JP2020104088A - Photocatalyst electrode - Google Patents

Photocatalyst electrode Download PDF

Info

Publication number
JP2020104088A
JP2020104088A JP2018248438A JP2018248438A JP2020104088A JP 2020104088 A JP2020104088 A JP 2020104088A JP 2018248438 A JP2018248438 A JP 2018248438A JP 2018248438 A JP2018248438 A JP 2018248438A JP 2020104088 A JP2020104088 A JP 2020104088A
Authority
JP
Japan
Prior art keywords
electrode
organic semiconductor
epi
fine particles
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018248438A
Other languages
Japanese (ja)
Other versions
JP7174378B2 (en
Inventor
陽祐 石井
Yosuke Ishii
陽祐 石井
晋司 川崎
Shinji Kawasaki
晋司 川崎
恵三 塚本
Keizo Tsukamoto
恵三 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AYABO KK
Nagoya Institute of Technology NUC
Original Assignee
AYABO KK
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AYABO KK, Nagoya Institute of Technology NUC filed Critical AYABO KK
Priority to JP2018248438A priority Critical patent/JP7174378B2/en
Publication of JP2020104088A publication Critical patent/JP2020104088A/en
Application granted granted Critical
Publication of JP7174378B2 publication Critical patent/JP7174378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

To provide a method for improving hydrogen generation efficiency in a hydrolyzing reaction, with respect to a photocatalyst electrode having an organic compound as a semiconductor.SOLUTION: A photocatalyst has a conductive substrate 110, an organic semiconductor layer 120, and metal fine particles 130. The organic semiconductor layer 120 is deposited on the conductive substrate 110, and the surface of the organic semiconductor layer 120 is coated with the metal fine particles 130.SELECTED DRAWING: Figure 1

Description

本発明は、導電性基板、有機半導体、および金属微粒子から構成される光触媒電極に関する。 The present invention relates to a photocatalytic electrode composed of a conductive substrate, an organic semiconductor, and metal fine particles.

水素は燃料電池自動車の燃料として欠かせない物質であり、今後の需要増大が予想されている。
水素を製造する手法として、メタンを原料とした工業プロセス(水蒸気改質法)が普及しているが、持続可能な社会の実現にむけて、化石燃料に依存しないクリーンな水素製造方法の開発が望まれている。
そこで注目されているのが、光触媒を利用した水分解水素生成法である。酸化チタンなどの半導体に対して、半導体のバンドギャップよりも大きなエネルギーを有する光を照射すると、価電子帯から伝導体への電子遷移が起こる。このとき、伝導体には励起電子が、価電子帯には正孔が、それぞれ生じる。伝導体の励起電子が水に移動すると水分子が還元分解し、水素が発生する。一方、伝導体に生成した正孔が水に移動すると水分子が酸化分解し、酸素が発生する。このような半導体の光触媒反応を利用した水分解は、本多‐藤島効果とよばれる(非特許文献1)。
Hydrogen is an essential substance as a fuel for fuel cell vehicles, and it is expected that demand will increase in the future.
As a method for producing hydrogen, an industrial process using methane as a raw material (steam reforming method) is widespread, but for the realization of a sustainable society, the development of a clean hydrogen production method that does not depend on fossil fuels Is desired.
Therefore, the water splitting hydrogen production method using a photocatalyst is drawing attention. When a semiconductor such as titanium oxide is irradiated with light having an energy larger than the band gap of the semiconductor, electronic transition from the valence band to the conductor occurs. At this time, excited electrons are generated in the conductor and holes are generated in the valence band. When the excited electrons of the conductor move to water, the water molecule undergoes reductive decomposition and hydrogen is generated. On the other hand, when the holes generated in the conductor move to water, water molecules are oxidatively decomposed to generate oxygen. Water splitting using such a photocatalytic reaction of a semiconductor is called the Honda-Fujishima effect (Non-Patent Document 1).

酸化チタンの光触媒反応を利用した水分解には、400 nmよりも短波長の光を照射する必要がある。しかし、太陽光にはこのような波長域の光がほとんど含まれていないため、太陽光利用率が低いという欠点がある。太陽光利用率の向上にむけて、太陽光に豊富に含まれる可視光(波長がおよそ400〜800 nmの光)を利用可能な新たな光触媒(可視光応答型光触媒)の開発が求められている。 Water splitting using the photocatalytic reaction of titanium oxide requires irradiation with light having a wavelength shorter than 400 nm. However, since sunlight hardly contains light in such a wavelength range, there is a drawback that the sunlight utilization rate is low. Development of new photocatalyst (visible light responsive photocatalyst) that can utilize visible light (light with wavelength of approximately 400 to 800 nm), which is abundant in sunlight, is required to improve the utilization rate of sunlight. There is.

可視光応答型光触媒として、これまでにWO(非特許文献2)、RuO(非特許文献3)、Cu2O(非特許文献4)、Cu3VS(特許文献1)などの無機化合物が報告されている。しかし、これらの化合物の合成には350℃以上の高温プロセスが必要である。また、このような無機半導体は吸収波長の改変が難しいため、太陽光の限られた領域の波長しか利用できないことが問題である。 As visible light responsive photocatalysts, inorganic materials such as WO 3 (Non-Patent Document 2), RuO 2 (Non-Patent Document 3), Cu 2 O (Non-Patent Document 4), and Cu 3 VS 4 (Patent Document 1) have been used so far. The compound has been reported. However, the synthesis of these compounds requires a high temperature process of 350° C. or higher. Further, since it is difficult to change the absorption wavelength of such an inorganic semiconductor, there is a problem that only wavelengths in a limited region of sunlight can be used.

