JP2020096065A - Heat treatment method and heat treatment apparatus - Google Patents

Heat treatment method and heat treatment apparatus Download PDF

Info

Publication number
JP2020096065A
JP2020096065A JP2018232317A JP2018232317A JP2020096065A JP 2020096065 A JP2020096065 A JP 2020096065A JP 2018232317 A JP2018232317 A JP 2018232317A JP 2018232317 A JP2018232317 A JP 2018232317A JP 2020096065 A JP2020096065 A JP 2020096065A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
reflectance
heat treatment
chamber
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018232317A
Other languages
Japanese (ja)
Other versions
JP7294802B2 (en
Inventor
智宏 上野
Tomohiro Ueno
智宏 上野
克一 秋吉
Katsuichi Akiyoshi
克一 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2018232317A priority Critical patent/JP7294802B2/en
Priority to TW108141112A priority patent/TWI822903B/en
Priority to US16/699,812 priority patent/US11516884B2/en
Priority to CN201911266333.8A priority patent/CN111312617A/en
Priority to KR1020190164646A priority patent/KR102373066B1/en
Publication of JP2020096065A publication Critical patent/JP2020096065A/en
Priority to KR1020220027468A priority patent/KR102549304B1/en
Application granted granted Critical
Publication of JP7294802B2 publication Critical patent/JP7294802B2/en
Priority to KR1020230080807A priority patent/KR102637230B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a heat treatment method and a heat treatment apparatus capable of accurately detecting an abnormal substrate.SOLUTION: A carrier containing a plurality of semiconductor wafers forming a lot is carried into a heat treatment apparatus. An expected reflectance for each of the plurality of semiconductor wafers contained in the carrier is input. Next, the reflectance of each of the semiconductor wafers is measured. The actually measured reflectance of the semiconductor wafer is compared with the expected reflectance, and when the actually measured reflectance is out of an allowable range of the expected reflectance, the semiconductor wafer is not normal and an alarm is issued. An abnormal semiconductor wafer can be accurately detected, and erroneous processing on such an abnormal semiconductor wafer can be prevented in advance.SELECTED DRAWING: Figure 11

Description

本発明は、半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に光を照射することによって該基板を加熱する熱処理方法および熱処理装置に関する。 TECHNICAL FIELD The present invention relates to a heat treatment method and a heat treatment apparatus for heating a thin plate-shaped precision electronic substrate (hereinafter simply referred to as “substrate”) such as a semiconductor wafer by irradiating the substrate with light.

半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。 BACKGROUND ART Flash lamp annealing (FLA), which heats a semiconductor wafer in an extremely short time, is drawing attention in the manufacturing process of semiconductor devices. Flash lamp annealing uses a xenon flash lamp (hereinafter, simply referred to as a “flash lamp” to mean a xenon flash lamp) to irradiate the surface of a semiconductor wafer with flash light so that only the surface of the semiconductor wafer can be extremely exposed. It is a heat treatment technology that raises the temperature in a short time (several milliseconds or less).

キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。 The emission spectral distribution of the xenon flash lamp is from the ultraviolet region to the near-infrared region, has a shorter wavelength than conventional halogen lamps, and almost coincides with the fundamental absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with the flash light from the xenon flash lamp, the transmitted light is small and it is possible to rapidly raise the temperature of the semiconductor wafer. Further, it has been found that the flash light irradiation for a very short time of several milliseconds or less can selectively raise the temperature only in the vicinity of the surface of the semiconductor wafer.

このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。 Such a flash lamp anneal is used for a process that requires heating for an extremely short time, for example, typically for activating impurities implanted into a semiconductor wafer. If the surface of a semiconductor wafer in which impurities have been implanted by the ion implantation method is irradiated with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for an extremely short time, and the impurities are diffused deeply. It is possible to carry out only the impurity activation without performing the activation.

フラッシュランプアニールに限らず、光照射によって半導体ウェハーを加熱するアニール処理においては、ウェハー表面の反射率が重要なパラメータとなる。同じ強度の光を照射しても、反射率が高い半導体ウェハーでは反射光が多くなるため、到達温度は低くなる。特許文献1には、処理対象となる半導体ウェハーの反射率を測定する技術が開示されている。 The reflectance of the wafer surface is an important parameter not only in flash lamp annealing but also in annealing treatment for heating a semiconductor wafer by light irradiation. Even if the light having the same intensity is irradiated, a semiconductor wafer having a high reflectance has a large amount of reflected light, so that the reached temperature becomes low. Patent Document 1 discloses a technique for measuring the reflectance of a semiconductor wafer to be processed.

特開2014−045067号公報JP, 2014-045067, A

半導体ウェハーの反射率はウェハー表面の膜種やパターンに依存している。また、処理対象となる半導体ウェハーの膜種やパターンに応じて処理手順および処理条件を規定したレシピが設定され、そのレシピに従って半導体ウェハーに対するアニール処理が実行される。 The reflectivity of a semiconductor wafer depends on the film type and pattern of the wafer surface. Further, a recipe defining a processing procedure and processing conditions is set according to the film type and pattern of the semiconductor wafer to be processed, and the annealing process is performed on the semiconductor wafer according to the recipe.

しかしながら、アニール装置に予定とは異なる膜種が成膜された半導体ウェハーが誤って搬入されることがある。或いは予定通りの膜種であっても、異常な成膜処理がなされた半導体ウェハーが搬入されることもある。このような場合には、半導体ウェハーの表面反射率が予定とは異なり、所望の処理結果が得られないこととなる。 However, there is a case where a semiconductor wafer on which a film type different from the intended one is formed is erroneously loaded into the annealing device. Alternatively, a semiconductor wafer that has undergone an abnormal film forming process may be carried in even if the film type is as planned. In such a case, the surface reflectance of the semiconductor wafer is different from the expected value, and the desired processing result cannot be obtained.

本発明は、上記課題に鑑みてなされたものであり、正常ではない基板を的確に検出することができる熱処理方法および熱処理装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment method and a heat treatment apparatus capable of accurately detecting an abnormal substrate.

上記課題を解決するため、請求項1の発明は、基板に光を照射することによって該基板を加熱する熱処理方法において、処理対象となる基板の予想反射率を入力する入力工程と、前記基板の反射率を測定する反射率測定工程と、前記反射率測定工程にて測定された反射率と前記予想反射率とを比較する比較工程と、前記反射率測定工程にて測定された反射率が前記予想反射率から所定範囲を超えて離れているときに警告を発報する発報工程と、を備えることを特徴とする。 In order to solve the above problems, the invention of claim 1 is, in a heat treatment method of heating a substrate by irradiating the substrate with light, an input step of inputting an expected reflectance of the substrate to be processed; A reflectance measurement step of measuring reflectance, a comparison step of comparing the reflectance measured in the reflectance measurement step with the expected reflectance, and the reflectance measured in the reflectance measurement step is And a warning step of issuing a warning when the distance from the expected reflectance exceeds a predetermined range.

また、請求項2の発明は、基板に光を照射することによって該基板を加熱する熱処理装置において、処理対象となる基板を収容するチャンバーと、前記チャンバー内に収容された前記基板に光を照射する光照射部と、前記基板の予想反射率の入力を受け付ける入力部と、前記基板の反射率を測定する反射率測定部と、前記反射率測定部にて測定された反射率と前記予想反射率とを比較する比較部と、前記反射率測定部にて測定された反射率が前記予想反射率から所定範囲を超えて離れているときに警告を発報する発報部と、を備えることを特徴とする。 According to the invention of claim 2, in a heat treatment apparatus for heating a substrate by irradiating the substrate with light, the chamber containing the substrate to be processed and the substrate contained in the chamber are irradiated with light. A light irradiation unit, an input unit that receives an input of the expected reflectance of the substrate, a reflectance measurement unit that measures the reflectance of the substrate, the reflectance measured by the reflectance measurement unit, and the expected reflection And a reporting unit for issuing a warning when the reflectance measured by the reflectance measuring unit is separated from the expected reflectance by more than a predetermined range. Is characterized by.

請求項1の発明によれば、反射率測定工程にて測定された反射率が予想反射率から所定範囲を超えて離れているときに警告を発報するため、正常ではない基板を的確に検出することができる。 According to the invention of claim 1, a warning is issued when the reflectance measured in the reflectance measuring step deviates from the expected reflectance by more than a predetermined range, so that an abnormal substrate is accurately detected. can do.

請求項2の発明によれば、反射率測定部にて測定された反射率が予想反射率から所定範囲を超えて離れているときに警告を発報するため、正常ではない基板を的確に検出することができる。 According to the invention of claim 2, a warning is issued when the reflectance measured by the reflectance measuring unit deviates from the expected reflectance by more than a predetermined range, so that an abnormal substrate is accurately detected. can do.

本発明に係る熱処理装置を示す平面図である。It is a top view which shows the heat processing apparatus which concerns on this invention. 図1の熱処理装置の正面図である。It is a front view of the heat processing apparatus of FIG. 熱処理部の構成を示す縦断面図である。It is a longitudinal cross-sectional view showing a configuration of a heat treatment section. 保持部の全体外観を示す斜視図である。It is a perspective view showing the whole appearance of a holding part. サセプタの平面図である。It is a top view of a susceptor. サセプタの断面図である。It is sectional drawing of a susceptor. 移載機構の平面図である。It is a top view of a transfer mechanism. 移載機構の側面図である。It is a side view of a transfer mechanism. 複数のハロゲンランプの配置を示す平面図である。It is a top view showing arrangement of a plurality of halogen lamps. 反射率測定部および制御部の構成を示す図である。It is a figure which shows the structure of a reflectance measurement part and a control part. 反射率に基づく半導体ウェハーの検査方法の手順を示すフローチャートである。It is a flow chart which shows the procedure of the inspection method of the semiconductor wafer based on reflectance. 表示部に表示される表示画面の一例を示す図である。It is a figure which shows an example of the display screen displayed on a display part.

以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明に係る熱処理装置の全体構成について説明する。図1は、本発明に係る熱処理装置100を示す平面図であり、図2はその正面図である。熱処理装置100は基板として円板形状の半導体ウェハーWにフラッシュ光を照射してその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また、図1〜図3の各図においては、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を付している。 First, the overall configuration of the heat treatment apparatus according to the present invention will be described. FIG. 1 is a plan view showing a heat treatment apparatus 100 according to the present invention, and FIG. 2 is a front view thereof. The heat treatment apparatus 100 is a flash lamp annealing apparatus that irradiates a disk-shaped semiconductor wafer W as a substrate with flash light to heat the semiconductor wafer W. The size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, φ300 mm or φ450 mm. It should be noted that in FIG. 1 and the subsequent drawings, the dimensions and number of each part are exaggerated or simplified as necessary for easy understanding. In addition, in each of FIGS. 1 to 3, an XYZ orthogonal coordinate system in which the Z-axis direction is the vertical direction and the XY plane is the horizontal plane is attached in order to clarify their directional relationship.

図1および図2に示すように、熱処理装置100は、未処理の半導体ウェハーWを外部から装置内に搬入するとともに処理済みの半導体ウェハーWを装置外に搬出するためのインデクサ部101、未処理の半導体ウェハーWの位置決めを行うアライメント部230、加熱処理後の半導体ウェハーWの冷却を行う2つの冷却部130,140、半導体ウェハーWにフラッシュ加熱処理を施す熱処理部160並びに冷却部130,140および熱処理部160に対して半導体ウェハーWの受け渡しを行う搬送ロボット150を備える。また、熱処理装置100は、上記の各処理部に設けられた動作機構および搬送ロボット150を制御して半導体ウェハーWのフラッシュ加熱処理を進行させる制御部3を備える。 As shown in FIGS. 1 and 2, the heat treatment apparatus 100 includes an indexer unit 101 for loading an unprocessed semiconductor wafer W into the apparatus from the outside and an unprocessed semiconductor wafer W for removing the processed semiconductor wafer W from the apparatus. Alignment unit 230 for positioning the semiconductor wafer W, two cooling units 130, 140 for cooling the semiconductor wafer W after heat treatment, a heat treatment unit 160 for performing flash heat treatment on the semiconductor wafer W, and cooling units 130, 140, A transfer robot 150 that transfers the semiconductor wafer W to and from the heat treatment unit 160 is provided. Further, the heat treatment apparatus 100 includes the control unit 3 that controls the operation mechanism provided in each of the processing units and the transfer robot 150 to advance the flash heating process of the semiconductor wafer W.

