5 in the first stage as shown in Table 2, and the second stage in the heating burner device 5 Combustion surface D of No. 3 and combustion surface A of hot water supply burner apparatus 2a are burned, the third stage is combustion surface D of heating burner apparatus 5 and combustion surfaces A and B of hot water supply burner apparatuses 2a and 2b is burned, and the fourth stage is ABCD surface As a result, since the entire surface of the 4th stage ABCD surface has the highest thermal efficiency, only the 1st stage of the D surface has the lowest thermal efficiency.

なお、ガス比例弁18の開度と火炎の大きさとは相関性があり、ガス比例弁18の開度が小さいとバーナで作られる火炎が小さく、ガス比例弁18の開度が大きいと火炎は大きくなる。さらに、ガス比例弁18の開度が同じであっても燃焼ファン15からバーナ装置に送られる送風量が少ないと(例えば適正値下限に近いと)火炎は大きく、送風量が多いと(例えば適正値上限に近いと)火炎は小さくなる。 There is a correlation between the opening of the gas proportional valve 18 and the size of the flame. When the opening of the gas proportional valve 18 is small, the flame produced by the burner is small, and when the opening of the gas proportional valve 18 is large, the flame is small. growing. Furthermore, even if the opening of the gas proportional valve 18 is the same, if the amount of air blown from the combustion fan 15 to the burner device is small (for example, near the lower limit of the appropriate value), the flame is large, and if the amount of air blow is large (for example, an appropriate value). The flame becomes smaller (close to the upper limit).

そして、燃焼装置1を小さくするために、ガス比例弁18の開度が大きい場合には送風量を多くし(例えば適正値上限又はその近傍とし)、火炎を小さくすることで燃焼室高さを低く設定することが行われている。ガス比例弁18の開度が小さい場合には送風量を少なくし(例えば適正値下限又はその近傍とし)、空気の総量を減らすことで燃焼装置から持ち出される熱量を少なくして熱効率を上げている。 In order to reduce the size of the combustion apparatus 1, when the opening of the gas proportional valve 18 is large, the amount of air blown is increased (for example, at an appropriate value upper limit or in the vicinity thereof) and the flame is reduced to reduce the combustion chamber height. It is being set low. When the opening of the gas proportional valve 18 is small, the amount of air blown is reduced (for example, at the lower limit of the appropriate value or in the vicinity thereof), and the total amount of air is reduced to reduce the amount of heat taken out from the combustion device to improve the thermal efficiency. ..

以上のことから、前記給湯と暖房の同時運転時においては、バーナ燃焼面切り替えと熱効率との関係について述べると、熱効率はABCD面の全面燃焼であってガス比例弁の開度が小さい場合が最も高く、D面のみの燃焼であってガス比例弁18の開度が大きい場合が最も熱効率が低くなる。したがって、給湯能力が同じ能力を出せる状況で燃焼面の切り替えが可能ならば、少しでも燃焼面を増やす方が熱効率が高くなるので、通常は、燃焼面が多い方(バーナ段数の大きい方)が選択される。この状況は給湯単能器であっても、一缶二水路型の熱交換器を用いた熱源装置で同じである。 From the above, in the simultaneous operation of hot water supply and heating, the relationship between burner combustion surface switching and thermal efficiency will be described. The thermal efficiency is most when the full combustion on the ABCD surface and the opening of the gas proportional valve is small. The heat efficiency is lowest when the combustion is high and only on the D surface and the opening of the gas proportional valve 18 is large. Therefore, if the combustion surface can be switched in a situation where the hot water supply capacity is the same, the thermal efficiency will be higher if the combustion surface is increased as much as possible. Normally, the one with more combustion surfaces (the one with a larger number of burner stages) Selected. This situation is the same for a heat source device using a one-can/two-channel heat exchanger even for a hot water supply single-function device.

そのため、例えば以下に述べるような制御が行われる。例えば図11(a)の特性線Saに示されるように、給湯と暖房の同時運転時において、要求される給湯能力が2.5号〜6.25号の時には暖房用のバーナ装置5のみ(4本のバーナ)の燃焼でも要求される給湯能力を出すことができるが、特性線Saと特性線Sbとがオーバーラップする4.5号〜6.25号の領域(範囲Rab)においては、特性線Sbにしたがった燃焼制御として暖房用のバーナ装置5と給湯用のバーナ装置2a(7本のバーナ)の燃焼でもよい。なお、オーバーラップはハンチングのために設けられる。 Therefore, for example, the control described below is performed. For example, as shown by the characteristic line Sa in FIG. 11A, when the required hot water supply capacity is 2.5 to 6.25 during the simultaneous operation of hot water supply and heating, only the burner device 5 for heating ( Although the required hot water supply capacity can be obtained even by combustion of four burners), in the region of 4.5 to 6.25 (range Rab) where the characteristic line Sa and the characteristic line Sb overlap. As the combustion control according to the characteristic line Sb, the burner device 5 for heating and the burner device 2a for hot water supply (seven burners) may be burned. The overlap is provided for hunting.

そこで、例えば要求される給湯号数が5号以上となったらバーナ段数を1段上げて特性線Sbにしたがった燃焼制御に切り替え、それと共に、ガス比例弁18の開度を小さく(例えば最小にして)、暖房用のバーナ装置5(4本のバーナの燃焼面D)と給湯用のバーナ装置2a(3本のバーナの燃焼面A)を燃焼させ(合計7本のバーナ装置の燃焼が行われ)、熱効率が高めとなるような燃焼制御が行われる。なお、特性線Sbは4.5号以上となっているが、周知の如く、制御特性線にはヒステリシスが設けられており、バーナ段数を上げる場合は例えば要求される給湯号数が5号以上となったときに特性線Sbに従うようにする。 Therefore, for example, when the required hot water supply number is 5 or more, the burner stage number is increased by one stage to switch to the combustion control according to the characteristic line Sb, and at the same time, the opening of the gas proportional valve 18 is made small (for example, minimized). The burner device 5 for heating (combustion surface D of four burners) and the burner device 2a for hot water supply (combustion surface A of three burners) (combustion of a total of seven burner devices). We), combustion control is performed so that the thermal efficiency is increased. The characteristic line Sb is 4.5 or more, but as is well known, the control characteristic line is provided with hysteresis, and when increasing the number of burner stages, for example, the required hot water supply number is 5 or more. When it becomes, the characteristic line Sb is followed.

さらに要求される能力が大きくなれば、その能力に対応させて、要求される能力が大きくなるにつれてガス比例弁18の開度を大きくする。そして、前記と同様に、特性線Sbと特性線Scとがオーバーラップする領域(8.125号〜11号)(範囲Rbc)においても、同様に、特性線Sbにしたがった燃焼制御としてもよいし、特性線Scにしたがった燃焼制御でもよいので、前記と同様に熱効率を高めとするために、例えば要求される能力が約8.625号になったらバーナ段数を1段上げる(特性線Scに対応させて給湯用のバーナ装置2bの燃焼面Bも燃焼させて合計12本のバーナ装置を燃焼させる)。 If the required capacity further increases, the opening degree of the gas proportional valve 18 is increased corresponding to the required capacity. Then, similarly to the above, in the region (Nos. 8.125 to 11) (range Rbc) where the characteristic line Sb and the characteristic line Sc overlap, the combustion control may be performed in accordance with the characteristic line Sb. However, since combustion control may be performed according to the characteristic line Sc, the burner stage number is increased by one stage when the required capacity reaches about 8.625 in order to increase the thermal efficiency in the same manner as described above (the characteristic line Sc Corresponding to the above, the combustion surface B of the burner device 2b for hot water supply is also burned to burn a total of 12 burner devices).

また、特性線Scと特性線Sdとがオーバーラップする領域(10.875号〜18.75号)(範囲Rcd)においては特性線Scにしたがった燃焼制御としてもよいし、特性線Sdにしたがった燃焼制御でもよいので、前記と同様に熱効率を高めとするために、例えば要求される能力が約11.375号になったらバーナ段数を1段上げる(特性線Sdに対応させて給湯用のバーナ装置2a〜2cの燃焼面A〜Cと暖房用のバーナ装置5の燃焼面Dを燃焼させて合計16本のバーナ装置を燃焼させる)、といった動作を行うようにする。 Further, in the region (No. 10.875 to No. 18.75) (range Rcd) where the characteristic line Sc and the characteristic line Sd overlap, the combustion control may be performed according to the characteristic line Sc, or according to the characteristic line Sd. In order to increase the thermal efficiency in the same manner as described above, for example, when the required capacity reaches about 11.375, the burner stage number is increased by one stage (corresponding to the characteristic line Sd for hot water supply). The combustion surfaces A to C of the burner devices 2a to 2c and the combustion surface D of the burner device 5 for heating are burned to burn a total of 16 burner devices).

このように、要求される能力が大きくなるにつれて、ガス比例弁18の開度を大きくする制御とバーナ段数を順次大きく(高く)する制御とを行っていくが、図11の特性線Sa〜Sd同士がオーバーラップしている領域(範囲Rab、範囲Rb、範囲Rcd)においては、なるべく1つ上のバーナ段数に対応する特性線にしたがった制御としてガス比例弁18の開度を小さくするような制御が行われる。 As described above, as the required capacity increases, the control for increasing the opening of the gas proportional valve 18 and the control for sequentially increasing (increasing) the number of burner stages are performed, but the characteristic lines Sa to Sd in FIG. In a region where the two are overlapped (range Rab, range Rb, range Rcd), the opening of the gas proportional valve 18 is made smaller as a control according to the characteristic line corresponding to the number of burner stages which is as high as possible. Control is performed.

