JP2020088030A - Plate solder and method of manufacturing semiconductor device - Google Patents

Plate solder and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2020088030A
JP2020088030A JP2018216470A JP2018216470A JP2020088030A JP 2020088030 A JP2020088030 A JP 2020088030A JP 2018216470 A JP2018216470 A JP 2018216470A JP 2018216470 A JP2018216470 A JP 2018216470A JP 2020088030 A JP2020088030 A JP 2020088030A
Authority
JP
Japan
Prior art keywords
solder
joining
plate
connecting portion
plate solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018216470A
Other languages
Japanese (ja)
Other versions
JP7183722B2 (en
Inventor
外薗 洋昭
Hiroaki Sotozono
洋昭 外薗
慎司 多田
Shinji Tada
慎司 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018216470A priority Critical patent/JP7183722B2/en
Publication of JP2020088030A publication Critical patent/JP2020088030A/en
Application granted granted Critical
Publication of JP7183722B2 publication Critical patent/JP7183722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

To provide a plate solder for achieving high positional accuracy so that a member to be joined such as a semiconductor chip does not move by changing a shape of the plate solder while reducing work time and running cost and a method of manufacturing a semiconductor device.SOLUTION: Plate solders 10, 11 include: a plurality of plate-shaped bonding solder portions 13 used for bonding members of a semiconductor device; and a connecting portion 12 for connecting the bonding solder portions 13. The connecting portion 12 has a narrow cutting portion 14 in the connecting portion 12 on a surface of the connecting portion 12 on a front surface side of the bonding solder portion 13.SELECTED DRAWING: Figure 11

Description

この発明は、板はんだおよび半導体装置の製造方法に関する。 The present invention relates to a plate solder and a method for manufacturing a semiconductor device.

近年、IGBT(Insulated Gate Bipolar Transistor)を中心として、パワー半導体モジュールが電力変換装置に広く用いられるようになっている。パワー半導体モジュールは1つまたは複数のパワー半導体チップを内蔵して変換接続の一部または全体を構成するパワー半導体デバイスである。 2. Description of the Related Art In recent years, power semiconductor modules have come to be widely used for power conversion devices centering on IGBTs (Insulated Gate Bipolar Transistors). A power semiconductor module is a power semiconductor device that incorporates one or more power semiconductor chips and constitutes a part or the whole of conversion connection.

図23は、従来のパワー半導体モジュールの構成を示す断面図である。図23に示すように、パワー半導体モジュールは、パワー半導体チップ101と、絶縁基板102と、導電性板103と、放熱板104と、金属端子105と、放熱ベース110と、ワイヤ111と、を備える。パワー半導体チップ101は、IGBTまたはダイオード等のパワー半導体チップであり、導電性板103上にはんだ109で接合されている。セラミック基板等の絶縁基板102のおもて面に銅などの導電性板103が備えられ、裏面に銅などの放熱板104が備えられたものを積層基板と称する。積層基板は、放熱ベース110にはんだ109で接合されている。外部に信号を取り出す金属端子105は、導電性板103上にはんだ109で接合されている。ワイヤ111は、パワー半導体チップ101と金属端子105とを電気的に接続している。なお、図示はしていないが、これらの部材は、1台の半導体装置に複数搭載されている。パワー半導体モジュールは、端子ケース(不図示)が接着され、金属端子105が貫通して外部に突き出ている蓋(不図示)を取り付け、積層基板102の沿面および基板上のパワー半導体チップ101を絶縁保護する封止樹脂(不図示)が、端子ケース内に充填されている。 FIG. 23 is a sectional view showing the structure of a conventional power semiconductor module. As shown in FIG. 23, the power semiconductor module includes a power semiconductor chip 101, an insulating substrate 102, a conductive plate 103, a heat dissipation plate 104, a metal terminal 105, a heat dissipation base 110, and a wire 111. .. The power semiconductor chip 101 is a power semiconductor chip such as an IGBT or a diode, and is joined to the conductive plate 103 with solder 109. An insulating substrate 102 such as a ceramic substrate provided with a conductive plate 103 such as copper on the front surface and a heat dissipation plate 104 such as copper on the back surface is referred to as a laminated substrate. The laminated substrate is joined to the heat dissipation base 110 with solder 109. The metal terminal 105 for extracting a signal to the outside is joined to the conductive plate 103 with solder 109. The wire 111 electrically connects the power semiconductor chip 101 and the metal terminal 105. Although not shown, a plurality of these members are mounted on one semiconductor device. In the power semiconductor module, a terminal case (not shown) is adhered, and a lid (not shown) through which the metal terminal 105 penetrates and projects to the outside is attached to insulate the surface of the laminated substrate 102 and the power semiconductor chip 101 on the substrate. A sealing resin (not shown) for protection is filled in the terminal case.

はんだ109を用いて、パワー半導体チップ101、金属端子105等を接合する半導体装置の製造方法に関して、接合方法には大きく2方式がある。一つは、板はんだを複数箇所の接合部に複数並べたのち、酸化膜を還元できる水素(H2)、またはギ酸(CH22)雰囲気にて加熱し、接合する方法である。もう一つは、酸化膜を還元する溶媒を含んだペースト状のはんだを、複数箇所に塗布したのち、窒素(N2)などの不活性ガス雰囲気下にて加熱し、接合する方法である。 Regarding the method of manufacturing a semiconductor device in which the power semiconductor chip 101, the metal terminal 105, and the like are bonded using the solder 109, there are roughly two bonding methods. One is a method of arranging a plurality of sheet solders at a plurality of joints and then heating them in an atmosphere of hydrogen (H 2 ) or formic acid (CH 2 O 2 ) capable of reducing an oxide film to join them. The other is a method in which a paste-like solder containing a solvent that reduces an oxide film is applied to a plurality of places and then heated in an atmosphere of an inert gas such as nitrogen (N 2 ) to join them.

積層基板上の導電性板は、パワー半導体チップや金属端子等を接続するために、所定の形状(パターン)にエッチング等で加工される。また、放熱性を向上するために、厚い(例えば、1〜5mm)金属層を用いられることがある。しかし、エッチング処理を利用する製造方法では、導電性板が厚いことで長い製造時間を要し、コストアップとなる。このため、薄い金属層が絶縁板上に形成された基板上に厚い金属パターンを配置し、接合材として板はんだを用いて複数の金属パターンを基板に接合することが考えられる。この際、複数のはんだランドが複数のタイバーにより接続して一体化されているはんだ板を用いることで、少ない工数で複数のはんだランドをそれぞれ複数の金属板片上に載せることができる技術が公知である(例えば、特許文献1参照)。 The conductive plate on the laminated substrate is processed into a predetermined shape (pattern) by etching or the like in order to connect a power semiconductor chip, a metal terminal, or the like. In addition, a thick (for example, 1 to 5 mm) metal layer may be used to improve heat dissipation. However, the manufacturing method using the etching process requires a long manufacturing time because the conductive plate is thick, resulting in an increase in cost. Therefore, it is conceivable that a thick metal pattern is arranged on a substrate having a thin metal layer formed on an insulating plate, and a plurality of metal patterns are bonded to the substrate by using plate solder as a bonding material. At this time, by using a solder plate in which a plurality of solder lands are connected and integrated by a plurality of tie bars, it is known that a plurality of solder lands can be placed on a plurality of metal plate pieces with a small number of steps. There is (for example, refer to Patent Document 1).

特開2017−174848号公報JP, 2017-174848, A

ここで、板はんだによる接合プロセスは、接合箇所毎に板はんだを並べ、その上に半導体チップなどの被接合部材を搭載する。そのため、この個数よって作業時間が変化する。また、配置ずれや未実装により接合不良となる場合がある。一方、ペースト状のはんだは、スクリーン印刷工法により複数箇所に一括供給が可能であるが、溶媒の洗浄が必要となるため板はんだに比べて作業コスト、洗浄液の廃液処理、新液購入等ランニングコストがかかる。 Here, in the joining process using the sheet solder, the sheet solder is arranged for each joining portion, and a member to be joined such as a semiconductor chip is mounted thereon. Therefore, the working time changes depending on this number. In addition, there is a case where a joint failure occurs due to a displacement of the arrangement or non-mounting. On the other hand, paste solder can be supplied to multiple locations all at once by the screen printing method, but since solvent cleaning is required, work costs, cleaning liquid waste liquid treatment, new liquid purchasing and other running costs compared to plate solder. Takes.

また、板はんだを用いる方法で、板はんだを連結部でつなぎ、複数の板はんだを一工程で複数の被接合部材を搭載する技術がある。しかしながら、連結部を有する板はんだを用いても、切断される場所が一様ではないという課題がある。 Further, there is a technique of connecting a plurality of plate solders at a connecting portion and mounting a plurality of plate solders in a single step by a method using plate solders. However, even if the plate solder having the connecting portion is used, there is a problem in that the places to be cut are not uniform.

例えば、連結部でつながれた板はんだの体積が同じでも、切断される個所が異なり、半導体チップが動いてしまう場合がある。また、導電性板上に半導体チップを板はんだで接合する例を示すと、半導体チップの大きさによって板はんだの面積および体積は異なる場合がある。早く加熱される板はんだに近い連結部の方が早く切断されるので、早く加熱された板はんだ上の半導体チップが動いてしまう場合がある。つまり、板はんだを加熱していくと、小さい体積の板はんだは早く加温され、溶解するが、大きな体積の板はんだは熱容量が大きいためまだ溶解しない段階である。大きな体積の板はんだが溶解しないうちに、連結部が溶けてしまうと、小さな板はんだ上の半導体チップが動いてしまう。これにより、半導体チップが導電性板に接合されずに、半導体装置が導電不良となるおそれがある。 For example, even if the volume of the plate solder connected by the connecting portion is the same, the cut portion may be different and the semiconductor chip may move. Further, when an example in which a semiconductor chip is joined to a conductive plate by plate solder is shown, the area and volume of the plate solder may differ depending on the size of the semiconductor chip. Since the connecting portion closer to the plate solder heated earlier is cut earlier, the semiconductor chip on the plate solder heated earlier may move. In other words, as the sheet solder is heated, the sheet solder having a small volume is quickly heated and melted, but the sheet solder having a large volume has a large heat capacity and is not yet dissolved. If the connecting portion melts before the large volume of plate solder melts, the semiconductor chip on the small plate solder moves. As a result, the semiconductor chip may not be joined to the conductive plate, and the semiconductor device may have poor conductivity.

