JP2020094472A - Hazard evaluation method of slope disaster in snow melting and hazard evaluation system of slope disaster in snow melting - Google Patents

Hazard evaluation method of slope disaster in snow melting and hazard evaluation system of slope disaster in snow melting Download PDF

Info

Publication number
JP2020094472A
JP2020094472A JP2019150478A JP2019150478A JP2020094472A JP 2020094472 A JP2020094472 A JP 2020094472A JP 2019150478 A JP2019150478 A JP 2019150478A JP 2019150478 A JP2019150478 A JP 2019150478A JP 2020094472 A JP2020094472 A JP 2020094472A
Authority
JP
Japan
Prior art keywords
snowmelt
effective
amount
evaluation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019150478A
Other languages
Japanese (ja)
Other versions
JP7084897B2 (en
Inventor
剛 高柳
Takeshi Takayanagi
剛 高柳
義勝 進藤
Yoshimasa Shindo
義勝 進藤
亮太 佐藤
Ryota Sato
亮太 佐藤
修 布川
Osamu Nunokawa
修 布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Publication of JP2020094472A publication Critical patent/JP2020094472A/en
Application granted granted Critical
Publication of JP7084897B2 publication Critical patent/JP7084897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Alarm Systems (AREA)

Abstract

To provide a hazard evaluation method of slope disaster in snow melting which can appropriately evaluate hazard of slope disaster in consideration of influences of meltwater and a snow depth.SOLUTION: A hazard evaluation method of slope disaster in snow melting includes converting the total of a precipitation amount and a snowmelt amount into an effective rainfall amount and calculating an effective snowmelt amount at the time of evaluation, setting a threshold of the effective snowmelt amount corresponding to a snow depth in an evaluation region from a combination of a snow depth experienced in the past in the evaluation region and an experience value of the effective snowmelt amount, compares the effective snowmelt amount at the time of evaluation to the threshold of the effective snowmelt amount corresponding to the snow depth at the time of evaluation, and evaluates a hazard of slope disaster.SELECTED DRAWING: Figure 2

Description

本発明は、融雪期斜面災害の危険度評価方法および融雪期斜面災害の危険度評価システムに関する。 TECHNICAL FIELD The present invention relates to a risk assessment method for a snowmelt slope disaster and a snowmelt slope disaster risk assessment system.

積雪地域の斜面では融雪水を誘因として斜面災害が引き起こされることがある。このような融雪期の斜面災害に鉄道の列車や道路を通行する自動車が巻き込まれる危険性を低減させるためには、融雪期の斜面災害が発生しやすい時期を適量的な危険度評価指標によって逐次把握し、危険性が高いと判断された場合には通行を禁止するなどの警戒対応が有効であると考えられる。そこで、融雪量に応じた定量的な斜面の危険度評価手法の開発が望まれる。斜面の土中水分の増加と斜面の不安定化の間には密接な関係があるため、融雪期の斜面災害の危険度を考慮する上では、地盤内に貯留された水分の状態を適切に評価する手法が有効であると考える。そこで、同評価手法として、融雪量を降水量に合算した実効雨量(以下、実効融雪量と呼ぶ)が一定の閾値を超過した場合に斜面災害の危険性が高まったと判断する手法を検討している。なお、この閾値を設定する手法として、当該地域が過去に経験した融雪量に基づいて設定することを想定している。 On the slopes of snow-covered areas, slope disasters may be caused by snowmelt water. In order to reduce the risk of train trains and automobiles passing by roads being involved in slope disasters during the snowmelt period, the snowmelt period during which slope disasters are likely to occur is sequentially determined by an appropriate risk assessment index. It is considered effective to take precautionary measures such as prohibiting traffic when it is determined that the risk is high. Therefore, it is desirable to develop a quantitative slope risk assessment method according to the amount of snowmelt. Since there is a close relationship between the increase of soil water content on the slope and the instability of the slope, it is necessary to properly determine the state of water stored in the ground in consideration of the risk of slope disaster during the snowmelt season. We think that the method of evaluation is effective. Therefore, as the same evaluation method, a method of determining that the risk of a slope disaster has increased when the effective rainfall amount (hereinafter referred to as the effective snow melting amount), which is the sum of the snow melting amount and the precipitation amount, exceeds a certain threshold value is considered. There is. As a method of setting this threshold value, it is assumed that the threshold value is set based on the amount of snowmelt that the area has experienced in the past.

同評価手法の閾値の設定方法として、現地の過去一定期間(例えば10年間)に経験した実効融雪量の最大値を閾値に設定することが考えられる。実効融雪量が過去に経験していないレベルまで高まった状況では、土中水分も過去と比べて著しく増加しているため、斜面の不安定化に対して警戒が必要になると想定される。したがって、過去の実効融雪量の経験値の最大値を基準に警戒閾値を設定することは、一定の妥当性を有するものと判断出来る。 As a method of setting the threshold value of the evaluation method, it is conceivable to set the maximum value of the effective amount of snow melting experienced in the past past certain period (for example, 10 years) as the threshold value. When the effective amount of snowmelt has increased to a level that has not been experienced in the past, the water content in the soil has also increased remarkably compared to the past, so it is assumed that caution is required against instability on the slope. Therefore, it can be determined that setting the warning threshold value based on the maximum empirical value of the past effective snowmelt amount has a certain validity.

栗原靖,宍戸真也,飯倉茂弘,高橋大介,鎌田慈:融雪水の積雪底面流出量の推定手法,鉄道総研報告,Vol.27,No.11,2013.11Yasushi Kurihara, Shinya Shishido, Shigehiro Iikura, Daisuke Takahashi, Tadashi Kamata: Estimation method of snowflake bottom runoff, Report of Railway Research Institute, Vol. 27, No. 11, 2013.11. 高柳剛,佐藤亮太,欅健典,太田直之:融雪期に発生した土砂災害と雨量指数の関係に関する考察,第51回地盤工学研究発表会,2016Tsuyoshi Takayanagi, Ryota Sato, Kennori Keyaki, Naoyuki Ota: Study on relationship between sediment disaster and rainfall index during snowmelt season, 51st Geotechnical Research Conference, 2016

しかし、積雪が多く残存する条件では積雪荷重が斜面表層の滑りを誘発するように影響することがあるため、同レベルの実効融雪量の状態であったとしても、積雪が多い環境の方が融雪水を誘因とする斜面崩壊が生じる危険性がより高くなる場合がある。このことから、単純に現地における過去最大の経験実効融雪量に基づいて一律に閾値を決定すると、積雪が多い状態では、実効雨量が閾値より少ない条件でも斜面災害が発生するケースがあり、既往の閾値の設定手法ではこのような斜面災害の危険性を見逃す可能性があった。 However, under conditions where a large amount of snow remains, the snow load may affect the surface of the slope so as to induce slip, so even if the amount of effective snowmelt is at the same level, the snowmelt environment will cause more snowmelt. The risk of water-induced slope failure may be higher. From this fact, if the threshold value is simply determined based on the largest empirical effective amount of snowmelt in the past, slope disasters may occur even when the amount of effective rainfall is less than the threshold value when there is a lot of snow. There is a possibility that the danger of such a slope disaster may be overlooked by the threshold setting method.

本発明が解決しようとする課題は、融雪水と積雪深の影響を考慮して斜面災害の危険度を適切に評価することができる融雪期斜面災害の危険度評価方法および融雪期斜面災害の危険度評価システムを提供することである。 The problem to be solved by the present invention is to evaluate a risk of a slope disaster in which a risk of a slope disaster can be appropriately evaluated in consideration of influences of snowmelt water and a depth of snow and a risk of a slope disaster of a snowmelt period. It is to provide a degree evaluation system.

上記課題を解決するため、本発明の融雪期斜面災害の危険度評価方法は、降水量および融雪量の合計を実効雨量に換算して実効融雪量を算出し、評価地域で過去に経験した積雪深および実効融雪量の経験値の組み合わせから、評価地域における積雪深に対応する実効融雪量の閾値を設定し、評価時点の実効融雪量と、評価時点の積雪深に対応する実効融雪量の前記閾値とを比較して、斜面災害の危険度を評価する。
積雪深および実効融雪量の経験値の組み合わせでは、積雪が多い場合に経験する実効融雪量は低くなる傾向になる。そのため、評価時点の積雪深に対応する実効融雪量の閾値を設定するとき、積雪が多い場合の実効融雪量の閾値を低く設定する。これにより、積雪深が多い場合に実効融雪量が低くても発生する融雪期の斜面災害の危険度を適切に評価することができる。すなわち、融雪水と積雪深の影響を考慮して斜面災害の危険度を適切に評価することができる。
In order to solve the above-mentioned problems, the risk evaluation method of the snowmelt slope disaster of the present invention calculates the effective snowmelt amount by converting the total of the precipitation amount and the snowmelt amount into the effective rainfall amount, and the snowfall experienced in the past in the evaluation area. From the combination of experience values of depth and effective snowmelt amount, the threshold value of the effective snowmelt amount corresponding to the snow depth in the evaluation area is set, and the effective snowmelt amount at the time of evaluation and the effective snowmelt amount corresponding to the snow depth at the time of evaluation are set forth above. Assess the risk of slope disasters by comparing with a threshold.
With the combination of empirical values of snow depth and effective snowmelt, the effective snowmelt tends to be low when there is a lot of snow. Therefore, when setting the threshold value of the effective snowmelt amount corresponding to the snow depth at the time of evaluation, the threshold value of the effective snowmelt amount when there is a lot of snow is set low. As a result, it is possible to appropriately evaluate the risk of a slope disaster during a snowmelt season that occurs even when the effective snowmelt amount is low when the snow depth is large. That is, it is possible to appropriately evaluate the risk of slope disaster in consideration of the effects of the snowmelt water and the snow depth.