一方、要求される能力が小さくなったときには、通常は、以下のような制御を行う。つまり、図11(b)の特性線Sdに示されるように、要求される能力が24号〜約10.875号の時には、暖房用のバーナ装置5と給湯用のバーナ装置2a,2b,2cを燃焼させ(合計16本のバーナ装置の燃焼面A,B,C,Dの燃焼が行われ)、能力に対応させて、要求される能力が小さくなるにつれてガス比例弁18の開度を小さくする。そして、要求される能力が約10.875号になったらバーナ段数を1段下げ(特性線Scにしたがう制御とし)、それと共に特性線Scに対応させてガス比例弁18の開度を制御して、暖房用のバーナ装置5の燃焼面Dと給湯用のバーナ装置2a,2bの燃焼面A,Bを燃焼させる。 On the other hand, when the required capacity becomes small, the following control is usually performed. That is, as shown by the characteristic line Sd in FIG. 11B, when the required capacity is 24 to about 10.875, the burner device 5 for heating and the burner devices 2a, 2b, 2c for hot water supply are provided. (The combustion surfaces A, B, C, D of 16 burner devices in total are burned), and the opening of the gas proportional valve 18 is reduced as the required capacity becomes smaller in accordance with the capacity. To do. When the required capacity reaches about 10.875, the burner stage number is lowered by one stage (control according to the characteristic line Sc), and at the same time, the opening of the gas proportional valve 18 is controlled corresponding to the characteristic line Sc. Then, the combustion surface D of the burner device 5 for heating and the combustion surfaces A and B of the burner devices 2a and 2b for hot water supply are burned.

さらに要求される能力が小さくなったらガス比例弁18の開度を小さくし、要求される能力が約8.125号になったらバーナ段数を1段下げ(特性線Sbに従う制御とし)、それと共に特性線Sbに対応させてガス比例弁18の開度を制御して、暖房用のバーナ装置5と給湯用のバーナ装置2aを燃焼させる。さらに要求される能力が小さくなったらガス比例弁18の開度を小さくし、要求される能力が約4.5号になったらバーナ段数を1段下げ(特性線Saにしたがう制御とし)、それと共に特性線Saに対応させてガス比例弁18の開度を制御して、暖房用のバーナ装置5bのみを燃焼させる。 Further, when the required capacity becomes smaller, the opening of the gas proportional valve 18 is made smaller, and when the required capacity becomes about 8.125, the burner stage number is lowered by one stage (control according to the characteristic line Sb). The opening of the gas proportional valve 18 is controlled according to the characteristic line Sb to burn the heating burner device 5 and the hot water supply burner device 2a. When the required capacity becomes smaller, the opening of the gas proportional valve 18 is made smaller, and when the required capacity becomes about 4.5, the burner stage number is lowered by one stage (the control is performed according to the characteristic line Sa). At the same time, the opening of the gas proportional valve 18 is controlled according to the characteristic line Sa to burn only the heating burner device 5b.

つまり、要求される能力が小さくなるにつれて、ガス比例弁18の開度を小さくする制御とバーナ段数を順次小さく(低く)する制御とを行っていき、図11の特性線Sa〜Sd同士がオーバーラップしている領域(範囲Rab、範囲Rb、範囲Rcd)において、なるべく1つ上のバーナ段数に対応する特性線にしたがった制御とする(つまり、ぎりぎりまでバーナ段数を小さくしない)ような制御が行われる。 That is, as the required capacity becomes smaller, the control for decreasing the opening of the gas proportional valve 18 and the control for sequentially decreasing (lowering) the number of burner stages are performed, and the characteristic lines Sa to Sd in FIG. In the overlapped area (range Rab, range Rb, range Rcd), control is performed according to the characteristic line corresponding to the number of burner stages that is one step higher (that is, the number of burner stages is not reduced to the limit). Done.

ところで、本実施例においては、前記の如く、暖房用の液体流通管路12と給湯用の液体流通管路13とが上下方向に互いに接する態様で隣接した二種管路配設部112を有しており、本実施例の燃焼装置においては、この二種管路配設部112における熱の分配比について考慮してバーナ燃焼制御を行う必要がある。二種管路配設部112では、給湯と暖房の同時運転時において、暖房用のバーナ装置5の燃焼熱量を暖房用の液体流通管路12が吸熱する量によっては給湯能力が低下する可能性があるからである。 By the way, in the present embodiment, as described above, the liquid distribution pipeline 12 for heating and the liquid distribution pipeline 13 for hot water supply are provided with the two-kind pipeline arranging section 112 that is adjacent to each other in a vertically contacting manner. Therefore, in the combustion apparatus of the present embodiment, it is necessary to perform burner combustion control in consideration of the heat distribution ratio in the second type pipe passage arrangement portion 112. In the second-kind conduit arrangement portion 112, during the simultaneous operation of hot water supply and heating, there is a possibility that the hot water supply capacity may be reduced depending on the amount of heat of combustion of the heating burner device 5 absorbed by the heating liquid distribution conduit 12. Because there is.

換言すると、暖房用の液体流通管路12内の熱媒体の温度が給湯用の液体流通管路13内の熱媒体の温度に比して極めて低い場合には、暖房用の液体流通管路12が吸熱する量が多くなり、給湯用である液体流通管路13側の吸熱量が低下することから、給湯能力が低下する。このように、暖房用の液体流通管路12が吸熱する割合と給湯用の液体流通管路13が吸熱する割合(分配比)は2者の温度差によって決まる。そこで、本実施例の燃焼装置におけるバーナ燃焼制御においては、実際には、例えば図12に示されるような制御特性にしたがった燃焼制御が行われる。 In other words, when the temperature of the heat medium in the heating liquid distribution conduit 12 is extremely lower than the temperature of the heat medium in the hot water supplying liquid distribution conduit 13, the heating liquid distribution conduit 12 The amount of heat absorbed by the water increases, and the amount of heat absorbed on the side of the liquid flow conduit 13 for hot water supply decreases, so the hot water supply capacity decreases. In this way, the ratio of the heat absorption of the liquid distribution conduit 12 for heating and the ratio of heat absorption of the liquid distribution conduit 13 for hot water supply (distribution ratio) are determined by the temperature difference between the two. Therefore, in the burner combustion control in the combustion apparatus of the present embodiment, actually, for example, the combustion control according to the control characteristics shown in FIG. 12 is performed.

図12において、特性線a〜dには、給湯暖房同時運転時のガス比例弁18(比例弁)の開度と給湯能力を示す給湯号数との関係に応じた制御用の特性線の一例が模式的に示されている。図12および後述する図13〜図16において、特性線a〜dは、いずれも給湯用の液体流通管路13からの出側の温度が60℃である場合の特性線を示している。なお、ガス比例弁18の開度と燃焼ファン15の回転数とは例えば略比例するものであり、また、給湯号数の最低値は2.5号であるため、図12〜図16において、2.5号未満の特性線は想像線である(実際には存在しないが、1段目の特性線b〜dの延長線を細線により示している)。 In FIG. 12, characteristic lines a to d are examples of characteristic lines for control according to the relationship between the opening of the gas proportional valve 18 (proportional valve) and the number of hot water supply indicating the hot water supply capacity during the simultaneous hot water supply and heating operation. Is schematically shown. In FIG. 12 and FIGS. 13 to 16 to be described later, characteristic lines a to d are characteristic lines when the temperature on the outlet side from the hot water supply liquid flow conduit 13 is 60° C. It should be noted that the opening of the gas proportional valve 18 and the rotation speed of the combustion fan 15 are, for example, substantially proportional, and the minimum value of the hot water supply number is 2.5. Therefore, in FIGS. Characteristic lines less than 2.5 are imaginary lines (though not actually present, the extension lines of the first-stage characteristic lines b to d are indicated by thin lines).

特性線a〜dの違いは、暖房用の液体流通管路12内の熱媒体の温度の違いに基づくものであり、同図に示されている暖房側の温度は、暖房用の液体流通管路12の出側の熱媒体温度を示すものである(この温度は液体流通管路12への入側の温度にも対応するものである)。具体的には、暖房側の温度は、特性線aにおいては、暖房用の液体流通管路12から出た温度(暖房高温サーミスタ40により検出される熱媒体温度)が60℃の場合を示しており、この熱媒体の温度が特性線bは55℃の場合、特性線cは50℃の場合、特性線dは45℃の場合をそれぞれ示している。 The difference between the characteristic lines a to d is based on the difference in the temperature of the heat medium in the heating liquid distribution pipe 12, and the heating side temperature shown in the figure is the heating liquid distribution pipe. This shows the temperature of the heat medium on the outlet side of the channel 12 (this temperature also corresponds to the temperature on the inlet side of the liquid flow conduit 12). Specifically, regarding the temperature on the heating side, in the characteristic line a, the temperature (temperature of the heat medium detected by the heating high temperature thermistor 40) discharged from the heating liquid flow conduit 12 is 60° C. The characteristic line b shows a case where the temperature of the heat medium is 55° C., the characteristic line c shows a case where the temperature is 50° C., and the characteristic line d shows a case where the temperature is 45° C.

