JP2020076137A - Copper-iron alloy for stainless steel modification, and modified stainless steel - Google Patents

Copper-iron alloy for stainless steel modification, and modified stainless steel Download PDF

Info

Publication number
JP2020076137A
JP2020076137A JP2018211314A JP2018211314A JP2020076137A JP 2020076137 A JP2020076137 A JP 2020076137A JP 2018211314 A JP2018211314 A JP 2018211314A JP 2018211314 A JP2018211314 A JP 2018211314A JP 2020076137 A JP2020076137 A JP 2020076137A
Authority
JP
Japan
Prior art keywords
copper
stainless steel
iron
mass
iron alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018211314A
Other languages
Japanese (ja)
Inventor
久雄 若海
Hisao Wakaumi
久雄 若海
秀世 小柴
Hideyo Koshiba
秀世 小柴
昌柞 朴
Chang Zuo Park
昌柞 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cfa Global Co Ltd
Cfa Japan Co Ltd
DOTETSU GOKIN KK
Original Assignee
Cfa Global Co Ltd
Cfa Japan Co Ltd
DOTETSU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cfa Global Co Ltd, Cfa Japan Co Ltd, DOTETSU GOKIN KK filed Critical Cfa Global Co Ltd
Priority to JP2018211314A priority Critical patent/JP2020076137A/en
Publication of JP2020076137A publication Critical patent/JP2020076137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a copper-iron alloy for stainless steel modification capable of increasing a content of copper contained in a stainless steel; and to provide a modified stainless steel having a high copper content.SOLUTION: A copper-iron alloy for stainless steel modification contains copper as much as 10.0-97.0 vol.%, and iron as much as 3.0-90.0 vol.%, and has a linear structure containing a plurality of linear parts in parallel with both cross sections, when observing visually each image having a magnification of 200 by an optical microscope of a cross section cut out in parallel with a rolling direction and a cross section cut out vertically thereto.SELECTED DRAWING: Figure 2

Description

本発明は、ステンレス鋼に関するものであり、特に銅の含有量が多い改質ステンレス鋼に関するものである。   The present invention relates to stainless steel, and more particularly to modified stainless steel containing a large amount of copper.

ステンレス鋼には、銅を含むものがある。この銅により、ステンレス鋼に特性を付与することが考えられる。例えば、銅は、抗菌性を有することが知られている。特許文献1(特開平9−176800号公報)には、C:0.1重量%以下,Si:2重量%以下,Mn:5重量%以下,Cr:10〜30重量%,Ni:5〜15重量%,Cu:1.0〜5.0重量%を含む組成をもち、Cuを主体とする第2相がマトリックス中に0.2体積%以上の割合で分散している抗菌性に優れたオーステナイト系ステンレス鋼が記載されている。また、非特許文献1(鈴木聡ら,「Cu含有ステンレスの抗菌性」,鉄と鋼,Vol.100(2014)No.8,p.97〜104)には、銅を1.00〜3.77mass%含む、抗菌性を有するステンレス鋼が記載されている。   Some stainless steels include copper. It is conceivable that the copper gives characteristics to the stainless steel. For example, copper is known to have antibacterial properties. In Patent Document 1 (JP-A-9-176800), C: 0.1 wt% or less, Si: 2 wt% or less, Mn: 5 wt% or less, Cr: 10 to 30 wt%, Ni: 5 to 5 wt%. It has a composition containing 15% by weight and Cu: 1.0 to 5.0% by weight, and the second phase mainly composed of Cu is dispersed in the matrix at a ratio of 0.2% by volume or more, which is excellent in antibacterial properties. Austenitic stainless steel is described. Further, in Non-Patent Document 1 (Satoshi Suzuki et al., “Antibacterial Properties of Cu-Containing Stainless Steel”, Iron and Steel, Vol. 100 (2014) No. 8, p. 97-104), copper is 1.00-3. Stainless steel with antibacterial properties is described, containing 0.77 mass%.

特開平9−176800号公報JP-A-9-176800

鈴木聡ら,「Cu含有ステンレス鋼の抗菌性」,鉄と鋼,Vol.100(2014)No.8,p.97〜104Satoshi Suzuki et al., "Antibacterial Properties of Cu-Containing Stainless Steel," Iron and Steel, Vol. 100 (2014) No. 8, p. 97-104

しかしながら、従来の方法で製造されるステンレス鋼は、銅の含有量が少ない。そのため、例えば高い抗菌性を有さない。そこで、本発明は、ステンレス鋼に含まれる銅の含有量を増やすことができるステンレス鋼改質用銅鉄合金、及び銅含有量の多い改質ステンレス鋼を提供することを目的とする。   However, the stainless steel produced by the conventional method has a low copper content. Therefore, it does not have high antibacterial properties, for example. Then, this invention aims at providing the copper-iron alloy for stainless steel modification which can increase the content of copper contained in stainless steel, and the modified stainless steel with many copper contents.