前記閾値は、評価時点の積雪深に対応する実効融雪量の経験値の最大値であってもよい。
前記閾値は、評価時点の積雪深に対応する実効融雪量の経験値の平均値であってもよい。
前記閾値は、評価時点の積雪深に対応する実効融雪量の再現期間(確率年)から統計的に定められる値であってもよい。
上記のような考え方に基づき、様々な閾値のレベルを設定することができる。
The threshold value may be a maximum value of empirical values of the effective snowmelt amount corresponding to the snow depth at the time of evaluation.
The threshold value may be an average value of empirical values of the effective snowmelt amount corresponding to the snow depth at the time of evaluation.
The threshold value may be a value statistically determined from the reproduction period (probability year) of the effective snowmelt amount corresponding to the snow depth at the time of evaluation.
Based on the above concept, various threshold levels can be set.

実効融雪量Rcは、数式1および2による漸近式によって算出できる。 The effective snowmelt amount Rc can be calculated by the asymptotic formulas of Formulas 1 and 2.

Figure 2020094472
Figure 2020094472

Figure 2020094472
Figure 2020094472

ただし、Tは半減期(hour)、Δtは単位時間(hour)、r(i)はiステップ時点の降水量と融雪量の合算値(mm/hour)、Rc(i)はiステップ時点の実効融雪量(mm)、Rc(i−1)はRc(i)の単位時間前の実効融雪量(mm)である。
これにより、初期状態t=0から所定の経過時間後t=i×Δtの実効融雪量Rcを簡易に算出できる。
However, T is the half-life (hour), Δt is the unit time (hour), r(i) is the sum of the precipitation amount and the amount of snowmelt at the i step time (mm/hour), and Rc(i) is the i step time. The effective snowmelt amount (mm) and Rc(i-1) are the effective snowmelt amount (mm) of Rc(i) before the unit time.
This makes it possible to easily calculate the effective snowmelt amount Rc of t=i×Δt after a predetermined elapsed time from the initial state t=0.

前記融雪量は、独自に観測装置を設置して地域の融雪量を観測することや、地域気象観測システムの計測データを用いて算出することで得られる。
なお公的な気象観測項目を用いて融雪量を算出すれば、観測装置を必要としないため、低コストに融雪量を算出することができる。
The snowmelt amount can be obtained by installing an observation device independently to observe the amount of snowmelt in the area, or by calculating using the measurement data of the local meteorological observation system.
If the amount of snowmelt is calculated using the official meteorological observation items, the amount of snowmelt can be calculated at low cost because an observation device is not required.

前記融雪量は、複数の地域気象観測システムの計測データを用いて数式3により推定された評価地点の気象要素に基づいて算出される。 The amount of snow melt is calculated based on the meteorological element of the evaluation point estimated by Formula 3 using the measurement data of a plurality of regional meteorological observation systems.

Figure 2020094472
Figure 2020094472

Figure 2020094472
ただし、u(x)は評価地点xにおける気象要素、Nは推定に用いる地域気象観測システムの数、ui(xi)は地域気象観測システム地点xiにおける気象要素、wiは地域気象観測システムiの重み、d(x,xi)は評価地点xと地域気象観測システム地点xiとの距離(km)、Pは距離指数である。
これにより、融雪量が精度よく算出される。
Figure 2020094472
Where u(x) is the weather element at the evaluation point x, N is the number of local weather observation systems used for estimation, ui(xi) is the weather element at the local weather observation system point xi, and wi is the weight of the local weather observation system i. , D(x, xi) is a distance (km) between the evaluation point x and the local meteorological observation system point xi, and P is a distance index.
As a result, the amount of snow melt is calculated accurately.

本発明の融雪期斜面災害の危険度評価システムは、入力部および表示部を備えた端末装置と、前記端末装置と通信可能なサーバ装置と、を備え、前記端末装置は、融雪期斜面災害の危険度評価を行う評価地域の入力を受け付けて、評価地域を前記サーバ装置に送信し、前記サーバ装置は、前記端末装置から評価地域を受信し、評価地域で過去に経験した積雪深および実効融雪量の経験値の組み合わせから、評価地域における積雪深に対応する実効融雪量の閾値を設定し、評価時点の実効融雪量と、評価時点の積雪深に対応する実効融雪量の前記閾値とを比較して、比較結果を前記端末装置に送信し、前記端末装置は、前記端末装置から受信した比較結果を表示する。
これにより、事業者は、端末装置から簡単に評価結果を閲覧できるため、融雪期の巡回点検等に活用できる。
A snowmelt season slope disaster risk assessment system of the present invention includes a terminal device including an input unit and a display unit, and a server device capable of communicating with the terminal device, wherein the terminal device is a snowmelt season slope disaster Accepting the input of the evaluation area to perform the risk evaluation, transmitting the evaluation area to the server device, the server device receives the evaluation area from the terminal device, the snow depth and the effective snowmelt experienced in the past in the evaluation area. Based on the combination of empirical values of the amount of snow, set the threshold of the effective snowmelt amount corresponding to the snow depth in the evaluation area, and compare the effective snowmelt amount at the time of evaluation with the threshold value of the effective snowmelt amount corresponding to the snow depth at the time of evaluation. Then, the comparison result is transmitted to the terminal device, and the terminal device displays the comparison result received from the terminal device.
As a result, the business operator can easily view the evaluation result from the terminal device, which can be utilized for a patrol inspection during the snowmelt season.

ケース1における積雪深と実効融雪量との関係を示すグラフ。The graph which shows the relationship between the snow depth and the effective amount of snowmelt in Case 1. ケース1における積雪深と経験実効融雪量の最大値および平年値との関係を示すグラフ。The graph which shows the relationship between the snowfall depth in case 1, the maximum value of experience effective snowmelt, and the normal value. 積雪深と各確率年に相当する経験実効融雪量の関係を示すグラフ。The graph which shows the relationship between the snow depth and the empirical effective amount of snowmelt corresponding to each probability year. ケース1における災害当該年度の実効融雪量と閾値との関係を示すグラフ。The graph which shows the relationship between the effective snowmelt amount of the disaster concerned year, and a threshold value in case 1. ケース3における災害当該年度の実効融雪量と閾値との関係を示すグラフ。The graph which shows the relationship between the effective snowmelt amount of the disaster concerned year, and a threshold value in case 3. 災害発生年の実効融雪量と閾値との関係を示すグラフ。The graph which shows the relationship between the effective snowmelt amount of a disaster occurrence year, and a threshold value. 評価地点の融雪量の実測値と、融雪モデルによる融雪量の推定値との関係を示すグラフ。The graph which shows the relationship between the measured value of the amount of snowmelt of an evaluation point, and the estimated value of the amount of snowmelt by a snowmelt model. 融雪期斜面災害の危険度評価システムの解析フローチャート。The analysis flowchart of the risk assessment system of the slope disaster of the snowmelt season. 端末装置の表示例。Display example of terminal device.