なお、給湯暖房同時運転時には、給湯温度を優先して制御するようにしており、暖房往き温度(暖房高温サーミスタ40により検出される熱媒体温度)を監視してバーナ燃焼制御を行っているのではないので(暖房側は温度制御を行わずになりゆきの温度となるので)、暖房戻り温度が何度になるかは定かではなく、暖房高温サーミスタ40の検出温度も定かではない。そのため、図12〜図16においては、特性線a〜dまでの4本の特性線を制御特性線として与える例を示しているが、給湯暖房同時運転時のガス比例弁18(比例弁)の開度と給湯能力を示す給湯号数との関係は無限にあり、暖房往き温度しだいで常に変わってくるものであり、その関係に合わせた制御を行うようにしてもよい。 During the hot water supply/heating simultaneous operation, the hot water supply temperature is preferentially controlled, and the burner combustion control may be performed by monitoring the heating going temperature (heat medium temperature detected by the heating high temperature thermistor 40). Since it does not exist (because the heating side becomes the temperature without performing temperature control), it is not clear how many times the heating return temperature will be, and the detected temperature of the heating high temperature thermistor 40 is also uncertain. Therefore, although FIGS. 12 to 16 show an example in which four characteristic lines from the characteristic lines a to d are given as the control characteristic lines, the gas proportional valve 18 (proportional valve) during the hot water heating/heating simultaneous operation is shown. The relationship between the opening degree and the number of hot water supply indicating the hot water supply capacity is infinite, and it always changes depending on the heating going temperature, and control may be performed according to the relationship.

これらの特性線a〜dのような制御用の特性線に対応させて、給湯用のバーナ装置2(2a,2b,2c)および暖房用のバーナ装置5の燃焼制御が行われ、その際、例えば暖房高温サーミスタ40の検出温度が60℃の場合は、同図の矢印Aに示されるように、燃焼開始後、バーナ段数1段目でガス比例弁18の開度を徐々に大きくしていって特性線a上の給湯能力が設定号数(この例では5号)に達したら、その号数が維持できるように、給湯流量に対応させてガス比例弁18の開度が制御される(矢印Bに示すように推移させ、バーナ段数を1段上げて2段目とし、ガス比例弁18の開度を調整する)。 Combustion control of the burner device 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating is performed in correspondence with the control characteristic lines such as these characteristic lines a to d. For example, when the detected temperature of the heating high temperature thermistor 40 is 60° C., the opening of the gas proportional valve 18 is gradually increased at the first burner stage number after the start of combustion as shown by an arrow A in the figure. When the hot water supply capacity on the characteristic line a reaches the set number (No. 5 in this example), the opening of the gas proportional valve 18 is controlled according to the hot water supply flow rate so that the number can be maintained ( The transition is made as shown by arrow B, the number of burner stages is increased by one stage to the second stage, and the opening degree of the gas proportional valve 18 is adjusted).

その後、給湯の要求熱量が高くなると、矢印Cに示されるように、1つ上のバーナ段数(ここでは2段目)の制御特性線にしたがい、ガス比例弁18の開度を徐々に大きくしていく。なお、例えば矢印Dに示されるように、バーナ段数が下げられたときには、例えば1段目において5号より小さい号数(ここでは4.5号)の領域で制御が行われるといったように、前記ヒステリシスが設けられている。また、暖房高温サーミスタ40の検出温度が55℃の場合は特性線bに従い、暖房高温サーミスタ40の検出温度が50℃の場合は特性線cに、暖房高温サーミスタ40の検出温度が45℃の場合は特性線dにしたがって同様に制御が行われる。 After that, when the amount of heat required for hot water supply increases, as shown by arrow C, the opening of the gas proportional valve 18 is gradually increased according to the control characteristic line of the number of burner stages one above (here, the second stage). To go. For example, when the number of burner stages is decreased as indicated by arrow D, the control is performed in a region of a number smaller than No. 5 (here, No. 4.5) in the first stage, for example. Hysteresis is provided. Further, when the detected temperature of the heating high temperature thermistor 40 is 55° C., it follows the characteristic line b. When the detected temperature of the heating high temperature thermistor 40 is 50° C., it follows the characteristic line c, and when the detected temperature of the heating high temperature thermistor 40 is 45° C. Is similarly controlled according to the characteristic line d.

また、本実施例では、このような特性線a〜dに基づき、前記の如く、燃焼制御手段52が、暖房運転と給湯運転とを同時に行う同時運転時に、予め定められた暖房不足判断条件に達した時には前記バーナ段数可変プログラムに設定されているバーナ段数よりも1段以上バーナ段数を小さくしてガス比例弁18の開度を大きくする制御を行うものであり、例えば図13、図14に示されるような燃焼面切り替え制御が行われる。なお、図13には下から2段目と3段目間の切り替え制御例が示され、図14には下から3段目と4段目間の切り替え制御例が示されており、いずれも、特性線aの4段目と、制御例を分かりやすくするための線(制御の推移を示す線)を太線により示している。 In addition, in the present embodiment, based on such characteristic lines a to d, as described above, the combustion control means 52 makes a predetermined heating shortage determination condition during the simultaneous operation of simultaneously performing the heating operation and the hot water supply operation. When it reaches, the control is performed to reduce the number of burner stages by one or more than the number of burner stages set in the burner stage number variable program to increase the opening of the gas proportional valve 18, as shown in FIGS. 13 and 14, for example. Combustion surface switching control as shown is performed. Note that FIG. 13 shows an example of switching control between the second and third steps from the bottom, and FIG. 14 shows an example of switching control between the third and fourth steps from the bottom. , The fourth line of the characteristic line a and a line (a line showing the transition of control) for making the control example easy to understand are indicated by thick lines.

例えば図13、図14において、給湯用の液体流通管路13が60℃出湯している場合(例えば熱交換器出口温度60℃、給湯バイパス通路22を介して給水を混ぜてリモコン装置の給湯設定温度である42℃出湯時)で、暖房用の液体流通管路12の出側の温度(暖房高温サーミスタ40の検出温度)が60℃の場合に、特性線aのA点(図13においてはバーナ段数2段目、図14においてはバーナ段数3段目におけるガス比例弁18の開度が小さいところ)で給湯しているとする。なお、周知の如く、給湯の出湯温度が同じでも給湯流量が大きい場合には大きい給湯能力(給湯号数)となり、給湯流量が小さい場合には小さい給湯能力(給湯号数)となるため、例えば給湯流量によって、図13、図14のような異なる制御例となる。 For example, in FIG. 13 and FIG. 14, when the liquid flow pipe 13 for hot water supply is discharging hot water at 60° C. (for example, the heat exchanger outlet temperature is 60° C., hot water is mixed through the hot water supply bypass passage 22 to set the hot water supply of the remote control device). At a temperature of 42° C., which is the temperature when the hot water is discharged, when the temperature on the outlet side of the heating liquid distribution conduit 12 (the temperature detected by the heating high temperature thermistor 40) is 60° C., the point A of the characteristic line a (in FIG. 13, It is assumed that hot water is supplied at the second stage of the burner stage, in FIG. 14, the opening of the gas proportional valve 18 is small at the third stage of the burner stage). As is well known, when the hot water supply temperature is the same and the hot water supply flow rate is large, the hot water supply capacity is large (number of hot water supply items), and when the hot water supply flow rate is small, the hot water supply capacity is small (number of hot water supply items). Depending on the hot water supply flow rate, different control examples as shown in FIGS.

図13、図14において、特性線aのA点で給湯が行われている状態のときに、利用者が蛇口開度を変更して、湯を多く出そうとすると、燃焼能力を大きくして対応させるためにガス比例弁18の開度を大きくしていき、特性線aに添ってB点に至るようにシフトさせるが、給湯能力が同じ能力を出せる状況で燃焼面の切り替えが可能ならば、少しでも燃焼面を増やした方が熱効率が高くなるので、燃焼面が多い方(バーナ段数(バーナの切り替え段数)の大きい方)に制御を変更し、1つ上のバーナ段数にシフトできるように準備する方がよいため、図13、図14において、それぞれD点に移動して待機する(D点は給湯要求号数(号)によって決まる(図中縦軸が決まる)。 13 and 14, when hot water is being supplied at point A on the characteristic line a, if the user changes the faucet opening and tries to produce more hot water, the combustion capacity is increased. To cope with this, the opening of the gas proportional valve 18 is increased and shifted so as to reach the point B along the characteristic line a. However, if the combustion surface can be switched in a situation where the hot water supply capacity is the same, , The thermal efficiency will be higher if the number of combustion surfaces is increased as much as possible, so the control can be changed to the one with more combustion surfaces (the one with a larger number of burner stages (the number of burner switching stages)) to shift to the next higher burner stage number. Since it is better to prepare for this, in FIG. 13 and FIG. 14, each moves to point D and stands by (point D is determined by the hot water supply request number (number) (the vertical axis in the figure is determined).

つまり、図13においては、表2のバーナ段数の3にしたがって対応するバーナ装置2bのガス電磁弁17を開弁すると共に、ガス比例弁18の開度を小さくし、図14においては、表2のバーナ段数の4にしたがって対応するバーナ装置2cのガス電磁弁17を開弁すると共に、ガス比例弁18の開度を小さくする。なお、図13、図14において、いずれも、C点の方向に制御を行うと、バーナ燃焼面切り替えと熱効率との関係について前述した説明のように熱効率が悪くなるため、C点の方向への制御を行わない。 That is, in FIG. 13, the gas solenoid valve 17 of the burner device 2b corresponding to the number of burner stages 3 in Table 2 is opened, and the opening of the gas proportional valve 18 is reduced, and in FIG. The gas solenoid valve 17 of the corresponding burner device 2c is opened according to the number of burner stages of 4 and the opening of the gas proportional valve 18 is reduced. 13 and 14, when the control is performed in the direction of the point C, the thermal efficiency deteriorates as described above regarding the relationship between the burner combustion surface switching and the thermal efficiency. Do not control.