太陽光の幅広い波長を有効に利用可能な光触媒材料として、非特許文献5ではZスキーム型光触媒材料が報告されている。Zスキーム型光触媒においては、2種類以上の無機半導体を組み合わせて使用することで、利用波長域を増大させている。しかし、複数種の半導体光触媒反応を同時・協奏的に進めるのは容易ではなく、系全体としての光変換効率は1.1%程度にとどまっている。 Non-Patent Document 5 reports a Z scheme type photocatalyst material as a photocatalyst material that can effectively use a wide wavelength range of sunlight. In the Z scheme type photocatalyst, the usable wavelength range is increased by using two or more kinds of inorganic semiconductors in combination. However, it is not easy to simultaneously and cooperatively proceed a plurality of types of semiconductor photocatalytic reactions, and the photoconversion efficiency of the entire system is only about 1.1%.

非特許文献6には、有機半導体としてピセン(C22H14)を利用した光触媒反応が報告されている。また、非特許文献7には可視光応答型の水分解光触媒としてDibenzo[b, g][1,5]naphthyridine-6,12-(5H, 11H)-dione(以下EPIと記す)が記載されている。これらの有機半導体は、前述の無機半導体にくらべて穏和な温度で合成することが可能である。また、有機半導体は分子構造の改変による吸収波長のコントロールが容易であり、1種類の半導体化合物のみを用いた単純な系でも、太陽光の幅広い波長域を利用可能な光触媒材料が実現できる。 Non-Patent Document 6 reports a photocatalytic reaction using picene (C 22 H 14 ) as an organic semiconductor. Further, Non-Patent Document 7 describes Dibenzo[b, g][1,5]naphthyridine-6,12-(5H, 11H)-dione (hereinafter referred to as EPI) as a visible light responsive water splitting photocatalyst. ing. These organic semiconductors can be synthesized at a milder temperature than the above-mentioned inorganic semiconductors. In addition, the absorption wavelength of an organic semiconductor can be easily controlled by modifying the molecular structure, and a photocatalytic material that can use a wide wavelength range of sunlight can be realized even in a simple system using only one kind of semiconductor compound.

しかし、有機半導体分子には水から水素への還元反応における良好な反応活性点が存在しないため、水分解水素発生の触媒活性に乏しいという欠点がある。 However, since organic semiconductor molecules do not have good reaction active points in the reduction reaction from water to hydrogen, they have a drawback that they have poor catalytic activity for hydrogen generation in water splitting.

特開2018−58732Japanese Patent Laid-Open No. 2018-58732.

Nature 238, 5358, 37−38 (1972).Nature 238, 5358, 37-38 (1972). Sustainable Energy Fuels 1, 145−153 (2017).Sustainable Energy Fuels 1, 145-153 (2017). Thin Solid Films 480, 462−465 (2005).Thin Solid Films 480, 462-465 (2005). Chem. Commun. 3, 357−358 (1998).Chem. Commun. 3, 357-358 (1998). J. Tang, Chem. Rev. 118, 10, 5201−5241 (2018).J. Tang, Chem. Rev. 118, 10, 5201-5241 (2018). Appl. Catal. B 192, 88−92 (2016).Appl. Catal. B 192, 88-92 (2016). Adv. Funct. Mater. 26, 5248−5254 (2016).Adv. Funct. Mater. 26, 5248-5254 (2016).

従来の無機半導体ベースの光触媒は、吸収波長域の精密制御が困難なことが問題であった。一方、有機半導体ベースの光触媒は、分子構造の改変による吸収波長域の制御が容易であるが、水分解水素発生における反応活性点となる部位が存在しないために、光触媒活性が低いことが問題であった。
本発明では、有機半導体の表面に水素発生の触媒活性点となるサイトを付与することで上記の問題を解決し、水分解水素発生の効率を向上させる方法を提供する。
The conventional inorganic semiconductor-based photocatalyst has a problem that it is difficult to precisely control the absorption wavelength range. On the other hand, the organic semiconductor-based photocatalyst is easy to control the absorption wavelength range by modifying the molecular structure, but it has a problem that the photocatalytic activity is low because there is no site that becomes the reaction active point in the generation of hydrogen from water splitting. there were.
The present invention provides a method for solving the above problems and improving the efficiency of water splitting hydrogen generation by providing sites on the surface of an organic semiconductor that are catalytically active sites for hydrogen generation.

本発明は、有機半導体を使用した光触媒電極に関するものである。
光触媒反応を用いた水分解水素発生を実現するにあたって、有機半導体としては以下の3つの要件を満たすものを使用する必要がある。
「1」 最高被占軌道(HOMO)と最低空軌道(LUMO)のエネルギー差が1.2eV以上であること。
「2」 反応溶液中におけるLUMOのエネルギー準位が、可逆水素電極(RHE)に対して0 Vよりも卑な電位にあること。
「3」 反応溶液中におけるHOMOのエネルギー準位が、+1.2Vvs.RHEより貴な電位にあること。
また、可視光の利用を可能とするためには、下記の要件も満たした有機半導体を使用する必要がある。
「4」 HOMOとLUMOのエネルギー差が3eV以下であること。
The present invention relates to a photocatalytic electrode using an organic semiconductor.
In order to realize water splitting hydrogen generation using a photocatalytic reaction, it is necessary to use an organic semiconductor that satisfies the following three requirements.
“1” The energy difference between the highest occupied orbit (HOMO) and the lowest unoccupied orbit (LUMO) must be 1.2 eV or more.
[2] The LUMO energy level in the reaction solution is at a base potential lower than 0 V with respect to the reversible hydrogen electrode (RHE).
[3] The energy level of HOMO in the reaction solution is at a potential nobler than +1.2 Vvs.RHE.
In order to use visible light, it is necessary to use an organic semiconductor that also satisfies the following requirements.
“4” Energy difference between HOMO and LUMO must be 3 eV or less.