インデクサ部101は、複数のキャリアC(本実施形態では2個)を並べて載置するロードポート110と、各キャリアCから未処理の半導体ウェハーWを取り出すとともに、各キャリアCに処理済みの半導体ウェハーWを収納する受渡ロボット120とを備えている。未処理の半導体ウェハーWを収容したキャリアCは無人搬送車(AGV、OHT)等によって搬送されてロードポート110に載置されるともに、処理済みの半導体ウェハーWを収容したキャリアCは無人搬送車によってロードポート110から持ち去られる。 The indexer unit 101 includes a load port 110 on which a plurality of carriers C (two in this embodiment) are mounted side by side, an unprocessed semiconductor wafer W taken out from each carrier C, and a semiconductor wafer processed by each carrier C. And a delivery robot 120 that stores W. The carrier C containing the unprocessed semiconductor wafer W is transported by an automated guided vehicle (AGV, OHT) or the like and placed on the load port 110, and the carrier C containing the processed semiconductor wafer W is the automated guided vehicle. Are taken away from the load port 110.

また、ロードポート110においては、受渡ロボット120がキャリアCに対して任意の半導体ウェハーWの出し入れを行うことができるように、キャリアCが図2の矢印CUにて示す如く昇降移動可能に構成されている。なお、キャリアCの形態としては、半導体ウェハーWを密閉空間に収納するFOUP(front opening unified pod)の他に、SMIF(Standard Mechanical Inter Face)ポッドや収納した半導体ウェハーWを外気に曝すOC(open cassette)であっても良い。 Further, in the load port 110, the carrier C is configured to be movable up and down as shown by an arrow CU in FIG. 2 so that the delivery robot 120 can take in and out an arbitrary semiconductor wafer W with respect to the carrier C. ing. In addition to the FOUP (front opening unified pod) that stores the semiconductor wafer W in a closed space, the carrier C also has a standard mechanical inter face (SMIF) pod and an OC (open that exposes the stored semiconductor wafer W to the outside air). cassette).

また、受渡ロボット120は、図1の矢印120Sにて示すようなスライド移動、矢印120Rにて示すような旋回動作および昇降動作が可能とされている。これにより、受渡ロボット120は、2つのキャリアCに対して半導体ウェハーWの出し入れを行うとともに、アライメント部230および2つの冷却部130,140に対して半導体ウェハーWの受け渡しを行う。受渡ロボット120によるキャリアCに対する半導体ウェハーWの出し入れは、ハンド121のスライド移動、および、キャリアCの昇降移動により行われる。また、受渡ロボット120とアライメント部230または冷却部130,140との半導体ウェハーWの受け渡しは、ハンド121のスライド移動、および、受渡ロボット120の昇降動作によって行われる。 Further, the delivery robot 120 is capable of sliding movement as shown by an arrow 120S in FIG. 1, turning movement and ascending/descending operation as shown by an arrow 120R. As a result, the delivery robot 120 takes the semiconductor wafer W in and out of the two carriers C, and delivers the semiconductor wafer W to the alignment unit 230 and the two cooling units 130 and 140. The transfer of the semiconductor wafer W to/from the carrier C by the delivery robot 120 is performed by the sliding movement of the hand 121 and the vertical movement of the carrier C. The delivery of the semiconductor wafer W between the delivery robot 120 and the alignment unit 230 or the cooling units 130 and 140 is performed by sliding the hand 121 and moving the delivery robot 120 up and down.

アライメント部230は、Y軸方向に沿ったインデクサ部101の側方に接続されて設けられている。アライメント部230は、半導体ウェハーWを水平面内で回転させてフラッシュ加熱に適切な向きに向ける処理部である。アライメント部230は、アルミニウム合金製の筐体であるアライメントチャンバー231の内部に、半導体ウェハーWを水平姿勢に支持して回転させる機構(図10の回転支持部237、回転モータ238)、および、半導体ウェハーWの周縁部に形成されたノッチやオリフラ等を光学的に検出する機構などを設けて構成される。また、アライメントチャンバー231には、その内部にて支持されている半導体ウェハーWの表面の反射率を測定する反射率測定部232が設けられている。反射率測定部232は、半導体ウェハーWの表面に光を照射するとともに、当該表面にて反射された反射光を受光し、その反射光の強度から半導体ウェハーWの表面の反射率を測定する。 The alignment section 230 is provided so as to be connected to the side of the indexer section 101 along the Y-axis direction. The alignment unit 230 is a processing unit that rotates the semiconductor wafer W in a horizontal plane and orients it in an appropriate direction for flash heating. The alignment section 230 includes a mechanism for supporting and rotating the semiconductor wafer W in a horizontal position inside the alignment chamber 231 which is a housing made of aluminum alloy (rotation support section 237 and rotation motor 238 in FIG. 10), and a semiconductor. A mechanism for optically detecting a notch, an orientation flat, or the like formed on the peripheral portion of the wafer W is provided. Further, the alignment chamber 231 is provided with a reflectance measuring section 232 for measuring the reflectance of the surface of the semiconductor wafer W supported inside the alignment chamber 231. The reflectance measuring unit 232 irradiates the surface of the semiconductor wafer W with light, receives the reflected light reflected by the surface, and measures the reflectance of the surface of the semiconductor wafer W from the intensity of the reflected light.

アライメント部230への半導体ウェハーWの受け渡しは受渡ロボット120によって行われる。受渡ロボット120からアライメントチャンバー231へはウェハー中心が所定の位置に位置するように半導体ウェハーWが渡される。アライメント部230では、インデクサ部101から受け取った半導体ウェハーWの中心部を回転中心として鉛直方向軸まわりで半導体ウェハーWを回転させ、ノッチ等を光学的に検出することによって半導体ウェハーWの向きを調整する。また、反射率測定部232が半導体ウェハーWの表面の反射率を測定する。向き調整の終了した半導体ウェハーWは受渡ロボット120によってアライメントチャンバー231から取り出される。 The delivery of the semiconductor wafer W to the alignment unit 230 is performed by the delivery robot 120. The semiconductor wafer W is transferred from the transfer robot 120 to the alignment chamber 231 such that the center of the wafer is located at a predetermined position. The alignment unit 230 adjusts the orientation of the semiconductor wafer W by rotating the semiconductor wafer W about a vertical axis around the center of the semiconductor wafer W received from the indexer unit 101 and optically detecting a notch or the like. To do. Further, the reflectance measuring section 232 measures the reflectance of the surface of the semiconductor wafer W. The semiconductor wafer W whose orientation has been adjusted is taken out from the alignment chamber 231 by the delivery robot 120.

搬送ロボット150による半導体ウェハーWの搬送空間として搬送ロボット150を収容する搬送チャンバー170が設けられている。その搬送チャンバー170の三方に熱処理部160の処理チャンバー6、冷却部130の第1クールチャンバー131および冷却部140の第2クールチャンバー141が連通接続されている。 A transfer chamber 170 that accommodates the transfer robot 150 is provided as a transfer space for the semiconductor wafer W by the transfer robot 150. The processing chamber 6 of the heat treatment section 160, the first cool chamber 131 of the cooling section 130, and the second cool chamber 141 of the cooling section 140 are connected in communication with the transfer chamber 170 on three sides.

熱処理装置100の主要部である熱処理部160は、予備加熱を行った半導体ウェハーWにキセノンフラッシュランプFLからの閃光(フラッシュ光)を照射してフラッシュ加熱処理を行う基板処理部である。この熱処理部160の構成についてはさらに後述する。 The heat treatment unit 160, which is the main part of the heat treatment apparatus 100, is a substrate processing unit that irradiates the semiconductor wafer W that has been preheated with flash light (flash light) from the xenon flash lamp FL to perform flash heat treatment. The structure of the heat treatment unit 160 will be described later.

2つの冷却部130,140は、概ね同様の構成を備える。冷却部130,140はそれぞれ、アルミニウム合金製の筐体である第1クールチャンバー131,第2クールチャンバー141の内部に、金属製の冷却プレートと、その上面に載置された石英板とを備える(いずれも図示省略)。当該冷却プレートは、ペルチェ素子または恒温水循環によって常温(約23℃)に温調されている。熱処理部160にてフラッシュ加熱処理が施された半導体ウェハーWは、第1クールチャンバー131または第2クールチャンバー141に搬入されて当該石英板に載置されて冷却される。 The two cooling units 130 and 140 have substantially the same configuration. Each of the cooling units 130 and 140 includes a metal cooling plate and a quartz plate placed on the upper surface of the first cooling chamber 131 and the second cooling chamber 141, which are aluminum alloy housings. (All are not shown). The cooling plate is temperature-controlled at normal temperature (about 23° C.) by a Peltier element or constant temperature water circulation. The semiconductor wafer W that has been subjected to the flash heat treatment in the heat treatment section 160 is carried into the first cool chamber 131 or the second cool chamber 141, placed on the quartz plate, and cooled.

第1クールチャンバー131および第2クールチャンバー141はともに、インデクサ部101と搬送チャンバー170との間にて、それらの双方に接続されている。第1クールチャンバー131および第2クールチャンバー141には、半導体ウェハーWを搬入出するための2つの開口が形設されている。第1クールチャンバー131の2つの開口のうちインデクサ部101に接続される開口はゲートバルブ181によって開閉可能とされている。一方、第1クールチャンバー131の搬送チャンバー170に接続される開口はゲートバルブ183によって開閉可能とされている。すなわち、第1クールチャンバー131とインデクサ部101とはゲートバルブ181を介して接続され、第1クールチャンバー131と搬送チャンバー170とはゲートバルブ183を介して接続されている。 Both the first cool chamber 131 and the second cool chamber 141 are connected to both of them between the indexer unit 101 and the transfer chamber 170. The first cool chamber 131 and the second cool chamber 141 are provided with two openings for loading and unloading the semiconductor wafer W. Of the two openings of the first cool chamber 131, the opening connected to the indexer portion 101 can be opened and closed by the gate valve 181. On the other hand, the opening connected to the transfer chamber 170 of the first cool chamber 131 can be opened and closed by the gate valve 183. That is, the first cool chamber 131 and the indexer unit 101 are connected via the gate valve 181, and the first cool chamber 131 and the transfer chamber 170 are connected via the gate valve 183.

インデクサ部101と第1クールチャンバー131との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ181が開放される。また、第1クールチャンバー131と搬送チャンバー170との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ183が開放される。ゲートバルブ181およびゲートバルブ183が閉鎖されているときには、第1クールチャンバー131の内部が密閉空間となる。 When the semiconductor wafer W is transferred between the indexer unit 101 and the first cool chamber 131, the gate valve 181 is opened. In addition, when the semiconductor wafer W is transferred between the first cool chamber 131 and the transfer chamber 170, the gate valve 183 is opened. When the gate valves 181 and 183 are closed, the inside of the first cool chamber 131 becomes a closed space.

また、第2クールチャンバー141の2つの開口のうちインデクサ部101に接続される開口はゲートバルブ182によって開閉可能とされている。一方、第2クールチャンバー141の搬送チャンバー170に接続される開口はゲートバルブ184によって開閉可能とされている。すなわち、第2クールチャンバー141とインデクサ部101とはゲートバルブ182を介して接続され、第2クールチャンバー141と搬送チャンバー170とはゲートバルブ184を介して接続されている。 Further, of the two openings of the second cool chamber 141, the opening connected to the indexer portion 101 can be opened and closed by the gate valve 182. On the other hand, the opening connected to the transfer chamber 170 of the second cool chamber 141 can be opened and closed by the gate valve 184. That is, the second cool chamber 141 and the indexer unit 101 are connected via the gate valve 182, and the second cool chamber 141 and the transfer chamber 170 are connected via the gate valve 184.