しかしながら、暖房用の液体流通管路12への熱の供給量はガス比例弁18の開度に対応するので、例えばガス比例弁18の開度が例えば20%以下のように小さい場合には、暖房用の液体流通管路12への熱の供給量が少ない(暖房能力は、給湯側のガス電磁弁17の開閉とは無関係で、ガス比例弁18の開度が大きいほど暖房用の液体流通管路12への熱の供給量が多くなり、ガス比例弁18の開度が少ないほど暖房能力を十分に発揮しにくい領域となる)。そして、このように暖房用の液体流通管路12への熱の供給量が少ない状況では、暖房負荷のごく僅かな変動、例えばごく僅かな増大であっても、その影響は、暖房用の液体流通管路12の出湯温度低下としてすぐに表れる。換言すると、ガス比例弁18の開度が小さい場合には、特性線b等への遷移が起きやすい。 However, since the amount of heat supplied to the heating liquid flow conduit 12 corresponds to the opening of the gas proportional valve 18, for example, when the opening of the gas proportional valve 18 is small, such as 20% or less, The amount of heat supplied to the heating liquid distribution conduit 12 is small (the heating capacity is irrelevant to the opening/closing of the gas solenoid valve 17 on the hot water supply side, and the larger the opening of the gas proportional valve 18, the larger the liquid distribution for heating. The larger the amount of heat supplied to the conduit 12 and the smaller the opening of the gas proportional valve 18, the more difficult it is to exert the heating capacity. Then, in such a situation where the amount of heat supplied to the heating liquid distribution conduit 12 is small, even if the heating load is slightly changed, for example, even if it is slightly increased, the effect thereof is that the heating liquid is It immediately appears as a decrease in the hot water discharge temperature of the distribution line 12. In other words, when the opening of the gas proportional valve 18 is small, the transition to the characteristic line b or the like is likely to occur.

そのため、例えば前記D点で待機しているときに、例えば暖房高温サーミスタ40の検出温度が55℃になるといったように、暖房負荷の変動がある場合があり、そのような場合には、二種管路配設部112の暖房用の液体流通管路12に導入される湯水の温度が低いことによって暖房用の液体流通管路12側への吸熱量が増え、給湯用の液体流通管路13の吸熱量が減る。そうなると、給湯の出湯温度が下がるので、特性線bにしたがった制御に対応するようにガス比例弁18の開度を調整してD’点としてガス比例弁18の開度を増大し、給湯用の液体流通管路13の吸熱量を増やして出湯温度・出湯量を維持する制御が行われる。なお、このように、D’点は例えば暖房用の液体流通管路12の入水温度によって決まる(ガス比例弁18の開度を示す図中横軸が決まる)。 Therefore, for example, when waiting at the point D, the heating load may fluctuate such that the detected temperature of the heating high temperature thermistor 40 becomes 55° C. Since the temperature of the hot water introduced into the heating liquid distribution conduit 12 of the conduit arrangement portion 112 is low, the amount of heat absorbed by the heating liquid distribution conduit 12 increases, and the hot water supply liquid distribution conduit 13 increases. The heat absorption of is reduced. Then, the hot water supply temperature of the hot water decreases, so the opening of the gas proportional valve 18 is adjusted so as to correspond to the control according to the characteristic line b, and the opening of the gas proportional valve 18 is increased to the point D'for hot water supply. Control is performed to increase the amount of heat absorbed in the liquid flow conduit 13 of FIG. As described above, the point D'is determined, for example, by the temperature of the water entering the liquid flow conduit 12 for heating (the horizontal axis in the figure indicating the opening of the gas proportional valve 18 is determined).

また、このような状態でさらに例えば暖房高温サーミスタ40の検出温度が50℃のように下がる場合があり、その場合には、ガス比例弁18の開度を増大して特性線c上で前記D’点と同じ給湯号数となるようなD”点で待機するが、暖房高温サーミスタ40が50℃以下を例えば10秒以上継続した場合には、前記暖房不足判断条件が満たされたと判断する(つまり、本実施例において、前記暖房不足判断条件は、暖房運転中に前記メインの暖房用熱交換器の出側の熱媒体の温度が予め定められた設定温度(例えば50℃)以下の状態が予め定められた設定時間(10秒)以上継続した時としている)。 Further, in such a state, the detected temperature of the heating high temperature thermistor 40 may further decrease to 50° C. In that case, the opening of the gas proportional valve 18 is increased and the D When the heating high temperature thermistor 40 continues to be 50° C. or lower for, for example, 10 seconds or more, it is determined that the heating shortage determination condition is satisfied, although the system waits at a point D where the number of hot water supply is the same as the number of points. That is, in this embodiment, the heating shortage determination condition is that the temperature of the heat medium on the outlet side of the main heating heat exchanger is equal to or lower than a predetermined set temperature (for example, 50° C.) during the heating operation. It is assumed that it has continued for a preset time (10 seconds) or more).

そして、高温サーミスタ40が50℃以下を継続し(例えば45℃程度の場合)、前記D’点と同じ給湯号数となるような特性線d上のDd点からバーナ段数を例えば1段小さくしてA’点とし(ここで一時的に給湯能力が急激に下がるが)、その後、または同時に、給湯能力を元の号数に維持できるようにガス比例弁18の開度を大きくする制御を行なって特性線d上におけるB’点(図13ではガス比例弁18の開度90%の点)とすることで、給湯出湯温度・出湯量(給湯能力)を維持する。 Then, the high temperature thermistor 40 continues to be 50° C. or lower (for example, about 45° C.), and the burner stage number is reduced by one stage from the Dd point on the characteristic line d so that the hot water supply number is the same as the D′ point. Point A'(the hot water supply capacity sharply drops here), and then or simultaneously, control is performed to increase the opening of the gas proportional valve 18 so that the hot water supply capacity can be maintained at the original number. By setting point B′ on the characteristic line d (point at which the opening of the gas proportional valve 18 is 90% in FIG. 13), the hot water hot water discharge temperature/hot water discharge amount (hot water supply capacity) is maintained.

このようにしてガス比例弁18の開度を大きくすると暖房用の液体流通管路12の吸熱量が増大し、やがて暖房循環水の温度が上昇し(熱交換器への暖房入水温度が上昇し)、暖房高温サーミスタ40の検出温度が、例えば55℃のようになり、50℃以下を継続しないようにできる(なお、暖房循環水の温度が上昇してきたら、B”点からC’点方向に比例弁開度を調整する)。 When the opening of the gas proportional valve 18 is increased in this way, the amount of heat absorbed in the heating liquid flow conduit 12 increases, and eventually the temperature of the heating circulating water rises (the temperature of the heating input water to the heat exchanger rises. ), the temperature detected by the heating high temperature thermistor 40 becomes, for example, 55° C. and can be prevented from continuing below 50° C. (If the temperature of the heating circulating water rises, the direction from the B″ point to the C′ point) Adjust the proportional valve opening).

なお、ガス比例弁18の開度には使用上限が定められており、本実施例では、その使用上限を90%としている。その理由は、以下に述べるとおりである。つまり、例えば商用電源の供給源として、例えば東京電力から100Vの電力供給があるとされている場合に、実際には110V供給されることがあり(供給電力の制御に幅があるため、基準値である100Vを基準として多少前後するものであり)、ガス比例弁18の駆動が、例えば商用電源を用いている場合に設定開度を90%としてこの開度に合わせる制御を行った場合、110Vの電力が供給されると実際にはガス比例弁18の開度が99%となってしまうことになる。 An upper limit of use is set for the opening of the gas proportional valve 18, and in this embodiment, the upper limit of use is 90%. The reason is as described below. In other words, for example, when it is assumed that 100V power is supplied from TEPCO as a commercial power supply source, 110V may actually be supplied (there is a wide range of control of the supplied power, so the reference value If the control of the drive of the gas proportional valve 18 is such that the set opening is 90% and the opening is set to 90% when using a commercial power source, for example, 110V When the electric power is supplied, the opening of the gas proportional valve 18 actually becomes 99%.

そして、ガス比例弁18の設定開度を90%よりも大きく設定した場合に110Vの電力が供給されるとガス比例弁18の開度が100%を超えてしまい、ガス比例弁18が破損するといった恐れがあり、そのような事態を防ぐために、本実施例ではガス比例弁18の開度の使用上限を90%としている。このように、例えば電力会社から要求される電力の幅に応じてガス比例弁18の開度の使用上限が設定される。なお、ガス比例弁18の駆動を、例えば商用電源を直流安定化電源を通して、DC駆動している場合であっても、ガス比例弁18の限界能力いっぱいで使うことは好ましいとは言えない。 When 110 V of electric power is supplied when the set opening of the gas proportional valve 18 is set to be larger than 90%, the opening of the gas proportional valve 18 exceeds 100% and the gas proportional valve 18 is damaged. In order to prevent such a situation, the upper limit of the opening of the gas proportional valve 18 is set to 90% in this embodiment. Thus, for example, the upper limit of the opening of the gas proportional valve 18 is set according to the width of electric power requested by the electric power company. It should be noted that it is not preferable to use the gas proportional valve 18 at its full capacity even when the gas proportional valve 18 is driven by DC, for example, through a stabilized DC power source.

図15には、本実施例における別の制御例が示されており、この例は、D点(図13のD点と同じ)から給湯要求号数が大きくなる方に変動し、特性線a上を右上側に移動するようにして(比例弁18開度を上げて)D’に移動したときの制御例を示している。また、この例では、暖房運転と給湯運転とを同時に行う同時運転時に、追い焚き用液−水熱交換器25による浴槽湯水の追い焚きも行われたことが想定されている。なお、追い焚き用液−水熱交換器25もまた高温暖房装置ということもでき(高温暖房負荷が生じるという点で高温暖房装置と同等であり)、風呂の追い焚きが行われている時にも、暖房用の液体流通管路12内の熱媒体の温度が下がる場合ある。 FIG. 15 shows another control example in the present embodiment. In this example, the characteristic line a changes from point D (the same as point D in FIG. 13) to the one in which the hot water supply request number increases. An example of control when moving to D′ by moving the upper part to the upper right side (increasing the opening of the proportional valve 18) is shown. In addition, in this example, it is assumed that the reheating water/water heat exchanger 25 also reheats the hot water in the bathtub during the simultaneous operation in which the heating operation and the hot water supply operation are simultaneously performed. Note that the reheating liquid-water heat exchanger 25 can also be referred to as a high-temperature heating device (similar to the high-temperature heating device in that a high-temperature heating load is generated), and even when the bath is being reheated. In some cases, the temperature of the heat medium in the heating liquid flow conduit 12 may drop.