この発明は、上述した従来技術による問題点を解消するため、板はんだの形状を変化させることにより、作業工数およびランニングコストを削減し、半導体チップ等の被接合部材が動かないように高い位置精度を実現する板はんだおよび半導体装置の製造方法を提供することを目的とする。 In order to solve the above-mentioned problems of the conventional technique, the present invention reduces the work man-hours and running costs by changing the shape of the plate solder, and has high positional accuracy so that the joined members such as semiconductor chips do not move. An object of the present invention is to provide a method for manufacturing a plate solder and a semiconductor device that realizes the above.

上述した課題を解決し、本発明の目的を達成するため、この発明にかかる板はんだは、次の特徴を有する。板はんだは、半導体装置の部材同士間の接合に用いられる板状の複数の接合用はんだ部と、前記接合用はんだ部を連結する連結部と、を備える。前記連結部は、前記接合用はんだ部の表面側の前記連結部の面に、前記連結部の中で幅が狭い切断部を有する。 In order to solve the problems described above and achieve the object of the present invention, the plate solder according to the present invention has the following features. The plate solder includes a plurality of plate-shaped joining solder portions used for joining members of the semiconductor device, and a connecting portion that connects the joining solder portions. The connecting portion has a cut portion having a narrow width in the connecting portion on the surface of the connecting portion on the front surface side of the joining solder portion.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、前記切断部に向かって前記連結部の幅が狭くなることを特徴とする。 Further, the plate solder according to the present invention is characterized in that, in the above-mentioned invention, the width of the connecting portion becomes narrower toward the cutting portion.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、前記切断部に切り欠け溝を有することを特徴とする。 Further, the plate solder according to the present invention is characterized in that, in the above-mentioned invention, the connecting portion has a cutout groove in the cutting portion.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、四角柱であり、一部に前記連結部の幅が狭い切断部を有することを特徴とする。 Further, the plate solder according to the present invention is characterized in that, in the above-mentioned invention, the connecting portion is a quadrangular prism and a part thereof has a cut portion having a narrow width of the connecting portion.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、前記連結部が連結する前記接合用はんだ部の体積により前記切断部の位置が異なることを特徴とする。 Further, the plate solder according to the present invention is characterized in that, in the above-mentioned invention, the position of the cutting portion of the connecting portion is different depending on the volume of the joining solder portion to which the connecting portion is connected.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、第1の接合用はんだ部と、前記第1の接合用はんだ部より体積の小さな第2の接合用はんだ部とを連結し、前記連結部の前記切断部は、前記連結部の中央より前記第1の接合用はんだ部側に位置することを特徴とする。 Further, in the above-described invention, the plate solder according to the present invention is configured such that the connecting portion includes a first joining solder portion and a second joining solder portion having a smaller volume than the first joining solder portion. It connects, and the said cutting part of the said connection part is located in the said 1st soldering part for joining from the center of the said connection part, It is characterized by the above-mentioned.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、前記連結部の幅が最も広い部分の幅に対する前記切断部の幅の比は0.3以上0.6以下であることを特徴とする。 Further, in the above-described invention, the plate solder according to the present invention is such that the ratio of the width of the cut portion to the width of the widest portion of the connecting portion is 0.3 or more and 0.6 or less. It is characterized by

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、前記連結部の幅が最も広い部分の幅が0.1mm以上1mm以下であり、かつ、前記切断部の幅が0.1mm以上であることを特徴とする。 In the plate solder according to the present invention, in the above-mentioned invention, the connecting portion has a width of the widest portion of the connecting portion of 0.1 mm or more and 1 mm or less and a width of the cutting portion of 0. It is characterized by being 1 mm or more.

また、この発明にかかる板はんだは、上述した発明において、前記連結部は、前記接合用はんだ部の側面側の前記連結部の面に、前記連結部の中で幅が狭い第2の切断部を有することを特徴とする。 Further, in the above-described invention, the plate solder according to the present invention is characterized in that the connecting portion has a second cutting portion having a narrow width in the connecting portion on a surface of the connecting portion on a side surface side of the joining solder portion. It is characterized by having.

また、この発明にかかる板はんだは、上述した発明において、前記複数の接合用はんだ部の内、少なくとも2つの接合用はんだ部は、それぞれの表面が同一平面上にないことを特徴とする。 Further, the plate solder according to the present invention is characterized in that, in the above-mentioned invention, the surfaces of at least two joining solder portions of the plurality of joining solder portions are not on the same plane.

上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、板はんだを用いて、積層基板上の導電性板と半導体素子とを接合して、前記積層基板に前記半導体素子を搭載する第1工程を行う。次に、前記半導体素子と、外部に信号を取り出す金属端子とを電気的に接続する第2工程を行う。次に、封止樹脂を注入し、前記半導体素子と前記積層基板のおもて面とを内部に封入する第3工程を行う。前記板はんだは、半導体装置の部材同士間の接合に用いられる板状の複数の接合用はんだ部と、前記接合用はんだ部を連結する連結部と、を備え、前記連結部は、前記接合用はんだ部の表面側の前記連結部の面に、前記連結部の中で幅が狭い切断部を有する。 In order to solve the problems described above and achieve the object of the present invention, a method for manufacturing a semiconductor device according to the present invention has the following features. First, a first step is performed in which a conductive plate on a laminated substrate and a semiconductor element are bonded to each other using a plate solder, and the semiconductor element is mounted on the laminated substrate. Next, a second step of electrically connecting the semiconductor element and a metal terminal for extracting a signal to the outside is performed. Next, a third step of injecting a sealing resin and enclosing the semiconductor element and the front surface of the laminated substrate inside is performed. The plate solder includes a plurality of plate-shaped joining solder portions used for joining members of a semiconductor device, and a joining portion that joins the joining solder portions, and the joining portion is for joining A cut portion having a narrow width in the connecting portion is provided on the surface of the connecting portion on the front surface side of the solder portion.

また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2工程では、リードフレームまたは配線基板を用いて、前記半導体素子と前記金属端子とを、電気的に接続し、前記板はんだが、前記リードフレームまたは前記配線基板と、前記半導体素子とを接合し、および前記リードフレームまたは前記配線基板と、前記金属端子とを接合することを特徴とする。 Also, in the method for manufacturing a semiconductor device according to the present invention, in the above-mentioned invention, in the second step, the semiconductor element and the metal terminal are electrically connected by using a lead frame or a wiring substrate, It is characterized in that the plate solder joins the lead frame or the wiring board to the semiconductor element, and joins the lead frame or the wiring board to the metal terminal.

上述した発明によれば、接合用はんだ部が連結部で連結されているため、少ない工数で、パワー半導体チップ等の被接合部材に搭載可能となる。また、連結部は、接合用はんだ部の表面側の面に、連結部の中で幅が狭い切断部を有する。これにより、板はんだが溶解するときに切断部で切断されやすくなり、パワー半導体チップ等の被接合部材が動くことを防止できる。 According to the above-mentioned invention, since the joining solder portion is connected by the connecting portion, it can be mounted on a member to be joined such as a power semiconductor chip with a small number of steps. Further, the connecting portion has a cut portion having a narrow width in the connecting portion on the surface of the joining solder portion on the front surface side. As a result, when the plate solder is melted, it is likely to be cut at the cutting portion, and it is possible to prevent the joined members such as the power semiconductor chip from moving.

本発明にかかる板はんだおよび半導体装置の製造方法によれば、板はんだの形状を変化させることにより、作業工数およびランニングコストを削減し、半導体チップ等の被接合部材が動かないように高い位置精度を実現するという効果を奏する。 According to the method of manufacturing a plate solder and a semiconductor device according to the present invention, by changing the shape of the plate solder, the work man-hours and the running cost are reduced, and high positional accuracy is ensured so that the joined members such as the semiconductor chip do not move. Has the effect of realizing.