以下、実施形態の融雪期斜面災害の危険度評価方法を、図面を参照して説明する。
(実効融雪量の算出)
斜面の土中水分の増加と斜面の不安定化の間には密接な関係があるため、融雪期の斜面安定性を考慮する上では、地盤内に貯留された水分の状態を適切に評価する手法が有効であると考える。本発明では、鉄道会社で降雨時運転規制に利用されている実効雨量指数(土中水分挙動を簡易なタンクモデルで表現する雨量指標の一種)を応用し、単位時間あたり(例えば1時間あたり)の降水量および融雪量の合計を実効雨量指数に換算した値である実効融雪量を逐次算出する。そして、実効融雪量があらかじめ定めた閾値を超えた場合に斜面が不安定化したと判断する。なお、融雪量には表面融雪量および積雪底面流出量の2種類がある。表面融雪量は、積雪表面での融雪量である。積雪底面流出量は、融雪水の積雪層内浸透に伴う流出の遅れ時間を考慮し、積雪の底面から流出する融雪水量である。融雪災害危険度評価手法は融雪災害の発生を早期に評価する必要があることから、実効融雪量の評価には表面融雪量を用いることとする。ここで、実効融雪量を求める漸近式を数式3に示す。
A snowmelt season slope disaster risk evaluation method according to an embodiment will be described below with reference to the drawings.
(Calculation of effective snowmelt)
Since there is a close relationship between the increase of soil moisture in the slope and the instability of the slope, the state of moisture stored in the ground should be properly evaluated in consideration of slope stability during the snowmelt season. I think the method is effective. In the present invention, the effective rainfall index (a type of rainfall index that expresses soil water behavior in a simple tank model) that is used for operation control during rainfall in railway companies is applied, and per unit time (for example, per hour) The effective amount of snow melting, which is the value obtained by converting the total amount of precipitation and amount of snow melting in the above into the effective rainfall index, is sequentially calculated. Then, when the effective amount of snowmelt exceeds a predetermined threshold value, it is determined that the slope has become unstable. There are two types of snowmelt: surface snowmelt and snowfall bottom runoff. The surface snowmelt amount is the amount of snowmelt on the snow surface. The outflow amount of snow bottom is the amount of snowmelt water flowing out from the bottom face of snow in consideration of the delay time of outflow due to the infiltration of snowmelt water into the snow layer. Since the snowmelt disaster risk assessment method requires early evaluation of the occurrence of snowmelt disasters, the surface snowmelt amount will be used to evaluate the effective snowmelt amount. Here, Equation 3 shows an asymptotic expression for obtaining the effective snowmelt amount.

Figure 2020094472
Figure 2020094472

Figure 2020094472
Figure 2020094472

ただし、Tは半減期(hour)、Δtは単位時間(hour)、r(t)は時刻tの降水量と融雪量の合算値(mm/hour)、Rc(t)は時刻tの実効融雪量(mm)、Rc(t−1)はRc(t)の単位時間前の実効融雪量(mm)である。
これにより、t時間経過後の実効融雪量Rcを簡易に算出できる。
なお実効融雪量の算定式は数式5により表すことも可能である。
However, T is the half-life (hour), Δt is the unit time (hour), r(t) is the sum of the precipitation amount and the amount of snowmelt at time t (mm/hour), and Rc(t) is the effective snowmelt at time t. The amount (mm) and Rc(t-1) are the effective snowmelt amount (mm) of Rc(t) before a unit time.
This makes it possible to easily calculate the effective snowmelt amount Rc after the lapse of time t.
The equation for calculating the effective amount of snowmelt can be expressed by Equation 5.

Figure 2020094472
Figure 2020094472

ただし、Rc(t)は時刻tの実効融雪量(mm)、r(t)は時刻tの単位時間の降水量+融雪量(mm/hour)、xは時刻t以前の所定時刻(例えば、融雪期の開始時点の時刻)から時刻tまでの時間(hour)、Tは半減期(hour)である。 However, Rc(t) is the effective amount of snowmelt (mm) at time t, r(t) is the amount of precipitation per unit time of time t + amount of snowmelt (mm/hour), and x is a predetermined time before time t (for example, The time (hour) from the time of the start of the snowmelt period) to the time t, T is the half-life (hour).

本手法では現地(危険度の評価地点または評価地域)における融雪量の情報を必要とするため、熱収支法に基づく融雪評価モデルにより、当該地域周辺の地域気象観測システム(アメダス)のデータ(気温・風速・日照時間・降水量・積雪深)を用いて融雪量を求めた(非特許文献1参照)。また、実効融雪量には24時間以上の半減期を適用することで、融雪期ののり面内の土中水分挙動と実効融雪量の相関性が向上することが、既往の研究(非特許文献2参照)より分かっている。そのため、本発明では半減期に24時間を採用した。ただし、半減期には24時間以外の値を採用しても構わない。 Since this method requires information on the amount of snowmelt at the site (risk evaluation point or evaluation area), the data (temperature of AMeDAS) of the local meteorological observation system around the area is calculated by the snowmelt evaluation model based on the heat balance method. -The amount of snowmelt was calculated using wind speed, sunshine duration, precipitation, and snow depth (see Non-Patent Document 1). In addition, by applying a half-life of 24 hours or more to the effective snowmelt amount, the correlation between the behavior of water in the soil in the snow surface during the snowmelt period and the effective snowmelt amount is improved. 2)). Therefore, in the present invention, the half-life is 24 hours. However, a value other than 24 hours may be adopted as the half-life.

(融雪量の推定)
評価地点の融雪量は、アメダスの気象データを用いて求める。評価地点にアメダスが存在しない場合は、評価地点周辺に存在するアメダスの気象データを利用することが考えられる。本発明では、評価地点周辺に存在する複数のアメダスの気象データから評価地点の気象要素を推定し、推定した気象要素に基づいて評価地点の融雪量を算出する。
(Estimation of snowmelt)
The amount of snowmelt at the evaluation point will be calculated using the meteorological data of AMeDAS. If there is no AMeDAS at the evaluation point, it may be possible to use the meteorological data of AMeDAS existing around the evaluation point. In the present invention, the meteorological element at the evaluation point is estimated from the meteorological data of a plurality of Amedas existing around the evaluation point, and the amount of snow melting at the evaluation point is calculated based on the estimated meteorological element.

評価地点の気象要素を複数のアメダスの気象データから推定する手法として、逆距離加重法(IDW法)を用いる。IDW法は、離散データから空間的な補正を行う際に用いられる方法である。例えば、○○県内の年平均気温など、時間および空間分解能が大きい要素などに用いられる。
IDW法は、評価地点と各アメダス地点との地点間距離に応じた重みづけから補正する方法である。評価地点の気象要素は、数式8および数式9によって求められる。
The inverse distance weighting method (IDW method) is used as a method for estimating the meteorological element at the evaluation point from the meteorological data of a plurality of Amedas. The IDW method is a method used when performing spatial correction from discrete data. For example, it is used for elements with large temporal and spatial resolutions, such as the annual average temperature in the prefecture.
The IDW method is a method of correcting from weighting according to the distance between the evaluation point and each AMeDAS point. The meteorological element at the evaluation point is obtained by the formulas 8 and 9.

Figure 2020094472
Figure 2020094472

Figure 2020094472
Figure 2020094472

ただし、u(x)は評価地点xにおける気象要素、Nは推定に用いるアメダスの数、u(xi)はアメダス地点xiにおける気象要素、wiはアメダスiの重み、d(x,xi)は評価地点xとアメダス地点xiとの距離(km)、Pは距離指数である。本発明では、Pは一律2とした。また、例えば評価地点が標高の高い峠であり、アメダスがその両端の麓のような標高の低い場所にしかない場合には、特に気温のように標高依存の大きい要素については、IDW法のみの補正では不十分であると考えられる。そこで本発明では、IDW法による補正に加え、標高補正を組み合わせた方法で評価地点の気象要素を推定する。なお、気温減率は一律0.65℃/100mとした。 Where u(x) is the weather element at the evaluation point x, N is the number of Amedas used for estimation, u(xi) is the weather element at the Amedas point xi, wi is the weight of Amedas i, and d(x, xi) is the evaluation. A distance (km) between the point x and the Amedas point xi, and P is a distance index. In the present invention, P is 2 uniformly. Also, for example, if the evaluation point is a pass with a high altitude and Amedas is only in places with a low altitude, such as the foot of both ends, especially for elements that have a large dependence on altitude, such as temperature, correction using the IDW method only Is considered insufficient. Therefore, in the present invention, in addition to the correction by the IDW method, the meteorological element at the evaluation point is estimated by a method that combines elevation correction. The temperature decrease rate was uniformly set to 0.65°C/100m.

上述した融雪量の推定方法の有効性について検証した。
図7は、評価地点の融雪量の実測値と、融雪モデルによる融雪量の推定値との関係を示すグラフである。図7には、以下の手法a,b,cで算出した推定値が示される。手法aは、評価地点のアメダスで観測した気象データを融雪モデルに入力して推定値を算出する手法である。手法bは、上述した本発明の手法であって、評価地点周辺の3地点のアメダスで観測した気象データから評価地点の気象要素を推定し、推定した気象要素を融雪モデルに入力して推定値を算出する手法である。手法cは、評価地点周辺の1地点のアメダスで観測した気象データを融雪モデルに入力して推定値を算出する手法である。図7では、手法aによる推定値の二乗平均平方根誤差(RMSE)が実線で示される。手法bによる推定値が丸のプロットで示され、手法bによる推定値のRMSEが破線で示される。手法cによる推定値が四角のプロットで示され、手法cによる推定値のRMSEが二点鎖線で示される。
The effectiveness of the above method of estimating the amount of snowmelt was verified.
FIG. 7 is a graph showing the relationship between the actually measured value of the amount of snowmelt at the evaluation point and the estimated value of the amount of snowmelt by the snowmelt model. FIG. 7 shows estimated values calculated by the following methods a, b, and c. Method a is a method in which meteorological data observed at Amedas at the evaluation point is input to the snow melting model to calculate an estimated value. Method b is the method of the present invention described above, in which the meteorological elements at the evaluation points are estimated from the meteorological data observed at Amedas at three points around the evaluation points, and the estimated meteorological elements are input to the snow melting model to obtain estimated values. Is a method of calculating. Method c is a method of calculating the estimated value by inputting the meteorological data observed at Amedas at one point around the evaluation point into the snow melting model. In FIG. 7, the root mean square error (RMSE) of the estimated value by the method a is shown by a solid line. The estimated value by the method b is shown by a circle plot, and the RMSE of the estimated value by the method b is shown by a broken line. The estimated value by the method c is shown by a square plot, and the RMSE of the estimated value by the method c is shown by a chain double-dashed line.