図15のD’点でバーナ燃焼制御が行われているときに、浴槽湯水の追い焚きが行われて例えば暖房高温サーミスタ40の検出温度が50℃に下がり、さらに、その50℃以下の状態が例えば10秒以上継続して例えば45℃程度であった場合には、図13で示した制御例と同様に、前記D’点、D”点と同じ給湯号数となるような特性線d上のDd点からバーナ段数を例えば1段小さくしてA’点とし、その後、または同時に、給湯能力を元の号数に維持できるようにガス比例弁18の開度を大きくする制御を行なって特性線d上におけるB’点(ガス比例弁18の開度90%の点)とする制御を行うことができる。 When the burner combustion control is being performed at point D'in FIG. 15, the hot water in the bathtub is reheated, and the detected temperature of the heating high temperature thermistor 40 drops to 50° C., and the state below 50° C. For example, when the temperature is, for example, about 45° C. continuously for 10 seconds or more, as in the control example shown in FIG. 13, on the characteristic line d such that the hot water supply number is the same as the points D′ and D″. For example, the burner stage number is reduced by 1 stage from the Dd point to A′ point, and thereafter or simultaneously, control is performed to increase the opening of the gas proportional valve 18 so that the hot water supply capacity can be maintained at the original number. It is possible to perform control such that the point is B'on the line d (point at which the opening of the gas proportional valve 18 is 90%).

ただし、このB’点への移動では給湯の出湯温度が低下してしまう不具合が発生する場合がある。つまり、出湯温度が低下しないようにするためには、前記Dd点と同じ給湯号数となるような特性線d上の点とする必要があり、その点は、点B’点よりもガス比例弁18の開度が大きい点となるが、この点は図15には図示できない点である。つまり、前記の如く、ガス比例弁18の開度には使用上限があり、安全上、その使用上限より大きい開度にはできないため、バーナ段数2段目の特性線d上において、ガス比例弁18の開度が上限値である90%の点B’までしかガス比例弁18を開くことはできず(それ以上ガス比例弁18を開く制御は行えず)、その結果、出湯温度の低下を免れない場合がある。 However, this movement to the point B'may cause a problem that the hot water supply temperature lowers. In other words, in order to prevent the outlet heated water temperature from decreasing, it is necessary to set the point on the characteristic line d such that the hot water supply number is the same as the point Dd, and that point is more proportional to the gas than the point B′. Although the opening of the valve 18 is large, this point cannot be shown in FIG. That is, as described above, the opening of the gas proportional valve 18 has an upper limit of use and, for safety reasons, the opening cannot be larger than the upper limit of use. Therefore, on the characteristic line d of the second stage of the burner stage, the gas proportional valve 18 cannot be opened. The gas proportional valve 18 can be opened only up to a point B′ at which the opening degree of 18 is the upper limit value of 90% (control for opening the gas proportional valve 18 cannot be performed any more), and as a result, the tapping temperature is lowered. It may not be escaped.

そこで、このような出湯温度低下の不都合を防ぐために、追い焚き循環ポンプ27の回転数を変え(回転数を落とし)、給湯暖房熱的接続用液−水熱交換器33と追い焚き用液−水熱交換器25との熱の分配比を変えることで(浴槽湯水側への熱移動量を小さくすることで)、バーナ段数2段目の制御特性線cと特性線dの中間のB”点に移動するような態様をとって暖房用の液体流通管路12の温度を上げれば出湯温度を回復させることができるようになる。つまり、給湯回路7の分岐通路65を通る湯水から追い焚き用液−水熱交換器25側に移動する熱量(追い焚き側に奪われる熱量)を小さくして給湯暖房熱的接続用液−水熱交換器33を通る湯水の温度を高めとすれば、その分だけ給湯側に熱を多く伝えられて温度を上昇させることができる。 Therefore, in order to prevent such an inconvenience of the hot water discharge temperature decrease, the rotation speed of the reheating circulation pump 27 is changed (the rotation speed is lowered), and the hot water heating/heating thermal connection liquid-the water heat exchanger 33 and the reheating liquid- By changing the distribution ratio of heat with the water heat exchanger 25 (by reducing the amount of heat transfer to the hot water side of the bathtub), B″ in the middle between the control characteristic line c and the characteristic line d of the second stage burner stage It is possible to recover the hot water outlet temperature by raising the temperature of the heating liquid flow conduit 12 in a manner such that the hot water flows through the branch passage 65 of the hot water supply circuit 7. If the amount of heat that moves to the liquid-water heat exchanger 25 side (the amount of heat deprived to the reheating side) is reduced to raise the temperature of the hot water passing through the liquid-water heat exchanger 33 for hot water supply/heating thermal connection, As much heat is transferred to the hot water supply side by that much, the temperature can be raised.

しかしながら、一度、給湯の出湯温度が低下した後に、前記のように追い焚き循環ポンプ27の回転数を落として、給湯暖房熱的接続用液−水熱交換器33と追い焚き用液−水熱交換器25との熱の分配比を変える方法をとると、熱の分配比が変わるまでに時間を要する為に(A’点からB”点に移動できないので)、一時的に出湯温度が低下するという不具合が発生することになるため、図16に示されるような制御方法を用いると、このような不具合を防ぐことができる。 However, once the outlet temperature of the hot water supply has dropped, the rotation speed of the reheating circulation pump 27 is reduced as described above, and the hot water supply/heating thermal connection liquid-water heat exchanger 33 and the reheating water-water heat 33 are heated. If a method of changing the heat distribution ratio with the exchanger 25 is adopted, it takes time until the heat distribution ratio changes (because it is not possible to move from the point A'to the point B"), so that the tapping temperature temporarily drops. Since such a problem will occur, such a problem can be prevented by using the control method shown in FIG.

つまり、図15において点A’からB’点に移動すると、ガス比例弁18の使用上限である90%を超えると予想される場合には、図16に示されるように、点A’に移動する前に、追い焚き循環ポンプ27の回転数を落とし、前記分配比を変え、事前に暖房循環水の温度を上げ(例えば45℃から48℃に上げ)ることにより、制御特性線自体を特性線dから変え、B’点のある制御特性線dではなくB”点のある制御特性線とし(特性線cと特性線dの中間の制御特性線)とし、バーナ段数を減らすと同時にB”点に移動(A’点、B’点を通さずにA”を通してB”へ移動)させることで、一時的な出湯温度の低下をもたらさずに、暖房用の液体流通管路12の温度を上げるようにすることができる。本実施例では、このような制御を適用しており、このような制御方法が好ましい。 That is, when it is expected that the point A′ to point B′ in FIG. 15 will exceed 90% which is the upper limit of use of the gas proportional valve 18, the point moves to point A′ as shown in FIG. 16. Before the operation, the rotation speed of the reheating circulation pump 27 is decreased, the distribution ratio is changed, and the temperature of the heating circulating water is raised in advance (for example, raised from 45° C. to 48° C.), so that the control characteristic line itself becomes characteristic. Instead of the control characteristic line d having the point B′, the control characteristic line having the point B″ is changed (the control characteristic line between the characteristic line c and the characteristic line d) to reduce the number of burner stages and at the same time B″. By moving to the point (moving from A′ point and B′ point to A″ to B″), the temperature of the liquid flow conduit 12 for heating is temporarily reduced without lowering the temperature of tap water. Can be raised. In this embodiment, such control is applied, and such a control method is preferable.

この場合も、暖房用の液体流通管路12の吸熱量が増大して暖房循環水の温度が上昇し(熱交換器への暖房入水温度が上昇し)、暖房高温サーミスタ40の検出温度が、例えば55℃のようになり、50℃以下を継続しないようにできる(なお、暖房循環水の温度が上昇してきたら、B”点からC’点方向に比例弁開度を調整する)。 Also in this case, the amount of heat absorbed by the heating liquid flow conduit 12 increases, the temperature of the heating circulating water rises (the temperature of the water entering the heat exchanger rises), and the temperature detected by the heating high temperature thermistor 40 becomes For example, it becomes 55° C. and can be kept below 50° C. (when the temperature of the heating circulating water rises, the proportional valve opening is adjusted from the point B″ to the point C′).

なお、図15、図16において追い焚き循環ポンプ27の回転数を落とす制御を行った後、暖房用の液体流通管路12の温度が上昇(回復)してきたら、回転数を落としていた追い焚き循環ポンプ27の回転数を元に戻すようにしてもよい。 It should be noted that in FIG. 15 and FIG. 16, when the temperature of the liquid circulation conduit 12 for heating rises (recovers) after the control for decreasing the rotation speed of the reheating circulation pump 27 is performed, the rotation speed for which the rotation speed has been decreased The rotation speed of the circulation pump 27 may be returned to the original value.