インデクサ部101と第2クールチャンバー141との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ182が開放される。また、第2クールチャンバー141と搬送チャンバー170との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ184が開放される。ゲートバルブ182およびゲートバルブ184が閉鎖されているときには、第2クールチャンバー141の内部が密閉空間となる。 When the semiconductor wafer W is transferred between the indexer unit 101 and the second cool chamber 141, the gate valve 182 is opened. Further, when the semiconductor wafer W is transferred between the second cool chamber 141 and the transfer chamber 170, the gate valve 184 is opened. When the gate valve 182 and the gate valve 184 are closed, the inside of the second cool chamber 141 becomes a closed space.

さらに、冷却部130,140はそれぞれ、第1クールチャンバー131,第2クールチャンバー141に清浄な窒素ガスを供給するガス供給機構とチャンバー内の雰囲気を排気する排気機構とを備える。これらのガス供給機構および排気機構は、流量を2段階に切り換え可能とされていても良い。 Further, the cooling units 130 and 140 each include a gas supply mechanism that supplies clean nitrogen gas to the first cool chamber 131 and the second cool chamber 141, and an exhaust mechanism that exhausts the atmosphere in the chamber. The gas supply mechanism and the exhaust mechanism may be capable of switching the flow rate in two stages.

搬送チャンバー170に設けられた搬送ロボット150は、鉛直方向に沿った軸を中心に矢印150Rにて示すように旋回可能とされる。搬送ロボット150は、複数のアームセグメントからなる2つのリンク機構を有し、それら2つのリンク機構の先端にはそれぞれ半導体ウェハーWを保持する搬送ハンド151a,151bが設けられている。これらの搬送ハンド151a,151bは上下に所定のピッチだけ隔てて配置され、リンク機構によりそれぞれ独立して同一水平方向に直線的にスライド移動可能とされている。また、搬送ロボット150は、2つのリンク機構が設けられるベースを昇降移動することにより、所定のピッチだけ離れた状態のまま2つの搬送ハンド151a,151bを昇降移動させる。 The transfer robot 150 provided in the transfer chamber 170 is rotatable about an axis along the vertical direction as indicated by an arrow 150R. The transfer robot 150 has two link mechanisms composed of a plurality of arm segments, and transfer hands 151a and 151b for holding the semiconductor wafer W are provided at the tips of the two link mechanisms, respectively. These transport hands 151a and 151b are arranged vertically with a predetermined pitch, and are independently slidable linearly in the same horizontal direction by a link mechanism. Further, the transfer robot 150 moves up and down the base provided with the two link mechanisms to move up and down the two transfer hands 151a and 151b while keeping a distance of a predetermined pitch.

搬送ロボット150が第1クールチャンバー131、第2クールチャンバー141または熱処理部160の処理チャンバー6を受け渡し相手として半導体ウェハーWの受け渡し(出し入れ)を行う際には、まず、両搬送ハンド151a,151bが受け渡し相手と対向するように旋回し、その後(または旋回している間に)昇降移動していずれかの搬送ハンドが受け渡し相手と半導体ウェハーWを受け渡しする高さに位置する。そして、搬送ハンド151a(151b)を水平方向に直線的にスライド移動させて受け渡し相手と半導体ウェハーWの受け渡しを行う。 When the transfer robot 150 transfers (removes) the semiconductor wafer W as a transfer partner with the first cool chamber 131, the second cool chamber 141, or the processing chamber 6 of the heat treatment section 160, first, both transfer hands 151a and 151b are transferred. It turns so as to face the delivery partner, and then (or while it is turning) moves up and down, and one of the transfer hands is positioned at a height for delivering the semiconductor wafer W to the delivery partner. Then, the transfer hand 151a (151b) is linearly slid in the horizontal direction to transfer the semiconductor wafer W to and from the transfer partner.

搬送ロボット150と受渡ロボット120との半導体ウェハーWの受け渡しは冷却部130,140を介して行うことができる。すなわち、冷却部130の第1クールチャンバー131および冷却部140の第2クールチャンバー141は、搬送ロボット150と受渡ロボット120との間で半導体ウェハーWを受け渡すためのパスとしても機能するものである。具体的には、搬送ロボット150または受渡ロボット120のうちの一方が第1クールチャンバー131または第2クールチャンバー141に渡した半導体ウェハーWを他方が受け取ることによって半導体ウェハーWの受け渡しが行われる。搬送ロボット150および受渡ロボット120によって半導体ウェハーWをキャリアCから熱処理部160にまで搬送する搬送機構が構成される。 The transfer of the semiconductor wafer W between the transfer robot 150 and the transfer robot 120 can be performed via the cooling units 130 and 140. That is, the first cool chamber 131 of the cooling unit 130 and the second cool chamber 141 of the cooling unit 140 also function as a path for transferring the semiconductor wafer W between the transfer robot 150 and the transfer robot 120. .. Specifically, the semiconductor wafer W is delivered by one of the transfer robot 150 and the delivery robot 120 receiving the semiconductor wafer W delivered to the first cool chamber 131 or the second cool chamber 141. The transfer robot 150 and the transfer robot 120 constitute a transfer mechanism that transfers the semiconductor wafer W from the carrier C to the thermal processing section 160.

上述したように、第1クールチャンバー131および第2クールチャンバー141とインデクサ部101との間にはそれぞれゲートバルブ181,182が設けられている。また、搬送チャンバー170と第1クールチャンバー131および第2クールチャンバー141との間にはそれぞれゲートバルブ183,184が設けられている。さらに、搬送チャンバー170と熱処理部160の処理チャンバー6との間にはゲートバルブ185が設けられている。熱処理装置100内にて半導体ウェハーWが搬送される際には、適宜これらのゲートバルブが開閉される。また、搬送チャンバー170およびアライメントチャンバー231にもガス供給部から窒素ガスが供給されるとともに、それらの内部の雰囲気が排気部によって排気される(いずれも図示省略)。 As described above, the gate valves 181 and 182 are provided between the indexer section 101 and the first cool chamber 131 and the second cool chamber 141, respectively. Gate valves 183 and 184 are provided between the transfer chamber 170 and the first cool chamber 131 and the second cool chamber 141, respectively. Further, a gate valve 185 is provided between the transfer chamber 170 and the processing chamber 6 of the heat treatment section 160. When the semiconductor wafer W is transferred in the heat treatment apparatus 100, these gate valves are opened/closed appropriately. Further, nitrogen gas is also supplied from the gas supply unit to the transfer chamber 170 and the alignment chamber 231, and the atmosphere inside them is exhausted by the exhaust unit (both not shown).

次に、熱処理部160の構成について説明する。図3は、熱処理部160の構成を示す縦断面図である。熱処理部160は、半導体ウェハーWを収容して加熱処理を行う処理チャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュランプハウス5と、複数のハロゲンランプHLを内蔵するハロゲンランプハウス4と、を備える。処理チャンバー6の上側にフラッシュランプハウス5が設けられるとともに、下側にハロゲンランプハウス4が設けられている。また、熱処理部160は、処理チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と搬送ロボット150との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。 Next, the configuration of the heat treatment section 160 will be described. FIG. 3 is a vertical cross-sectional view showing the configuration of the heat treatment section 160. The heat treatment unit 160 includes a processing chamber 6 that accommodates a semiconductor wafer W and performs heat treatment, a flash lamp house 5 that houses a plurality of flash lamps FL, and a halogen lamp house 4 that houses a plurality of halogen lamps HL. Prepare A flash lamp house 5 is provided above the processing chamber 6, and a halogen lamp house 4 is provided below the processing chamber 6. Further, the heat treatment unit 160 holds the semiconductor wafer W in a horizontal position inside the processing chamber 6, and the transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the transfer robot 150. And

処理チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。処理チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュランプFLから出射されたフラッシュ光を処理チャンバー6内に透過する石英窓として機能する。また、処理チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲンランプHLからの光を処理チャンバー6内に透過する石英窓として機能する。 The processing chamber 6 is configured by mounting quartz chamber windows above and below a cylindrical chamber side portion 61. The chamber side portion 61 has a substantially cylindrical shape with an opening at the top and bottom, and an upper chamber window 63 is attached and closed at the upper opening, and a lower chamber window 64 is attached and closed at the lower opening. ing. The upper chamber window 63 that constitutes the ceiling of the processing chamber 6 is a disk-shaped member made of quartz, and functions as a quartz window that transmits the flash light emitted from the flash lamp FL into the processing chamber 6. Further, the lower chamber window 64 that forms the floor of the processing chamber 6 is also a disk-shaped member made of quartz, and functions as a quartz window that transmits the light from the halogen lamp HL into the processing chamber 6.

また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。処理チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。 A reflection ring 68 is attached to the upper portion of the inner wall surface of the chamber side portion 61, and a reflection ring 69 is attached to the lower portion. Both the reflection rings 68 and 69 are formed in an annular shape. The upper reflection ring 68 is attached by being fitted from above the chamber side portion 61. On the other hand, the lower reflection ring 69 is attached by fitting it from the lower side of the chamber side portion 61 and fastening it with a screw not shown. That is, both the reflection rings 68 and 69 are detachably attached to the chamber side portion 61. An inner space of the processing chamber 6, that is, a space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side portion 61, and the reflection rings 68 and 69 is defined as a heat treatment space 65.

チャンバー側部61に反射リング68,69が装着されることによって、処理チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、処理チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。 By mounting the reflection rings 68 and 69 on the chamber side portion 61, the recess 62 is formed on the inner wall surface of the processing chamber 6. That is, a concave portion 62 surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not attached, a lower end surface of the reflection ring 68 and an upper end surface of the reflection ring 69 is formed. .. The concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the processing chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W. The chamber side portion 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.

また、チャンバー側部61には、処理チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖すると処理チャンバー6内の熱処理空間65が密閉空間とされる。 Further, the chamber side portion 61 is formed with a transfer opening portion (furnace port) 66 for loading and unloading the semiconductor wafer W with respect to the processing chamber 6. The transfer opening 66 can be opened and closed by a gate valve 185. The transport opening 66 is connected to the outer peripheral surface of the recess 62. Therefore, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is carried into the heat treatment space 65 through the recess 62 from the transfer opening 66 and the semiconductor wafer W is carried out of the heat treatment space 65. It can be performed. Further, when the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the processing chamber 6 becomes a closed space.

また、処理チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81は処理チャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、窒素(N)等の不活性ガス、または、水素(H)、アンモニア(NH)等の反応性ガスを用いることができる(本実施形態では窒素)。 Further, a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in the upper portion of the inner wall of the processing chamber 6. The gas supply hole 81 is formed at a position above the recess 62 and may be provided in the reflection ring 68. The gas supply hole 81 is communicatively connected to a gas supply pipe 83 via a buffer space 82 formed in an annular shape inside the sidewall of the processing chamber 6. The gas supply pipe 83 is connected to the processing gas supply source 85. Further, a valve 84 is inserted in the middle of the path of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82. The processing gas flowing into the buffer space 82 flows so as to spread in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81, and is supplied from the gas supply hole 81 into the heat treatment space 65. As the processing gas, an inert gas such as nitrogen (N 2 ) or a reactive gas such as hydrogen (H 2 ) or ammonia (NH 3 ) can be used (nitrogen in this embodiment).