手法cの場合には、融雪量が5mm/hを超える場合に融雪量を過大に推定する傾向にあり、RMSEは0.7mm/hである。手法bの場合には、推定値の過大過小評価は改善し、手法cに比べてRMSEは小さく0.4mm/hである。手法bのRMSEは、手法aと概ね同程度である。以上の結果から、本発明の手法bを採用することにより、特に評価地点の半径約20kmに複数のアメダスがある場合には、手法aと同程度の推定誤差で融雪量を推定できる。全国のアメダスの平均的な配置間隔は30〜40kmと言われており、今回の解析結果によれば約20km離れた地点まで気象要素の推定が有効であることから、鉄道沿線の多くの地域で融雪モデルが適用可能と考えられる。 In the case of the method c, the amount of snowmelt tends to be excessively estimated when the amount of snowmelt exceeds 5 mm/h, and the RMSE is 0.7 mm/h. In the case of the method b, the underestimation of the estimated value is improved, and the RMSE is smaller than that of the method c and is 0.4 mm/h. The RMSE of the method b is almost the same as that of the method a. From the above results, by adopting the method b of the present invention, the snowmelt amount can be estimated with an estimation error similar to that of the method a, particularly when there are a plurality of AMeDAS at a radius of about 20 km at the evaluation point. It is said that the average distance between Amedas nationwide is 30 to 40 km, and according to the analysis results of this time, the estimation of meteorological elements is effective up to about 20 km away, so in many areas along the railway line. The snowmelt model is considered applicable.

(閾値の設定)
実効融雪量を用いた融雪災害危険度評価の判断基準となる閾値の設定方法を以下に述べる。
同評価手法の判断基準となる閾値は現地で過去一定期間(例えば10年間)に経験した積雪深と実効融雪量に基づいて定める。なお現地の積雪深と実効融雪量は、現地近傍(半径20km圏内程度を目安)で観測された気象データに基づいて定める。閾値の妥当性については、過去の被災事例を本評価手法の適用により補足可能か確認することによって検証している。具体的には過去の鉄道における融雪災害箇所(10事例)を利用して適用性を検討している。これらの事例は、気象庁のアメダス近傍(半径20km圏内)で災害が発生しており、盛土・切土のり面の災害(地山の風化による崖崩れ等を除く)であり、かつ発生日時の記録が残っているといった特徴を有する。これらの事例につき、災害発生年次を含む過去10年間の当該地域における実効融雪量を近接アメダスデータに基づいて算出した。表1に分析箇所一覧を示す。
(Set threshold)
The method of setting the threshold value, which is the criterion for the snowmelt disaster risk assessment using the effective amount of snowmelt, is described below.
The threshold value that serves as the criterion for the evaluation method is determined based on the snow depth and the effective amount of snow melt that have been experienced locally during the past certain period (for example, 10 years). The snow depth and effective amount of snowmelt at the site are determined based on the meteorological data observed near the site (within a radius of 20 km). The validity of the threshold is verified by confirming whether past disaster cases can be supplemented by applying this evaluation method. Specifically, we are studying the applicability by using the past snowmelt disaster points (10 cases). In these cases, a disaster occurred near AMeDAS of JMA (within a radius of 20 km), a disaster on the embankment/cut slope (excluding landslides due to weathering of the ground), and the record of the date and time of occurrence. Has the characteristic that it remains. For these cases, the effective amount of snowmelt in the area over the past 10 years including the year of disaster was calculated based on the proximity AMeDAS data. Table 1 shows a list of analysis points.

Figure 2020094472
Figure 2020094472

比較例としての閾値A、実施例としての閾値BおよびCを以下のように設定する。過去10年間(ただし融雪災害発生年は除く)に経験した実効融雪量の最大値として閾値Aを設定する。積雪深の影響に応じて補正した実効融雪量の最大値として閾値Bを設定する。積雪深の影響に応じて補正した実効融雪量の平年値として閾値Cを設定する。 The threshold A as a comparative example and the thresholds B and C as an example are set as follows. The threshold value A is set as the maximum value of the effective amount of snowmelt that has been experienced in the past 10 years (excluding the year when the snowmelt disaster occurred). The threshold value B is set as the maximum value of the effective snowmelt amount corrected according to the influence of the snow depth. The threshold value C is set as the normal value of the effective amount of snowmelt corrected according to the influence of the snow depth.

閾値Aについては、実効融雪量が過去に経験していないレベルまで高まった状況では、土中水分の増加による斜面の不安定化に対して警戒が必要と想定される。そのため、閾値Aについては一定の妥当性を有するものと判断出来る。一方、過去に経験した実効融雪量の最大値として設定した閾値Aより少ない実効融雪量でも、積雪が多く残存する条件では、積雪荷重等の影響により斜面崩壊が生じるリスクが高くなる可能性がある。そこで、積雪深ごとに経験した実効融雪量を把握し、残存する積雪深に応じて閾値Aを引き下げ、閾値BおよびCを設定することとした。 Regarding the threshold value A, it is assumed that caution is required for the instability of the slope due to an increase in soil moisture when the effective amount of snowmelt has increased to a level that has not been experienced in the past. Therefore, it can be determined that the threshold value A has a certain validity. On the other hand, even if the effective snowmelt amount is smaller than the threshold value A set as the maximum value of the effective snowmelt amount that has been experienced in the past, under the condition that a large amount of snow remains, the risk of slope failure may increase due to the influence of snow load and the like. .. Therefore, the effective snowmelt amount experienced for each snow depth is grasped, and the threshold A is lowered and the thresholds B and C are set according to the remaining snow depth.

表1のケース1の事例を例に、残存する積雪深に応じて閾値Aを引き下げる方法について説明する。図1に、被災箇所近郊のアメダステータを用いて2012年から10年間遡った実効融雪量と積雪深さの関係を示す(災害発生年度の2010〜2012年は外している)。図1より当該箇所では積雪深が低い状態であるほど高い実効融雪量を経験したことが分かる。これは、積雪深が低い融雪期末期の方が気温は高い状態となり、経験する実効融雪量が増加するためである。一方で気温が低く積雪深が高い融雪初期において高い実効融雪量を経験することは稀である。このことから、単純に過去最大の経験実効融雪量に基づいて一律に閾値Aを決定すると、積雪が高い状態で、かつ多量の降雨や融雪が作用したケースについて斜面の不安定化を見逃す可能性がある。そのため、残存する積雪深に応じて閾値Aを引き下げる手法が有効であると考える。 A method of lowering the threshold value A according to the remaining snow depth will be described by taking the case 1 of Table 1 as an example. Figure 1 shows the relationship between the effective amount of snowmelt and the snow depth 10 years back from 2012 using the Ameda stator near the disaster area (the year 2010 to 2012, the year when the disaster occurred, was omitted). It can be seen from FIG. 1 that the lower the snow depth, the higher the effective snowmelt amount experienced at that location. This is because the temperature becomes higher at the end of the snowmelt season when the snow depth is low, and the amount of effective snowmelt experienced increases. On the other hand, it is rare to experience high effective snowmelt in the early stages of snowmelt when the temperature is low and the snow depth is high. From this, if the threshold value A is simply determined based on the largest empirical effective snowmelt amount in the past, there is a possibility that the instability of the slope may be overlooked in the case where the amount of snow is high and a large amount of rainfall or snowmelt has acted. There is. Therefore, it is considered effective to reduce the threshold A according to the remaining snow depth.

図2に、0.1m刻みの積雪深Hsに応じた経験実効融雪量Rcの最大値を示す。この値の直線近似式を導出すると、積雪深Hsを変数とした関数が得られる。経験実効融雪量の最大値を融雪災害の警戒閾値として設定する閾値Bについては、積雪深Hsに応じて閾値Aを引き下げるための関数として同近似式を用いることができる。また図2に、積雪深Hsに応じた経験実効融雪量Rcの平年値を併せて示す。この経験実効融雪量Rcの平年値についても同様の関数を導出することで、閾値Cについて積雪深Hsに応じて閾値Aを引き下げる補正が可能である。 FIG. 2 shows the maximum value of the empirical effective snowmelt amount Rc according to the snow depth Hs in 0.1 m increments. If a linear approximation formula of this value is derived, a function with the snow depth Hs as a variable is obtained. Regarding the threshold value B that sets the maximum value of the empirical effective snowmelt amount as a warning threshold value for snowmelt disaster, the same approximate expression can be used as a function for lowering the threshold value A according to the snow depth Hs. Further, FIG. 2 also shows the normal value of the empirical effective snowmelt amount Rc according to the snow depth Hs. By deriving a similar function with respect to the normal value of the empirical effective snowmelt amount Rc, it is possible to correct the threshold C by lowering the threshold A according to the snow depth Hs.