以上のように、本実施例の特徴的な制御は、給湯と暖房の同時運転時において要求される給湯号数(給湯能力)が図1の範囲Rab、範囲Rbc、範囲Rcdのいずれかの範囲であれば、必要に応じて1段以上バーナ段数を小さくしてガス比例弁18の開度を大きくする制御を行うこと、給湯の要求量(給湯能力)を維持したまま、暖房用の液体流通管路12の吸熱量を増やすこと、であり、上記の説明からも明らかなように、騒音・効率の観点から通常ならば使用しない制御エリア(ガス比例弁18の開度が大きくなる領域)を使用する場合があること、熱効率が悪くなるにもかかわらず燃焼ファン15の回転数が高くなるエリアを使用すること、を特徴としている。 As described above, the characteristic control of the present embodiment is that the number of hot water supply numbers (hot water supply capacity) required at the time of simultaneous operation of hot water supply and heating is any one of the range Rab, the range Rbc, and the range Rcd of FIG. If so, control is performed to decrease the number of burner stages by one or more and increase the opening degree of the gas proportional valve 18 as necessary, and to maintain the required amount of hot water supply (hot water supply capacity) and to distribute the liquid for heating. It is to increase the amount of heat absorption of the pipe line 12, and as is clear from the above description, a control area (area where the opening of the gas proportional valve 18 increases) that is not normally used from the viewpoint of noise and efficiency is set. It is characterized in that it may be used, and that an area where the rotation speed of the combustion fan 15 is high despite the deterioration of thermal efficiency is used.

さらに言及すれば、本実施例を含む本発明は、例えば高速道路の坂道を登る時に馬力不足でスピードが落ちてきた時の対応と類似する。つまり、高速道路の坂道を登る時にスピードが落ちてきた場合には、通常シフトダウン(又はスポーツモードと)してエンジン回転数を上げ、落ちてきたスピードの挽回をはかる。そしてスピードが上がってきたら、もとのシフト位置(又は通常モード)に戻してエンジン回転数を下げる。この際、一時的にエンジン回転数を上がることで、車内にはすさまじいエンジン音(騒音)がする。しかし、シフトダウン(又はスポーツモードと)した人と、すさまじいエンジン音(騒音)に包まれる人は同一人物であり、自分が行った操作に対しての騒音であるので、騒音の発生原因を把握しているので、突然の騒音に驚くことはない。 More specifically, the present invention including the present embodiment is similar to the case where the speed is reduced due to lack of horsepower when climbing a slope of a highway, for example. That is, when the speed decreases when climbing a slope of a highway, the engine speed is normally increased by downshifting (or in sports mode) to recover the decreased speed. When the speed increases, return to the original shift position (or normal mode) and reduce the engine speed. At this time, by temporarily increasing the engine speed, a tremendous engine noise (noise) is produced inside the vehicle. However, the person who downshifts (or sports mode) and the person who is enveloped in tremendous engine noise (noise) are the same person, and it is the noise caused by the operation that he/she performed, so the cause of the noise is understood. So don't be surprised by the sudden noise.

それに対し、本願熱源装置の場合には、例えば戸建て住宅の北側面に設置される。そして、シフトダウンに相当する例えば図13〜図16におけるB’点やB”点への遷移を行うのは熱源装置であり、騒音に包まれる人は、隣家の住人である。なぜならば、戸建て住宅の北側面に設置された熱源装置は、隣家の南側に対峙しているからである。 On the other hand, in the case of the heat source device of the present application, it is installed, for example, on the north side of a detached house. Then, it is the heat source device that makes the transition to the points B′ and B″ in FIGS. 13 to 16, which corresponds to downshifting, and the person who is surrounded by noise is the resident of the next house. This is because the heat source device installed on the north side of the house faces the south side of the neighboring house.

このことを考慮すると、本実施例において、例えば図13〜図16示したようなB’点やB”点へ遷移させる制御によって南側隣家住人は騒音に驚くことが想定されるが、実際には、南側隣家に対して前記制御による騒音影響が極めて少ない点に本願の発明者は着目した。 In consideration of this, in the present embodiment, it is assumed that the neighboring neighbors on the south side will be surprised by the noise due to the control for transiting to the points B′ and B″ as shown in FIGS. The inventor of the present application has paid attention to the fact that the noise influence by the control is extremely small with respect to the neighboring house on the south side.

すなわち、図13〜図16示したようなB’点やB”点へ遷移させる制御が発生するのは、熱源装置において暖房戻り温度が低い場合である。暖房を行うのは冬場が多く、かつ、暖房の戻り温度が低い場合とは、例えば気温が氷点下等の低い状態になったときと想定される。本願発明者は、上述の状況では、南側隣家住人が窓を開けているとは考えにくい状況であり、前記のような図15や図16示したようなB’点やB”点へ遷移させる制御を行っても、南側隣家の住人が騒音に驚くといった自体が発生する可能性は極めて少ない(まず無い)と考えたのである。 That is, it is when the heating return temperature is low in the heat source device that the control for transitioning to the B′ point or the B″ point as shown in FIGS. 13 to 16 is generated. It is assumed that the heating return temperature is low, for example, when the temperature is low, such as below freezing, etc. The inventor of the present application considers that in the above-mentioned situation, the resident of the south side neighbor opens the window. This is a difficult situation, and even if the control for transiting to the B′ point or B″ point as shown in FIGS. 15 and 16 is performed, there is a possibility that the resident of the neighboring house on the south side will be surprised by the noise. I thought it was extremely small (most likely none).

このようにすると、同じ要求される能力を満たす際に、ガス比例弁18の開度は大きめとなり、暖房用のバーナ装置5の燃焼能力を大きめとして燃焼を行えるので、暖房用のバーナ装置5の燃焼により加熱される暖房用のメインの熱交換器の加熱量を大きめとすることができ、暖房能力不足を生じさせることなく、快適な運転を行うことができる。 In this way, when the same required capacity is satisfied, the opening degree of the gas proportional valve 18 becomes large and combustion can be performed with the combustion capacity of the heating burner device 5 being large, so that the heating burner device 5 can be burned. The heating amount of the main heat exchanger for heating which is heated by combustion can be increased, and comfortable operation can be performed without causing insufficient heating capacity.

なお、前記の例では、必要に応じてバーナ段数を1段下げるようにしたが、図1に示されるようなバーナ段数と給湯号数との関係において、例えばバーナ段数が2段下の制御特性線とのラップしろがあれば、その範囲内で必要に応じて2段下げて制御を行うようにしてもよい。 In the above example, the number of burner stages is lowered by one if necessary. However, in the relationship between the number of burner stages and the number of hot water supply as shown in FIG. If there is a wrap margin with respect to the line, the control may be performed by lowering it by two steps within the range if necessary.

また、本実施例において、前記暖房不足判断条件は、暖房運転中に前記メインの暖房用熱交換器の出側の熱媒体の温度が予め定められた設定温度(例えば50℃)以下の状態が予め定められた設定時間(10秒)以上継続した時としているが、この設定温度や設定時間は特に限定されるものでなく、適宜設定されるものである。また、メインの暖房用熱交換器の熱媒体の温度としては、メインの暖房用熱交換器の出側、入側、中間等、適宜の箇所における熱媒体の温度とすることができる。 Further, in the present embodiment, the heating shortage determination condition is that the temperature of the heat medium on the outlet side of the main heating heat exchanger is equal to or lower than a predetermined set temperature (for example, 50° C.) during the heating operation. It is assumed that the preset time (10 seconds) or more is continued, but the set temperature and the set time are not particularly limited and may be set appropriately. Further, the temperature of the heat medium of the main heating heat exchanger may be the temperature of the heat medium at an appropriate place such as the outlet side, the inlet side, the middle of the main heating heat exchanger, and the like.

なお、メインの暖房用熱交換器の入側温度と、暖房用の液体流通管路12と給湯用の液体流通管路13から出た温度別寄与率(熱の分配比)から推定される温度上昇を用いれば、メインの暖房用熱交換器の出側温度相当を求めることができるし、その逆も可能である。そのため、暖房不足判断条件は、メインの暖房用熱交換器の出側、入側、中間の熱媒体の温度を直接検出した値に基づいて判断してもよいし、メインの暖房用熱交換器の出側、入側、中間の熱媒体の温度演算値に基づいて判断してもかまわない。さらに、前記設定時間は、暖房不足判断条件を大幅に下回った場合には短い時間とする等、その時間値を適宜可変してもかまわない。 The temperature estimated from the inlet temperature of the main heating heat exchanger and the temperature-dependent contribution ratio (heat distribution ratio) from the heating liquid distribution conduit 12 and the hot water supply liquid distribution conduit 13. If the rise is used, it is possible to determine the outlet temperature equivalent of the main heating heat exchanger, and vice versa. Therefore, the heating shortage determination condition may be determined based on a value obtained by directly detecting the temperatures of the outlet side, the inlet side, and the intermediate heat medium of the main heating heat exchanger, or the main heating heat exchanger. The determination may be made on the basis of the calculated temperature values of the heat transfer mediums on the output side, the input side, and the intermediate side. Further, the set time may be set to a short time when the heating shortage determination condition is significantly lower, and the time value may be appropriately changed.

図8には、本発明に係る熱源装置の第2実施例のシステム構成において、実施例1と異なる部位を含む一部領域の図が示されている。第2実施例は前記第1実施例とほぼ同様に構成されており、第2実施例が第1実施例と異なる特徴的なことは、潜熱回収用の給湯熱交換器4の出側の通路の給湯暖房熱的接続用液−水熱交換器33への熱的接続構成を図1とは異なる構成としたことである。 FIG. 8 is a diagram of a partial region including a portion different from that of the first embodiment in the system configuration of the second embodiment of the heat source device according to the present invention. The second embodiment has substantially the same structure as the first embodiment, and the second embodiment is different from the first embodiment in that a passage on the outlet side of the hot water supply heat exchanger 4 for recovering latent heat is characterized. The hot water supply/heating thermal connection liquid-water heat exchanger 33 of FIG.