本発明では、上記条件を満たす有機半導体120の表面に、水分解水素発生のための触媒活性点として金属微粒子130を塗布した光触媒電極100を提供する。この電極100においては、有機半導体120の支持体として導電性の基板110を使用する。
本光触媒電極においては、有機半導体で光励起した電子は、有機半導体表面の金属微粒子に移動する。金属微粒子表面では、この電子を利用した水分子の還元反応が高速に起こるため、有機半導体を単独で用いた系よりも触媒活性が向上する。
The present invention provides the photocatalyst electrode 100 in which the surface of the organic semiconductor 120 satisfying the above conditions is coated with the fine metal particles 130 as the catalytic active sites for the generation of water splitting hydrogen. In this electrode 100, a conductive substrate 110 is used as a support for the organic semiconductor 120.
In the photocatalyst electrode, the electrons photoexcited by the organic semiconductor move to the metal fine particles on the surface of the organic semiconductor. On the surface of the metal fine particles, the reduction reaction of water molecules using the electrons occurs at a high speed, so that the catalytic activity is improved as compared with the system using the organic semiconductor alone.

本発明によれば、有機半導体を利用した光触媒水分解反応における触媒活性を向上させることができる。 According to the present invention, it is possible to improve the catalytic activity in the photocatalytic water splitting reaction using an organic semiconductor.

本発明の光触媒の構造を示し、この光触媒は導電性基板110、有機半導体層120、および金属微粒子130から構成される。The structure of the photocatalyst of this invention is shown, This photocatalyst is comprised from the electroconductive substrate 110, the organic-semiconductor layer 120, and the metal fine particle 130. (A)EPIと(B)2F−EPIの分子構造。(A) EPI and (B) 2F-EPI molecular structures. 本発明の光触媒を用いた水分解装置の構造の例。The example of the structure of the water decomposition apparatus using the photocatalyst of this invention. 導電基板としてFTO、有機半導体としてEPI、金属微粒子として白金を使用した光触媒電極について、疑似太陽光照射のON/OFFを5秒おきに切り替えた際の応答電流の経間変化。Regarding the photocatalytic electrode using FTO as the conductive substrate, EPI as the organic semiconductor, and platinum as the metal fine particles, the change over time of the response current when the ON/OFF of the pseudo sunlight irradiation is switched every 5 seconds. 導電基板としてFTO、有機半導体としてEPIを使用した光触媒電極について、疑似太陽光照射のON/OFFを10秒おきに切り替えた際の応答電流の経間変化。Regarding a photocatalytic electrode using FTO as a conductive substrate and EPI as an organic semiconductor, a change in response current with time when ON/OFF of pseudo-sunlight irradiation is switched every 10 seconds. 導電基板としてFTO、有機半導体としてEPI、金属微粒子としてニッケルを使用した光触媒電極について、疑似太陽光照射のON/OFFを5秒おきに切り替えた際の応答電流の経間変化。Regarding the photocatalytic electrode using FTO as the conductive substrate, EPI as the organic semiconductor, and nickel as the metal fine particles, the change over time of the response current when the ON/OFF of the pseudo sunlight irradiation is switched every 5 seconds. 導電基板としてFTO、有機半導体としてEPI、金属微粒子としてチタンを使用した光触媒電極について、疑似太陽光照射のON/OFFを5秒おきに切り替えた際の応答電流の経間変化。Regarding the photocatalytic electrode using FTO as the conductive substrate, EPI as the organic semiconductor, and titanium as the metal fine particles, the change over time of the response current when the ON/OFF of the pseudo sunlight irradiation is switched every 5 seconds. 導電基板としてFTO、有機半導体としてEPIと2F−EPIの積層物、金属微粒子として白金を使用した光触媒電極について、疑似太陽光を照射し続けた際の応答電流の経間変化。A change with time of a response current when FTO is used as a conductive substrate, a laminate of EPI and 2F-EPI as an organic semiconductor, and a photocatalytic electrode using platinum as metal fine particles is continuously irradiated with pseudo sunlight.

本発明では、上記の[1]〜[4]の要件を満たす有機半導体として、エピンドリジオン骨格を含有する有機化合物群(図2)を使用する。以下の実施例では、Dibenzo[b, g][1,5]naphthyridine−6,12−(5H, 11H)−dione(以下、EPIと記す)と2,8−difluorodibenzo[b, g][1,5]naphthyridine−6,12−(5H, 11H)−dione(以下、2F-EPIと記す)を使用した例を示すが、本発明はこれらの化合物を用いたものに限定されるものではない。また、本発明の光触媒電極における有機半導体層については、2種類以上の化合物を組み合わせて使用しても良い。 In the present invention, a group of organic compounds containing an epindridione skeleton (FIG. 2) is used as an organic semiconductor satisfying the above requirements [1] to [4]. In the following examples, Dibenzo[b,g][1,5]naphthyridine-6,12-(5H,11H)-dione (hereinafter referred to as EPI) and 2,8-difluorodibenzo[b,g][1 , 5] Naphthyridine-6,12-(5H, 11H)-dione (hereinafter, referred to as 2F-EPI) is shown, but the present invention is not limited to the use of these compounds. .. Further, for the organic semiconductor layer in the photocatalyst electrode of the present invention, two or more kinds of compounds may be used in combination.