実施の形態1にかかるパワー半導体モジュールの構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of the power semiconductor module according to the first exemplary embodiment. 実施の形態1にかかる下部板はんだを示す上面図である。FIG. 3 is a top view showing the lower plate solder according to the first embodiment. 実施の形態1にかかる下部板はんだを絶縁基板に搭載した構成を示す上面図である。FIG. 3 is a top view showing a configuration in which the lower plate solder according to the first embodiment is mounted on an insulating substrate. 実施の形態1にかかる下部板はんだを絶縁基板に搭載した構成を示す側面図である。FIG. 3 is a side view showing a configuration in which the lower plate solder according to the first embodiment is mounted on an insulating substrate. 実施の形態1にかかる下部板はんだでパワー半導体チップおよび金属端子を絶縁基板に接合した構成を示す上面図である。FIG. 3 is a top view showing a configuration in which the power semiconductor chip and the metal terminal are joined to the insulating substrate by the lower plate solder according to the first embodiment. 実施の形態1にかかる下部板はんだでパワー半導体チップおよび金属端子を絶縁基板に接合した構成を示す側面図である。FIG. 3 is a side view showing a configuration in which the power semiconductor chip and the metal terminal are joined to the insulating substrate with the lower plate solder according to the first embodiment. 実施の形態1にかかる上部板はんだを示す上面図である。FIG. 3 is a top view showing the upper plate solder according to the first embodiment. 実施の形態1にかかる上部板はんだを示す側面図である。FIG. 3 is a side view showing the upper plate solder according to the first embodiment. 実施の形態1にかかる上部板はんだを絶縁基板に搭載した構成を示す側面図で、リードフレームに接合する例である。FIG. 3 is a side view showing a configuration in which the upper plate solder according to the first embodiment is mounted on an insulating substrate, which is an example of joining to a lead frame. 実施の形態1にかかる上部板はんだを絶縁基板に接合した構成を示す側面図である。FIG. 3 is a side view showing a configuration in which the upper plate solder according to the first embodiment is joined to an insulating substrate. 実施の形態1にかかる板はんだの連結部を示す上面図である(その1)。FIG. 3 is a top view showing a connecting portion of the plate solder according to the first embodiment (No. 1). 実施の形態1にかかる板はんだの連結部を示す上面図である(その2)。FIG. 3 is a top view showing a connecting portion of the plate solder according to the first embodiment (No. 2). 実施の形態1にかかる板はんだの連結部を示す上面図である(その3)。FIG. 5 is a top view showing a connecting portion of the plate solder according to the first embodiment (No. 3). 実施の形態1にかかる板はんだの連結部を示す上面図である(その4)。It is a top view which shows the connection part of the plate solder concerning Embodiment 1 (the 4). 実施の形態1にかかる板はんだの連結部を示す上面図である(その5)。FIG. 5 is a top view showing the connection part of the plate solder according to the first embodiment (No. 5). 実施の形態1にかかる板はんだの連結部を示す側面図である(その1)。It is a side view which shows the connection part of the plate solder concerning Embodiment 1 (the 1). 実施の形態1にかかる板はんだの連結部を示す側面図である(その2)。It is a side view which shows the connection part of the plate solder concerning Embodiment 1 (the 2). 実施の形態2にかかるパワー半導体モジュールの構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration of a power semiconductor module according to a second exemplary embodiment. 実施の形態2にかかる上部板はんだを示す上面図である。FIG. 6 is a top view showing the upper plate solder according to the second embodiment. 実施の形態2にかかる上部板はんだを示す側面図である。FIG. 6 is a side view showing an upper plate solder according to a second embodiment. 実施の形態2にかかる上部板はんだを絶縁基板に搭載した構成を示す側面図である。FIG. 9 is a side view showing a configuration in which an upper plate solder according to a second embodiment is mounted on an insulating substrate. 実施の形態2にかかる上部板はんだを絶縁基板に接合した構成を示す側面図である。It is a side view which shows the structure which joined the upper board solder concerning Embodiment 2 to the insulating substrate. 従来のパワー半導体モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional power semiconductor module.

以下に添付図面を参照して、この発明にかかる板はんだおよび半導体装置の製造方法の好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of a plate solder and a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

(実施の形態1)
図1は、実施の形態1にかかるパワー半導体モジュールの構成を示す断面図である。パワー半導体モジュールにおいては、絶縁基板2の一方の面であるおもて面に銅などの導電性板3、他方の面である裏面には銅などの放熱板4が配置されて積層基板を構成する。積層基板の導電性板3のおもて面には、下部はんだ9aを介して、複数のパワー半導体チップ1が搭載されている。外部に信号を取り出す金属端子5は、導電性板3上に下部はんだ9aで接合されている。さらにパワー半導体チップ1のおもて面には、上部はんだ9bを介して、リードフレーム6が取り付けられ、パワー半導体チップ1と金属端子5を電気的に接続している。パワー半導体モジュールには、導電性板3、金属端子5、リードフレーム6などの金属部材を有する。そして、これらの部材の表面は、封止樹脂7で被覆されている。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing the configuration of the power semiconductor module according to the first embodiment. In the power semiconductor module, a conductive board 3 made of copper or the like is arranged on one surface of the insulating substrate 2 and a heat dissipation plate 4 made of copper or the like is arranged on the other surface of the insulating substrate 2 to form a laminated substrate. To do. A plurality of power semiconductor chips 1 are mounted on the front surface of the conductive plate 3 of the laminated substrate via the lower solder 9a. The metal terminal 5 for extracting a signal to the outside is joined to the conductive plate 3 by the lower solder 9a. Further, a lead frame 6 is attached to the front surface of the power semiconductor chip 1 via the upper solder 9b to electrically connect the power semiconductor chip 1 and the metal terminal 5. The power semiconductor module has metal members such as the conductive plate 3, the metal terminals 5, and the lead frame 6. The surfaces of these members are covered with the sealing resin 7.

パワー半導体チップ1は、シリコン(Si)、炭化シリコン(SiC)、窒化ガリウム(GaN)等の材料からなる。パワー半導体チップ1は、IGBT、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のスイッチング素子を含んでいる。このようなパワー半導体チップ1は、例えば、裏面に主電極としてドレイン電極(または、コレクタ電極)を、おもて面に、主電極としてゲート電極及びソース電極(または、エミッタ電極)をそれぞれ備えている。 The power semiconductor chip 1 is made of materials such as silicon (Si), silicon carbide (SiC), and gallium nitride (GaN). The power semiconductor chip 1 includes switching elements such as an IGBT and a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Such a power semiconductor chip 1 has, for example, a drain electrode (or collector electrode) as a main electrode on the back surface and a gate electrode and a source electrode (or emitter electrode) as a main electrode on the front surface, respectively. There is.

また、パワー半導体チップ1は、必要に応じて、SBD(Schottky Barrier Diode)、FWD(Free Wheeling Diode)等のダイオードを含んでいる。このようなパワー半導体チップ1は、裏面に主電極としてカソード電極を、おもて面に主電極としてアノード電極をそれぞれ備えている。上記のパワー半導体チップ1は、その裏面側の電極が所定の導電性板3のおもて面に下部はんだ9aにより接合されている。 Further, the power semiconductor chip 1 includes diodes such as SBD (Schottky Barrier Diode) and FWD (Free Wheeling Diode) as necessary. Such a power semiconductor chip 1 has a cathode electrode as a main electrode on the back surface and an anode electrode as a main electrode on the front surface. In the power semiconductor chip 1 described above, the electrode on the back surface side is joined to the front surface of a predetermined conductive plate 3 by the lower solder 9a.

積層基板は、絶縁基板2と、絶縁基板2の裏面に形成された放熱板4と、絶縁基板2のおもて面に形成された導電性板3とを有している。導電性板3は、パワー半導体チップ1や金属端子5等を接続するために、所定の形状(パターン)にエッチング等で加工される。絶縁基板2は、熱伝導性に優れた、酸化アルミニウム、窒化アルミニウム、窒化珪素等の高熱伝導性のセラミックスにより構成されている。放熱板4は、熱伝導性に優れた銅、アルミニウム、鉄、銀、または、少なくともこれらの一種を含む合金等の金属により構成されている。導電性板3は、導電性に優れた銅、アルミニウム、または、少なくともこれらの一種を含む合金等の金属により構成されている。このような構成を有する積層基板として、例えば、DCB(Direct Copper Bonding)基板、AMB(Active Metal Blazed)基板を用いることができる。積層基板は、パワー半導体チップ1で発生した熱を導電性板3、絶縁基板2および放熱板4を介して半導体装置外部に伝導させることができる。また、積層基板は、金属ベース基板であってもよい。金属ベース基板は、アルミニウムまたは、銅などの金属からなる放熱板4上に樹脂からなる絶縁層、さらにその上に導電性板3を重ねて構成される。 The laminated substrate has an insulating substrate 2, a heat dissipation plate 4 formed on the back surface of the insulating substrate 2, and a conductive plate 3 formed on the front surface of the insulating substrate 2. The conductive plate 3 is processed into a predetermined shape (pattern) by etching or the like in order to connect the power semiconductor chip 1, the metal terminal 5, and the like. The insulating substrate 2 is made of ceramics having high thermal conductivity, such as aluminum oxide, aluminum nitride, and silicon nitride, which have high thermal conductivity. The heat dissipation plate 4 is made of a metal such as copper, aluminum, iron, silver, or an alloy containing at least one of these, which has excellent thermal conductivity. The conductive plate 3 is made of a metal such as copper, aluminum, or an alloy containing at least one of these, which has excellent conductivity. As the laminated substrate having such a configuration, for example, a DCB (Direct Copper Bonding) substrate or an AMB (Active Metal Blazed) substrate can be used. The laminated substrate can conduct the heat generated in the power semiconductor chip 1 to the outside of the semiconductor device through the conductive plate 3, the insulating substrate 2 and the heat dissipation plate 4. Further, the laminated substrate may be a metal base substrate. The metal base substrate is constructed by disposing an insulating layer made of resin on a heat dissipation plate 4 made of metal such as aluminum or copper, and further superposing a conductive plate 3 thereon.

封止樹脂7は、熱硬化性樹脂、または熱可塑性樹脂を用いることができる。更に、密着助剤を含んでいてもよい。また、目的に応じて、無機充填剤として、例えば、シリカ、アルミナ、窒化ボロン、窒化アルミニウムなどの無機粒子からなるマイクロフィラーやナノフィラーを含んでいても良い。 As the sealing resin 7, a thermosetting resin or a thermoplastic resin can be used. Further, an adhesion aid may be included. In addition, depending on the purpose, as the inorganic filler, for example, a microfiller or a nanofiller made of inorganic particles such as silica, alumina, boron nitride, and aluminum nitride may be included.

下部はんだ9a、上部はんだ9bは、パワー半導体モジュールの部材同士間の接合に用いられる接合材である。はんだとして、たとえば、スズ銀(Sn−Ag)系、スズアンチモン(Sn−Sb)系、スズ銅(Sn−Cu)系のはんだを用いることができる。 The lower solder 9a and the upper solder 9b are joining materials used for joining members of the power semiconductor module. As the solder, for example, tin silver (Sn-Ag)-based solder, tin antimony (Sn-Sb)-based solder, and tin copper (Sn-Cu)-based solder can be used.