図8に示す例においては、給湯暖房熱的接続用液−水熱交換器33には、暖房用循環ポンプ9の駆動によって、複合熱交換器1の暖房用の液体流通管路12から出た熱い熱媒体(ここでは水)が導入されて図8の矢印Bに示すように流通し、給湯動作時に、潜熱回収用の給湯熱交換器4からは、矢印Bとは逆方向(矢印B’の方向)を流れるように水が給湯暖房熱的接続用液−水熱交換器33に導入されて流通する。 In the example shown in FIG. 8, the liquid-to-water heat exchanger 33 for hot water supply and heating thermal connection is discharged from the liquid circulation conduit 12 for heating of the combined heat exchanger 1 by driving the circulation pump 9 for heating. A hot heat medium (water in this case) is introduced and circulates as shown by an arrow B in FIG. 8, and at the time of hot water supply operation, from the hot water heat exchanger 4 for recovering latent heat, the direction opposite to the arrow B (arrow B′). Water is introduced to the hot water supply/heating/thermal connection liquid-water heat exchanger 33 so as to flow.

つまり、暖房用の液体流通管路12側から給湯暖房熱的接続用液−水熱交換器33に導入される熱媒体は給湯暖房熱的接続用液−水熱交換器33の給水側出口から流入し、潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液−水熱交換器33に導入される水は給湯暖房熱的接続用液−水熱交換器33の熱媒体出口(水出口)から流入し、この水と液体流通管路12からの前記熱媒体とが互いに逆方向に流通するという対向熱交換器により給湯暖房熱的接続用液−水熱交換器33が形成されている。例えば暖房用の液体流通管路12から加熱された熱い熱媒体(ここでは熱い湯)を給湯暖房熱的接続用液−水熱交換器33に導入しながら潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液−水熱交換器33に温めの湯や水を導入すると暖房回路7側の熱を給湯回路45側に移動させる(給湯側が暖房側の熱を吸熱する)ことができる。 That is, the heat medium introduced into the hot water supply/room heating thermal connection liquid-water heat exchanger 33 from the side of the liquid flow conduit 12 for heating is supplied from the water supply side outlet of the hot water supply/room heating thermal connection liquid-water heat exchanger 33. The water that flows in and is introduced from the latent heat recovery hot water supply heat exchanger 4 into the hot water supply/heating thermal connection liquid-water heat exchanger 33 is the heat medium outlet of the hot water supply/heating thermal connection liquid-water heat exchanger 33 ( The liquid-water heat exchanger 33 for hot water supply and heating is formed by an opposed heat exchanger that flows in from the water outlet) and the water and the heat medium from the liquid flow pipe 12 flow in opposite directions. ing. For example, while introducing a hot heat medium (here, hot water) heated from the liquid flow conduit 12 for heating into the liquid-water heat exchanger 33 for hot-water supply heating thermal connection, from the hot-water supply heat exchanger 4 for recovering latent heat. When hot water or water is introduced to the liquid/water heat exchanger 33 for hot water supply/heating thermal connection, the heat of the heating circuit 7 side can be moved to the hot water supply circuit 45 side (the hot water supply side absorbs the heat of the heating side). ..

図9には、本発明に係る熱源装置の第3実施例のシステム構成が示されており、以下、第3実施例について説明する。なお、第3実施例の説明において、前記第1、第2実施例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。 FIG. 9 shows the system configuration of the third embodiment of the heat source device according to the present invention, and the third embodiment will be described below. In the description of the third embodiment, parts having the same names as those in the first and second embodiments are designated by the same reference numerals, and duplicate description thereof will be omitted or simplified.

第3実施例は、図9に示されるように、第1、第2実施例において複合熱交換器1の液体流通管路13(メインの給湯熱交換器)の入側に設けられていた給湯暖房熱的接続用液−水熱交換器33を複合熱交換器1を形成する給湯用の液体流通管路13(メインの給湯熱交換器)の出側に設けて構成されている。 In the third embodiment, as shown in FIG. 9, the hot water supply provided on the inlet side of the liquid flow conduit 13 (main hot water supply heat exchanger) of the composite heat exchanger 1 in the first and second embodiments. The heating/thermal connection liquid-water heat exchanger 33 is provided on the outlet side of the hot water supply liquid distribution pipe 13 (main hot water supply heat exchanger) forming the composite heat exchanger 1.

また、第3実施例では、前記第2実施例と同様に、対向熱交換器により給湯暖房熱的接続用液−水熱交換器33が形成されている。つまり、第3実施例において、給湯暖房熱的接続用液−水熱交換器33は、暖房用の液体流通管路12側から給湯暖房熱的接続用液−水熱交換器33に導入される熱媒体は給湯暖房熱的接続用液−水熱交換器33の給水側出口から流入し、潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液−水熱交換器33に導入される水は給湯暖房熱的接続用液−水熱交換器33の熱媒体出口(水出口)から流入し、この水と液体流通管路12からの前記熱媒体とが互いに逆方向に流通するという対向熱交換器と成している。 Further, in the third embodiment, similarly to the second embodiment, the liquid-water heat exchanger 33 for hot water supply and heating thermal connection is formed by the opposed heat exchanger. That is, in the third embodiment, the hot water supply/room heating thermal connection liquid-water heat exchanger 33 is introduced into the hot water supply/room heating thermal connection liquid-water heat exchanger 33 from the side of the liquid distribution conduit 12 for heating. The heat medium flows in from the water supply side outlet of the hot water supply/heating thermal connection liquid-water heat exchanger 33, and is introduced from the hot water supply heat exchanger 4 for recovering latent heat into the hot water supply/heating thermal connection liquid-water heat exchanger 33. Water flows from the heat medium outlet (water outlet) of the liquid/water heat exchanger 33 for hot water supply/heating and thermal connection, and this water and the heat medium from the liquid distribution pipe 12 flow in opposite directions. It is an opposite heat exchanger.

第3実施例も前記第1実施例および第2実施例とほぼ同様の効果を奏することができる。 The third embodiment can also achieve substantially the same effects as those of the first and second embodiments.

なお、本発明は、前記各実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において様々な態様を採り得る。例えば、本発明の熱源装置は、例えば図3、図9に示されるような構成に形成されるものであるが、熱源装置のシステム構成の詳細は特に限定されるものでなく適宜設定されるものであり、前記各実施例に設けたような潜熱回収用の熱交換器を省略することもできる。 It should be noted that the present invention is not limited to the above-mentioned embodiments, and various modes can be adopted without departing from the technical scope of the present invention. For example, the heat source device of the present invention is formed to have a configuration as shown in, for example, FIGS. 3 and 9, but the details of the system configuration of the heat source device are not particularly limited and may be appropriately set. Therefore, the heat exchanger for recovering latent heat as provided in each of the above embodiments can be omitted.

また、前記各実施例に設けた給湯暖房熱的接続用液−水熱交換器33を省略することもできるし、その場合には、給湯暖房熱的接続用液−水熱交換器33に関わる制御構成を省略することができる。 Further, the hot water supply/room heating thermal connection liquid-water heat exchanger 33 provided in each of the embodiments may be omitted, and in that case, the hot water supply/room heating thermal connection liquid-water heat exchanger 33 is involved. The control structure can be omitted.

さらに、前記各実施例では、給湯の入水温度を検出する入水温検出手段を設けずに、入水温度を演算によって求める方式を適用したが、入水温度をリアルタイムで検出する入水温度検出手段を設けてもよい。 Further, in each of the above-described embodiments, the method of calculating the incoming water temperature by calculation is applied without providing the incoming water temperature detecting means for detecting the incoming water temperature of the hot water supply, but the incoming water temperature detecting means for detecting the incoming water temperature in real time is provided. Good.

さらに、給湯暖房熱的接続用液−水熱交換器33は、必ずしも分岐通路65に設けるとは限らず、前記メインの暖房用熱交換器を通って加熱された熱媒体と前記メインの給湯熱交換器の入側の通路と出側の通路のいずれかを通る熱媒体とを熱的に接続する態様で設けられればよい。 Furthermore, the hot water supply/heating thermal connection liquid-water heat exchanger 33 is not necessarily provided in the branch passage 65, and the heat medium heated through the main heating heat exchanger and the main hot water supply heat are heated. It suffices that the heat medium passing through either the inlet side passage or the outlet side passage of the exchanger is thermally connected.

さらに、本発明の熱源装置は、太陽熱を集熱する集熱機能等の他の機能や、貯湯槽等の構成を有していてもよい。 Furthermore, the heat source device of the present invention may have other functions such as a heat collecting function of collecting solar heat, or a configuration such as a hot water storage tank.

さらに、本発明の熱源装置は、例えば前記各実施例で設けたガス燃焼を行うバーナ装置の代わりに、石油燃焼用のバーナ装置を設けてもよい。 Further, the heat source device of the present invention may be provided with a burner device for burning oil, instead of the burner device for performing gas combustion provided in each of the above-described embodiments.

さらに、前記各実施例では、給湯用の液体流通管路13から出る温度を60℃としたが、この温度は例えば60℃固定とするとは限らず、給湯設定温度に応じて可変する値としてもかまわない。 Further, in each of the above-described embodiments, the temperature of the liquid flow pipe 13 for hot water supply is set to 60° C. However, this temperature is not necessarily fixed at 60° C., and may be a value that varies according to the hot water supply set temperature. I don't care.

本発明は、小型でも給湯と暖房の能力を十分に得ることができ、給湯や暖房の単独運転時における熱交換器内の熱媒体の沸騰も抑制できるので、家庭用や業務用の熱源装置として利用できる。 INDUSTRIAL APPLICABILITY The present invention can obtain a sufficient capacity for hot water supply and heating even with a small size, and can also suppress boiling of the heat medium in the heat exchanger during a single operation of hot water supply or heating, so that it can be used as a heat source device for home or business use. Available.

