JP2020084289A - Metal surface treatment method - Google Patents

Metal surface treatment method Download PDF

Info

Publication number
JP2020084289A
JP2020084289A JP2018223146A JP2018223146A JP2020084289A JP 2020084289 A JP2020084289 A JP 2020084289A JP 2018223146 A JP2018223146 A JP 2018223146A JP 2018223146 A JP2018223146 A JP 2018223146A JP 2020084289 A JP2020084289 A JP 2020084289A
Authority
JP
Japan
Prior art keywords
color
metal
surface treatment
porous anodic
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018223146A
Other languages
Japanese (ja)
Inventor
石黒 智明
Tomoaki Ishiguro
智明 石黒
周一 高松
Shuichi Takamatsu
周一 高松
淳司 住岡
Junji Sumioka
淳司 住岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2018223146A priority Critical patent/JP2020084289A/en
Publication of JP2020084289A publication Critical patent/JP2020084289A/en
Pending legal-status Critical Current

Links

Abstract

To provide a surface treatment method facilitating the coloring control of various color tones to a metallic surface.SOLUTION: A metal surface treatment method comprises the steps of: forming a porous anodic oxidation film on a metallic surface; fixing a coloring resultant component to the surface of the porous anodic oxidation film or to the inside of pores; and heating the porous anodic oxidation film fixed with the coloring resultant component.SELECTED DRAWING: Figure 1

Description

本発明は、表面に多孔性の陽極酸化皮膜を形成することが可能な金属の表面処理方法に関する。 TECHNICAL FIELD The present invention relates to a surface treatment method for a metal capable of forming a porous anodic oxide film on the surface.

アルミニウム等の、表面に陽極酸化皮膜が形成されるバルブ金属にあっては、金属の合金成分による合金発色法、陽極酸化皮膜の無数の孔中に金属イオンを析出させる電解着色法、多孔性皮膜の吸着性を利用した染料による染色法等がこれまで採用されている。
しかし、これら従来の表面処理方法にあっては、次のような技術的課題があった。
合金発色法では、陽極酸化皮膜による耐食性等には優れるものの、含有成分によって得られる色調が制限されたり、薄い色調しか得られない。
電解着色法にあっては、ブロンズ系の色調が得られやすいものの、他の色調にあっては特殊な電解条件であったり、特定の電折イオンに限定される等、得られる色調に制限がある。
染色法においては、耐熱性,耐候性に劣る問題がある。
For valve metals such as aluminum that have an anodized film formed on the surface, an alloy coloring method based on the alloy components of the metal, an electrolytic coloring method that deposits metal ions in the numerous holes of the anodized film, and a porous film A dyeing method using a dye that utilizes the adsorptive property of has been adopted so far.
However, these conventional surface treatment methods have the following technical problems.
The alloy coloring method is excellent in corrosion resistance and the like due to the anodic oxide film, but the color tone obtained by the contained components is limited or only a light color tone is obtained.
In the electrolytic coloring method, although a bronze-based color tone is easily obtained, there are restrictions on the obtained color tone, such as special electrolytic conditions for certain other color tones and limited to specific electrolysis ions. is there.
The dyeing method has a problem of poor heat resistance and weather resistance.

特許文献1には、レーザ・ビームの照射により表面を食刻して模様を形成する方法を開示するが、いろいろな色調に表面処理するものではない。 Patent Document 1 discloses a method of forming a pattern by etching a surface by irradiating a laser beam, but does not perform surface treatment in various color tones.

特開昭58−167797号公報Japanese Patent Laid-Open No. 58-167797

本発明は、金属表面への各種色調の発色コントロールが容易な表面処理方法の提供を目的とする。 It is an object of the present invention to provide a surface treatment method which makes it easy to control the color development of various color tones on a metal surface.