図3は、積雪深と経験実効融雪量の所定の再現期間(確率年)に相当する値との関係を示すグラフである。経験実効融雪量の所定の再現期間(確率年)に相当する値は、過去の経験実効融雪量のデータに基づいて統計分析によって求める。統計分析においてはガンベル分布などの確率分布を利用する。図3には、0.1m刻みの積雪深Hsごとの経験実効融雪量Rcの分布が縦線で示されている。縦線の上端の黒丸が最大値であり、下端の黒丸が最小値である。また図3には、経験実効融雪量Rcの分布から算出された所定の再現期間(確率年)に相当する値のグラフが記載されている。確率年は自然現象等の発生確率を表す単位であり、「確率年(1/10)」は10年に1度の確率で発生することを表す。図3には、確率年(1/10)、確率年(1/5)および確率年(1/2)のグラフが記載されている。このとき、積雪深Hsに対応した各確率年の経験実効融雪量Rcを、積雪深Hsに対応した実効融雪量の閾値とすることが可能である。すなわち、確率年(1/10)の実効融雪量を閾値Dに、確率年(1/5)の実効融雪量を閾値Eに、確率年(1/2)の実効融雪量を閾値Fに設定する。これにより、積雪深Hsに応じて閾値Aを様々なレベルに引き下げることができる。なお、確率年には上記以外の値を採用しても構わない。 FIG. 3 is a graph showing a relationship between the snow depth and a value corresponding to a predetermined reproduction period (probability year) of the empirical effective snowmelt amount. A value corresponding to a predetermined reproduction period (probability year) of the empirical effective snowmelt amount is obtained by statistical analysis based on past empirical effective snowmelt amount data. Probability distribution such as Gumbel distribution is used in the statistical analysis. In FIG. 3, the distribution of the empirical effective snowmelt amount Rc for each snow depth Hs in 0.1 m increments is shown by vertical lines. The black circle at the top of the vertical line is the maximum value, and the black circle at the bottom is the minimum value. Further, FIG. 3 shows a graph of a value corresponding to a predetermined reproduction period (probability year) calculated from the distribution of the empirical effective snowmelt amount Rc. The probability year is a unit that represents the probability of occurrence of a natural phenomenon and the like, and “probability year (1/10)” means that the probability occurs once in 10 years. FIG. 3 shows a graph of probability year (1/10), probability year (1/5) and probability year (1/2). At this time, the empirical effective snowmelt amount Rc for each probability year corresponding to the snowfall depth Hs can be set as the threshold value of the effective snowmelt amount corresponding to the snowfall depth Hs. That is, the effective snowmelt amount of the probability year (1/10) is set to the threshold value D, the effective snowmelt amount of the probability year (1/5) is set to the threshold value E, and the effective snowmelt amount of the probability year (1/2) is set to the threshold value F. To do. Thereby, the threshold value A can be lowered to various levels according to the snow depth Hs. A value other than the above may be adopted as the probability year.

このように、積雪深および実効融雪量の2つのパラメータにより、融雪期斜面災害の危険度の分布が2次元的に表現される。図2に示す実効融雪量の最大値および平年値の直線近似式や、図3に示す実効融雪量の確率年のグラフは、危険度分布において隣り合う危険度の境界線(閾値)として機能する。 In this way, the distribution of the risk of a snowmelt season slope disaster is two-dimensionally represented by the two parameters of the snow depth and the effective snowmelt amount. The linear approximation formula of the maximum effective snowmelt amount and the normal year value shown in FIG. 2 and the probability year graph of the effective snowmelt amount shown in FIG. 3 function as a boundary line (threshold value) of the adjacent risk levels in the risk distribution. ..

(実効融雪量と閾値との比較)
表1に示す10事例のうち、代表例としてケース1、ケース3の災害当該年度の実効融雪量と各閾値との関係を図4、図5に示す。図4に示すケース1では、災害発生時の実効融雪量が全ての閾値ABCを上回ってから災害が発生している。すなわち、すべての閾値ABCにおいて災害を捕捉できていることがわかる。図5に示すケース3では、災害発生時の実効融雪量が閾値BCを上回ってから、閾値Aを上回る前に災害が発生している。この場合、閾値Aでは災害を捕捉できないが、閾値BCでは災害を捕捉できている。すなわち、積雪深に応じて閾値Aを引き下げる補正を行うことによって捕捉が可能となった。なお、災害状況の資料による分析から、災害当時の写真を観察すると、崩壊面は比較的乾燥していた。そのことから、積雪のグライド現象など積雪荷重が影響した融雪災害と想定される。このような事例については、積雪を考慮することによって災害の捕捉率が向上する。
(Comparison of effective snowmelt amount and threshold)
Of the 10 cases shown in Table 1, as typical examples, the relationships between the effective snowmelt amount in each disaster year and the respective thresholds in Cases 1 and 3 are shown in FIGS. 4 and 5. In Case 1 shown in FIG. 4, the disaster occurs after the effective snowmelt amount at the time of the disaster exceeds all the threshold values ABC. That is, it can be seen that disasters can be captured at all thresholds ABC. In case 3 shown in FIG. 5, a disaster occurs before the effective snowmelt amount at the time of disaster exceeds the threshold value BC and before it exceeds the threshold value A. In this case, the threshold A cannot capture the disaster, but the threshold BC can capture the disaster. In other words, it is possible to capture by performing the correction of lowering the threshold value A according to the snow depth. In addition, from the analysis of the disaster situation data, when observing the photographs at the time of the disaster, the collapse surface was relatively dry. From this, it is assumed that the snowmelt disaster caused by snow load such as snow glide phenomenon. In such cases, considering snow cover will improve the catch rate of disasters.

表1に示す10事例について、融雪災害発生時の実効融雪量と各閾値の関係について、整理した結果を表2に示す。 Table 2 shows a summary of the 10 cases shown in Table 1 regarding the relationship between the effective snowmelt amount and each threshold value when a snowmelt disaster occurs.

Figure 2020094472
Figure 2020094472

表2では、災害発生時の実効融雪量が閾値を超えていた(災害発生を捕捉できた)件数の、全事例数に対する割合を、閾値ごとの災害捕捉率としている。また表2では、災害発生を捕捉できた閾値について網掛けを施している。今回の検討において災害捕捉率は、閾値Aで50%程度、閾値Bで70%程度、閾値Cで90%程度となった。なお閾値Cでは高い災害捕捉率となっているものの、実効融雪量が閾値Cを超過する機会は数多いと想定され、閾値Cを超過しても災害が発生しない事例(空振り事例)は多くなる。閾値の設定においては、上記の災害捕捉率と空振り事例数のバランスを考慮して設定する必要がある。 In Table 2, the ratio of the number of cases in which the effective amount of snow melt at the time of disaster occurrence exceeds the threshold value (that was able to capture the disaster occurrence) to the total number of cases is taken as the disaster capture rate for each threshold value. Further, in Table 2, the threshold values that can catch the occurrence of disaster are shaded. In this study, the disaster capture rate was about 50% for threshold A, about 70% for threshold B, and about 90% for threshold C. Although the threshold C has a high disaster capture rate, it is assumed that there are many occasions when the effective snowmelt amount exceeds the threshold C, and there are many cases (displacement cases) in which no disaster occurs even when the threshold C is exceeded. In setting the threshold value, it is necessary to set it in consideration of the balance between the disaster capture rate and the number of missed cases.

以上の検討により得られた結果を以下にまとめる。
(1)融雪期斜面災害の危険度評価に実効融雪量を利用する手法に一定の有効性を確認することができた。
(2)上記危険度評価手法において、危険度を判定するための閾値を過去に経験した実効融雪量に基づいて設定する場合、積雪深の影響を考慮する事で、災害捕捉率が向上することが分かった。
The results obtained by the above examination are summarized below.
(1) It was confirmed that the method of using the effective amount of snowmelt for evaluating the risk of slope disaster in the snowmelt period has a certain effectiveness.
(2) In the above risk assessment method, when the threshold for determining the risk is set based on the amount of effective snowmelt that has been experienced in the past, the disaster capture rate should be improved by considering the influence of the snow depth. I understood.