1 熱源装置
2,2a,2b,2c 給湯用のバーナ装置
4 潜熱回収用の給湯熱交換器
5 暖房用のバーナ装置
6 潜熱回収用の暖房用熱交換器
7 暖房回路
8 暖房用液体循環通路
9 暖房用循環ポンプ
14,17 ガス電磁弁
15 燃焼ファン
18 ガス比例弁
24 出湯サーミスタ
25 風呂熱交換器
32 追い焚き用液体流通制御弁
33 給湯暖房接続用液−水熱交換器
40 暖房高温サーミスタ
41 暖房低温サーミスタ
52 燃焼制御手段
54 制御手段
55 ポンプ駆動制御手段
111 一種管路配設部
112 二種管路配設部
1 Heat Source Device 2, 2a, 2b, 2c Burner Device for Hot Water Supply 4 Hot Water Heat Exchanger for Latent Heat Recovery 5 Burner Device for Heating 6 Heating Heat Exchanger for Latent Heat Recovery 7 Heating Circuit 8 Liquid Circulation Passage for Heating 9 Circulation pump for heating 14,17 Gas solenoid valve 15 Combustion fan 18 Gas proportional valve 24 Hot water thermistor 25 Bath heat exchanger 32 Liquid recirculation control valve for reheating 33 Liquid-water heat exchanger for hot water supply/heating connection 40 Heating High temperature thermistor 41 Heating Low temperature thermistor 52 Combustion control means 54 Control means 55 Pump drive control means 111 Type 1 conduit arrangement portion 112 Type 2 conduit arrangement portion

Claims (3)

給湯熱交換器と該給湯熱交換器によって液体の熱媒体である水を加熱して給湯先に給湯する機能を備えた給湯回路と、暖房用熱交換器と該暖房用熱交換器を通して液体の熱媒体を循環させる暖房用循環ポンプとを備えた暖房回路とを備え、外部に接続される暖房装置に前記暖房回路から前記熱媒体を供給して該熱媒体を前記暖房回路に通して循環させる構成を有し、前記給湯熱交換器は該給湯熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの給湯熱交換器を有し、前記暖房用熱交換器は該暖房用熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの暖房用熱交換器を有し、前記メインの給湯熱交換器を形成する給湯用の液体流通管路のみが配設された一種管路配設部と、前記メインの給湯熱交換器の液体流通管路が前記メインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設されて形成された二種管路配設部とを有して前記給湯熱交換器と前記暖房用熱交換器が複合熱交換器と成し、該複合熱交換器の下部側には給湯用バーナ装置と暖房用バーナ装置とが区分け配置されて前記給湯用バーナ装置によって前記一種管路配設部が加熱され前記暖房用バーナ装置によって前記二種管路配設部の二種の液体流通管路が加熱される構成と成しており、前記給湯用バーナ装置は複数のバーナ装置を備え、該複数のバーナ装置と前記暖房用バーナ装置のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁が設けられるとともに、全てのバーナ装置へのガス供給割合を一律に可変するガス比例弁が設けられており、要求される給湯能力に対応させて前記複数の給湯用バーナ装置のうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って前記要求給湯能力が大きくなるにつれて大きくし前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくするバーナ段数制御と前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを行う燃焼制御手段を有し、該燃焼制御手段は暖房運転と給湯運転とを同時に行う同時運転時に予め定められた暖房不足判断条件に達した時には前記バーナ段数可変プログラムに設定されているバーナ段数よりも1段以上バーナ段数を小さくして前記ガス比例弁の開度を大きくすることを特徴とする熱源装置。 A hot water supply heat exchanger and a hot water supply circuit having a function of heating water, which is a heat medium of a liquid by the hot water supply heat exchanger, to supply hot water to a hot water supply destination, a heating heat exchanger and a heating heat exchanger A heating circuit having a heating circulation pump for circulating a heat medium, and supplying the heat medium from the heating circuit to a heating device connected to the outside to circulate the heat medium through the heating circuit. The hot water supply heat exchanger has a main hot water supply heat exchanger that recovers the sensible heat of the combustion gas of the burner device by means of a liquid flow pipe forming the hot water supply heat exchanger, The heater has a main heating heat exchanger that recovers the sensible heat of the combustion gas of the burner device by means of a liquid flow pipe that forms the heating heat exchanger, and the hot water supply that forms the main hot water supply heat exchanger And a liquid distribution conduit of the main hot water supply heat exchanger is vertically sandwiched by the liquid distribution conduit of the main heating heat exchanger. In a mode, the hot water supply heat exchanger and the heating heat exchanger are combined heat exchangers that are formed by being arranged in contact with each other, and the combined heat exchanger is formed. A hot water supply burner device and a heating burner device are separately arranged on the lower side of the hot water supply burner device, and the hot water supply burner device heats the first-kind conduit arrangement portion, and the heating burner device heats the second-kind conduit arrangement portion. The two hot water supply burner devices are provided with a plurality of burner devices, and burners are provided in correspondence with each of the plurality of burner devices and the heating burner device. A gas on-off valve that supplies and shuts off fuel gas to the equipment is provided, and a gas proportional valve that uniformly changes the gas supply ratio to all burner equipment is provided to meet the required hot water supply capacity. The number of burner stages, which is the number of combustion burners in the plurality of hot water supply burner devices, is increased as the required hot water supply capacity is increased according to a predetermined burner stage number variable program, and the burner is decreased as the required hot water supply capacity is decreased. Corresponding to the burner stage number control for reducing the number of stages and the required hot water supply capacity, the opening of the gas proportional valve is increased as the required hot water supply capacity is increased, and the opening of the gas proportional valve is decreased as the required hot water supply capacity is decreased. Combustion control means for performing proportional valve opening control for reducing the combustion temperature is provided, and the combustion control means is capable of varying the number of burner stages when a predetermined heating shortage determination condition is reached during simultaneous operation for simultaneously performing heating operation and hot water supply operation. Is set in the program The heat source device is characterized in that the number of burner stages is made smaller than the number of burner stages to increase the opening of the gas proportional valve. 前記暖房不足判断条件は、前記メインの暖房用熱交換器の熱媒体の温度が予め定められた設定温度以下の状態が予め定められた設定時間以上継続した時としたことを特徴とする請求項1記載の熱源装置。 The heating shortage determination condition is that the temperature of the heat medium of the main heating heat exchanger is equal to or lower than a predetermined set temperature for a predetermined set time or longer. 1. The heat source device according to 1. 前記メインの給湯熱交換器と前記メインの暖房用熱交換器の少なくとも一方には前記バーナ装置の燃焼ガスの潜熱を回収する潜熱回収用熱交換器が接続されていることを特徴とする請求項1または請求項2記載の熱源装置。 A latent heat recovery heat exchanger for recovering the latent heat of the combustion gas of the burner device is connected to at least one of the main hot water supply heat exchanger and the main heating heat exchanger. The heat source device according to claim 1 or 2.
JP2018245899A 2018-12-27 2018-12-27 Heat source device Active JP7267739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245899A JP7267739B2 (en) 2018-12-27 2018-12-27 Heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245899A JP7267739B2 (en) 2018-12-27 2018-12-27 Heat source device

Publications (2)

Publication Number Publication Date
JP2020106226A true JP2020106226A (en) 2020-07-09
JP7267739B2 JP7267739B2 (en) 2023-05-02

Family

ID=71448738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245899A Active JP7267739B2 (en) 2018-12-27 2018-12-27 Heat source device

Country Status (1)

Country Link
JP (1) JP7267739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256187A1 (en) 2020-06-19 2021-12-23 大王製紙株式会社 Ear part material for mask, mask, method for producing ear part material for mask, and method for producing mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303762A (en) * 1995-04-28 1996-11-22 Gastar Corp Combustion equipment
JP2016164473A (en) * 2015-03-06 2016-09-08 株式会社ガスター Heat source device
JP2017044442A (en) * 2015-08-28 2017-03-02 株式会社ノーリツ Composite heat source machine
JP2018146160A (en) * 2017-03-03 2018-09-20 リンナイ株式会社 Combustor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303762A (en) * 1995-04-28 1996-11-22 Gastar Corp Combustion equipment
JP2016164473A (en) * 2015-03-06 2016-09-08 株式会社ガスター Heat source device
JP2017044442A (en) * 2015-08-28 2017-03-02 株式会社ノーリツ Composite heat source machine
JP2018146160A (en) * 2017-03-03 2018-09-20 リンナイ株式会社 Combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256187A1 (en) 2020-06-19 2021-12-23 大王製紙株式会社 Ear part material for mask, mask, method for producing ear part material for mask, and method for producing mask

Also Published As

Publication number Publication date
JP7267739B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP4023139B2 (en) Hybrid water heater
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP5580658B2 (en) Heat medium supply device
JP5097624B2 (en) Hot water supply system
JP3931162B2 (en) Hot water heater
JP2002267254A (en) Hot-water supply apparatus
JP7217628B2 (en) Heat source device
JP4030394B2 (en) Hot water storage water heater
JP6449687B2 (en) Heat source equipment
JP2020106226A (en) Heat source device
JP4877580B2 (en) Hot water storage water heater
JP2011153772A (en) Storage type hot water supply device
JP5667856B2 (en) Water heater
JP7235502B2 (en) Heat source device
JP7195812B2 (en) Heat source device
JP2009002599A (en) Heat pump type water heater
JP7267738B2 (en) Heat source device
JP6449688B2 (en) Heat source equipment
JP2007071471A (en) Heating device and hot-water supply heating device
JP2008082633A (en) Hot water supply device and plate type heat exchanger
JP6488157B2 (en) Heat source equipment
JP3853196B2 (en) Hot water heater / heat source machine
JP2002295899A (en) Hot-water storage type water-heating heat source
JP2017078548A (en) Control method of water heating system
JP6345130B2 (en) Heat source device and heating system using the heat source device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230420

R150 Certificate of patent or registration of utility model

Ref document number: 7267739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150