実施の形態1のパワー半導体モジュールは、以下のようにして製造される。製造方法では、まず、絶縁基板2のおもて面に導電性板3が設けられ、裏面に放熱板4が設けられた積層基板を用意する。 The power semiconductor module according to the first embodiment is manufactured as follows. In the manufacturing method, first, a laminated substrate in which the conductive plate 3 is provided on the front surface of the insulating substrate 2 and the heat dissipation plate 4 is provided on the back surface is prepared.

次に、積層基板に設けられた導電性板3のおもて面にパワー半導体チップ1を実装する。具体的には、導電性板3の上に下部板はんだ10とパワー半導体チップ1とを積層し、接合する。同様に、導電性板3上に下部板はんだ10と金属端子5とを積層し、接合する。 Next, the power semiconductor chip 1 is mounted on the front surface of the conductive plate 3 provided on the laminated substrate. Specifically, the lower plate solder 10 and the power semiconductor chip 1 are stacked on the conductive plate 3 and bonded. Similarly, the lower plate solder 10 and the metal terminal 5 are laminated on the conductive plate 3 and joined.

図2は、実施の形態1にかかる下部板はんだを示す上面図である。図3は、実施の形態1にかかる下部板はんだを絶縁基板に搭載した構成を示す上面図である。図4は、実施の形態1にかかる下部板はんだを絶縁基板に搭載した構成を示す側面図である。その後、加熱して、図6に示すように各部材ははんだで接合される。下部板はんだ10は、スズ、アンチモン、または銅等を含む鉛フリーはんだを用いた厚さ100μm以上300μm以下のはんだからなり、複数の接合用はんだ部13と連結部12とを有する。なお、板はんだの厚さが100μm未満だと、熱抵抗や電気抵抗は小さくできるが、均一な接合が難しく、また、接合する必要のある領域を完全に接合できない場合がある。また、詳細は以下に示すが、板はんだの厚さが300μmより厚いと、はんだを加熱し接合する際に、板はんだの連結部が溶融・切断されない場合がある。また、300μmより厚いと、電気抵抗が大きくなってしまう。板はんだの厚さは、さらに好ましくは、150μm以上、250μm以下である。板はんだの連結部12は、はんだ接合時に加熱されると、切断され、接合用はんだ部材側に凝集する。板はんだの厚さが150μm以上、250μm以下であれば、凝集部が大きくならず、切断、凝集がより良好に行われる。接合用はんだ部13は、パワー半導体モジュールの部材同士間の接合に用いられる表面を有する薄く平たい板状の形状を有している。そして、上面と下面はほぼ平行の板状である。接合用はんだ部13の表面の形状は、パワー半導体モジュールの部材の形状と1対1または近似する形状である。 FIG. 2 is a top view showing the lower plate solder according to the first embodiment. FIG. 3 is a top view showing a configuration in which the lower plate solder according to the first embodiment is mounted on an insulating substrate. FIG. 4 is a side view showing a configuration in which the lower plate solder according to the first embodiment is mounted on an insulating substrate. Then, it heats and each member is joined by solder as shown in FIG. The lower plate solder 10 is made of a lead-free solder containing tin, antimony, copper, or the like and having a thickness of 100 μm or more and 300 μm or less, and has a plurality of joining solder portions 13 and connecting portions 12. If the thickness of the sheet solder is less than 100 μm, the thermal resistance and the electrical resistance can be reduced, but uniform bonding is difficult, and there is a case where the regions that need to be bonded cannot be completely bonded. Further, as will be described in detail below, if the thickness of the plate solder is thicker than 300 μm, the connecting portion of the plate solder may not be melted/cut when the solder is heated and joined. If it is thicker than 300 μm, the electric resistance will increase. The thickness of the plate solder is more preferably 150 μm or more and 250 μm or less. When the connecting portion 12 of the plate solder is heated at the time of solder joining, it is cut and aggregates on the joining solder member side. When the thickness of the plate solder is 150 μm or more and 250 μm or less, the agglomerated portion does not become large, and cutting and agglomeration are more favorably performed. The joining solder portion 13 has a thin flat plate shape having a surface used for joining members of the power semiconductor module. Further, the upper surface and the lower surface are plate-like shapes substantially parallel to each other. The shape of the surface of the soldering portion 13 for joining is one-to-one or similar to the shape of the member of the power semiconductor module.

連結部12は、接合用はんだ部13を連結する部分であり、細長い棒状の形状を有している。連結部12の幅は0.1mm以上1mm以下であり細い方が好ましい。しかし、幅0.1mm未満になると下部板はんだ10を搭載する際に下部板はんだ10の形状が変形し、作業時間に悪影響を与えるため、0.1mm以上が好ましい。また、接合用はんだ部13が所定の位置よりずれてしまうため好ましくない。また、幅1mmを超えると加熱時の溶融の際に凝集しにくくなり未接合不良が発生したり、連結部12が切断されずに連結したままになってしまう。そのため、1mm以下が好ましい。また、図2には図示されていないが、連結部12は、板はんだの接合用はんだ部13の表面側の面に、連結部12の中で連結部12の幅が狭い切断部を有する。つまり、図11のように、上面から見て連結部12の中で連結部12の幅が狭い切断部を有する。切断部は、図11〜図17で詳細に説明する。これにより、下部板はんだ10が溶解するときに切断部で切断されやすくなり、半導体チップ等の被接合部材が動くことを防止できる。 The connecting portion 12 is a portion for connecting the joining solder portion 13 and has an elongated rod shape. The width of the connecting portion 12 is 0.1 mm or more and 1 mm or less, and a thinner one is preferable. However, if the width is less than 0.1 mm, the shape of the lower plate solder 10 is deformed when the lower plate solder 10 is mounted, and the working time is adversely affected. In addition, the soldering portion 13 for joining is displaced from a predetermined position, which is not preferable. Further, if the width exceeds 1 mm, the particles are less likely to aggregate during melting during heating, resulting in unbonded defects, or the connecting portion 12 remains connected without being cut. Therefore, 1 mm or less is preferable. Although not shown in FIG. 2, the connecting portion 12 has a cut portion of the connecting portion 12 in which the width of the connecting portion 12 is narrow, on the surface on the front surface side of the soldering portion 13 for joining plate solder. That is, as shown in FIG. 11, the connecting portion 12 has a narrow cutting portion in the connecting portion 12 when viewed from above. The cutting unit will be described in detail with reference to FIGS. As a result, when the lower plate solder 10 is melted, the lower plate solder 10 is likely to be cut by the cutting portion, and it is possible to prevent the joined members such as the semiconductor chip from moving.

このように、実施の形態1にかかる下部板はんだ10は、接合用はんだ部13が連結部12で連結されているため、少ない工数で、下部板はんだ10をパワー半導体チップ1やリードフレーム6に搭載可能となる。図2は、2つのパワー半導体チップ1と金属端子5を導電性板3に接合するための例である。この場合、従来の製造方法では、2つのパワー半導体チップ1と金属端子5に板はんだを搭載するために3工程を要するが、本発明では一工程で下部板はんだ10を搭載可能となる。 As described above, in the lower plate solder 10 according to the first embodiment, since the joining solder portions 13 are connected by the connecting portions 12, the lower plate solder 10 can be attached to the power semiconductor chip 1 and the lead frame 6 with a small number of steps. It can be installed. FIG. 2 is an example for joining the two power semiconductor chips 1 and the metal terminals 5 to the conductive plate 3. In this case, in the conventional manufacturing method, three steps are required to mount the plate solder on the two power semiconductor chips 1 and the metal terminals 5, but in the present invention, the lower plate solder 10 can be mounted in one step.

次に、パワー半導体チップ1および金属端子5と、導電性板3と、下部板はんだ10との積層体を加熱して、下部板はんだ10を溶融し、パワー半導体チップ1および金属端子5と、導電性板3とを電気的に接続する(下部はんだ接合工程)。この接合プロセスは、従来と同様に酸化膜を還元できる水素、またはギ酸雰囲気にて加熱して、接合する。また、実施の形態1では、板はんだを用いるため、洗浄工程は必要としない。 Next, the stacked body of the power semiconductor chip 1 and the metal terminal 5, the conductive plate 3, and the lower plate solder 10 is heated to melt the lower plate solder 10, and the power semiconductor chip 1 and the metal terminal 5 are The conductive plate 3 is electrically connected (lower solder joining step). In this joining process, heating is performed in a hydrogen or formic acid atmosphere capable of reducing the oxide film as in the conventional case, and joining is performed. Further, in the first embodiment, since the plate solder is used, the cleaning process is not necessary.

図5は、実施の形態1にかかる下部板はんだでパワー半導体チップおよび金属端子を絶縁基板の導電性板に接合した構成を示す上面図である。図6は、実施の形態1にかかる下部板はんだでパワー半導体チップおよび金属端子を絶縁基板に接合した構成を示す側面図である。図5、図6に示すように、下部板はんだ10の連結部12は加熱過程(下部はんだ接合工程)で溶融・切断し、切断された箇所よりも片側の接合用はんだ部材側に凝集されるため、接合後に下部板はんだ10の連結部12は無くなる。例えば、図6において、パワー半導体チップ1と金属端子5とを繋ぐ連結部12が切断されると、パワー半導体チップ1側の連結部12はパワー半導体チップ1の方向に凝集される。このように、下部板はんだ10は、図6に記載の複数の下部はんだ9aとなる。この際、下部板はんだ10の連結部12が溶融・切断されていることを目視等で確認することが好ましい。 FIG. 5 is a top view showing a configuration in which the power semiconductor chip and the metal terminal are joined to the conductive plate of the insulating substrate by the lower plate solder according to the first embodiment. FIG. 6 is a side view showing a configuration in which the power semiconductor chip and the metal terminal are joined to the insulating substrate by the lower plate solder according to the first embodiment. As shown in FIGS. 5 and 6, the connecting portion 12 of the lower plate solder 10 is melted and cut in the heating process (lower solder joining process), and is aggregated on the joining solder member side on one side of the cut portion. Therefore, the connecting portion 12 of the lower plate solder 10 disappears after the joining. For example, in FIG. 6, when the connecting portion 12 connecting the power semiconductor chip 1 and the metal terminal 5 is cut, the connecting portion 12 on the power semiconductor chip 1 side is aggregated in the direction of the power semiconductor chip 1. Thus, the lower plate solder 10 becomes the plurality of lower solders 9a shown in FIG. At this time, it is preferable to visually confirm that the connecting portion 12 of the lower plate solder 10 is melted and cut.