本発明に係る金属の表面処理方法は、金属の表面に、多孔性陽極酸化皮膜を形成するステップと、前記多孔性陽極酸化皮膜の表面又は孔中に発色起因成分を定着するステップと、前記発色起因成分が定着された多孔性陽極酸化皮膜を加熱するステップとを有することを特徴とする。
この加熱するステップは、発色起因成分が所定の色調に発色する温度に表面層を加熱することをいう。
The surface treatment method for a metal according to the present invention, on the surface of the metal, the step of forming a porous anodic oxide film, the step of fixing the color-causing component in the surface or in the pores of the porous anodic oxide film, and the color Heating the porous anodic oxide film having the causative component fixed thereon.
This heating step refers to heating the surface layer to a temperature at which the color-forming component develops a predetermined color tone.

ここで金属は、多孔性の陽極酸化皮膜を表面に形成できるものであり、例えばアルミニウム及びその合金、マグネシウム及びその合金、チタン及びその合金等が挙げられる。 Here, the metal can form a porous anodic oxide film on the surface, and examples thereof include aluminum and its alloys, magnesium and its alloys, titanium and its alloys, and the like.

陽極酸化皮膜は、各種電解水溶液を用いて表面処理の対象となる金属材と対極との間の電解処理により形成することができる。
電解液としては、硫酸水溶液,蓚酸水溶液,燐酸水溶液等が例として挙げられる。
The anodized film can be formed by electrolytic treatment between a metal material to be surface treated and a counter electrode using various electrolytic aqueous solutions.
Examples of the electrolytic solution include a sulfuric acid aqueous solution, an oxalic acid aqueous solution, and a phosphoric acid aqueous solution.

本発明において、発色起因成分を定着するステップは封孔処理,浸漬処理,電解着色,電気泳動及び塗布のうち、いずれか1つ又は複数の手段を用いることができる。
この場合に、発色起因成分は金属又はその化合物であってよい。
In the present invention, in the step of fixing the color-developing component, any one or a plurality of means among sealing treatment, dipping treatment, electrolytic coloring, electrophoresis and coating can be used.
In this case, the color-developing component may be a metal or its compound.

本発明において、加熱する手段はレーザ光を照射する手段であってよく、この場合にレーザ光は固体レーザ,半導体レーザ,気体レーザのうち、いずれかであるのが好ましい。
固体レーザとしてはYAGレーザ,ファイバレーザが例として挙げられ、半導体レーザにはGaAs,InGaAsP等の半導体レーザが例として挙げられる。
また、気体レーザにはCOレーザが例として挙げられる。
In the present invention, the heating means may be a means for irradiating laser light, and in this case, the laser light is preferably any one of a solid laser, a semiconductor laser and a gas laser.
Examples of solid-state lasers include YAG lasers and fiber lasers, and examples of semiconductor lasers include semiconductor lasers such as GaAs and InGaAsP.
A CO 2 laser can be given as an example of the gas laser.

本発明においては、金属の表面に形成した多孔性陽極酸化皮膜の吸着性や、多孔性を利用して発色起因成分を定着した後に、レーザ光等の加熱手段にて表面層を加熱することで、いろいろな色調に発色させることができ、レーザ光のコントロールにて各種色調を得ることができる。 In the present invention, the adsorptivity of the porous anodic oxide film formed on the surface of the metal, or after fixing the color-developing component utilizing the porosity, by heating the surface layer by a heating means such as laser light. The color tone can be developed in various color tones, and various color tones can be obtained by controlling the laser light.

実施例1における色測値の変化を示す。4 shows changes in colorimetric values in Example 1. 実施例2における色測値の変化を示す。7 shows changes in colorimetric values in Example 2. 実施例3における色測値の変化を示す。7 shows changes in colorimetric values in Example 3. 実施例4における色測値の変化を示す。7 shows changes in colorimetric values in Example 4. 実施例5における色測値の変化を示す。9 shows changes in colorimetric values in Example 5.

本発明は、金属の表面に多孔性の陽極酸化皮膜を形成した後に、発色起因成分を定着させた後にレーザ光等を照射することで、その熱量にて上記定着させた発色起因成分の化学構造を変化させた点に特徴がある。 The present invention forms a porous anodic oxide film on the surface of a metal, and then irradiates a laser beam or the like after fixing the color-developing-causing component, and the chemical structure of the fixed color-causing-causing component due to its calorific value. It is characterized by changing.