(危険度評価方法の利用例)
以上に説明した融雪期斜面災害の危険度評価方法の利用例について説明する。
まず、融雪期斜面災害が懸念される評価地点を抽出する。次に、評価地点における現在(評価時点)の実効融雪量および積雪深を把握する。実効融雪量は、数式3または数式5により算出する。積雪深につき、アメダスで測定可能な場合は実測値を利用する。アメダスで実測不可能な場合は、アメダス4要素(気温、降水量、風速、日照時間)から算出した推定値を利用する。いずれの場合にも、評価地点の近傍(例えば20km以内)のアメダスの測定値を使用する。なお、アメダスの測定地点と評価地点との地理的関係から、アメダスの測定値を補正して使用してもよい。
(Example of using the risk assessment method)
An example of use of the above-described risk assessment method for a snowmelt slope disaster will be described.
First, the evaluation points where there is concern about snowmelt slope disasters are extracted. Next, the current effective snowmelt amount and snow depth at the evaluation point are grasped. The effective amount of snowmelt is calculated by Equation 3 or Equation 5. If the depth of snow can be measured by AMeDAS, use the measured value. If it cannot be measured with Amedus, the estimated value calculated from the four elements of Amedas (temperature, precipitation, wind speed, sunshine duration) is used. In either case, the measured value of Amedus near the evaluation point (for example, within 20 km) is used. In addition, you may correct|amend and use the measured value of AMeDAS from the geographical relationship between the AMEDAS measurement point and an evaluation point.

次に、現在の積雪深Hsに対応する実効融雪量Rcの閾値BおよびCを設定する。閾値BおよびCの設定は、評価時点毎に過去の経験実効融雪量と積雪深の関係から図2に相当するグラフを作製し、同グラフに基づいて行う。
次に、現在の実効融雪量と閾値BおよびCとを比較する。現在の実効融雪量が閾値C以下の場合、斜面災害の危険度は小さいと判断する。現在の実効融雪量が閾値Cを超えて閾値B以下の場合、斜面災害の危険度は中程度と判断する。現在の実効融雪量が閾値Bを超える場合、斜面災害の危険度が極めて大きいと判断する。次に、危険度に応じた警告を発令する。警告に応じて、評価地点の目視確認や、鉄道車両の運転制限(職員による線路巡回、徐行運転、運行停止)などの災害回避対策を実施する。
Next, thresholds B and C of the effective snowmelt amount Rc corresponding to the current snow depth Hs are set. The threshold values B and C are set at each evaluation time point by creating a graph corresponding to FIG. 2 from the relationship between the past empirical effective snowmelt amount and the snow depth, and based on the graph.
Next, the current effective snowmelt amount and the threshold values B and C are compared. When the current effective snowmelt amount is less than or equal to the threshold value C, it is determined that the risk of slope disaster is low. When the current effective snowmelt amount exceeds the threshold value C and is equal to or less than the threshold value B, it is determined that the risk of slope disaster is medium. When the current effective snowmelt amount exceeds the threshold value B, it is determined that the risk of slope disaster is extremely high. Next, a warning is issued according to the degree of danger. In response to the warning, visually check the evaluation points and implement measures to avoid disasters, such as restrictions on railway vehicle operations (track patrols by staff, slow driving, and suspension of operations).

なお、閾値BおよびCの設定に代えて、閾値D,EおよびFを設定してもよい。閾値D,EおよびFの設定は、図3のグラフに基づいて行う。
図6は、災害発生年の実効融雪量と閾値との関係を示すグラフである。次に、現在の実効融雪量と閾値D,EおよびFとを比較する。現在の実効融雪量が閾値F以下の場合、斜面災害の危険度は小さいと判断する。現在の実効融雪量が閾値Fを超えて閾値E以下の場合、斜面災害の危険度は中程度と判断する。現在の実効融雪量が閾値Eを超えて閾値D以下の場合、斜面災害の危険度が大きいと判断する。現在の実効融雪量が閾値Dを超える場合、斜面災害の危険度が極めて大きいと判断する。次に、危険度に応じた警告を発令する。警告に応じて、評価地点の目視確認や、鉄道車両の運転制限(職員による線路巡回、徐行運転、運行停止)などの災害回避対策を実施する。
Note that the thresholds D, E, and F may be set instead of the thresholds B and C. The threshold values D, E and F are set based on the graph of FIG.
FIG. 6 is a graph showing the relationship between the effective amount of snow melt and the threshold value in the disaster occurrence year. Next, the present effective snowmelt amount is compared with the threshold values D, E and F. When the current effective snowmelt amount is equal to or less than the threshold value F, it is determined that the risk of slope disaster is small. When the current effective snowmelt amount exceeds the threshold value F and is equal to or less than the threshold value E, the risk of slope disaster is determined to be medium. When the current effective snowmelt amount exceeds the threshold value E and is equal to or less than the threshold value D, it is determined that the risk of slope disaster is high. When the current effective snowmelt amount exceeds the threshold value D, it is determined that the risk of slope disaster is extremely high. Next, a warning is issued according to the degree of danger. In response to the warning, visually check the evaluation points and implement measures to avoid disasters, such as restrictions on railway vehicle operations (track patrols by staff, slow driving, and suspension of operations).

(融雪期斜面災害の危険度評価システム)
融雪期斜面災害の危険度評価システムについて説明する。
融雪期斜面災害の危険度評価システムは、サーバ装置と、端末装置と、を有する。サーバ装置は、例えば融雪災害情報センターなどに配置される。サーバ装置は、バスで接続されたCPU(Central Processing Unit)、メモリ、補助記憶装置などを備える。補助記憶装置は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成され、情報を記憶する。サーバ装置は、メモリまたは補助記憶装置に記憶されたプログラムを実行することにより、融雪期斜面災害の危険度評価装置として機能する。サーバ装置は、インターネット回線などを介して、アメダスのデータベースおよび端末装置と通信可能である。端末装置は、例えば鉄道事業者などのユーザの事務所に配置される。端末装置は、例えばパーソナルコンピュータである。端末装置は、キーボードなどの入力部と、ディスプレイなどの表示部と、を有する。
(Risk evaluation system for slope disasters during the snowmelt season)
We will explain the risk assessment system for slope disasters in the snowmelt season.
The risk assessment system for snowmelt slope disasters includes a server device and a terminal device. The server device is arranged in, for example, a snow melting disaster information center. The server device includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus. The auxiliary storage device is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device, and stores information. The server device functions as a risk assessment device for a snowmelt slope disaster by executing a program stored in the memory or the auxiliary storage device. The server device can communicate with the database of AMeDAS and the terminal device via the Internet or the like. The terminal device is arranged in an office of a user such as a railway company. The terminal device is, for example, a personal computer. The terminal device has an input unit such as a keyboard and a display unit such as a display.

図8は、融雪期斜面災害の危険度評価システムの解析フローチャートである。
最初に、初期設定を実施する(S10)。端末装置は、評価地点および対象アメダス並びに両者の地点情報の入力を受け付ける。ユーザは、端末装置に対して各種情報を入力する。ユーザは、評価地点を選択・決定して入力する(S12)。ユーザは、対象アメダスを決定して入力する(S14)。対象アメダスは、評価地点の融雪量の推定に利用する評価地点周辺のアメダスである。端末装置は、入力された評価地点に基づいて、評価地点から所定距離の範囲内に存在するアメダスを自動的に決定してもよい。ユーザは、評価地点の地点情報およびアメダスの地点情報を入力する(S16)。地点情報は、緯度および経度などである。端末装置は、決定されたアメダスに基づいて、予め登録されたアメダスの地点情報を入手してもよい。端末装置は、入力・決定された評価地点等の情報をサーバ装置に送信する。
FIG. 8 is an analysis flowchart of the risk assessment system for slope disasters in the snowmelt season.
First, initial setting is performed (S10). The terminal device receives inputs of the evaluation point, the target AMeDAS, and the point information of both. The user inputs various information to the terminal device. The user selects, decides and inputs an evaluation point (S12). The user determines and inputs the target AMeDAS (S14). The target AMeDAS is the AMeDAS around the evaluation point used for estimating the amount of snowmelt at the evaluation point. The terminal device may automatically determine the Amedas existing within a predetermined distance from the evaluation point based on the input evaluation point. The user inputs the point information of the evaluation point and the point information of AMeDAS (S16). The point information includes latitude and longitude. The terminal device may obtain the pre-registered spot information of Amedas based on the determined Amedas. The terminal device transmits the input/determined evaluation point and other information to the server device.