図7は、実施の形態1にかかる上部板はんだを示す上面図である。図8は、実施の形態1にかかる上部板はんだを示す側面図である。図9は、実施の形態1にかかる上部板はんだを絶縁基板に搭載した構成を示す側面図で、リードフレームに接合する例である。 FIG. 7 is a top view showing the upper plate solder according to the first embodiment. FIG. 8 is a side view showing the upper plate solder according to the first embodiment. FIG. 9 is a side view showing a configuration in which the upper plate solder according to the first embodiment is mounted on an insulating substrate, which is an example of joining to a lead frame.

絶縁基板2とパワー半導体チップ1を接合した後に、パワー半導体チップ1と、リードフレーム6とを上部板はんだ11で積層する。同様に、金属端子5と、リードフレーム6とを上部板はんだ11で積層する。上部板はんだ11は、下部板はんだ10と同様の形状を有している。ただし、パワー半導体チップ1は、種類によって高さが異なり、パワー半導体チップ1とリードフレーム6も高さが異なる場合がある。このため、上部板はんだ11では、複数の接合用はんだ部13は、少なくとも2つの接合用はんだ部13で、それぞれ積層基板2からの高さが異なり、接合用はんだ部13の表面は、それぞれ同一平面上にない形状となっている。例えば、図8に示すように、上部板はんだ11では、接合用はんだ部13の表面13aと接合用はんだ部13の表面13bは、それぞれ同一平面上にない形状となっている。 After bonding the insulating substrate 2 and the power semiconductor chip 1, the power semiconductor chip 1 and the lead frame 6 are laminated with the upper plate solder 11. Similarly, the metal terminal 5 and the lead frame 6 are laminated with the upper plate solder 11. The upper plate solder 11 has the same shape as the lower plate solder 10. However, the power semiconductor chip 1 has different heights depending on the type, and the power semiconductor chip 1 and the lead frame 6 may also have different heights. Therefore, in the upper plate solder 11, the plurality of joining solder portions 13 are at least two joining solder portions 13 having different heights from the laminated substrate 2, and the surfaces of the joining solder portions 13 are the same. The shape is not on a plane. For example, as shown in FIG. 8, in the upper plate solder 11, the surface 13a of the joining solder portion 13 and the surface 13b of the joining solder portion 13 are not in the same plane.

次に、図9に示すように、パワー半導体チップ1および金属端子5と、リードフレーム6と、上部板はんだ11との積層体を加熱して(上部はんだ接合工程)、上部板はんだ11を溶融し、パワー半導体チップ1および金属端子5と、リードフレーム6とを電気的に接続する。図10は、実施の形態1にかかる上部板はんだを絶縁基板に接合した構成を示す側面図である。図10に示すように、上部板はんだ11の連結部12は加熱過程で溶融・切断し、切断された箇所よりも片側の接合部材の電極面に凝集されるため、接合後に上部板はんだ11の連結部12は無くなる。このように、上部板はんだ11は、図10に記載の複数の上部はんだ9bとなる。この際、上部板はんだ11の連結部12が溶融・切断されていることを目視等で確認することが好ましい。以上のようにして、スイッチング回路を形成したパワー半導体回路部材が組み立てられる。なお、リードフレーム6の上面は、同一平面上になくてもよい。 Next, as shown in FIG. 9, the stacked body of the power semiconductor chip 1 and the metal terminals 5, the lead frame 6, and the upper plate solder 11 is heated (upper solder bonding step) to melt the upper plate solder 11. Then, the power semiconductor chip 1 and the metal terminal 5 are electrically connected to the lead frame 6. FIG. 10 is a side view showing a configuration in which the upper plate solder according to the first embodiment is joined to the insulating substrate. As shown in FIG. 10, the connecting portion 12 of the upper plate solder 11 is melted and cut in the heating process and agglomerated on the electrode surface of the joining member on one side of the cut portion. The connecting portion 12 disappears. In this way, the upper plate solder 11 becomes the plurality of upper solders 9b illustrated in FIG. At this time, it is preferable to visually confirm that the connecting portion 12 of the upper plate solder 11 is melted and cut. As described above, the power semiconductor circuit member having the switching circuit is assembled. The top surface of the lead frame 6 does not have to be on the same plane.

ここでは、下部板はんだ10の加熱と上部板はんだ11の加熱は、別々の工程で行われているが、同じ工程で行うことも可能である。また、それぞれ接合工程の加熱では、下部板はんだ10および上部板はんだ11の連結部12を溶融・切断するため、接合用はんだ部13のはんだの融点より高い温度で行う必要がある。例えば、接合時の加熱温度は、はんだの融点より40℃〜80℃程度高い温度で行う。融点より30℃未満だと溶融が均一に行われず、80℃以上にすると、切断が良好に行われない。より好ましくは、40℃以上60℃以下である。この範囲において、切断、凝集がより良好に行われる。板はんだを用いてはんだ接合する場合は、はんだや非接続部材表面の酸化膜を還元できる水素(H2)、またはギ酸(CH22)雰囲気にて加熱し、接合する。スズ系のはんだの場合融点は、200〜250℃であるため、300℃〜330℃程度の温度で行う。なぜならば、水素ガス等の還元力が300℃付近から高くなる。一方で温度が高すぎるとパワー半導体チップの特性が低下するおそれがあるためである。なお、接合部用はんだ部13と連結部12は同じ材料で、一体であることが好ましい。接合用はんだ部13が連結部12により連結されている板はんだの形状にする方法として、板状のはんだ材をプレス加工等によって加工することができるからである。しかし、接合用はんだ部13と連結部12とが異なる材料である場合は、連結部12の融点が接合用はんだ部13より低いことが好ましい。融点が接合用はんだ部13より低いと、連結部12の溶融・切断が容易に起こるからである。 Here, the heating of the lower plate solder 10 and the heating of the upper plate solder 11 are performed in separate steps, but they can also be performed in the same step. In addition, in each of the heating processes in the joining process, since the connecting portion 12 of the lower plate solder 10 and the upper plate solder 11 is melted and cut, it is necessary to perform the heating at a temperature higher than the melting point of the solder of the joining solder portion 13. For example, the heating temperature at the time of joining is 40° C. to 80° C. higher than the melting point of the solder. If it is lower than 30°C than the melting point, melting is not performed uniformly, and if it is higher than 80°C, cutting is not performed well. More preferably, it is 40° C. or higher and 60° C. or lower. Within this range, cutting and agglomeration are more favorably performed. In the case of soldering using plate solder, heating is performed in a hydrogen (H 2 ) or formic acid (CH 2 O 2 ) atmosphere capable of reducing the oxide film on the surface of the solder or the non-connecting member, and the soldering is performed. In the case of tin-based solder, the melting point is 200 to 250° C., so the soldering is performed at a temperature of about 300° C. to 330° C. This is because the reducing power of hydrogen gas and the like increases from around 300°C. On the other hand, if the temperature is too high, the characteristics of the power semiconductor chip may deteriorate. In addition, it is preferable that the solder portion 13 for joining portion and the connecting portion 12 are made of the same material and are integrated. This is because a plate-shaped solder material can be processed by pressing or the like as a method of forming the shape of the plate solder in which the joining solder portion 13 is connected by the connecting portion 12. However, when the joining solder portion 13 and the connecting portion 12 are made of different materials, the melting point of the joining portion 12 is preferably lower than that of the joining solder portion 13. This is because if the melting point is lower than that of the joining solder portion 13, the connecting portion 12 is easily melted and cut.

次に、樹脂成形用のモールド金型内に、パワー半導体回路部材をセットし、エポキシなどの硬質樹脂からなる封止樹脂7を充填する。封止樹脂7の成形は、トランスファー成形、射出成形でもよい。これにより、図1に示す実施の形態1にかかるパワー半導体モジュールが完成する。 Next, the power semiconductor circuit member is set in a molding die for resin molding, and the sealing resin 7 made of a hard resin such as epoxy is filled. The molding of the sealing resin 7 may be transfer molding or injection molding. As a result, the power semiconductor module according to the first embodiment shown in FIG. 1 is completed.

ここで、板はんだの形状を詳細に説明する。図11〜図15は、実施の形態1にかかる板はんだの連結部を示す上面図である。これらは、下部板はんだ10、上部板はんだ11の実施例である。なお、上部板はんだ11と下部板はんだ10の両方を示すとき、板はんだと称する。 Here, the shape of the plate solder will be described in detail. 11 to 15 are top views showing the connecting portion of the plate solder according to the first embodiment. These are examples of the lower plate solder 10 and the upper plate solder 11. When both the upper plate solder 11 and the lower plate solder 10 are shown, they are referred to as plate solder.