陽極酸化皮膜に発色起因成分を定着させる方法は、発色起因成分の特性に合わせて選択される。
例えば、水溶性の金属塩にあっては、浸漬処理,封孔処理,電解着色処理等が例として挙げられる。
また、酸化チタン等の分散溶液の場合には、電気泳動法,塗布(スプレー)等が例として挙げられる。
The method of fixing the color-forming component on the anodized film is selected according to the characteristics of the color-forming component.
For example, in the case of water-soluble metal salts, dipping treatment, sealing treatment, electrolytic coloring treatment, etc. may be mentioned.
Further, in the case of a dispersion solution of titanium oxide or the like, an electrophoretic method, coating (spraying) and the like can be mentioned as examples.

レーザ光の照射により化合物の構造が変化するが、陽極酸化皮膜の成分の影響を受ける場合がある。
アルミニウム又はその合金に陽極酸化皮膜を形成した場合には、次のことが考えられる。
発色起因成分がコバルト塩であると、レーザ光の照射によりCoAlが形成されることで、青色系に発色する。
発色起因成分がニッケル塩であると、レーザ光の照射によりNiAlが形成されることで、灰青色系に発色する。
発色起因成分が銅塩であると、レーザ光の照射によりCuAlが形成されることで、肌色系に発色する。
発色起因成分がTiO,Fe等の酸化物である場合は、その酸化物の構造が変化し、発色するものと推定される。
また、レーザ光のエネルギー密度を調整することで、色調のコントロールも可能である。
The structure of the compound is changed by the irradiation of laser light, but it may be influenced by the components of the anodized film.
When an anodic oxide film is formed on aluminum or its alloy, the following can be considered.
When the coloring-causing component is a cobalt salt, CoAl 2 O 4 is formed by the irradiation of the laser light, and thus a blue color is formed.
When the color-developing component is a nickel salt, NiAl 2 O 4 is formed by the irradiation of the laser beam, so that a gray-blue color is formed.
When the color-developing component is a copper salt, CuAl 2 O 4 is formed by irradiation with a laser beam, so that a skin color system is colored.
When the color-developing component is an oxide such as TiO 2 or Fe 2 O 3 , it is presumed that the structure of the oxide changes and color is developed.
Further, the color tone can be controlled by adjusting the energy density of the laser light.

A1050アルミニウムの板材を4%の蓚酸水溶液,40℃,25V,60分の条件で電解処理し、多孔性の陽極酸化皮膜を得た。
次に、1%の酢酸コバルトの水溶液,60℃,30分の浸漬処理をした。
次に、波長445nmの半導体レーザ光を照射した。
その際の色調の変化を図1の色測グラフに示す。
図1中、●印は半導体レーザ光を照射する前の色測値であり、半導体レーザ光の照射に伴い、矢印で示すように新たな青色になった。
A plate material of A1050 aluminum was subjected to electrolytic treatment under the conditions of 4% oxalic acid aqueous solution, 40° C., 25 V, and 60 minutes to obtain a porous anodic oxide film.
Next, a 1% aqueous solution of cobalt acetate was soaked at 60° C. for 30 minutes.
Next, semiconductor laser light having a wavelength of 445 nm was irradiated.
The change in color tone at that time is shown in the color measurement graph of FIG.
In FIG. 1, a black circle indicates a colorimetric value before irradiation with the semiconductor laser light, and a new blue color was obtained as indicated by an arrow with the irradiation with the semiconductor laser light.

A1050アルミニウムの板材に実施例1と同様に、陽極酸化皮膜を形成した。
次に1%の酢酸銅水溶液,60℃,30分の浸漬処理を行った。
次に、半導体レーザ光(445nm)を照射した結果を図2の色測グラフに示す。
●印がレーザ光を照射する前であり、レーザ光の照射に伴い、黄色系の色調に発色した。
An anodized film was formed on the plate material of A1050 aluminum in the same manner as in Example 1.
Next, a 1% copper acetate aqueous solution was soaked at 60° C. for 30 minutes.
Next, the result of irradiation with semiconductor laser light (445 nm) is shown in the colorimetric graph of FIG.
The mark ● is before laser light irradiation, and developed a yellowish color tone with laser light irradiation.