上記有機半導体120の表面には、金属微粒子130を塗布する。塗布する金属は3族から11族の元素から選択することができる。この金属種については、白金やニッケルなど、水素過電圧の小さな元素から選択することが望ましい。金属微粒子のサイズについては、平均粒子径が500nm以下のものを用いることが好ましい。金属微粒子の塗布方法については、直流スパッタリング法や交流スパッタリング法などが使用できるが、塗布された金属の平均粒子径が500nm以下という条件を満たせば特に限定されるものではない。 Metal fine particles 130 are applied to the surface of the organic semiconductor 120. The metal to be applied can be selected from elements of groups 3 to 11. This metal species is preferably selected from elements having a small hydrogen overvoltage, such as platinum and nickel. Regarding the size of the metal fine particles, it is preferable to use those having an average particle diameter of 500 nm or less. As a coating method of the metal fine particles, a DC sputtering method or an AC sputtering method can be used, but it is not particularly limited as long as the average particle diameter of the coated metal is 500 nm or less.

上記有機半導体120の支持体としては、導電性の基板110を用いる。有機半導体に対する光照射効率を高めるため、基板110としてはフッ素ドープ酸化スズ膜(FTO)やスズドープ参加インジウム膜(ITO)をコーティングしたガラス基板など、透明の材料を使用することが望ましい。
上記電極100を用いた光水分解の装置としては、図3のような構造のもの(200)を使用できる。この装置は、光触媒電極100、対電極210、電解液水溶液220、容器230から構成される。光触媒電極100に光240を照射することで、電極100の表面で電解液水溶液220が分解し、水素が発生する。また、このとき同時に対電極210では電解液水溶液220が酸化分解し、酸素が発生する。水素発生の速度を向上させるため、電極100と電極210の間にポテンショスタット250を挿入し、電極100に対してバイアス電圧を印加することもできる。バイアス電圧を制御するために、220には参照電極260を挿入することができる。
光240としては太陽光のほか、水銀灯、キセノンランプ、発光ダイオード(LED)など光源を用いて発生させた可視光を使用することができる。この光については、有機半導体120を光励起させるため、有機半導体120のバンドギャップよりも大きなエネルギーの光を含んだ光源を使用する必要がある。
A conductive substrate 110 is used as a support for the organic semiconductor 120. In order to increase the light irradiation efficiency of the organic semiconductor, it is desirable to use a transparent material such as a glass substrate coated with a fluorine-doped tin oxide film (FTO) or a tin-doped indium film (ITO) as the substrate 110.
As a device for water splitting using the electrode 100, a device (200) having a structure as shown in FIG. 3 can be used. This device includes a photocatalyst electrode 100, a counter electrode 210, an electrolytic solution 220, and a container 230. By irradiating the photocatalyst electrode 100 with light 240, the electrolytic solution 220 is decomposed on the surface of the electrode 100 to generate hydrogen. At this time, at the same time, the electrolyte solution 220 is oxidized and decomposed in the counter electrode 210 to generate oxygen. In order to improve the rate of hydrogen generation, a potentiostat 250 may be inserted between the electrode 100 and the electrode 210 to apply a bias voltage to the electrode 100. A reference electrode 260 may be inserted at 220 to control the bias voltage.
As the light 240, in addition to sunlight, visible light generated by using a light source such as a mercury lamp, a xenon lamp, or a light emitting diode (LED) can be used. With respect to this light, in order to optically excite the organic semiconductor 120, it is necessary to use a light source containing light having an energy larger than the band gap of the organic semiconductor 120.

以下、本発明の光触媒電極について実施例を用いて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the photocatalyst electrode of the present invention will be described using examples, but the present invention is not limited to these examples.

本実施例では、導電基板110としてFTO、有機半導体120としてEPI、金属微粒子130として白金を使用した光触媒電極の製造方法と、その光触媒電極を用いた水分解反応についての実施例を示す。
<1−1.EPIの合成>
ジヒドロキシフマル酸13.26gを無水メタノール70mLに溶解させた。この溶液に0℃で攪拌しながら塩化チオニル(13.4ml)を15分かけて滴下した。滴下終了後、室温でこの溶液4日間攪拌し、その後、吸引ろ過によって固形物を回収した。得られた固形物をメタノール20mLとイオン交換水80mLで洗浄し、60℃で真空乾燥することで、dimethyl dihydroxyfumarate(中間体1)を得た。
In this example, a method for manufacturing a photocatalyst electrode using FTO as the conductive substrate 110, EPI as the organic semiconductor 120, and platinum as the metal fine particles 130, and a water splitting reaction using the photocatalyst electrode will be described.
<1-1. Synthesis of EPI>
13.26 g of dihydroxyfumaric acid was dissolved in 70 mL of anhydrous methanol. Thionyl chloride (13.4 ml) was added dropwise to this solution over 15 minutes while stirring at 0°C. After the dropping was completed, the solution was stirred at room temperature for 4 days, and then a solid substance was collected by suction filtration. The obtained solid matter was washed with 20 mL of methanol and 80 mL of ion-exchanged water, and dried under vacuum at 60° C. to obtain dimethyl dihydroxyfumarate (intermediate 1).