図11に示すように、板はんだの連結部12は、板はんだの接合用はんだ部13の表側の連結部12の面に、切断部14を有する。切断部14は、連結部表面から見て連結部12の中で連結部12の幅が狭い部分である。溝状の矩形でもよいが、幅が狭くなる部分と最も狭い部分とを有してもよい。切断部14の幅は、0.1mm以上が好ましい。幅0.1mm未満になると下部板はんだ10を搭載する前に切断される場合があるため、0.1mm以上が好ましい。この狭くなった切断部14において、溶融・切断されやすくなる。 As shown in FIG. 11, the connecting portion 12 of the plate solder has a cutting portion 14 on the surface of the connecting portion 12 on the front side of the soldering portion 13 for joining the plate solder. The cutting portion 14 is a portion of the connecting portion 12 where the width of the connecting portion 12 is narrow when viewed from the surface of the connecting portion. Although it may be a groove-shaped rectangle, it may have a narrowest portion and a narrowest portion. The width of the cutting portion 14 is preferably 0.1 mm or more. If the width is less than 0.1 mm, it may be cut before the lower plate solder 10 is mounted, so 0.1 mm or more is preferable. The narrowed cutting portion 14 is likely to be melted and cut.

切断部14は、例えば、図11のようなノッチ状(切り欠け溝)である。この切り欠き溝は、テーパー状でもラウンド状でもよい。図11は、切断部14以外では、幅が同程度で、凡そ平行なのストレート型がある。例えば四角柱の形状をしている。連結部12の幅が最も広い部分、図11では、連結部12と接合用はんだ部13が接する部分(連結部根本)の幅をW1とする。幅W1に対する切断部14の幅W2の比は0.3以上0.6以下であることが好ましい。つまり、0.3≦W2/W1≦0.6である。この範囲にすることにより、前記加熱温度の範囲において、板はんだが溶解するときに切断部14が切断されやすく凝集もしやすい。この範囲より大きいと切断部で切断されなかったり、また、小さいとハンドリング時に切断してしまったりする。 The cutting portion 14 has, for example, a notch shape (notch groove) as shown in FIG. 11. The notch groove may be tapered or round. In FIG. 11, there is a straight type having approximately the same width and approximately parallel, except for the cut portion 14. For example, it has a rectangular prism shape. The width of the widest portion of the connecting portion 12, that is, the portion (base of the connecting portion) where the connecting portion 12 and the bonding solder portion 13 are in contact with each other in FIG. 11 is W1. The ratio of the width W2 of the cut portion 14 to the width W1 is preferably 0.3 or more and 0.6 or less. That is, 0.3≦W2/W1≦0.6. By setting it in this range, the cutting portion 14 is easily cut when the plate solder is melted in the heating temperature range, and is easily aggregated. If it is larger than this range, it may not be cut at the cutting part, and if it is smaller than this range, it may be cut during handling.

また、切断部14は、連結部12のように、中央付近、つまり、接合用はんだ部13と一方の接合用はんだ部13の間の中央付近に設けられることが好ましい。接合用はんだ部13に近い位置にあると連結部12の中央部分が、溶融されず、残渣(凝集部)が残る場合がある。この残渣により、絶縁距離を保てなくなり、回路がショートする危険性がある。 Further, the cutting portion 14 is preferably provided near the center like the connecting portion 12, that is, near the center between the joining solder portion 13 and one joining solder portion 13. If it is located near the bonding solder portion 13, the central portion of the connecting portion 12 may not be melted, and a residue (aggregated portion) may remain. Due to this residue, the insulation distance cannot be maintained and there is a risk of short-circuiting the circuit.

また、図12、図13示すように、連結部12は、幅が狭くなる切断部14を有し、切断部14に向かって連結部12の幅が徐々に狭くなる形状であってもかまわない。図12のようにテーパー状に中央部が狭くなった(絞った)タイプでもよいし、図13のように、ラウンド状に中央部が狭くなったタイプでもよい。図12のようにテーパー状に中央部が狭くなった(絞った)タイプや図13のようにラウンド状の場合は、最も幅の狭い箇所が切断部14となる。このような形状にすることで、板はんだが溶融するときに切断しやすくなり、凝集するときに、凝集がしやすくなる。さらに、テーパー状、ラウンド状に中央部が狭くなった形状でも、切断部14に、さらに、切り欠け溝(ノッチ)17を設けてもよい。切り欠け溝(ノッチ)17のもっとも狭い箇所の幅をW3とすると、切断部14の幅W2に対するW3の比(W3/W2)は0.6以上0.8以下であることが好ましい。 Further, as shown in FIGS. 12 and 13, the connecting portion 12 may have a cutting portion 14 having a narrow width, and the width of the connecting portion 12 may gradually narrow toward the cutting portion 14. .. A taper-shaped central part may be narrowed (squeezed) as shown in FIG. 12 or a rounded central part may be narrowed as shown in FIG. In the case of the taper type in which the central portion is narrowed (squeezed) as shown in FIG. 12 or the round type as shown in FIG. 13, the narrowest portion is the cut portion 14. With such a shape, when the sheet solder is melted, it is easy to cut it, and when it is aggregated, it is easy to aggregate. Furthermore, the cut portion 14 may be further provided with a cutout groove (notch) 17 even if the central portion is tapered or rounded. When the width of the narrowest part of the notch groove (notch) 17 is W3, the ratio of W3 to the width W2 of the cut portion 14 (W3/W2) is preferably 0.6 or more and 0.8 or less.

また、図14、図15に示すように、板はんだの接合用はんだ部13の大きさが異なることがある。例えば、接合するパワー半導体チップ1の大きさが異なるため、接合用はんだ部13の大きさが異なることがある。この場合、図14のように、ラウンド状に一端がが狭くなったタイプでもよい。 Further, as shown in FIGS. 14 and 15, the size of the solder portion 13 for joining the plate solder may be different. For example, since the size of the power semiconductor chip 1 to be bonded is different, the size of the bonding solder portion 13 may be different. In this case, as shown in FIG. 14, it may be a round type with one end narrowed.

また、図15のように、ストレート型で、切断部14を有するタイプでもよい。この場合、図15に示すように、切断部14の位置が、体積の大きい方の接合用はんだ部13に近いことが好ましい。大きな体積の接合用はんだ部13から切断部14までの距離をL1とし、小さな体積の接合用はんだ部13から切断部14までの距離をL2とすると、L1<L2が好ましい。これは、板はんだを加熱していくと、小さい体積の接合用はんだ部13は早く加温され、溶解するが、大きな体積の接合用はんだ部13は熱容量が大きいため、まだ溶解しない段階になる。切断部14を連結部12の中央にすると、大きな体積の接合用はんだ部13が溶解しないうちに、切断部14が溶けてしまい、小さい体積の接合用はんだ部13上のパワー半導体チップ1が動いてしまう。 Further, as shown in FIG. 15, a straight type having a cutting portion 14 may be used. In this case, as shown in FIG. 15, the position of the cutting portion 14 is preferably close to the joining solder portion 13 having the larger volume. If the distance from the large-volume joining solder portion 13 to the cut portion 14 is L1 and the small-volume joining solder portion 13 to the cut portion 14 is L2, L1<L2 is preferable. This is because when the plate solder is heated, the bonding solder part 13 having a small volume is quickly heated and melted, but the soldering part 13 having a large volume has a large heat capacity, and thus the stage is not yet melted. .. When the cutting portion 14 is located at the center of the connecting portion 12, the cutting portion 14 melts before the large volume bonding solder portion 13 melts, and the power semiconductor chip 1 on the small volume bonding solder portion 13 moves. Will end up.

このため、図15のように、大きな体積の接合用はんだ部13側に切断部14を配置すると大きな体積の接合用はんだ部13が溶解するのとほぼ同じに切断部14が切断されるので、適切な位置で板はんだが凝集し、固定され、パワー半導体チップ1が移動することがなくなる。 Therefore, as shown in FIG. 15, when the cutting portion 14 is arranged on the side of the bonding solder portion 13 having a large volume, the cutting portion 14 is cut almost in the same manner as the melting solder portion 13 having a large volume is melted. The plate solder agglomerates and is fixed at an appropriate position, and the power semiconductor chip 1 does not move.

また、切断部14の位置は、接合用はんだ部13の体積比率に応じて決められることが好ましい。例えば、大きな体積の接合用はんだ部13の体積をV1とし、小さな体積の接合用はんだ部13の体積をV2とする。この場合、L1/L2=V2/V1が成り立つようにすることが好ましい。 The position of the cutting portion 14 is preferably determined according to the volume ratio of the soldering portion 13 for joining. For example, the volume of the joining solder portion 13 having a large volume is V1, and the volume of the joining solder portion 13 having a small volume is V2. In this case, it is preferable that L1/L2=V2/V1.

図16、図17は、実施の形態1にかかる板はんだの連結部を示す側面図である。図16、図17に示すように、連結部12は、接合用はんだ部の側面側の面にも、幅(厚さ)が狭い第2切断部15を設けることができる。また、第2切断部15は、切断部14と同じ位置に設けることができる。また、図17に示すように、連結部12の厚さは、接合用はんだ部13の厚さより薄くすることができる。連結部根本の厚さをD1とし、切断部14の最も薄い厚さをD2とすると、この場合も、上面図における切断部14の幅W2に対するW3の比(W3/W2)と同様に、D2/D1は0.6以上0.8以下であることが好ましい。 16 and 17 are side views showing the connecting portion of the plate solder according to the first embodiment. As shown in FIGS. 16 and 17, the connecting portion 12 can be provided with the second cutting portion 15 having a narrow width (thickness) also on the side surface of the joining solder portion. Further, the second cutting section 15 can be provided at the same position as the cutting section 14. Further, as shown in FIG. 17, the thickness of the connecting portion 12 can be made smaller than the thickness of the joining solder portion 13. Assuming that the thickness of the root of the connecting portion is D1 and the thinnest thickness of the cutting portion 14 is D2, in this case also, D2 is the same as the ratio of W3 to the width W2 of the cutting portion 14 in the top view (W3/W2). /D1 is preferably 0.6 or more and 0.8 or less.