実施例1と同様に、陽極酸化皮膜を形成した後に、1%の酢酸ニッケル水溶液,60℃,30分の浸漬処理を行い、次に半導体レーザ光を照射した。
その色測データを図3に示す。
灰色味のある緑色に発色した。
As in Example 1, after forming the anodic oxide film, a 1% nickel acetate aqueous solution was dipped at 60° C. for 30 minutes, and then irradiated with a semiconductor laser beam.
The colorimetric data is shown in FIG.
It developed a grayish green color.

実施例1と同様に、陽極酸化処理を行った後に、1%の蓚酸第二鉄アンモン,60℃,20分の浸漬処理を行った。
次に、半導体レーザ光を照射した結果を図4に示す。
レーザ光の照射前は茶色系であったが、レーザ光の照射により黒色系に発色した。
In the same manner as in Example 1, after the anodic oxidation treatment, a dipping treatment with 1% ferric ammonium oxalate at 60° C. for 20 minutes was performed.
Next, FIG. 4 shows the result of irradiation with semiconductor laser light.
Before being irradiated with laser light, it was brownish, but upon irradiation with laser light, it developed a blackish color.

実施例2と同様の陽極酸化処理及び酢酸銅水溶液による浸漬処理を行った後に、YAGレーザ光を照射した結果を図5に示す。
黄色系及び肌色系に発色した。
FIG. 5 shows the result of irradiation with YAG laser light after performing the same anodizing treatment and dipping treatment with a copper acetate aqueous solution as in Example 2.
Color developed to yellowish and flesh-colored.

Claims (5)

金属の表面に、多孔性陽極酸化皮膜を形成するステップと、
前記多孔性陽極酸化皮膜の表面又は孔中に発色起因成分を定着するステップと、
前記発色起因成分が定着された多孔性陽極酸化皮膜を加熱するステップとを有することを特徴とする金属の表面処理方法。
Forming a porous anodic oxide film on the surface of the metal,
Fixing the color-producing component on the surface or in the pores of the porous anodized film;
And a step of heating the porous anodic oxide film having the color-forming component fixed thereon.
前記発色起因成分を定着するステップは封孔処理,浸漬処理,電解着色,電気泳動及び塗布のうち、いずれか1つ又は複数の手段を用いることを特徴とする請求項1記載の金属の表面処理方法。 The surface treatment of metal according to claim 1, wherein the step of fixing the color-developing component uses any one or a plurality of means among sealing treatment, dipping treatment, electrolytic coloring, electrophoresis and coating. Method. 前記発色起因成分は金属又はその化合物であることを特徴とする請求項1又は2記載の金属の表面処理方法。 The metal surface treatment method according to claim 1 or 2, wherein the color-developing component is a metal or a compound thereof. 前記加熱する手段はレーザ光を照射する手段であることを特徴とする請求項1〜3のいずれかに記載の金属の表面処理方法。 The method for surface treatment of metal according to claim 1, wherein the heating means is a means for irradiating a laser beam. 前記レーザ光は固体レーザ,半導体レーザ,気体レーザのうち、いずれかであることを特徴とする請求項4記載の金属の表面処理方法。 The metal surface treatment method according to claim 4, wherein the laser light is any one of a solid-state laser, a semiconductor laser, and a gas laser.
JP2018223146A 2018-11-29 2018-11-29 Metal surface treatment method Pending JP2020084289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223146A JP2020084289A (en) 2018-11-29 2018-11-29 Metal surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223146A JP2020084289A (en) 2018-11-29 2018-11-29 Metal surface treatment method

Publications (1)

Publication Number Publication Date
JP2020084289A true JP2020084289A (en) 2020-06-04

Family

ID=70906694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223146A Pending JP2020084289A (en) 2018-11-29 2018-11-29 Metal surface treatment method

Country Status (1)