次に、警備閾値を設定する(S20)。サーバ装置は、評価地点等の情報を端末装置から受信する。サーバ装置は、インターネット回線を経由して、アメダスのデータベースから、複数のアメダスにおける過去のアメダスデータを入手する(S22)。アメダスデータとして、気温・風速・日照時間・降水量・積雪深のデータを入手する。サーバ装置は、アメダスデータを補正して、評価地点の気象要素を推定する(S24)。サーバ装置は、数式8および数式9により評価地点の気象要素を算出する。サーバ装置は、評価地点の実効融雪量を計算する(S26)。サーバ装置は、数式5から数式7により評価地点の実効融雪量を算出する。サーバ装置は、例えば過去20年の冬季の実効融雪量を算出する。サーバ装置は、極値統計から積雪深ごとの実効融雪量の再現期待値を計算する(S27)。すなわち、サーバ装置は、図3に相当するグラフを作成する。サーバ装置は、再現期待値から警備閾値を設定する(S28)。すなわち、サーバ装置は、図3に相当するグラフのそれぞれを積雪深に対応する災害捕捉閾値として設定する。このように、サーバ装置は、評価地域で過去に経験した積雪深および実効融雪量の経験値の組み合わせから、評価地域における積雪深に対応する実効融雪量の閾値を設定する。 Next, a security threshold is set (S20). The server device receives information such as the evaluation point from the terminal device. The server device obtains past AMeDAS data for a plurality of AMEDAS from the AMEDAS database via the Internet line (S22). The data of temperature, wind speed, sunshine hours, precipitation, and snow depth will be obtained as AMeDAS data. The server device corrects the Amedas data and estimates the weather element at the evaluation point (S24). The server device calculates the meteorological element at the evaluation point by using Equations 8 and 9. The server device calculates the effective amount of snow melting at the evaluation point (S26). The server device calculates the effective amount of snow melt at the evaluation point by using formulas 5 to 7. The server device calculates, for example, the effective snowmelt amount in the winter of the past 20 years. The server device calculates the expected reproduction value of the effective snowmelt amount for each snow depth from the extreme value statistics (S27). That is, the server device creates a graph corresponding to FIG. The server device sets the security threshold value from the reproduction expected value (S28). That is, the server device sets each of the graphs corresponding to FIG. 3 as a disaster capture threshold value corresponding to the snow depth. In this way, the server device sets the threshold value of the effective snowmelt amount corresponding to the snow depth in the evaluation area from the combination of the snow depth and the experience value of the effective snowmelt amount that have been experienced in the past in the evaluation area.

次に、実況値のモニタリングを実施する(S30)。サーバ装置は、インターネット回線を経由して、アメダスのデータベースから、複数のアメダスにおける現在(評価時点、リアルタイム)のアメダスデータを入手する(S32)。サーバ装置は、アメダスデータを補正して、評価地点の気象要素を推定する(S34)。サーバ装置は、評価地点の実効融雪量の実況値(現在値、評価時点の実効融雪量)を計算する(S36)。サーバ装置は、評価地点の実効融雪量を、例えば1時間ごとに逐次計算する。サーバ装置は、積雪深の実況値(現在値、評価時点の積雪深)に対応する実効融雪量の警備閾値と、実効融雪量の実況値とを比較して、融雪災害の発生危険度を評価する(S38)。すなわち、サーバ装置は、評価時点の実効融雪量と、評価時点の積雪深に対応する実効融雪量の前記閾値とを比較する。サーバ装置は、比較結果を端末装置に送信する。 Next, the actual value is monitored (S30). The server device obtains the current (evaluation time, real-time) Amedas data in a plurality of Amedas from the Amedas database via the Internet line (S32). The server device corrects the Amedas data and estimates the weather element at the evaluation point (S34). The server device calculates the actual value (current value, effective snowmelt amount at the time of evaluation) of the effective snowmelt amount at the evaluation point (S36). The server device sequentially calculates the effective amount of snow melting at the evaluation point, for example, every hour. The server device compares the security threshold of the effective snowmelt amount corresponding to the actual value of the snow depth (current value, snow depth at the time of evaluation) with the actual value of the effective snowmelt amount, and evaluates the risk of snowmelt disaster occurrence. Yes (S38). That is, the server device compares the effective snowmelt amount at the time of evaluation with the threshold value of the effective snowmelt amount corresponding to the snow depth at the time of evaluation. The server device transmits the comparison result to the terminal device.

端末装置は、サーバ装置から受信した比較結果を表示する。
図9は、端末装置の表示例である。表示画面40の左上の第1欄41には、地図上に評価地点が表示される。表示画面40の左下の第2欄42には、評価地点の実況値が表示される。実況値として、例えば気温、積雪深および実効融雪量が表示される。表示画面40の右下の第3欄43には、評価地点における積雪深および融雪量の時間変化のグラフが、過去数か月間にわたって表示される。表示画面40の右上の第4欄44には、警備閾値と実効融雪量の実況値との比較結果のグラフが表示される。第4欄44のグラフは、図6に相当するグラフである。警備閾値として、図6と同様に複数の再現期待値のグラフが表示される。ユーザは、第4欄44のグラフなどに基づいて、融雪災害の危険度を確認する。
The terminal device displays the comparison result received from the server device.
FIG. 9 is a display example of the terminal device. The evaluation point is displayed on the map in the first column 41 at the upper left of the display screen 40. The actual value of the evaluation point is displayed in the second column 42 at the lower left of the display screen 40. As the actual value, for example, the temperature, the snow depth, and the effective snowmelt amount are displayed. In the lower right third column 43 of the display screen 40, a graph of the temporal change of the snow depth and the amount of snowmelt at the evaluation point is displayed over the past several months. In the fourth column 44 at the upper right of the display screen 40, a graph of the comparison result of the security threshold and the actual value of the effective snowmelt amount is displayed. The graph in the fourth column 44 is a graph corresponding to FIG. As the security threshold, a graph of a plurality of reproduction expected values is displayed as in FIG. The user confirms the risk of snowmelt disaster based on the graph in the fourth column 44 and the like.

上述した融雪期斜面災害の危険度評価システムの処理は、鉄道事業者などのユーザが指定のURLにアクセスすることで実施可能である。これにより、ユーザは、随時更新される解析結果を確認することができる。したがって、融雪災害の危険度が高まっている時期をユーザが自ら確認することができ、警備出動や鉄道車両の運転規制などの要否判断を支援するシステムとして活用することができる。 The above-described processing of the snow melt slope disaster risk evaluation system can be performed by a user such as a railway operator accessing a designated URL. As a result, the user can check the analysis result that is updated at any time. Therefore, the user can confirm the time when the risk of snowmelt disaster is increasing, and the system can be utilized as a system for supporting the necessity/unnecessity determination such as the security dispatch and the operation regulation of the railway vehicle.

以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。 As described above, one embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the configuration is changed, combined, and deleted without departing from the scope of the present invention. Etc. are also included.

Claims (8)