一方、処理チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86は処理チャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気機構190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、処理チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気機構190は、熱処理装置100に設けられた機構であっても良いし、熱処理装置100が設置される工場のユーティリティであっても良い。 On the other hand, a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the processing chamber 6. The gas exhaust hole 86 is formed at a position lower than the recess 62, and may be provided in the reflection ring 69. The gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the processing chamber 6. The gas exhaust pipe 88 is connected to the exhaust mechanism 190. A valve 89 is inserted in the middle of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 through the buffer space 87. The gas supply holes 81 and the gas exhaust holes 86 may be provided in plural along the circumferential direction of the processing chamber 6, or may be slit-shaped. Further, the processing gas supply source 85 and the exhaust mechanism 190 may be a mechanism provided in the heat treatment apparatus 100 or a utility of a factory in which the heat treatment apparatus 100 is installed.

また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気機構190に接続されている。バルブ192を開放することによって、搬送開口部66を介して処理チャンバー6内の気体が排気される。 Further, a gas exhaust pipe 191 for exhausting gas in the heat treatment space 65 is also connected to the tip of the transfer opening 66. The gas exhaust pipe 191 is connected to the exhaust mechanism 190 via a valve 192. By opening the valve 192, the gas in the processing chamber 6 is exhausted through the transfer opening 66.

図4は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。 FIG. 4 is a perspective view showing the overall appearance of the holding unit 7. The holding portion 7 includes a base ring 71, a connecting portion 72, and a susceptor 74. The base ring 71, the connecting portion 72, and the susceptor 74 are all made of quartz. That is, the entire holding portion 7 is made of quartz.

基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、処理チャンバー6の壁面に支持されることとなる(図3参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。 The base ring 71 is an arc-shaped quartz member in which a part is missing from the annular shape. This missing portion is provided to prevent interference between the transfer arm 11 of the transfer mechanism 10 and the base ring 71 which will be described later. By mounting the base ring 71 on the bottom surface of the recess 62, the base ring 71 is supported on the wall surface of the processing chamber 6 (see FIG. 3 ). On the upper surface of the base ring 71, a plurality of connecting portions 72 (four in this embodiment) are provided upright along the circumferential direction of the annular shape. The connecting portion 72 is also a quartz member and is fixed to the base ring 71 by welding.

サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図5は、サセプタ74の平面図である。また、図6は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。 The susceptor 74 is supported by the four connecting portions 72 provided on the base ring 71. FIG. 5 is a plan view of the susceptor 74. Further, FIG. 6 is a sectional view of the susceptor 74. The susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77. The holding plate 75 is a substantially circular flat plate member made of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a plane size larger than that of the semiconductor wafer W.

保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。 A guide ring 76 is installed on the peripheral portion of the upper surface of the holding plate 75. The guide ring 76 is a ring-shaped member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is 300 mm, the inner diameter of the guide ring 76 is 320 mm. The inner circumference of the guide ring 76 is a tapered surface that widens upward from the holding plate 75. The guide ring 76 is made of quartz like the holding plate 75. The guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.

保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm〜φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。 A region inside the guide ring 76 on the upper surface of the holding plate 75 serves as a flat holding surface 75 a for holding the semiconductor wafer W. A plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75. In this embodiment, a total of twelve substrate support pins 77 are erected at every 30° along the circumference of a concentric circle with the outer circumference circle of the holding surface 75a (the inner circumference circle of the guide ring 76). The diameter of the circle in which the twelve substrate support pins 77 are arranged (the distance between the opposing substrate support pins 77) is smaller than the diameter of the semiconductor wafer W. If the diameter of the semiconductor wafer W is 300 mm, then φ270 mm to φ280 mm (this embodiment In the form, it is φ270 mm). Each substrate support pin 77 is made of quartz. The plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.

図4に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71が処理チャンバー6の壁面に支持されることによって、保持部7が処理チャンバー6に装着される。保持部7が処理チャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。 Returning to FIG. 4, the four connecting portions 72 provided upright on the base ring 71 and the peripheral portion of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72. By supporting the base ring 71 of the holding unit 7 on the wall surface of the processing chamber 6, the holding unit 7 is attached to the processing chamber 6. When the holding unit 7 is attached to the processing chamber 6, the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line matches the vertical direction). That is, the holding surface 75a of the holding plate 75 becomes a horizontal surface.

処理チャンバー6に搬入された半導体ウェハーWは、処理チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。 The semiconductor wafer W loaded into the processing chamber 6 is horizontally placed and held on the susceptor 74 of the holding unit 7 mounted in the processing chamber 6. At this time, the semiconductor wafer W is held by the susceptor 74 while being supported by twelve substrate support pins 77 provided upright on the holding plate 75. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the twelve substrate support pins 77 bring the semiconductor wafer W into a horizontal posture. Can be supported.

また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。 Further, the semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75. The thickness of the guide ring 76 is larger than the height of the substrate support pin 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.

また、図4および図5に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計20(図3参照)がサセプタ74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計20が開口部78を介してサセプタ74に保持された半導体ウェハーWの下面から放射された光を受光してその半導体ウェハーWの温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。 Further, as shown in FIGS. 4 and 5, the holding plate 75 of the susceptor 74 is formed with an opening 78 penetrating vertically. The opening 78 is provided for the radiation thermometer 20 (see FIG. 3) to receive radiation light (infrared light) emitted from the lower surface of the semiconductor wafer W held by the susceptor 74. That is, the radiation thermometer 20 receives light emitted from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78 and measures the temperature of the semiconductor wafer W. Further, the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10 to be described later pass through for the delivery of the semiconductor wafer W.

図7は、移載機構10の平面図である。また、図8は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図7の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図7の二点鎖線位置)との間で水平移動させる。移載動作位置はサセプタ74の下方であり、退避位置はサセプタ74よりも外方である。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。 FIG. 7 is a plan view of the transfer mechanism 10. FIG. 8 is a side view of the transfer mechanism 10. The transfer mechanism 10 includes two transfer arms 11. The transfer arm 11 has an arcuate shape that follows the generally annular recess 62. Two lift pins 12 are erected on each transfer arm 11. Each transfer arm 11 is rotatable by a horizontal movement mechanism 13. The horizontal movement mechanism 13 includes a transfer operation position (solid line position in FIG. 7) at which the pair of transfer arms 11 transfers the semiconductor wafer W to the holding unit 7 and the semiconductor wafer W held by the holding unit 7. It is horizontally moved to and from the retracted position (the position indicated by the chain double-dashed line in FIG. 7) that does not overlap in plan view. The transfer operation position is below the susceptor 74, and the retracted position is outside the susceptor 74. As the horizontal movement mechanism 13, each transfer arm 11 may be rotated by an individual motor, or a pair of transfer arms 11 may be rotated by one motor using a link mechanism. It may be a moving one.

また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図4,5参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気が処理チャンバー6の外部に排出されるように構成されている。 Further, the pair of transfer arms 11 is moved up and down together with the horizontal movement mechanism 13 by the lifting mechanism 14. When the elevating mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 4 and 5) formed in the susceptor 74 and the lift pins are lifted. The upper end of 12 projects from the upper surface of the susceptor 74. On the other hand, when the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position to extract the lift pin 12 from the through hole 79, and the horizontal moving mechanism 13 moves the pair of transfer arms 11 to open. The transfer arm 11 moves to the retracted position. The retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7. Since the base ring 71 is placed on the bottom surface of the recess 62, the retreat position of the transfer arm 11 is inside the recess 62. An exhaust mechanism (not shown) is also provided in the vicinity of the portion where the drive unit (horizontal moving mechanism 13 and lifting mechanism 14) of the transfer mechanism 10 is provided, and the atmosphere around the drive unit of the transfer mechanism 10 is provided. Are discharged to the outside of the processing chamber 6.

図3に戻り、処理チャンバー6の上方に設けられたフラッシュランプハウス5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュランプハウス5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュランプハウス5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュランプハウス5が処理チャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLは処理チャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。 Returning to FIG. 3, the flash lamp house 5 provided above the processing chamber 6 has a light source including a plurality of (30 in this embodiment) xenon flash lamps FL inside the housing 51, and a light source of the light source. And a reflector 52 provided so as to cover the upper side. A lamp light emitting window 53 is attached to the bottom of the housing 51 of the flash lamp house 5. The lamp light emitting window 53 that forms the floor of the flash lamp house 5 is a plate-shaped quartz window made of quartz. Since the flash lamp house 5 is installed above the processing chamber 6, the lamp light emitting window 53 faces the upper chamber window 63. The flash lamp FL irradiates the heat treatment space 65 with flash light from above the processing chamber 6 through the lamp light emission window 53 and the upper chamber window 63.

複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。 The plurality of flash lamps FL are rod-shaped lamps each having a long cylindrical shape, and each longitudinal direction is along the main surface of the semiconductor wafer W held by the holding portion 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.

キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。 The xenon flash lamp FL is provided with a rod-shaped glass tube (discharge tube) in which xenon gas is sealed inside and an anode and a cathode connected to a condenser are arranged at both ends of the glass tube and an outer peripheral surface of the glass tube. And a triggered electrode. Since xenon gas is an electrical insulator, electricity does not flow in the glass tube in a normal state even if electric charges are accumulated in the capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, electricity stored in the capacitor instantly flows into the glass tube, and light is emitted by the excitation of xenon atoms or molecules at that time. In such a xenon flash lamp FL, since the electrostatic energy stored in the condenser in advance is converted into an extremely short light pulse of 0.1 millisecond to 100 millisecond, continuous lighting such as the halogen lamp HL is performed. It has a feature that it can emit extremely strong light as compared with a light source. That is, the flash lamp FL is a pulse emission lamp that instantaneously emits light in an extremely short time of less than 1 second. The light emission time of the flash lamp FL can be adjusted by the coil constant of the lamp power supply that supplies power to the flash lamp FL.

また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。 Further, the reflector 52 is provided above the plurality of flash lamps FL so as to cover them all. The basic function of the reflector 52 is to reflect the flash light emitted from the plurality of flash lamps FL toward the heat treatment space 65. The reflector 52 is formed of an aluminum alloy plate, and the surface (the surface facing the flash lamp FL) is roughened by blasting.

処理チャンバー6の下方に設けられたハロゲンランプハウス4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。複数のハロゲンランプHLは処理チャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行う。 The halogen lamp house 4 provided below the processing chamber 6 has a plurality of (40 in the present embodiment) halogen lamps HL incorporated inside a housing 41. The halogen lamps HL irradiate the heat treatment space 65 from below the processing chamber 6 through the lower chamber window 64.

図9は、複数のハロゲンランプHLの配置を示す平面図である。本実施形態では、上下2段に各20本ずつのハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。 FIG. 9 is a plan view showing the arrangement of the halogen lamps HL. In this embodiment, 20 halogen lamps HL are provided in each of the upper and lower two stages. Each halogen lamp HL is a rod-shaped lamp having a long cylindrical shape. In both the upper and lower rows, the 20 halogen lamps HL are arranged so that their longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holder 7 (that is, along the horizontal direction). There is. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.

また、図9に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲンランプHLからの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。 Further, as shown in FIG. 9, the arrangement density of the halogen lamps HL is higher in the region facing the peripheral portion than in the region facing the central portion of the semiconductor wafer W held by the holding portion 7 in both the upper and lower stages. There is. That is, in both the upper and lower stages, the halogen lamps HL are arranged at a shorter pitch in the peripheral portion than in the central portion of the lamp array. Therefore, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W, where the temperature tends to decrease during heating by irradiation with light from the halogen lamp HL.

また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段の各ハロゲンランプHLの長手方向と下段の各ハロゲンランプHLの長手方向とが直交するように計40本のハロゲンランプHLが配設されている。 Further, a lamp group including the halogen lamps HL in the upper stage and a lamp group including the halogen lamps HL in the lower stage are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged so that the longitudinal direction of each upper halogen lamp HL and the longitudinal direction of each lower halogen lamp HL are orthogonal to each other.

ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。 The halogen lamp HL is a filament-type light source that energizes the filament disposed inside the glass tube to incandescent the filament to emit light. The glass tube is filled with a gas in which a small amount of a halogen element (iodine, bromine, etc.) is introduced into an inert gas such as nitrogen or argon. By introducing the halogen element, it becomes possible to set the temperature of the filament to a high temperature while suppressing breakage of the filament. Therefore, the halogen lamp HL has a characteristic that it has a long life and can continuously emit strong light as compared with an ordinary incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that continuously emits light for at least 1 second or longer. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life. By arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.

また、ハロゲンランプハウス4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図3)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。 Further, a reflector 43 is provided below the two-stage halogen lamps HL in the housing 41 of the halogen lamp house 4 (FIG. 3). The reflector 43 reflects the light emitted from the plurality of halogen lamps HL toward the heat treatment space 65.

上記の構成以外にも熱処理部160は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲンランプハウス4、フラッシュランプハウス5および処理チャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、処理チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲンランプハウス4およびフラッシュランプハウス5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュランプハウス5および上側チャンバー窓63を冷却する。 In addition to the above configuration, the heat treatment unit 160 prevents an excessive temperature rise of the halogen lamp house 4, the flash lamp house 5 and the processing chamber 6 due to the heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, various cooling structures are provided. For example, the wall of the processing chamber 6 is provided with a water cooling pipe (not shown). Further, the halogen lamp house 4 and the flash lamp house 5 have an air cooling structure that forms a gas flow inside and exhausts heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emitting window 53 to cool the flash lamp house 5 and the upper chamber window 63.

図10は、アライメント部230に設けられた反射率測定部232および制御部3の構成を示す図である。反射率測定部232は、投光部300、受光部235、ハーフミラー236および反射率算定部31を備える。アライメント部230のアライメントチャンバー231内には、半導体ウェハーWを支持して回転させる回転支持部237と当該回転支持部237を回転駆動する回転モータ238とが設けられている。半導体ウェハーWを支持する回転支持部237を回転モータ238が回転させることによって、当該半導体ウェハーWの向きを調整する。 FIG. 10 is a diagram showing the configurations of the reflectance measuring unit 232 and the control unit 3 provided in the alignment unit 230. The reflectance measuring section 232 includes a light projecting section 300, a light receiving section 235, a half mirror 236, and a reflectance calculating section 31. In the alignment chamber 231 of the alignment unit 230, a rotation support unit 237 that supports and rotates the semiconductor wafer W and a rotation motor 238 that rotationally drives the rotation support unit 237 are provided. The rotation motor 238 rotates the rotation support portion 237 that supports the semiconductor wafer W to adjust the orientation of the semiconductor wafer W.

投光部300は、ハロゲン光源やLED光源等の光源を備えて反射率測定用の光を出射する。受光部235は受光した光の強度を電気信号に変換する受光素子を備える。投光部300から出射された光はハーフミラー236によって反射されて回転支持部237に支持された半導体ウェハーWの上面に垂直に照射される。投光部300から照射された光は半導体ウェハーWの上面にて反射される。その反射光はハーフミラー236を透過して受光部235によって受光される。制御部3の反射率算定部31は、受光部235が受光した反射光の強度に基づいて半導体ウェハーWの上面の反射率を算定する。なお、投光部300は、照射する波長域の異なる複数の光源を備えていても良いし、半導体ウェハーWの上面の複数箇所に光を照射するものであっても良い。投光部300が波長域の異なる複数の光源を備えていれば、広域波長にわたって半導体ウェハーWの反射率を測定することができる。また、半導体ウェハーWの上面の複数箇所に光を照射すれば、局所的なパターン依存性を軽減することが可能となる。 The light projecting unit 300 includes a light source such as a halogen light source or an LED light source and emits light for reflectance measurement. The light receiving section 235 includes a light receiving element that converts the intensity of the received light into an electric signal. The light emitted from the light projecting unit 300 is reflected by the half mirror 236 and is vertically irradiated onto the upper surface of the semiconductor wafer W supported by the rotation supporting unit 237. The light emitted from the light projecting unit 300 is reflected on the upper surface of the semiconductor wafer W. The reflected light passes through the half mirror 236 and is received by the light receiving section 235. The reflectance calculator 31 of the controller 3 calculates the reflectance of the upper surface of the semiconductor wafer W based on the intensity of the reflected light received by the light receiver 235. The light projecting unit 300 may be provided with a plurality of light sources having different irradiation wavelength ranges, or may be one that emits light to a plurality of locations on the upper surface of the semiconductor wafer W. If the light projecting unit 300 includes a plurality of light sources having different wavelength ranges, the reflectance of the semiconductor wafer W can be measured over a wide wavelength range. Further, by irradiating light on a plurality of locations on the upper surface of the semiconductor wafer W, it becomes possible to reduce local pattern dependence.

制御部3は、熱処理装置100に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置100における処理が進行する。反射率算定部31、比較部35および発報部36は、制御部3のCPUが所定の処理プログラムを実行することによって実現される機能処理部である。比較部35および発報部36の処理内容についてはさらに後述する。なお、図1においては、インデクサ部101内に制御部3を示しているが、これに限定されるものではなく、制御部3は熱処理装置100内の任意の位置に配置することができる。 The control unit 3 controls the above-described various operating mechanisms provided in the heat treatment apparatus 100. The hardware configuration of the control unit 3 is similar to that of a general computer. That is, the control unit 3 includes a CPU that is a circuit that performs various arithmetic processes, a ROM that is a read-only memory that stores a basic program, a RAM that is a readable/writable memory that stores various information, and control software and data. It is equipped with a magnetic disk for storage. The processing in the heat treatment apparatus 100 progresses as the CPU of the control unit 3 executes a predetermined processing program. The reflectance calculation unit 31, the comparison unit 35, and the reporting unit 36 are functional processing units implemented by the CPU of the control unit 3 executing a predetermined processing program. The processing contents of the comparison unit 35 and the reporting unit 36 will be described later. Although the control unit 3 is shown in the indexer unit 101 in FIG. 1, the present invention is not limited to this, and the control unit 3 can be arranged at any position in the heat treatment apparatus 100.

また、制御部3には表示部34および入力部33が接続されている。制御部3は、表示部34に種々の情報を表示する。熱処理装置100のオペレータは、表示部34に表示された情報を確認しつつ、入力部33から種々のコマンドやパラメータを入力することができる。入力部33としては、例えばキーボードやマウスを用いることができる。表示部34としては、例えば液晶ディスプレイを用いることができる。本実施形態においては、表示部34および入力部33として、熱処理装置100の外壁に設けられた液晶のタッチパネルを採用して双方の機能を併せ持たせるようにしている。 A display unit 34 and an input unit 33 are connected to the control unit 3. The control unit 3 displays various information on the display unit 34. The operator of the heat treatment apparatus 100 can input various commands and parameters from the input unit 33 while confirming the information displayed on the display unit 34. As the input unit 33, for example, a keyboard or a mouse can be used. As the display unit 34, for example, a liquid crystal display can be used. In the present embodiment, as the display unit 34 and the input unit 33, a liquid crystal touch panel provided on the outer wall of the heat treatment apparatus 100 is adopted so as to have both functions.

次に、本発明に係る熱処理装置100の処理動作について説明する。ここでは、まず製品となる通常の半導体ウェハー(プロダクトウェハー)Wに対する典型的な処理動作について説明する。処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置100によるフラッシュ光照射加熱処理(アニール)により実行される。 Next, the processing operation of the heat treatment apparatus 100 according to the present invention will be described. Here, first, a typical processing operation for an ordinary semiconductor wafer (product wafer) W as a product will be described. The semiconductor wafer W to be processed is a semiconductor substrate to which impurities (ions) have been added by the ion implantation method. The activation of the impurities is performed by a flash light irradiation heat treatment (annealing) by the heat treatment device 100.

まず、不純物が注入された未処理の半導体ウェハーWがキャリアCに複数枚収容された状態でインデクサ部101のロードポート110に載置される。そして、受渡ロボット120がキャリアCから未処理の半導体ウェハーWを1枚ずつ取り出し、アライメント部230のアライメントチャンバー231に搬入する。アライメントチャンバー231では、回転支持部237に支持した半導体ウェハーWをその中心部を回転中心として水平面内にて鉛直方向軸まわりで回転させ、ノッチ等を光学的に検出することによって半導体ウェハーWの向きを調整する。 First, a plurality of unprocessed semiconductor wafers W into which impurities have been injected are placed on the load port 110 of the indexer unit 101 in a state of being housed in a plurality of carriers C. Then, the delivery robot 120 takes out the unprocessed semiconductor wafers W one by one from the carrier C and carries them into the alignment chamber 231 of the alignment section 230. In the alignment chamber 231, the semiconductor wafer W supported by the rotation support portion 237 is rotated around a vertical axis in a horizontal plane with its center being the center of rotation, and the orientation of the semiconductor wafer W is detected by optically detecting notches and the like. Adjust.

次に、インデクサ部101の受渡ロボット120がアライメントチャンバー231から向きの調整された半導体ウェハーWを取り出し、冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。第1クールチャンバー131または第2クールチャンバー141に搬入された未処理の半導体ウェハーWは搬送ロボット150によって搬送チャンバー170に搬出される。未処理の半導体ウェハーWがインデクサ部101から第1クールチャンバー131または第2クールチャンバー141を経て搬送チャンバー170に移送される際には、第1クールチャンバー131および第2クールチャンバー141は半導体ウェハーWの受け渡しのためのパスとして機能するのである。 Next, the delivery robot 120 of the indexer unit 101 takes out the semiconductor wafer W whose orientation is adjusted from the alignment chamber 231, and carries it into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140. The unprocessed semiconductor wafer W loaded into the first cool chamber 131 or the second cool chamber 141 is unloaded into the transfer chamber 170 by the transfer robot 150. When the unprocessed semiconductor wafer W is transferred from the indexer unit 101 to the transfer chamber 170 via the first cool chamber 131 or the second cool chamber 141, the first cool chamber 131 and the second cool chamber 141 are not connected to each other. Function as a pass for the delivery of.

半導体ウェハーWを取り出した搬送ロボット150は熱処理部160を向くように旋回する。続いて、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を開放し、搬送ロボット150が未処理の半導体ウェハーWを処理チャンバー6に搬入する。このときに、先行する加熱処理済みの半導体ウェハーWが処理チャンバー6に存在している場合には、搬送ハンド151a,151bの一方によって加熱処理後の半導体ウェハーWを取り出してから未処理の半導体ウェハーWを処理チャンバー6に搬入してウェハー入れ替えを行う。その後、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を閉鎖する。 The transfer robot 150 that has taken out the semiconductor wafer W revolves so as to face the heat treatment section 160. Subsequently, the gate valve 185 opens the space between the processing chamber 6 and the transfer chamber 170, and the transfer robot 150 loads the unprocessed semiconductor wafer W into the processing chamber 6. At this time, if the preceding heat-treated semiconductor wafer W is present in the processing chamber 6, the heat-treated semiconductor wafer W is taken out by one of the transfer hands 151a and 151b, and then the untreated semiconductor wafer W is removed. W is carried into the processing chamber 6 and the wafers are exchanged. After that, the gate valve 185 closes the gap between the processing chamber 6 and the transfer chamber 170.

処理チャンバー6に搬入された半導体ウェハーWには、ハロゲンランプHLによって予備加熱が行われた後、フラッシュランプFLからのフラッシュ光照射によってフラッシュ加熱処理が行われる。このフラッシュ加熱処理により半導体ウェハーWに注入された不純物の活性化が行われる。 The semiconductor wafer W loaded into the processing chamber 6 is preheated by the halogen lamp HL, and then flash-heated by irradiation with flash light from the flash lamp FL. This flash heat treatment activates the impurities implanted in the semiconductor wafer W.