続いて、中間体1を無水メタノール50mLと濃塩酸0.65mLの混合液に溶解させた。続いて、アニリン12.96gを加え、70℃で1時間還流した。その後、この溶液を5時間かけて室温まで冷却し、固体を析出させた。この固体を吸引ろ過によって回収した。回収物をメタノールで洗浄した後、60℃で真空乾燥し、Dimethyl 2,3−bis(phenylamino)maleate(中間体2)を得た。
次に、熱媒体ダウサムA(260mL)に中間体2を16.15g加え、260℃で30分間還流した。その後、この溶液を18時間かけて室温まで冷却し、固体を析出させた。次に、この固体を吸引ろ過しによって回収し、石油エーテル300mLで洗浄した。さらに60℃で真空乾燥することで、2−Methoxycarbonyl−3−phenylamino−4−quinolone(中間体3)を得た。
Subsequently, Intermediate 1 was dissolved in a mixed solution of 50 mL of anhydrous methanol and 0.65 mL of concentrated hydrochloric acid. Subsequently, 12.96 g of aniline was added, and the mixture was refluxed at 70° C. for 1 hour. Then, this solution was cooled to room temperature over 5 hours to precipitate a solid. The solid was collected by suction filtration. The recovered product was washed with methanol and then vacuum dried at 60° C. to obtain Dimethyl 2,3-bis(phenylamino)maleate (Intermediate 2).
Next, 16.15 g of Intermediate 2 was added to heat medium Dowsome A (260 mL), and the mixture was refluxed at 260° C. for 30 minutes. Then, this solution was cooled to room temperature over 18 hours to precipitate a solid. The solid was then collected by suction filtration and washed with 300 mL petroleum ether. Further, it was vacuum dried at 60° C. to obtain 2-Methoxyxycarbonyl-3-phenylamino-4-quinolone (intermediate 3).

次に、中間体3をポリリン酸83.2gに加え、150℃で3.5時間攪拌した。その後、液温を50℃に保ちながらイオン交換水700mLを加えた。次に、分散液中の固体を吸引ろ過で回収し、イオン交換水約1Lとメタノール約500mLで洗浄した。さらに、この固体を80℃で真空乾燥し、EPIの粉末を得た。 Next, the intermediate body 3 was added to 83.2 g of polyphosphoric acid, and it stirred at 150 degreeC for 3.5 hours. Then, 700 mL of ion-exchanged water was added while maintaining the liquid temperature at 50°C. Next, the solid in the dispersion was collected by suction filtration and washed with about 1 L of ion-exchanged water and about 500 mL of methanol. Further, this solid was vacuum dried at 80° C. to obtain EPI powder.

<1−2.EPIのFTO基板への固定化>
1−1で得られたEPIを、表面にFTO薄膜を有するガラス基板(以下、FTO基板と記載する)上に真空蒸着した。EPIの酸化を防ぐため、真空蒸着時の装置内は1mPa以下の圧力に設定した。この際、EPIの蒸着面積はマスクを用いて1.5cm×0.8cmに規定した。また、蒸着後のEPIの膜厚が300nmになるように、蒸着時間を調整した。
<1-2. Immobilization of EPI on FTO substrate>
The EPI obtained in 1-1 was vacuum-deposited on a glass substrate having an FTO thin film on its surface (hereinafter referred to as an FTO substrate). In order to prevent the oxidation of EPI, the pressure inside the apparatus during vacuum deposition was set to 1 mPa or less. At this time, the deposition area of EPI was defined to be 1.5 cm×0.8 cm using a mask. The vapor deposition time was adjusted so that the EPI film thickness after vapor deposition was 300 nm.

<1−3.EPI表面への白金微粒子の塗布>
1−2で得られた基板のEPI層の表面に白金微粒子を塗布するため、白金板をターゲットとしたスパッタリング処理を行った。この処理には日本電子株式会社製の直流スパッタ装置JEC-3000FC AUTO FINE COATERを用いた。処理時の装置内圧力は2Paに設定した。また、スパッタリング時間は2分間に設定した。
<1-3. Application of platinum fine particles to EPI surface>
In order to coat the platinum fine particles on the surface of the EPI layer of the substrate obtained in 1-2, a sputtering treatment using a platinum plate as a target was performed. A DC sputtering device JEC-3000FC AUTO FINE COATER manufactured by JEOL Ltd. was used for this treatment. The internal pressure of the device during processing was set to 2 Pa. The sputtering time was set to 2 minutes.