降水量および融雪量の合計を実効雨量指数に換算して実効融雪量を算出し、
評価地域で過去に経験した積雪深および実効融雪量の経験値の組み合わせから、評価地域における積雪深に対応する実効融雪量の閾値を設定し、
評価時点の実効融雪量と、評価時点の積雪深に対応する実効融雪量の前記閾値とを比較して、斜面災害の危険度を評価する、
融雪期斜面災害の危険度評価方法。
Calculate the effective amount of snowmelt by converting the total amount of precipitation and snowmelt into the effective rainfall index,
From the combination of snow depth and experience value of effective snowmelt amount that have been experienced in the past in the evaluation area, set the threshold value of the effective snowmelt amount corresponding to the snow depth in the evaluation area,
Evaluating the risk of slope disaster by comparing the effective snowmelt amount at the time of evaluation with the threshold value of the effective snowmelt amount corresponding to the snow depth at the time of evaluation,
Risk assessment method for slope disaster in snowmelt season.
前記閾値は、評価時点の積雪深に対応する実効融雪量の経験値の最大値である、
請求項1に記載の融雪期斜面災害の危険度評価方法。
The threshold value is the maximum value of the empirical value of the effective snowmelt amount corresponding to the snow depth at the time of evaluation,
The risk assessment method for a snowmelt slope disaster according to claim 1.
前記閾値は、評価時点の積雪深に対応する、実効融雪量の経験値の平年値である、
請求項1に記載の融雪期斜面災害の危険度評価方法。
The threshold value corresponds to the snow depth at the time of evaluation, is a normal value of the experience value of the effective snowmelt amount,
The risk assessment method for a snowmelt slope disaster according to claim 1.
前記閾値は、評価時点の積雪深に対応する実効融雪量の確率年に相当する値である、
請求項1に記載の融雪期斜面災害の危険度評価方法。
The threshold value is a value corresponding to the probability year of the effective snowmelt amount corresponding to the snow depth at the time of evaluation,
The risk assessment method for a snowmelt slope disaster according to claim 1.
実効融雪量Rcは、数式1により算出する、
請求項1から4のいずれか1項に記載の融雪期斜面災害の危険度評価方法。
Figure 2020094472
Figure 2020094472
ただし、Tは半減期(hour)、Δtは単位時間(hour)、r(i)はiステップ時点の降水量と融雪量の合算値(mm/hour)、Rc(i)はiステップ時点の実効融雪量(mm)、Rc(i−1)はRc(i)の単位時間前の実効融雪量(mm)である。
The effective snowmelt amount Rc is calculated by Equation 1,
The risk evaluation method for a snowmelt slope disaster according to any one of claims 1 to 4.
Figure 2020094472
Figure 2020094472
However, T is the half-life (hour), Δt is the unit time (hour), r(i) is the sum of the precipitation amount and the amount of snowmelt at the i step time (mm/hour), and Rc(i) is the i step time. The effective snowmelt amount (mm) and Rc(i-1) are the effective snowmelt amount (mm) of Rc(i) before the unit time.
前記融雪量は、地域気象観測システムの計測データを用いて算出する、
請求項1から5のいずれか1項に記載の融雪期斜面災害の危険度評価方法。
The snowmelt amount is calculated using the measurement data of the local meteorological observation system,
The risk evaluation method for a snowmelt season slope disaster according to any one of claims 1 to 5.
前記融雪量は、複数の地域気象観測システムの計測データを用いて数式3により推定された評価地点の気象要素に基づいて算出される、
請求項6に記載の融雪期斜面災害の危険度評価方法。
Figure 2020094472
Figure 2020094472
ただし、u(x)は評価地点xにおける気象要素、Nは推定に用いる地域気象観測システムの数、u(xi)は地域気象観測システム地点xiにおける気象要素、wiは地域気象観測システムiの重み、d(x,xi)は評価地点xと地域気象観測システム地点xiとの距離(km)、Pは距離指数である。
The snowmelt amount is calculated based on the meteorological element at the evaluation point estimated by Equation 3 using measurement data of a plurality of regional meteorological observation systems,
The risk evaluation method for a snowmelt slope disaster according to claim 6.
Figure 2020094472
Figure 2020094472
Where u(x) is the weather element at the evaluation point x, N is the number of local weather observation systems used for estimation, u(xi) is the weather element at the local weather observation system point xi, and wi is the weight of the local weather observation system i. , D(x, xi) is a distance (km) between the evaluation point x and the local meteorological observation system point xi, and P is a distance index.
入力部および表示部を備えた端末装置と、
前記端末装置と通信可能なサーバ装置と、を備え、
前記端末装置は、融雪期斜面災害の危険度評価を行う評価地域の入力を受け付けて、評価地域を前記サーバ装置に送信し、
前記サーバ装置は、前記端末装置から評価地域を受信し、評価地域で過去に経験した積雪深および実効融雪量の経験値の組み合わせから、評価地域における積雪深に対応する実効融雪量の閾値を設定し、評価時点の実効融雪量と、評価時点の積雪深に対応する実効融雪量の前記閾値とを比較し、比較結果を前記端末装置に送信し、
前記端末装置は、前記サーバ装置から受信した比較結果を表示する、
融雪期斜面災害の危険度評価システム。
A terminal device having an input section and a display section;
A server device capable of communicating with the terminal device,
The terminal device receives an input of an evaluation area for performing a risk assessment of a snowmelt slope disaster, and transmits the evaluation area to the server device,
The server device receives the evaluation area from the terminal device, and sets a threshold value of the effective snowmelt amount corresponding to the snow depth in the evaluation region from a combination of the snow depth and the experience value of the effective snowmelt amount that have been experienced in the evaluation region in the past. Then, the effective snowmelt amount at the time of evaluation and the threshold value of the effective snowmelt amount corresponding to the snow depth at the time of evaluation are compared, and the comparison result is transmitted to the terminal device,
The terminal device displays the comparison result received from the server device,
Risk assessment system for snowmelt slope disasters.
JP2019150478A 2018-12-10 2019-08-20 Risk assessment method for snowmelt slope disasters and risk assessment system for snowmelt slope disasters Active JP7084897B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018230911 2018-12-10
JP2018230911 2018-12-10

Publications (2)

Publication Number Publication Date
JP2020094472A true JP2020094472A (en) 2020-06-18
JP7084897B2 JP7084897B2 (en) 2022-06-15

Family

ID=71086120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150478A Active JP7084897B2 (en) 2018-12-10 2019-08-20 Risk assessment method for snowmelt slope disasters and risk assessment system for snowmelt slope disasters

Country Status (1)

Country Link
JP (1) JP7084897B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516407A (en) * 2021-07-30 2021-10-19 中国气象局气象探测中心 Method and system for identifying snow disaster distribution in areas along high-speed rail
CN115271564A (en) * 2022-09-29 2022-11-01 淄博市交通建设发展中心 Highway slope disaster space danger zoning method and terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066160A (en) * 2001-08-24 2003-03-05 Cdan:Kk Region-relating information providing system and computer-readable recording medium with region- relating information providing program recorded thereon
JP2011085007A (en) * 2009-10-19 2011-04-28 Takayuki Abe Calculation method for setting small step width and the like by calculating slope snow pressure on slope and snow pressure resistance of small step width and the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066160A (en) * 2001-08-24 2003-03-05 Cdan:Kk Region-relating information providing system and computer-readable recording medium with region- relating information providing program recorded thereon
JP2011085007A (en) * 2009-10-19 2011-04-28 Takayuki Abe Calculation method for setting small step width and the like by calculating slope snow pressure on slope and snow pressure resistance of small step width and the like

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
内田 勉 他1名: "積雪荷重と地すべり挙動に関する考察", 日本雪工学会誌, vol. 5, no. 3, JPN6022020336, 1989, JP, pages 45 - 49, ISSN: 0004778819 *
松浦純生: "積雪を誘因とした地すべりの発生予測における諸問題", 地すべり, vol. Vo. 34, No. 4, JPN6022020338, 1998, JP, pages 39 - 46, ISSN: 0004778820 *
高柳 剛 他2名: "融雪期の斜面災害に対する管理手法", 鉄道総研報告, vol. 31, no. 5, JPN6022020335, May 2017 (2017-05-01), JP, pages 11 - 16, ISSN: 0004778818 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516407A (en) * 2021-07-30 2021-10-19 中国气象局气象探测中心 Method and system for identifying snow disaster distribution in areas along high-speed rail
CN113516407B (en) * 2021-07-30 2023-09-26 中国气象局气象探测中心 Snow disaster distribution identification method and system for regions along high-speed rail
CN115271564A (en) * 2022-09-29 2022-11-01 淄博市交通建设发展中心 Highway slope disaster space danger zoning method and terminal
CN115271564B (en) * 2022-09-29 2022-12-27 淄博市交通建设发展中心 Highway slope disaster space danger zoning method and terminal

Also Published As

Publication number Publication date
JP7084897B2 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
Vanmaercke et al. How fast do gully headcuts retreat?
Zhang et al. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China’s Loess Plateau
Hennessy et al. Climate change effects on snow conditions in mainland Australia and adaptation at ski resorts through snowmaking
Kinnell A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas
Al‐Hamdan et al. Rangeland hydrology and erosion model (RHEM) enhancements for applications on disturbed rangelands
Copons et al. Rockfall susceptibility zoning at a large scale: from geomorphological inventory to preliminary land use planning
JP2020094472A (en) Hazard evaluation method of slope disaster in snow melting and hazard evaluation system of slope disaster in snow melting
Dreier et al. Relating meteorological parameters to glide-snow avalanche activity
Subramanian et al. An early warning criterion for the prediction of snowmelt-induced soil slope failures in seasonally cold regions
Zhu et al. Extreme rainfall, rainfall erosivity, and hillslope erosion in Australian Alpine region and their future changes
Kofler et al. When do rock glacier fronts fail? Insights from two case studies in South Tyrol (Italian Alps)
JP2018081067A (en) Method and system for determining empirical snow depth
Pfeiffer et al. Spatio‐temporal assessment of the hydrological drivers of an active deep‐seated gravitational slope deformation: The Vögelsberg landslide in Tyrol (Austria)
Golledge et al. Lichenometry on adelaide island, antarctic peninsula: size‐frequency studies, growth rates and snowpatches
Kraatz et al. Spatial and temporal freeze-thaw variations in Alaskan roads
TW201734444A (en) Information processing device, parameter correction method and program recording medium
Shamsabadi et al. Deterioration forecasting in flexible pavements due to floods and snow storms
Yang et al. Using GIS and a digital elevation model to assess the effectiveness of variable grade flow diversion terraces in reducing soil erosion in northwestern New Brunswick, Canada
Inomata et al. Quantification of the risks on dam preliminary release based on ensemble rainfall forecasts and determination of operation
McCool et al. Seasonal change of WEPP erodibility parameters for two fallow plots on a Palouse silt loam
JP6084332B1 (en) Earth and sand disaster prediction system
Wandala Comparative Test of Several Rainfall Estimation Methods Using Himawari-8 Data
Suif et al. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility
PERMOS Swiss permafrost bulletin 2021
Cheetham et al. RISK VIP: Evaluation of Flood Risk on the French Railway Network Using an Innovative GIS Approach

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220603

R150 Certificate of patent or registration of utility model

Ref document number: 7084897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150