フラッシュ加熱処理が終了した後、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を再び開放し、搬送ロボット150が処理チャンバー6からフラッシュ加熱処理後の半導体ウェハーWを搬送チャンバー170に搬出する。半導体ウェハーWを取り出した搬送ロボット150は、処理チャンバー6から第1クールチャンバー131または第2クールチャンバー141に向くように旋回する。また、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を閉鎖する。 After the flash heating process is completed, the gate valve 185 reopens the space between the processing chamber 6 and the transfer chamber 170, and the transfer robot 150 carries out the semiconductor wafer W after the flash heating process from the processing chamber 6 to the transfer chamber 170. .. The transfer robot 150 that has taken out the semiconductor wafer W revolves from the processing chamber 6 toward the first cool chamber 131 or the second cool chamber 141. Further, the gate valve 185 closes the gap between the processing chamber 6 and the transfer chamber 170.

その後、搬送ロボット150が加熱処理後の半導体ウェハーWを冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。このとき、当該半導体ウェハーWが加熱処理前に第1クールチャンバー131を通ってきている場合には加熱処理後にも第1クールチャンバー131に搬入され、加熱処理前に第2クールチャンバー141を通ってきている場合には加熱処理後にも第2クールチャンバー141に搬入される。第1クールチャンバー131または第2クールチャンバー141では、フラッシュ加熱処理後の半導体ウェハーWの冷却処理が行われる。熱処理部160の処理チャンバー6から搬出された時点での半導体ウェハーW全体の温度は比較的高温であるため、これを第1クールチャンバー131または第2クールチャンバー141にて常温近傍にまで冷却するのである。 Then, the transfer robot 150 carries the semiconductor wafer W after the heat treatment into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140. At this time, when the semiconductor wafer W has passed through the first cool chamber 131 before the heat treatment, it is carried into the first cool chamber 131 even after the heat treatment, and passes through the second cool chamber 141 before the heat treatment. In that case, it is carried into the second cool chamber 141 even after the heat treatment. In the first cool chamber 131 or the second cool chamber 141, the cooling process of the semiconductor wafer W after the flash heating process is performed. Since the temperature of the entire semiconductor wafer W is relatively high at the time of being unloaded from the processing chamber 6 of the heat treatment unit 160, it is cooled to near room temperature in the first cool chamber 131 or the second cool chamber 141. is there.

所定の冷却処理時間が経過した後、受渡ロボット120が冷却後の半導体ウェハーWを第1クールチャンバー131または第2クールチャンバー141から搬出し、キャリアCへと返却する。キャリアCに所定枚数の処理済み半導体ウェハーWが収容されると、そのキャリアCはインデクサ部101のロードポート110から搬出される。 After the elapse of a predetermined cooling processing time, the delivery robot 120 carries out the cooled semiconductor wafer W from the first cool chamber 131 or the second cool chamber 141 and returns it to the carrier C. When a predetermined number of processed semiconductor wafers W are stored in the carrier C, the carrier C is unloaded from the load port 110 of the indexer unit 101.

熱処理部160における加熱処理について説明を続ける。処理チャンバー6への半導体ウェハーWの搬入に先立って、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されて処理チャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86から処理チャンバー6内の気体が排気される。これにより、処理チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。 The description of the heat treatment in the heat treatment section 160 will be continued. Prior to the loading of the semiconductor wafer W into the processing chamber 6, the valve 84 for air supply is opened, and the valves 89, 192 for gas exhaust are opened to start air supply/exhaust to/from the processing chamber 6. When the valve 84 is opened, nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65. Further, when the valve 89 is opened, the gas in the processing chamber 6 is exhausted from the gas exhaust hole 86. As a result, the nitrogen gas supplied from the upper portion of the heat treatment space 65 in the processing chamber 6 flows downward and is exhausted from the lower portion of the heat treatment space 65.

また、バルブ192が開放されることによって、搬送開口部66からも処理チャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理部160における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。 Further, by opening the valve 192, the gas in the processing chamber 6 is also exhausted from the transfer opening 66. Further, the atmosphere around the drive unit of the transfer mechanism 10 is also exhausted by an exhaust mechanism (not shown). It should be noted that nitrogen gas is continuously supplied to the heat treatment space 65 during the heat treatment of the semiconductor wafer W in the heat treatment unit 160, and the supply amount thereof is appropriately changed according to the treatment process.

続いて、ゲートバルブ185が開いて搬送開口部66が開放され、搬送ロボット150により搬送開口部66を介して処理対象となる半導体ウェハーWが処理チャンバー6内の熱処理空間65に搬入される。搬送ロボット150は、未処理の半導体ウェハーWを保持する搬送ハンド151a(または搬送ハンド151b)を保持部7の直上位置まで進出させて停止させる。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。 Then, the gate valve 185 is opened and the transfer opening 66 is opened, and the semiconductor wafer W to be processed is carried into the heat treatment space 65 in the processing chamber 6 by the transfer robot 150 through the transfer opening 66. The transfer robot 150 advances the transfer hand 151 a (or the transfer hand 151 b) holding the unprocessed semiconductor wafer W to a position directly above the holding unit 7 and stops it. Then, the pair of transfer arms 11 of the transfer mechanism 10 horizontally moves from the retracted position to the transfer operation position and rises, so that the lift pin 12 projects from the upper surface of the holding plate 75 of the susceptor 74 through the through hole 79. And receives the semiconductor wafer W. At this time, the lift pins 12 rise above the upper ends of the substrate support pins 77.

未処理の半導体ウェハーWがリフトピン12に載置された後、搬送ロボット150が搬送ハンド151aを熱処理空間65から退出させ、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。 After the unprocessed semiconductor wafer W is placed on the lift pins 12, the transfer robot 150 causes the transfer hand 151 a to exit the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185. Then, when the pair of transfer arms 11 descends, the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and held from below in a horizontal posture. The semiconductor wafer W is supported by a plurality of substrate support pins 77 provided upright on a holding plate 75 and held by the susceptor 74. Further, the semiconductor wafer W is held by the holding unit 7 with the surface on which the pattern is formed and the impurities are injected as the upper surface. A predetermined space is formed between the back surface (main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75 a of the holding plate 75. The pair of transfer arms 11 descending below the susceptor 74 are retracted by the horizontal movement mechanism 13 to the retracted position, that is, inside the recess 62.

半導体ウェハーWが保持部7のサセプタ74によって水平姿勢にて下方より保持された後、40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。 After the semiconductor wafer W is horizontally held by the susceptor 74 of the holding unit 7 from below, the 40 halogen lamps HL are turned on all at once and preheating (assisted heating) is started. The halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 made of quartz and is irradiated from the lower surface of the semiconductor wafer W. The semiconductor wafer W is preheated by the light irradiation from the halogen lamp HL, and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the recess 62, it does not hinder the heating by the halogen lamp HL.

ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計20による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、600℃ないし800℃程度とされる(本実施の形態では700℃)。 When performing preheating by the halogen lamp HL, the temperature of the semiconductor wafer W is measured by the radiation thermometer 20. That is, the infrared thermometer 20 receives infrared light emitted from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78, and measures the wafer temperature during the temperature rise. The measured temperature of the semiconductor wafer W is transmitted to the controller 3. The control unit 3 controls the output of the halogen lamp HL while monitoring whether the temperature of the semiconductor wafer W, which is heated by the light irradiation from the halogen lamp HL, reaches a predetermined preheating temperature T1. That is, the control unit 3 feedback-controls the output of the halogen lamp HL based on the value measured by the radiation thermometer 20 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1. The preheating temperature T1 is set to about 600° C. to 800° C. (700° C. in the present embodiment) at which the impurities added to the semiconductor wafer W are not likely to diffuse by heat.

半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計20によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。 After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the controller 3 maintains the semiconductor wafer W at the preheating temperature T1 for a while. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 20 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL, and the temperature of the semiconductor wafer W is almost spared. The heating temperature T1 is maintained.

このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲンランプハウス4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。 By performing such preheating with the halogen lamp HL, the entire semiconductor wafer W is uniformly heated to the preheating temperature T1. At the stage of preheating by the halogen lamp HL, the temperature of the peripheral portion of the semiconductor wafer W, which is more likely to release heat, tends to be lower than that of the central portion, but the arrangement density of the halogen lamps HL in the halogen lamp house 4 is The region facing the peripheral portion is higher than the region facing the central portion of the semiconductor wafer W. For this reason, the amount of light applied to the peripheral portion of the semiconductor wafer W where heat dissipation easily occurs increases, and the in-plane temperature distribution of the semiconductor wafer W in the preheating stage can be made uniform.

半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュランプFLが半導体ウェハーWの表面にフラッシュ光照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接に処理チャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてから処理チャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。 When the temperature of the semiconductor wafer W reaches the preheating temperature T1 and a predetermined time has elapsed, the flash lamp FL irradiates the surface of the semiconductor wafer W with flash light. At this time, a part of the flash light emitted from the flash lamp FL goes directly into the processing chamber 6, and another part of the flash light is once reflected by the reflector 52 and then goes into the processing chamber 6, and these flashes are emitted. The semiconductor wafer W is flash-heated by the irradiation of light.

フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、フラッシュ加熱では半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。 Since the flash heating is performed by irradiating flash light (flash light) from the flash lamp FL, the surface temperature of the semiconductor wafer W can be raised in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy stored in the condenser in advance is extremely short, and the irradiation time is extremely short such as 0.1 millisecond or more and 100 millisecond or less. It is a strong flash. Then, the surface temperature of the semiconductor wafer W flash-heated by the irradiation of the flash light from the flash lamp FL instantaneously rises to the processing temperature T2 of 1000° C. or higher, and the impurities implanted in the semiconductor wafer W are activated. After that, the surface temperature drops rapidly. In this way, since the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time by flash heating, it is possible to activate the impurities while suppressing the diffusion of the impurities injected into the semiconductor wafer W due to heat. .. Since the time required for activation of impurities is extremely short as compared with the time required for thermal diffusion thereof, activation is not performed even in a short time in which diffusion of about 0.1 millisecond to 100 millisecond does not occur. Complete.

フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計20の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された処理後の半導体ウェハーWが搬送ロボット150の搬送ハンド151b(または搬送ハンド151a)により搬出される。搬送ロボット150は、搬送ハンド151bをリフトピン12によって突き上げられた半導体ウェハーWの直下位置にまで進出させて停止させる。そして、一対の移載アーム11が下降することにより、フラッシュ加熱後の半導体ウェハーWが搬送ハンド151bに渡されて載置される。その後、搬送ロボット150が搬送ハンド151bを処理チャンバー6から退出させて処理後の半導体ウェハーWを搬出する。 After the flash heating process is completed, the halogen lamp HL is turned off after a predetermined time has elapsed. As a result, the semiconductor wafer W is rapidly cooled from the preheating temperature T1. The temperature of the semiconductor wafer W during cooling is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3. The control unit 3 monitors whether or not the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20. Then, after the temperature of the semiconductor wafer W is lowered to a predetermined temperature or lower, the pair of transfer arms 11 of the transfer mechanism 10 again horizontally moves from the retracted position to the transfer operation position and rises, whereby the lift pin 12 is lifted. The semiconductor wafer W that has protruded from the upper surface of 74 and has undergone the heat treatment is received from the susceptor 74. Then, the transfer opening 66 closed by the gate valve 185 is opened, and the processed semiconductor wafer W placed on the lift pins 12 is unloaded by the transfer hand 151b (or the transfer hand 151a) of the transfer robot 150. It The transfer robot 150 advances the transfer hand 151b to a position directly below the semiconductor wafer W pushed up by the lift pins 12 and stops it. Then, when the pair of transfer arms 11 descend, the semiconductor wafer W after the flash heating is transferred to and placed on the transfer hand 151b. After that, the transfer robot 150 moves the transfer hand 151b out of the processing chamber 6 and carries out the processed semiconductor wafer W.