Country Link
JP (1) JP2020084289A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456894A (en) * 1987-08-28 1989-03-03 Yoshida Kogyo Kk Surface treatment of aluminum or aluminum alloy
JPH01205093A (en) * 1988-02-08 1989-08-17 Nippon Alum Mfg Co Ltd Coloring method for aluminum or aluminum alloy
JP2000267291A (en) * 1999-03-19 2000-09-29 Konica Corp Production of substrate for planographic printing plate and planographic printing plate material
JP2001080210A (en) * 1999-09-17 2001-03-27 Fuji Photo Film Co Ltd Method for forming image on aluminum substrate by direct irradiation with laser, aluminum substrate for laser image formation, and nameplate obtained thereby
WO2006080196A1 (en) * 2005-01-31 2006-08-03 Konica Minolta Medical & Graphic, Inc. Exposure visible image forming method of lithographic printing plate material, aluminum support and lithographic printing plate material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456894A (en) * 1987-08-28 1989-03-03 Yoshida Kogyo Kk Surface treatment of aluminum or aluminum alloy
JPH01205093A (en) * 1988-02-08 1989-08-17 Nippon Alum Mfg Co Ltd Coloring method for aluminum or aluminum alloy
JP2000267291A (en) * 1999-03-19 2000-09-29 Konica Corp Production of substrate for planographic printing plate and planographic printing plate material
JP2001080210A (en) * 1999-09-17 2001-03-27 Fuji Photo Film Co Ltd Method for forming image on aluminum substrate by direct irradiation with laser, aluminum substrate for laser image formation, and nameplate obtained thereby
WO2006080196A1 (en) * 2005-01-31 2006-08-03 Konica Minolta Medical & Graphic, Inc. Exposure visible image forming method of lithographic printing plate material, aluminum support and lithographic printing plate material
CN101107136A (en) * 2005-01-31 2008-01-16 柯尼卡美能达医疗印刷器材株式会社 Exposure visible image forming method of lithographic printing plate material, aluminum support and lithographic printing plate material

Similar Documents

Publication Publication Date Title
US4066516A (en) Method for forming colorless or colored pattern having shade difference on an aluminum or aluminum alloy article
US20040000490A1 (en) Method of forming mark on anodized surface of aluminum object
JPS60248895A (en) Aluminum article, particularly aluminum plate and manufacture
JP2014136832A (en) Anodic oxide film and method for manufacturing the same
US20180230617A1 (en) Aluminum panels
US3284321A (en) Manufacture of aluminum articles with anodized surfaces presenting multicolor effects
JP2020084289A (en) Metal surface treatment method
TWI553165B (en) Coloring method by dye-free and one-time anodic-aluminum oxidizing process and substrate made therefrom
JP3203895B2 (en) Surface treatment method of aluminum or its alloy
KR20150144457A (en) Surface treatment method of aluminum material for radiating heat
US11578420B2 (en) Surface hardening method using post heat treatment of aluminum alloy oxide layer
JPS58167797A (en) Formation of pattern on surface of aluminum or aluminum alloy
JPS633038B2 (en)
JPS5945722B2 (en) Method of forming a colored protective film on the surface of aluminum materials
Matijošius et al. Determination of the dye penetration rate in porous aluminum oxide using Raman spectroscopy
CN107268053A (en) The method and its structure that pattern is generated on oxide-film are electroplated in metal surface
CN110835774A (en) Dye solution replacement for reduced dye absorption in anodized layers
NL8103906A (en) METHOD FOR DYEING OXIDE LAYERS OF ALUMINUM OR ALUMINUM ALLOYS WITH ORGANIC COMPOUNDS
JPS5858440B2 (en) aluminum material
JP2908105B2 (en) Electrolytic coloring of aluminum or aluminum alloy
JP2007239057A (en) Partly colored magnesium body, method of manufacturing the same and intermediate body
TWM524848U (en) Structural for generating patterns on metal surface electroplated with oxide film
JPH0684555B2 (en) Method for forming colored metal oxide thin film on aluminum anodized film
TWI439576B (en) Method for producing complex surface
JPS58157993A (en) Method for coloring aluminum or aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220