<1−4.光触媒電極を用いた水分解装置の構築とその特性評価>
1−3で得られた電極を作用電極、銀‐塩化銀電極を参照極、白金メッシュを対極としたガラス製の3電極式電解セルを構築した。この電解セルの内部は、電解液として1mol/Lの塩酸を満たした。Princeton Applied Research社製のポテンショスタット(VersaSTAT 3)を用いて参照極に対する作用極の電位が0Vになるようにバイアス電位を印加した条件で、作用極に500W/m2の疑似太陽光を照射し、光応答電流の測定を行った。疑似太陽光の発生には、株式会社三永電機製作所製のソーラーシミュレータ(XES−40S2−CE)を用いた。
<1-4. Construction of water splitting device using photocatalyst electrode and its characterization>
A three-electrode electrolytic cell made of glass having the working electrode as the electrode obtained in 1-3, the silver-silver chloride electrode as the reference electrode, and the platinum mesh as the counter electrode was constructed. The inside of this electrolytic cell was filled with 1 mol/L hydrochloric acid as an electrolytic solution. A potentiostat (VersaSTAT 3) manufactured by Princeton Applied Research was used to irradiate the working electrode with pseudo-sunlight of 500 W/m 2 under the condition that a bias potential was applied so that the potential of the working electrode with respect to the reference electrode was 0 V. The light response current was measured. A solar simulator (XES-40S2-CE) manufactured by Sanei Electric Co., Ltd. was used to generate the pseudo sunlight.

<結果>
本実施例で作成した光触媒電極の性能について、1−4の実験で得られた光応答電流を図4に示す。この測定では光照射のON/OFFを周期的に切り替えた。光をONにすると電流値が負側に立ち上がり、光をOFFにすると電流値が正側に戻る様子が観測された。光照射時に発生する負の電流は、光触媒電極上での水素発生に対応したものである。この結果から、本発明の光触媒電極が水分解に利用できることが確認できる。
<Results>
Regarding the performance of the photocatalyst electrode prepared in this example, the photoresponse current obtained in the experiments of 1-4 is shown in FIG. In this measurement, ON/OFF of light irradiation was periodically switched. It was observed that when the light was turned on, the current value rose to the negative side, and when the light was turned off, the current value returned to the positive side. The negative current generated during light irradiation corresponds to hydrogen generation on the photocatalytic electrode. From this result, it can be confirmed that the photocatalytic electrode of the present invention can be used for water decomposition.

比較例1Comparative Example 1

金属微粒子の塗布によって光触媒活性が向上することを示すため、実施例1の1−3の操作を除いて、金属微粒子を含まない光触媒電極を作製した。
<結果>
得られた光触媒電極の特性については、1−4と同様の方法で評価した。測定結果を図5に示す。本例で作製した光触媒電極の光応答電流(光照射時による水分解水素発生に対応する負の電流)は、実施例1にくらべて小さいことが読み取れる。この実験によって、有機半導体EPIの光触媒活性の向上に対して白金微粒子の塗布が有効なことが示された。
In order to show that the photocatalytic activity is improved by coating the metal fine particles, a photocatalyst electrode containing no metal fine particles was prepared except for the operations 1-3 in Example 1.
<Results>
The characteristics of the obtained photocatalytic electrode were evaluated in the same manner as in 1-4. The measurement result is shown in FIG. It can be read that the photoresponsive current of the photocatalyst electrode manufactured in this example (a negative current corresponding to the generation of hydrogen in water by light irradiation) is smaller than that in Example 1. This experiment showed that the application of platinum fine particles was effective for improving the photocatalytic activity of the organic semiconductor EPI.

実施例1について、金属微粒子130を白金からニッケルに変更した電極を作成した。本実施例の光触媒電極においては、実施例1の1−3の部分を下記の方法に置き換えた手順で作製した。
<2−1.EPI表面へのニッケル微粒子の塗布>
1−2で得られた基板のEPI層の表面にニッケル微粒子を塗布するため、ニッケル板をターゲットとしたスパッタリング処理を行った。この処理にはアルバック機構株式会社製の高周波スパッタ装置VTR−151M/SRFを用いた。処理時の装置内雰囲気はアルゴンガス5Paに設定した。スパッタリング時の投入電力は50Wに設定した。また、スパッタリング時間は2分間に設定した。
Regarding Example 1, an electrode was prepared in which the metal fine particles 130 were changed from platinum to nickel. The photocatalyst electrode of this example was produced by a procedure in which the parts 1-3 of Example 1 were replaced by the following method.
<2-1. Application of nickel fine particles to EPI surface>
In order to apply the nickel fine particles to the surface of the EPI layer of the substrate obtained in 1-2, a sputtering process using a nickel plate as a target was performed. A high frequency sputtering apparatus VTR-151M/SRF manufactured by ULVAC CORPORATION was used for this treatment. The atmosphere in the apparatus during processing was set to 5 Pa for argon gas. The input power at the time of sputtering was set to 50W. The sputtering time was set to 2 minutes.

<結果>
得られた光触媒電極の特性については、1−4と同様の方法で評価した。測定結果を図6に示す。金属微粒子をニッケルとした本実施例においても、実施例1と類似した光応答電流が観測された。また、この光応答電流の振幅は比較例1よりも大きなものであった。本実験により、金属微粒子として、ニッケルも使用可能なことが確認できた。
<Results>
The characteristics of the obtained photocatalytic electrode were evaluated in the same manner as in 1-4. The measurement result is shown in FIG. Also in this example in which the metal fine particles were nickel, a photoresponse current similar to that in Example 1 was observed. The amplitude of this photo-responsive current was larger than that of Comparative Example 1. By this experiment, it was confirmed that nickel can be used as the metal fine particles.