また、はんだを、実施の形態1の連結部12を有する板はんだの形状にする方法として、金型を用いたプレス加工、または、レーザ加工、ワイヤ放電加工等、エッチングなどの加工方法がある。加熱を要する加工は、加工面が酸化しやすいため、冷間加工が可能なプレス加工が好ましい。 Further, as a method of forming the solder into the shape of the plate solder having the connecting portion 12 of the first embodiment, there are a pressing method using a die, a laser processing method, a wire electric discharge processing method, and a processing method such as etching. As for the processing that requires heating, press working that allows cold working is preferable because the processed surface is easily oxidized.

以上、説明したように、実施の形態1にかかる板はんだによれば、接合用はんだ部が連結部で連結されているため、少ない工数で、パワー半導体チップ等の被接合部材に搭載可能となる。また、連結部は、板はんだの接合用はんだ部の表面側の面に、連結部の中で連結部の幅が狭い切断部を有する。これにより、板はんだが溶解するときに切断部で切断されやすくなり、パワー半導体チップ等の被接合部材が動くことを防止できる。 As described above, according to the plate solder according to the first embodiment, since the joining solder portion is connected by the connecting portion, it can be mounted on a member to be joined such as a power semiconductor chip with a small number of steps. .. Further, the connecting portion has a cut portion having a narrow width in the connecting portion on the surface on the front surface side of the soldering portion for joining the plate solder. As a result, when the plate solder is melted, it is likely to be cut at the cutting portion, and it is possible to prevent the joined members such as the power semiconductor chip from moving.

(実施の形態2)
次に、実施の形態2にかかるパワー半導体モジュールの構造について説明する。図18は、実施の形態2にかかるパワー半導体モジュールの構成を示す断面図である。実施の形態2にかかるパワー半導体モジュールが実施の形態1にかかるパワー半導体モジュールと異なる点は、リードフレームの代わりに配線基板8や導通ポスト16を用いていることである。
(Embodiment 2)
Next, the structure of the power semiconductor module according to the second embodiment will be described. FIG. 18 is a sectional view showing the configuration of the power semiconductor module according to the second embodiment. The power semiconductor module according to the second embodiment differs from the power semiconductor module according to the first embodiment in that the wiring board 8 and the conduction posts 16 are used instead of the lead frame.

配線基板8は、パワー半導体チップ1の電極を金属端子5に接続する基板であり、絶縁基板およびこの表面に形成された配線パターンを有する回路層(いずれも不図示)を有する。また、導通ポスト16は、パワー半導体チップ1および金属端子5と配線基板8との間に設けられて、それらの間で通電するための導電部材であり、一例として銅、アルミニウム等の導電性金属を用いて円柱状に成形されている。なお、導通ポスト16は、その下端をはんだ等の接合材(上部板はんだ9bに対応)によりパワー半導体チップ1および金属端子5に接続することでそれらの上に立設され、上端をはんだ、ロウ付け、又はカシメにより配線基板8上の配線パターンに接続される。 The wiring substrate 8 is a substrate for connecting the electrodes of the power semiconductor chip 1 to the metal terminals 5, and has an insulating substrate and a circuit layer (not shown) having a wiring pattern formed on the surface of the insulating substrate. Further, the conduction post 16 is a conductive member provided between the power semiconductor chip 1 and the metal terminal 5 and the wiring board 8 for conducting electricity between them, and as an example, a conductive metal such as copper or aluminum. Is molded into a cylindrical shape using. The conduction posts 16 are erected on the power semiconductor chip 1 and the metal terminals 5 by connecting their lower ends to the power semiconductor chip 1 and the metal terminals 5 with a bonding material such as solder (corresponding to the upper plate solder 9b), and the upper ends thereof with solder or solder. It is connected to the wiring pattern on the wiring board 8 by attaching or caulking.

図19は、実施の形態2にかかる上部板はんだを示す上面図である。図20は、実施の形態2にかかる上部板はんだを示す側面図である。なお、下部板はんだ10は、実施の形態1と同様であるため、図示、説明を省略する。図19、図20に示すように実施の形態2にかかる上部板はんだ11は、導通ポスト16を立設するため、接合用はんだ部13の形状は、板はんだの接合用はんだ部13の表面13a側の面に、四角形状S1と円形状S2、S3を有している。図19の上部板はんだ9bは、例えば、図18のように四角形状S1および円形状S2上に導通ポスト16が立設され、円形状S2上に金属端子5が立設される。 FIG. 19 is a top view showing the upper plate solder according to the second embodiment. FIG. 20 is a side view showing the upper plate solder according to the second embodiment. The lower plate solder 10 is the same as that in the first embodiment, and therefore the illustration and description thereof are omitted. As shown in FIG. 19 and FIG. 20, in the upper plate solder 11 according to the second embodiment, the conductive posts 16 are provided upright, and therefore the shape of the bonding solder portion 13 is the surface 13a of the bonding solder portion 13 of the plate solder. The side surface has a rectangular shape S1 and circular shapes S2 and S3. In the upper plate solder 9b of FIG. 19, for example, as shown in FIG. 18, the conductive posts 16 are erected on the quadrangular shape S1 and the circular shape S2, and the metal terminals 5 are erected on the circular shape S2.

実施の形態2のパワー半導体モジュールは、以下のようにして製造される。製造方法では、まず、実施の形態1と同様に、積層基板に設けられた導電性板3のおもて面にパワー半導体チップ1を実装し、パワー半導体チップ1と、導電性板3とを下部板はんだ10で積層する。同様に、金属端子5と、導電性板3とを下部板はんだ10で積層する。次に、パワー半導体チップ1および金属端子5と、導電性板3と、下部板はんだ10との積層体を加熱して、下部板はんだ10を溶融し、パワー半導体チップ1および金属端子5と、導電性板3とを電気的に接続する。 The power semiconductor module according to the second embodiment is manufactured as follows. In the manufacturing method, first, similarly to the first embodiment, the power semiconductor chip 1 is mounted on the front surface of the conductive plate 3 provided on the laminated substrate, and the power semiconductor chip 1 and the conductive plate 3 are mounted. The lower plate solder 10 is laminated. Similarly, the metal terminal 5 and the conductive plate 3 are laminated with the lower plate solder 10. Next, the stacked body of the power semiconductor chip 1 and the metal terminal 5, the conductive plate 3, and the lower plate solder 10 is heated to melt the lower plate solder 10, and the power semiconductor chip 1 and the metal terminal 5 are The conductive plate 3 is electrically connected.

次に、図21に示すように、パワー半導体チップ1と、配線基板8に設けられた導通ポスト16とを上部板はんだ11で積層する。図21は、実施の形態2にかかる上部板はんだを絶縁基板に搭載した構成を示す側面図である。同様に、金属端子5と、配線基板8に設けられた導通ポスト16とを上部板はんだ11で積層する。 Next, as shown in FIG. 21, the power semiconductor chip 1 and the conductive posts 16 provided on the wiring board 8 are laminated with the upper plate solder 11. FIG. 21 is a side view showing a configuration in which the upper plate solder according to the second embodiment is mounted on an insulating substrate. Similarly, the metal terminal 5 and the conduction post 16 provided on the wiring board 8 are laminated with the upper plate solder 11.

次に、図22に示すように、パワー半導体チップ1および金属端子5と、配線基板8に設けられた導通ポスト16と、上部板はんだ11との積層体を加熱して、上部板はんだ11を溶融し、配線基板8と導通ポスト16とを介して、パワー半導体チップ1および金属端子5とを電気的に接続する。図22は、実施の形態2にかかる上部板はんだを絶縁基板に接合した構成を示す側面図である。この後、実施の形態1と同様に、封止樹脂7を充填することにより、図18に示す実施の形態2にかかるパワー半導体モジュールが完成する。 Next, as shown in FIG. 22, the stacked body of the power semiconductor chip 1 and the metal terminals 5, the conduction posts 16 provided on the wiring board 8 and the upper plate solder 11 is heated to remove the upper plate solder 11. It melts and electrically connects the power semiconductor chip 1 and the metal terminal 5 via the wiring substrate 8 and the conduction post 16. FIG. 22 is a side view showing a configuration in which the upper plate solder according to the second embodiment is joined to the insulating substrate. Thereafter, as in the case of the first embodiment, by filling the sealing resin 7, the power semiconductor module according to the second embodiment shown in FIG. 18 is completed.

実施の形態2において、板はんだの連結部12は、実施の形態1の板はんだの連結部12と同様の形状を有する。また、実施の形態2の板はんだの形状は、実施の形態1と同様の方法により形成することができる。 In the second embodiment, the plate solder connecting portion 12 has the same shape as the plate solder connecting portion 12 of the first embodiment. Further, the shape of the plate solder of the second embodiment can be formed by the same method as that of the first embodiment.

以上、説明したように、実施の形態2にかかる板はんだによれば、実施の形態1にかかる板はんだと同様の効果を有する。また、配線基板を用いていることより、半導体チップの上面と金属端子とを電気的に接続する工数を削減できる。 As described above, the plate solder according to the second embodiment has the same effect as the plate solder according to the first embodiment. Further, since the wiring board is used, the number of steps for electrically connecting the upper surface of the semiconductor chip and the metal terminal can be reduced.

以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、本発明の板はんだで接合する部材は、パワー半導体チップ、導電性板、放熱板、金属端子、ブロック等の半導体装置の関わる部材全般に適用可能である。 In the above, the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the spirit of the present invention. For example, the members to be joined by the plate solder of the present invention can be applied to all members related to semiconductor devices such as power semiconductor chips, conductive plates, heat sinks, metal terminals and blocks.