次に、反射率に基づく半導体ウェハーWの検査方法について説明する。図11は、反射率に基づく半導体ウェハーWの検査方法の手順を示すフローチャートである。まず、熱処理装置100にロットが搬入される(ステップS1)。ロットとは、同一条件にて同一内容の処理を行う対象となる1組の半導体ウェハーWである。具体的には、ロットを構成する複数(本実施形態では25枚)の半導体ウェハーWがキャリアCに収容された状態でインデクサ部101のロードポート110に載置される。 Next, a method of inspecting the semiconductor wafer W based on the reflectance will be described. FIG. 11 is a flowchart showing the procedure of the method for inspecting the semiconductor wafer W based on the reflectance. First, a lot is carried into the heat treatment apparatus 100 (step S1). A lot is a set of semiconductor wafers W to be processed under the same conditions with the same contents. Specifically, a plurality (25 in this embodiment) of semiconductor wafers W constituting a lot are placed in the load port 110 of the indexer unit 101 in a state of being accommodated in the carrier C.

キャリアCがロードポート110に載置されると、図12に示すような画面が表示部34に表示される。図12に示すように、表示画面には、キャリアCのキャリアIDとともに、キャリアCに収容されている25枚の半導体ウェハーWの全てについて、予想反射率(Predict)の入力ボックス、実測反射率(Reflect)の表示ボックスおよびレシピ(Recipe)の表示ボックスが表示される。 When the carrier C is placed on the load port 110, a screen as shown in FIG. 12 is displayed on the display unit 34. As shown in FIG. 12, on the display screen, together with the carrier ID of the carrier C, with respect to all of the 25 semiconductor wafers W accommodated in the carrier C, the input box of the predicted reflectance (Predict), the measured reflectance ( The Reflect display box and the Recipe display box are displayed.

熱処理装置100のオペレータは、入力部33および表示部34として機能するタッチパネルから予想反射率の入力ボックスに予想反射率を入力する(ステップS2)。キャリアCに収容されて熱処理装置100に搬入される半導体ウェハーWに形成されている膜やパターンは判明しており、その膜種等に応じた反射率も既知である。よって、オペレータは、搬入される半導体ウェハーWに形成されている膜種等に応じた反射率を予想反射率として入力するのである。入力された予想反射率は、図12に示す予想反射率の入力ボックスに表示される。 The operator of the heat treatment apparatus 100 inputs the expected reflectance into the input box of the expected reflectance from the touch panel functioning as the input unit 33 and the display unit 34 (step S2). The film or pattern formed on the semiconductor wafer W that is housed in the carrier C and carried into the heat treatment apparatus 100 is known, and the reflectance according to the film type or the like is also known. Therefore, the operator inputs the reflectance according to the film type or the like formed on the semiconductor wafer W to be carried in as the expected reflectance. The input expected reflectance is displayed in the expected reflectance input box shown in FIG.

次に、キャリアCに収容されている複数の半導体ウェハーWのそれぞれの反射率を測定する(ステップS3)。具体的には、受渡ロボット120がキャリアCから半導体ウェハーWを1枚ずつ取り出し、アライメント部230のアライメントチャンバー231に搬入する。アライメントチャンバー231では、半導体ウェハーWが回転支持部237(図10)によって支持される。反射率測定部232の投光部300から出射された光はハーフミラー236によって反射されて半導体ウェハーWの表面に入射角0°にて照射される。投光部300から照射された光は半導体ウェハーWの表面にて反射され、その反射光はハーフミラー236を透過して受光部235によって受光されてその強度が測定される。これにより、半導体ウェハーWの反射光強度が取得される。 Next, the reflectance of each of the plurality of semiconductor wafers W accommodated in the carrier C is measured (step S3). Specifically, the delivery robot 120 takes out the semiconductor wafers W one by one from the carrier C and carries them into the alignment chamber 231 of the alignment unit 230. In the alignment chamber 231, the semiconductor wafer W is supported by the rotation support part 237 (FIG. 10). The light emitted from the light projecting unit 300 of the reflectance measuring unit 232 is reflected by the half mirror 236 and is irradiated onto the surface of the semiconductor wafer W at an incident angle of 0°. The light emitted from the light projecting unit 300 is reflected on the surface of the semiconductor wafer W, and the reflected light is transmitted through the half mirror 236 and is received by the light receiving unit 235, and the intensity thereof is measured. Thereby, the reflected light intensity of the semiconductor wafer W is acquired.

また、制御部3の記憶部には、パターン形成やイオン注入のなされていないシリコンのベアウェハーについて上記と同様の手法によって反射率測定部232が予め測定した反射光強度が格納されている。反射率算定部31は、ベアウェハーの反射光強度をリファレンスとし、受光部235が取得した半導体ウェハーWの反射光強度をベアウェハーの反射光強度で除することによって半導体ウェハーWの表面の反射率を算定する。すなわち、本実施形態においては、ベアウェハーに対する半導体ウェハーWの相対反射率を算定するのである。このようにして反射率測定部232によって測定された半導体ウェハーWの反射率は制御部3の記憶部に記憶されるとともに、図12に示す実測反射率の表示ボックスに表示される。 Further, the storage unit of the control unit 3 stores the reflected light intensity measured in advance by the reflectance measuring unit 232 in the same manner as described above for a bare silicon wafer on which pattern formation or ion implantation is not performed. The reflectance calculating unit 31 calculates the reflectance of the surface of the semiconductor wafer W by dividing the reflected light intensity of the semiconductor wafer W acquired by the light receiving unit 235 by the reflected light intensity of the bare wafer using the reflected light intensity of the bare wafer as a reference. To do. That is, in this embodiment, the relative reflectance of the semiconductor wafer W with respect to the bare wafer is calculated. The reflectance of the semiconductor wafer W thus measured by the reflectance measuring unit 232 is stored in the storage unit of the control unit 3 and displayed in the actual reflectance display box shown in FIG.

反射率測定が終了した後、受渡ロボット120がアライメントチャンバー231から測定後の半導体ウェハーWを取り出してロードポート110のキャリアCに戻す。すなわち、上述した通常の半導体ウェハーWの処理では、アライメントチャンバー231から取り出した半導体ウェハーWを第1クールチャンバー131または第2クールチャンバー141を経て処理チャンバー6に搬送していたところ、図11のシーケンスではアライメントチャンバー231から取り出した半導体ウェハーWを直接元のキャリアCに戻しているのである。このように、本実施形態の熱処理装置100には、半導体ウェハーWの反射率を測定するための専用の搬送モードが搭載されている。その搬送モードでは、キャリアCから取り出した半導体ウェハーWをアライメントチャンバー231に搬入して反射率測定を行い、その後アライメントチャンバー231から搬出した半導体ウェハーWを直接にキャリアCに戻している。この専用の搬送モードでは、半導体ウェハーWを処理チャンバー6まで搬送しないため、半導体ウェハーWの反射率測定を短時間で行うことができる。 After the reflectance measurement is completed, the delivery robot 120 takes out the measured semiconductor wafer W from the alignment chamber 231, and returns it to the carrier C of the load port 110. That is, in the above-described normal processing of the semiconductor wafer W, the semiconductor wafer W taken out from the alignment chamber 231 was transferred to the processing chamber 6 via the first cool chamber 131 or the second cool chamber 141, and the sequence of FIG. Then, the semiconductor wafer W taken out from the alignment chamber 231 is directly returned to the original carrier C. As described above, the heat treatment apparatus 100 of the present embodiment is equipped with the dedicated transfer mode for measuring the reflectance of the semiconductor wafer W. In the transfer mode, the semiconductor wafer W taken out from the carrier C is carried into the alignment chamber 231, the reflectance is measured, and then the semiconductor wafer W carried out from the alignment chamber 231 is directly returned to the carrier C. In this dedicated transfer mode, since the semiconductor wafer W is not transferred to the processing chamber 6, the reflectance of the semiconductor wafer W can be measured in a short time.

ステップS3の反射率測定は、キャリアCに収容されている複数の半導体ウェハーWの全てに対して順次に実行される。すなわち、キャリアCに収容されている複数の半導体ウェハーWは順次にアライメントチャンバー231に搬送されて反射率が測定され、測定後に順次に元のキャリアCに戻される。複数の半導体ウェハーWについて測定された反射率は順次に表示部34に表示される。 The reflectance measurement in step S3 is sequentially performed on all of the plurality of semiconductor wafers W accommodated in the carrier C. That is, the plurality of semiconductor wafers W accommodated in the carrier C are sequentially transferred to the alignment chamber 231, the reflectance is measured, and after the measurement, the semiconductor wafers W are sequentially returned to the original carrier C. The reflectance measured for the plurality of semiconductor wafers W is sequentially displayed on the display unit 34.

キャリアCに収容されている全ての半導体ウェハーWの反射率測定が完了した後、制御部3の比較部35がステップS2で入力された予想反射率とステップS3で測定された実測反射率とを比較する(ステップS4)。具体的には、予想反射率に対する許容範囲(例えば、予想反射率に対して±3%)が予め装置パラメータとして制御部3の記憶部に格納されている。この許容範囲は、熱処理装置100のオペレータが適宜に任意の値に変更することも可能である。 After the reflectance measurement of all the semiconductor wafers W accommodated in the carrier C is completed, the comparison unit 35 of the control unit 3 compares the expected reflectance input in step S2 and the actually measured reflectance measured in step S3. The comparison is made (step S4). Specifically, a permissible range with respect to the expected reflectance (for example, ±3% with respect to the expected reflectance) is stored in advance in the storage unit of the control unit 3 as a device parameter. This allowable range can be appropriately changed by the operator of the heat treatment apparatus 100 to an arbitrary value.

比較部35は、半導体ウェハーWの実測反射率が予想反射率の許容範囲内に収まっているか否かを判定する(ステップS5)。半導体ウェハーWの実測反射率が予想反射率の許容範囲内に収まっていない場合、つまり実測反射率が予想反射率から所定範囲を超えて離れている場合には、ステップS5からステップS6に進み、発報部36が警告を発報する。例えば、発報部36は、半導体ウェハーWの実測反射率が予想反射率から乖離している旨を表示部34に表示する。或いは、オペレータが認識しやすいよう、発報部36は点灯や点滅等を行っても良い。さらには、発報部36は警報音とともに警告を表示するようにしても良い。 The comparison unit 35 determines whether the actually measured reflectance of the semiconductor wafer W is within the allowable range of the expected reflectance (step S5). If the actually measured reflectance of the semiconductor wafer W is not within the allowable range of the expected reflectance, that is, if the actually measured reflectance deviates from the expected reflectance by more than a predetermined range, the process proceeds from step S5 to step S6. The reporting unit 36 issues a warning. For example, the reporting unit 36 displays on the display unit 34 that the actually measured reflectance of the semiconductor wafer W deviates from the expected reflectance. Alternatively, the alarm unit 36 may be turned on or blinked so that the operator can easily recognize it. Furthermore, the reporting unit 36 may display a warning together with a warning sound.

一方、半導体ウェハーWの実測反射率が予想反射率の許容範囲内に収まっている場合には、ステップS5からステップS7に進み、キャリアCに収容されている半導体ウェハーWの処理を開始する。各半導体ウェハーWには、図12にて設定されたレシピに従って上述した手順にて処理が実行される。 On the other hand, when the actually measured reflectance of the semiconductor wafer W is within the allowable range of the expected reflectance, the process proceeds from step S5 to step S7, and the processing of the semiconductor wafer W accommodated in the carrier C is started. The processing is performed on each semiconductor wafer W in the procedure described above according to the recipe set in FIG.