実施例1について、金属微粒子130を白金からチタンに変更した電極を作成した。本実施例の光触媒電極においては、実施例1の1−3の部分を、下記の方法に置き換えた手順で作製した。
<3−1.EPI表面へのチタン微粒子の塗布>
1−2で得られた基板のEPI層の表面に白金微粒子を塗布するため、チタン板をターゲットとしたスパッタリング処理を行った。この処理にはアルバック機構株式会社製の高周波スパッタ装置VTR−151M/SRFを用いた。スパッタリング時の投入電力は50Wに設定した。処理時の装置内雰囲気はアルゴンガス5Paに設定した。また、スパッタリング時間は2分間に設定した。
Regarding Example 1, an electrode was prepared in which the metal fine particles 130 were changed from platinum to titanium. In the photocatalyst electrode of this example, the steps 1-3 of Example 1 were replaced by the following method.
<3-1. Application of titanium fine particles to EPI surface>
In order to apply the platinum fine particles to the surface of the EPI layer of the substrate obtained in 1-2, sputtering treatment using a titanium plate as a target was performed. A high frequency sputtering apparatus VTR-151M/SRF manufactured by ULVAC CORPORATION was used for this treatment. The input power at the time of sputtering was set to 50W. The atmosphere in the apparatus during processing was set to 5 Pa for argon gas. The sputtering time was set to 2 minutes.

<結果>
得られた光触媒電極の特性については、1−4と同様の方法で評価した。測定結果を図7に示す。金属微粒子をチタンとした本実施例においても、実施例1と類似した光応答電流が観測された。また、この光応答電流の振幅は比較例1よりも大きなものであった。本実験により、金属微粒子として、チタンも使用可能なことが示された
<Results>
The characteristics of the obtained photocatalytic electrode were evaluated in the same manner as in 1-4. The measurement result is shown in FIG. 7. Also in this example in which the metal fine particles were titanium, a photoresponse current similar to that in Example 1 was observed. The amplitude of this photo-responsive current was larger than that of Comparative Example 1. This experiment showed that titanium can also be used as the metal fine particles.

EPI以外の有機半導体が使用可能なことを示すため、本実施例では、導電基板110としてFTO、有機半導体層120としてEPIと2F−EPIの積層物、金属微粒子130として白金を使用した光触媒電極の製造方法と、その光触媒電極を用いた水分解反応についての実施例を示す。
<4−1.2F−EPIの合成>
実施例1の1−1について、アニリンを4−フルオロアニリンに置き換えることで2F−EPIを合成した。4−フルオロアニリンを用いたことを除いて、1−1との違いはない。
In order to show that an organic semiconductor other than EPI can be used, in the present embodiment, a photocatalyst electrode using FTO as the conductive substrate 110, a laminate of EPI and 2F-EPI as the organic semiconductor layer 120, and platinum as the metal fine particles 130. An example of the production method and the water splitting reaction using the photocatalytic electrode is shown.
<Synthesis of 4-1.2F-EPI>
Regarding 1-1 of Example 1, 2F-EPI was synthesized by replacing aniline with 4-fluoroaniline. There is no difference from 1-1 except that 4-fluoroaniline was used.

<4−2.2F−EPIおよびEPIのFTO基板への固定化>
1−2と同様の手順で、FTO基板上にEPI(1−1に記した方法で合成)を厚さ300nmとなるように真空蒸着した。続けて、このEPI層の上に、2F―EPIを厚さ300nmになるように真空蒸着した。EPIおよび2F―EPIの蒸着面積は1−2と同様に1.5cm×0.8cmとした。
<4-2.2 F-EPI and Immobilization of EPI on FTO Substrate>
EPI (synthesized by the method described in 1-1) was vacuum-deposited on the FTO substrate to a thickness of 300 nm by the same procedure as in 1-2. Subsequently, 2F-EPI was vacuum-deposited on the EPI layer to a thickness of 300 nm. The vapor deposition area of EPI and 2F-EPI was 1.5 cm×0.8 cm as in 1-2.

<2−4.2F−EPI表面への白金微粒子の塗布>
4−2で得られた基板の2F−EPI層の表面に白金微粒子を塗布するため、白金板をターゲットとしたスパッタリング処理を行った。この処理には日本電子株式会社製の直流スパッタ装置JEC−3000FC AUTO FINE COATERを用いた。処理時の装置内圧力は2Paに設定した。また、スパッタリング時間は2分間に設定した。
<2-4.2 Application of platinum fine particles to the surface of F-EPI>
In order to coat the platinum fine particles on the surface of the 2F-EPI layer of the substrate obtained in 4-2, sputtering treatment using a platinum plate as a target was performed. A DC sputtering device JEC-3000FC AUTO FINE COATER manufactured by JEOL Ltd. was used for this treatment. The internal pressure of the device during processing was set to 2 Pa. The sputtering time was set to 2 minutes.

<2−4.光触媒電極を用いた水分解装置の構築とその特性評価>
1−4と同様の評価セルを構築し、光触媒電極としての特性評価を行った。本実験では、測定中に光のON/OFFを行わず、光を照射し続けた状態で光電流のモニタリングを行った。
<2-4. Construction of water splitting device using photocatalyst electrode and its characterization>
An evaluation cell similar to 1-4 was constructed and the characteristics of the photocatalyst electrode were evaluated. In this experiment, the photocurrent was monitored while the light was kept being radiated without turning ON/OFF the light during the measurement.