以上のように、本発明にかかる板はんだおよび半導体装置の製造方法は、インバータなどの電力変換装置や種々の産業用機械などの電源装置や自動車のパワーコントロールユニットなどに使用されるパワー半導体装置に有用である。 As described above, the method for manufacturing a plate solder and a semiconductor device according to the present invention is applied to a power semiconductor device used for a power conversion device such as an inverter or a power supply device for various industrial machines or a power control unit of an automobile. It is useful.

1、101 パワー半導体チップ
2、102 絶縁基板
3、103 導電性板
4、104 放熱板
5、105 金属端子
6 リードフレーム
7 封止樹脂
8 配線基板
9、109 はんだ
9a 下部はんだ
9b 上部はんだ
10 下部板はんだ
11 上部板はんだ
12 連結部
13 接合用はんだ部
13a、13b 接合用はんだ部の表面
14 切断部
15 第2切断部
16 導通ポスト
17 切り欠け溝
110 放熱ベース
111 ワイヤ
1, 101 Power semiconductor chip 2, 102 Insulating substrate 3, 103 Conductive plate 4, 104 Heat sink 5, 105 Metal terminal 6 Lead frame 7 Sealing resin 8 Wiring board 9, 109 Solder 9a Lower solder 9b Upper solder 10 Lower plate Solder 11 Upper plate solder 12 Connection part 13 Joining solder parts 13a, 13b Surface of joining solder part 14 Cutting part 15 Second cutting part 16 Conducting post 17 Notch groove 110 Heat dissipation base 111 Wire

Claims (12)

半導体装置の部材同士間の接合に用いられる板状の複数の接合用はんだ部と、
前記接合用はんだ部を連結する連結部と、
を備え、
前記連結部は、前記接合用はんだ部の表面側の前記連結部の面に、前記連結部の中で幅が狭い切断部を有することを特徴とする板はんだ。
A plurality of plate-shaped joining solder portions used for joining between members of a semiconductor device,
A connecting portion for connecting the soldering portion for joining,
Equipped with
The said connection part has a cutting part with a narrow width in the said connection part in the surface of the said connection part on the surface side of the said soldering part for joining, The plate solder characterized by the above-mentioned.
前記連結部は、前記切断部に向かって前記連結部の幅が狭くなることを特徴とする請求項1に記載の板はんだ。 The plate solder according to claim 1, wherein the connecting portion has a width that narrows toward the cutting portion. 前記連結部は、前記切断部に切り欠け溝を有することを特徴とする請求項2に記載の板はんだ。 The plate solder according to claim 2, wherein the connecting portion has a cutout groove in the cutting portion. 前記連結部は、四角柱であり、一部に前記連結部の幅が狭い切断部を有することを特徴とする請求項1に記載の板はんだ。 The plate solder according to claim 1, wherein the connecting portion is a quadrangular prism, and a part of the connecting portion has a cut portion having a narrow width. 前記連結部は、前記連結部が連結する前記接合用はんだ部の体積により前記切断部の位置が異なることを特徴とする請求項1〜4のいずれか一つに記載の板はんだ。 The said connection part WHEREIN: The position of the said cutting part changes with the volume of the said soldering part for connection which the said connection part connects, The plate solder as described in any one of Claims 1-4. 前記連結部は、第1の接合用はんだ部と、前記第1の接合用はんだ部より体積の小さな第2の接合用はんだ部とを連結し、
前記連結部の前記切断部は、前記連結部の中央より前記第1の接合用はんだ部側に位置することを特徴とする請求項5に記載の板はんだ。
The connecting portion connects the first joining solder portion and the second joining solder portion having a smaller volume than the first joining solder portion,
The plate solder according to claim 5, wherein the cutting portion of the connecting portion is located closer to the first joining solder portion side than the center of the connecting portion.
前記連結部は、前記連結部の幅が最も広い部分の幅に対する前記切断部の幅の比は0.3以上0.6以下であることを特徴とする請求項1〜6のいずれか一つに記載の板はんだ。 The ratio of the width of the cutting portion to the width of the widest portion of the connecting portion is 0.3 or more and 0.6 or less, and the connecting portion is any one of claims 1 to 6. Plate solder described in. 前記連結部は、前記連結部の幅が最も広い部分の幅が0.1mm以上1mm以下であり、かつ、前記切断部の幅が0.1mm以上であることを特徴とする請求項1〜7のいずれか一つに記載の板はんだ。 The width of the widest part of the connecting part of the connecting part is 0.1 mm or more and 1 mm or less, and the width of the cutting part is 0.1 mm or more. The plate solder according to any one of 1. 前記連結部は、前記接合用はんだ部の側面側の前記連結部の面に、前記連結部の中で幅が狭い第2の切断部を有することを特徴とする請求項1〜8のいずれか一つに記載の板はんだ。 The connecting portion has a second cutting portion having a narrow width in the connecting portion on a surface of the connecting portion on a side surface side of the joining solder portion. Plate solder according to one. 前記複数の接合用はんだ部の内、少なくとも2つの接合用はんだ部は、それぞれの表面が同一平面上にないことを特徴とする請求項1〜9のいずれか一つに記載の板はんだ。 10. The plate solder according to claim 1, wherein at least two joining solder portions of the plurality of joining solder portions do not have their surfaces on the same plane. 板はんだを用いて、積層基板上の導電性板と半導体素子とを接合して、前記積層基板に前記半導体素子を搭載する第1工程と、
前記半導体素子と、外部に信号を取り出す金属端子とを電気的に接続する第2工程と、
封止樹脂を注入し、前記半導体素子と前記積層基板のおもて面とを内部に封入する第3工程と、
を含み、
前記板はんだは、半導体装置の部材同士間の接合に用いられる板状の複数の接合用はんだ部と、前記接合用はんだ部を連結する連結部と、を備え、前記連結部は、前記接合用はんだ部の表面側の前記連結部の面に、前記連結部の中で幅が狭い切断部を有することを特徴とする半導体装置の製造方法。
A first step of bonding a conductive plate on a laminated substrate and a semiconductor element using plate solder, and mounting the semiconductor element on the laminated substrate;
A second step of electrically connecting the semiconductor element and a metal terminal for extracting a signal to the outside;
A third step of injecting a sealing resin and enclosing the semiconductor element and the front surface of the laminated substrate inside;
Including,
The plate solder includes a plurality of plate-shaped joining solder portions used for joining members of a semiconductor device, and a joining portion that joins the joining solder portions, and the joining portion is for joining A method of manufacturing a semiconductor device, wherein a cut portion having a narrow width in the connecting portion is provided on a surface of the connecting portion on a front surface side of the solder portion.
前記第2工程では、リードフレームまたは配線基板を用いて、前記半導体素子と前記金属端子とを、電気的に接続し、
前記板はんだが、前記リードフレームまたは前記配線基板と、前記半導体素子とを接合し、および前記リードフレームまたは前記配線基板と、前記金属端子とを接合することを特徴とする請求項11に記載の半導体装置の製造方法。
In the second step, a lead frame or a wiring board is used to electrically connect the semiconductor element and the metal terminal,
12. The plate solder bonds the lead frame or the wiring board to the semiconductor element, and bonds the lead frame or the wiring board to the metal terminal. Method of manufacturing semiconductor device.
JP2018216470A 2018-11-19 2018-11-19 Board solder and semiconductor device manufacturing method Active JP7183722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018216470A JP7183722B2 (en) 2018-11-19 2018-11-19 Board solder and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216470A JP7183722B2 (en) 2018-11-19 2018-11-19 Board solder and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2020088030A true JP2020088030A (en) 2020-06-04
JP7183722B2 JP7183722B2 (en) 2022-12-06

Family

ID=70908825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216470A Active JP7183722B2 (en) 2018-11-19 2018-11-19 Board solder and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP7183722B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238757A (en) * 1998-02-19 1999-08-31 Sumitomo Metal Electronics Devices Inc Manufacture of semiconductor package
JP2017174848A (en) * 2016-03-18 2017-09-28 富士電機株式会社 Wiring board manufacturing method, manufacturing method of semiconductor device, and solder board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808939B2 (en) 2011-04-29 2015-11-10 日本圧着端子製造株式会社 Soldering method for conductive member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238757A (en) * 1998-02-19 1999-08-31 Sumitomo Metal Electronics Devices Inc Manufacture of semiconductor package
JP2017174848A (en) * 2016-03-18 2017-09-28 富士電機株式会社 Wiring board manufacturing method, manufacturing method of semiconductor device, and solder board

Also Published As

Publication number Publication date
JP7183722B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
US11810775B2 (en) High power module package structures
US6448645B1 (en) Semiconductor device
JP4438489B2 (en) Semiconductor device
JP4635564B2 (en) Semiconductor device
JP5241177B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9673129B2 (en) Semiconductor device
US8872332B2 (en) Power module with directly attached thermally conductive structures
WO2016136457A1 (en) Power module
US10068870B2 (en) Semiconductor device including a connection unit and semiconductor device fabrication method of the same
US9379049B2 (en) Semiconductor apparatus
US11088042B2 (en) Semiconductor device and production method therefor
JP5895220B2 (en) Manufacturing method of semiconductor device
US20140301769A1 (en) Thermocompression bonding structure and thermocompression bonding method
WO2023221970A1 (en) Power module, power supply system, vehicle, and photovoltaic system
JP2019216214A (en) Semiconductor device, lead frame and method of manufacturing semiconductor device
US11164846B2 (en) Semiconductor device manufacturing method and soldering support jig
JP7215206B2 (en) Semiconductor device manufacturing method
JP6787118B2 (en) Manufacturing methods for semiconductor devices, power converters, lead frames, and semiconductor devices
JP3841007B2 (en) Semiconductor device
JP7135293B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP3619708B2 (en) Power semiconductor module
JP7183722B2 (en) Board solder and semiconductor device manufacturing method
JP7347047B2 (en) semiconductor equipment
US20240071860A1 (en) High power module package structures
JP7006015B2 (en) Manufacturing method of semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7183722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150