本実施形態においては、半導体ウェハーWの実測反射率と予想反射率とを比較し、実測反射率が予想反射率の許容範囲から外れている場合にはアラームを発報するようにしている。実測反射率が予想反射率の許容範囲から外れている場合は、キャリアCに収容されて熱処理装置100に搬入された半導体ウェハーWが正常ではない場合、例えば予定とは異なる膜種等が形成されている、或いは予定の膜種ではあるが異常な膜厚となっているような場合である。本実施形態では、実測反射率が予想反射率の許容範囲から外れている場合にはアラームを発報しているため、正常ではない半導体ウェハーWを的確に検出することができ、そのような正常ではない半導体ウェハーWに対する誤処理を未然に防止することができる。 In this embodiment, the actually measured reflectance of the semiconductor wafer W is compared with the expected reflectance, and an alarm is issued if the actually measured reflectance is out of the allowable range of the expected reflectance. When the actually measured reflectance is out of the allowable range of the expected reflectance, when the semiconductor wafer W accommodated in the carrier C and carried into the heat treatment apparatus 100 is not normal, for example, a film type different from the expected one is formed. Or the film thickness is an expected film type but has an abnormal film thickness. In the present embodiment, when the actually measured reflectance is out of the allowable range of the expected reflectance, an alarm is issued. Therefore, an abnormal semiconductor wafer W can be accurately detected, and such a normality can be detected. It is possible to prevent erroneous processing of the semiconductor wafer W which is not.

以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、キャリアCに収容されている全ての半導体ウェハーWに個別に予想反射率を入力していたが、これに限定されるものではない。典型的には、1つのキャリアCには同一条件にて同一内容の処理を行う対象となる複数の半導体ウェハーWが収容されているため、このような場合にはキャリアCに収容されている複数の半導体ウェハーWに対して共通の予想反射率を1つ入力するようにしても良い。 Although the embodiments of the present invention have been described above, the present invention can be modified in various ways other than those described above without departing from the spirit of the invention. For example, in the above-described embodiment, the expected reflectance is individually input to all the semiconductor wafers W accommodated in the carrier C, but the present invention is not limited to this. Typically, one carrier C contains a plurality of semiconductor wafers W to be subjected to the same processing under the same conditions, and in such a case, a plurality of semiconductor wafers W contained in the carrier C are contained. It is also possible to input one common expected reflectance for the semiconductor wafer W.

また、実測反射率を測定しての予想反射率との比較判定はキャリアCに収容されている全ての半導体ウェハーWについて行う必要はなく、一部の半導体ウェハーWのみについて行うようにしても良い。この場合、一部の半導体ウェハーWに対してサンプリング検査が行われることとなる。 Further, the comparison judgment with the expected reflectance obtained by measuring the actually measured reflectance does not have to be performed for all the semiconductor wafers W accommodated in the carrier C, but may be performed for only some of the semiconductor wafers W. .. In this case, a sampling inspection is performed on some of the semiconductor wafers W.

また、上記実施形態においては、反射率測定部232をアライメントチャンバー231に設けていたが、これに限定されるものではなく、反射率測定部232を半導体ウェハーWの搬送経路上の任意の位置(例えば、第1クールチャンバー131または第2クールチャンバー141)に設けるようにしても良い。 Further, in the above-described embodiment, the reflectance measuring section 232 is provided in the alignment chamber 231, but the present invention is not limited to this, and the reflectance measuring section 232 may be provided at any position on the transfer path of the semiconductor wafer W ( For example, it may be provided in the first cool chamber 131 or the second cool chamber 141).

また、上記実施形態においては、フラッシュランプハウス5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲンランプハウス4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。 Further, in the above-described embodiment, the flash lamp house 5 is provided with 30 flash lamps FL, but the number is not limited to this, and the number of flash lamps FL can be any number. . Further, the flash lamp FL is not limited to the xenon flash lamp and may be a krypton flash lamp. Further, the number of halogen lamps HL provided in the halogen lamp house 4 is not limited to 40, and may be any number.

また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。 In the above embodiment, the filament type halogen lamp HL is used as the continuous lighting lamp that continuously emits light for 1 second or more to preheat the semiconductor wafer W, but the present invention is not limited to this. Instead of the halogen lamp HL, a discharge type arc lamp (for example, a xenon arc lamp) may be used as a continuous lighting lamp for preheating.

また、熱処理装置100によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。 Further, the substrate to be processed by the heat treatment apparatus 100 is not limited to the semiconductor wafer, and may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell.

3 制御部
4 ハロゲンランプハウス
5 フラッシュランプハウス
6 処理チャンバー
7 保持部
10 移載機構
31 反射率算定部
33 入力部
34 表示部
35 比較部
36 発報部
65 熱処理空間
74 サセプタ
100 熱処理装置
101 インデクサ部
120 受渡ロボット
130,140 冷却部
150 搬送ロボット
151a,151b 搬送ハンド
160 熱処理部
231 アライメントチャンバー
232 反射率測定部
FL フラッシュランプ
HL ハロゲンランプ
W 半導体ウェハー
3 Control Section 4 Halogen Lamp House 5 Flash Lamp House 6 Processing Chamber 7 Holding Section 10 Transfer Mechanism 31 Reflectance Calculation Section 33 Input Section 34 Display Section 35 Comparing Section 36 Reporting Section 65 Heat Treatment Space 74 Susceptor 100 Heat Treatment Equipment 101 Indexer Section 120 delivery robot 130, 140 cooling unit 150 transfer robot 151a, 151b transfer hand 160 heat treatment unit 231 alignment chamber 232 reflectance measurement unit FL flash lamp HL halogen lamp W semiconductor wafer

Claims (2)

基板に光を照射することによって該基板を加熱する熱処理方法であって、
処理対象となる基板の予想反射率を入力する入力工程と、
前記基板の反射率を測定する反射率測定工程と、
前記反射率測定工程にて測定された反射率と前記予想反射率とを比較する比較工程と、
前記反射率測定工程にて測定された反射率が前記予想反射率から所定範囲を超えて離れているときに警告を発報する発報工程と、
を備えることを特徴とする熱処理方法。
A heat treatment method of heating a substrate by irradiating the substrate with light, comprising:
An input step of inputting the expected reflectance of the substrate to be processed,
A reflectance measurement step of measuring the reflectance of the substrate,
A comparison step of comparing the reflectance measured in the reflectance measurement step and the expected reflectance,
A reporting step of issuing a warning when the reflectance measured in the reflectance measuring step is away from the expected reflectance by more than a predetermined range,
A heat treatment method comprising:
基板に光を照射することによって該基板を加熱する熱処理装置であって、
処理対象となる基板を収容するチャンバーと、
前記チャンバー内に収容された前記基板に光を照射する光照射部と、
前記基板の予想反射率の入力を受け付ける入力部と、
前記基板の反射率を測定する反射率測定部と、
前記反射率測定部にて測定された反射率と前記予想反射率とを比較する比較部と、
前記反射率測定部にて測定された反射率が前記予想反射率から所定範囲を超えて離れているときに警告を発報する発報部と、
を備えることを特徴とする熱処理装置。
A heat treatment apparatus for heating a substrate by irradiating the substrate with light,
A chamber for containing a substrate to be processed,
A light irradiation unit for irradiating the substrate housed in the chamber with light,
An input unit that receives an input of the expected reflectance of the substrate,
A reflectance measurement unit for measuring the reflectance of the substrate,
A comparison unit that compares the reflectance measured by the reflectance measurement unit with the expected reflectance,
A reporting unit that issues a warning when the reflectance measured by the reflectance measuring unit is separated from the expected reflectance by more than a predetermined range,
A heat treatment apparatus comprising:
JP2018232317A 2018-12-12 2018-12-12 Heat treatment method and heat treatment apparatus Active JP7294802B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018232317A JP7294802B2 (en) 2018-12-12 2018-12-12 Heat treatment method and heat treatment apparatus
TW108141112A TWI822903B (en) 2018-12-12 2019-11-13 Heat treatment method and heat treatment apparatus
US16/699,812 US11516884B2 (en) 2018-12-12 2019-12-02 Light irradiation type heat treatment method and heat treatment apparatus that calculates a temperature of a substrate based on a treatment recipe applicable thereto
KR1020190164646A KR102373066B1 (en) 2018-12-12 2019-12-11 Heat treatment method and heat treatment apparatus
CN201911266333.8A CN111312617A (en) 2018-12-12 2019-12-11 Heat treatment method and heat treatment apparatus
KR1020220027468A KR102549304B1 (en) 2018-12-12 2022-03-03 Heat treatment method and heat treatment apparatus
KR1020230080807A KR102637230B1 (en) 2018-12-12 2023-06-23 Heat treatment method and heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232317A JP7294802B2 (en) 2018-12-12 2018-12-12 Heat treatment method and heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2020096065A true JP2020096065A (en) 2020-06-18
JP7294802B2 JP7294802B2 (en) 2023-06-20

Family

ID=71085635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232317A Active JP7294802B2 (en) 2018-12-12 2018-12-12 Heat treatment method and heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP7294802B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252227A (en) * 1999-02-26 2000-09-14 Dainippon Screen Mfg Co Ltd Device and method for heat-treating substrate
JP2007013047A (en) * 2005-07-04 2007-01-18 Dainippon Screen Mfg Co Ltd Apparatus for measuring reflected light intensity ratio, apparatus for measuring light energy absorption ratio and thermal processing apparatus
JP2009231652A (en) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd Heat treatment equipment
JP2010238767A (en) * 2009-03-30 2010-10-21 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and heat treatment method
JP2011009679A (en) * 2009-05-27 2011-01-13 Ebara Corp Polishing end point detecting method and polishing end point detecting device, and polishing method and polishing device
JP2015130423A (en) * 2014-01-08 2015-07-16 株式会社Screenホールディングス Thermal treatment device and thermal treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252227A (en) * 1999-02-26 2000-09-14 Dainippon Screen Mfg Co Ltd Device and method for heat-treating substrate
JP2007013047A (en) * 2005-07-04 2007-01-18 Dainippon Screen Mfg Co Ltd Apparatus for measuring reflected light intensity ratio, apparatus for measuring light energy absorption ratio and thermal processing apparatus
JP2009231652A (en) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd Heat treatment equipment
JP2010238767A (en) * 2009-03-30 2010-10-21 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and heat treatment method
JP2011009679A (en) * 2009-05-27 2011-01-13 Ebara Corp Polishing end point detecting method and polishing end point detecting device, and polishing method and polishing device
JP2015130423A (en) * 2014-01-08 2015-07-16 株式会社Screenホールディングス Thermal treatment device and thermal treatment method

Also Published As

Publication number Publication date
JP7294802B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP6804398B2 (en) Heat treatment equipment and heat treatment method
KR102549304B1 (en) Heat treatment method and heat treatment apparatus
KR102225757B1 (en) Heat treatment method and heat treatment apparatus
KR102311153B1 (en) Heat treatment method and heat treatment apparatus
JP6863780B2 (en) Heat treatment method and heat treatment equipment
KR20200031025A (en) Heat treatment method and heat treatment apparatus
JP2020107698A (en) Heat treatment method and thermal equipment apparatus
KR102303333B1 (en) Heat treatment method and heat treatment apparatus
JP7091221B2 (en) Heat treatment method and heat treatment equipment
JP7013259B2 (en) Heat treatment equipment and heat treatment method
JP2021034505A (en) Heat treatment method and heat treatment equipment
WO2020166249A1 (en) Heat treatment method and heat treatment device
WO2020105449A1 (en) Heat treatment method and heat treatment device
JP7080145B2 (en) Heat treatment method and heat treatment equipment
JP7315331B2 (en) Heat treatment method and heat treatment apparatus
JP7294802B2 (en) Heat treatment method and heat treatment apparatus
WO2020179231A1 (en) Heat treatment method and heat treatment apparatus
TWI725414B (en) Heat treatment apparatus and heat treatment method
JP7304151B2 (en) Heat treatment method and heat treatment apparatus
WO2020121895A1 (en) Heat treatment method and heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230608

R150 Certificate of patent or registration of utility model

Ref document number: 7294802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150