<結果>
測定結果を図8に示す。本実施例においても、光照射時に水分解水素発生に由来する応答電流が観測された。光応答電流の大きさは比較例1よりも大きいことがわかる。本実験により、EPI以外の有機半導体を用いた有機半導体‐金属微粒子複合系でも光触媒電極として機能することが示された。
<Results>
The measurement result is shown in FIG. Also in this example, a response current derived from water splitting hydrogen generation was observed at the time of light irradiation. It can be seen that the magnitude of the photoresponse current is larger than that in Comparative Example 1. This experiment showed that an organic semiconductor-metal fine particle composite system using an organic semiconductor other than EPI also functions as a photocatalytic electrode.

Claims (3)

導電性基板110と、最高被占軌道(HOMO)と最低空軌道(LUMO)のエネルギー差が1.2 eV以上である有機半導体120と、平均粒子径が500 nm以下の金属微粒子130を具備する光触媒電極。 A photocatalyst electrode comprising a conductive substrate 110, an organic semiconductor 120 having an energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of 1.2 eV or more, and metal fine particles 130 having an average particle diameter of 500 nm or less. .. 前記有機半導体120として、分子中にDibenzo[b, g][1,5]naphthyridine−6,12−(5H, 11H)−dione構造を含有する有機化合物(エピンドリジオン化合物)を使用することを特徴とする請求項1の光触媒電極。 As the organic semiconductor 120, an organic compound (epindridion compound) having a structure of Dibenzo[b,g][1,5]naphthyridine-6,12-(5H, 11H)-dione in a molecule is used. The photocatalyst electrode according to claim 1. 前記金属微粒子130として、白金、ニッケル、またはチタンを使用することを特徴とする請求項1の光触媒電極。 The photocatalyst electrode according to claim 1, wherein platinum, nickel, or titanium is used as the metal fine particles 130.
JP2018248438A 2018-12-28 2018-12-28 photocatalyst electrode Active JP7174378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018248438A JP7174378B2 (en) 2018-12-28 2018-12-28 photocatalyst electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018248438A JP7174378B2 (en) 2018-12-28 2018-12-28 photocatalyst electrode

Publications (2)

Publication Number Publication Date
JP2020104088A true JP2020104088A (en) 2020-07-09
JP7174378B2 JP7174378B2 (en) 2022-11-17

Family

ID=71447629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018248438A Active JP7174378B2 (en) 2018-12-28 2018-12-28 photocatalyst electrode

Country Status (1)

Country Link
JP (1) JP7174378B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069295A1 (en) * 2013-09-09 2015-03-12 National University Of Singapore Hydrogel nanocomposite
EP3241617A1 (en) * 2016-05-02 2017-11-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method for light-induced actuation of ph-sensitive assemblies and a composite material therefore
US20180027809A1 (en) * 2016-07-28 2018-02-01 eXion labs Inc. Antimicrobial photoreactive composition comprising organic and inorganic multijunction composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069295A1 (en) * 2013-09-09 2015-03-12 National University Of Singapore Hydrogel nanocomposite
EP3241617A1 (en) * 2016-05-02 2017-11-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method for light-induced actuation of ph-sensitive assemblies and a composite material therefore
US20180027809A1 (en) * 2016-07-28 2018-02-01 eXion labs Inc. Antimicrobial photoreactive composition comprising organic and inorganic multijunction composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE JOURNAL OF PHYSICAL CHEMISTRY A, vol. 120, JPN6022029961, pages 8561 - 8573, ISSN: 0004827238 *

Also Published As

Publication number Publication date
JP7174378B2 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Schreier et al. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction
Lhermitte et al. Alternative oxidation reactions for solar-driven fuel production
Yu et al. Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode
Nasir et al. New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study
Luo et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
Li et al. In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution
Smith et al. Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis
Meng et al. Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets
Saadi et al. Operando synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction
Chen et al. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials
Samanta et al. Stimulating the visible-light catalytic activity of Bi2MoO6 nanoplates by embedding carbon dots for the efficient oxidation, cascade reaction, and photoelectrochemical O2 evolution
He et al. Enhanced charge separation in nanostructured TiO2 materials for photocatalytic and photovoltaic applications
Cong et al. Tantalum cobalt nitride photocatalysts for water oxidation under visible light
Endrődi et al. One-step electrodeposition of nanocrystalline TiO2 films with enhanced photoelectrochemical performance and charge storage
JP3995051B2 (en) Water electrolysis using organic photocatalyst
Kirner et al. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoO x catalyst
Li et al. Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production
Wang et al. Engineering organic/inorganic hierarchical photocathode for efficient and stable quasi-solid-state photoelectrochemical fuel cells
Sun et al. Optimized preparation of Co-Pi decorated g-C3N4@ ZnO shell-core nanorod array for its improved photoelectrochemical performance and stability
Chang et al. Highly efficient hydrogen and electricity production combined with degradation of organics based on a novel solar water-energy nexus system
JP5642459B2 (en) Photocatalyst electrode, hydrogen generator, and hydrogen generation method
CN108511198B (en) Ni-doped BiVO4Thin-film photoelectric anode, preparation method and application thereof
Liang et al. Hydrogen generation promoted by photocatalytic oxidation of ascorbate and glucose at a cadmium sulfide electrode
Roy et al. Unique features of the photocatalytic reduction of H2O and CO2 by new catalysts based on the analogues of CdS, Cd4P2X3 (X= Cl, Br, I)
Kandiel et al. Physical insights into band bending in pristine and Co-Pi-modified BiVO4 photoanodes with dramatically enhanced solar water splitting efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R150 Certificate of patent or registration of utility model

Ref document number: 7174378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150