以上の目的を達成するために、本発明者らは、鋭意研究を重ね、本発明に至った。すなわち、本発明のステンレス鋼改質用銅鉄合金は、銅を10.0〜97.0容量%、及び鉄を3.0〜90.0容量%含み、圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率200倍の画像を目視で観察すると両断面共に平行する複数の線状部を含む線状構造である。   In order to achieve the above object, the present inventors have earnestly conducted research and arrived at the present invention. That is, the copper-iron alloy for modifying stainless steel of the present invention contains 10.0 to 97.0% by volume of copper and 3.0 to 90.0% by volume of iron, and has a cross section cut parallel to the rolling direction and When an image of a cross section cut out vertically is observed with an optical microscope at a magnification of 200 times, it is a linear structure including a plurality of linear portions parallel to each other in both cross sections.

また、本発明の改質ステンレス鋼は、Cuを6.0質量%以上含む。   Further, the modified stainless steel of the present invention contains Cu in an amount of 6.0 mass% or more.

さらに、本発明の改質ステンレス鋼の製造方法は、ステンレス鋼改質用銅鉄合金とステンレス鋼原料とを混合する工程を備える。   Further, the method for producing modified stainless steel of the present invention includes a step of mixing a copper-iron alloy for modifying stainless steel and a stainless steel raw material.

以上のように、本発明によれば、ステンレス鋼に含まれる銅の含有量を増やすことができるステンレス鋼改質用銅鉄合金、及び銅含有量の多い改質ステンレス鋼を提供することができる。   As described above, according to the present invention, it is possible to provide a copper-iron alloy for modifying stainless steel capable of increasing the content of copper contained in stainless steel, and a modified stainless steel having a high copper content. ..

図1は、実施例1に係るステンレス鋼改質用銅鉄合金を鋳造し圧延した圧延材であり、図中の矢印は顕微鏡で観察を行うための試験片を切り出した方向を示す。FIG. 1 is a rolled material obtained by casting and rolling the copper-iron alloy for modifying stainless steel according to Example 1, and the arrow in the figure indicates the direction in which a test piece for observation with a microscope is cut out. 図2は、圧延方向に垂直に切り出された圧延材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 2 is a photograph of a rolled material cut out perpendicularly to the rolling direction, taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図3は、圧延方向に垂直に切り出された圧延材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 3 is a photograph of a rolled material cut out perpendicularly to the rolling direction taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図4は、圧延方向に平行に切り出された圧延材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 4 is a photograph of a rolled material cut out in parallel with the rolling direction taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図5は、圧延方向に平行に切り出された圧延材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 5 is a photograph of a rolled material cut in parallel to the rolling direction, taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図6は、比較例1に係るステンレス鋼改質用銅鉄合金の鋳造材であり、図中の矢印は顕微鏡で観察を行うための試験片を切り出した方向を示す。FIG. 6 is a cast material of a copper-iron alloy for modifying stainless steel according to Comparative Example 1, and the arrow in the figure indicates the direction in which a test piece for observation with a microscope is cut out. 図7は、長手方向に垂直に切り出された鋳造材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 7 is a photograph of a cast material cut out perpendicularly to the longitudinal direction taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図8は、長手方向に垂直に切り出された鋳造材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 8 is a photograph of a cast material cut out perpendicularly to the longitudinal direction taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図9は、長手方向に平行に切り出された鋳造材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 9 is a photograph of a cast material cut out in parallel with the longitudinal direction taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図10は、長手方向に平行に切り出された鋳造材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 10 is a photograph of a cast material cut in parallel with the longitudinal direction taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching.

《ステンレス鋼改質用銅鉄合金》
本発明に係るステンレス鋼改質用銅鉄合金(以下、単に銅鉄合金という。)は、銅を10.0〜97.0容量%、及び鉄を3.0〜90.0容量%、好ましくは銅を10.0〜96.0容量%、及び鉄を4.0〜90.0容量%、より好ましくは銅を10.0〜95.0容量%、及び鉄を5.0〜90.0容量%、更に好ましくは銅を10.0〜94.0容量%、及び鉄を6.0〜90.0容量%、特に好ましくは銅を10.0〜93.0容量%、及び鉄を7.0〜90.0容量%である。ステンレス鋼に高い抗菌性等を付与するためには、銅の含有量が多い方が好ましい。
《Copper iron alloy for stainless steel reforming》
The copper-iron alloy for modifying stainless steel according to the present invention (hereinafter, simply referred to as copper-iron alloy) contains 10.0 to 97.0% by volume of copper and 3.0 to 90.0% by volume of iron, preferably Is 10.0 to 96.0% by volume of copper, 4.0 to 90.0% by volume of iron, more preferably 10.0 to 95.0% by volume of copper, and 5.0 to 90.% of iron. 0% by volume, more preferably 10.0 to 94.0% by volume of copper, and 6.0 to 90.0% by volume of iron, particularly preferably 10.0 to 93.0% by volume of copper, and iron. It is 7.0 to 90.0% by volume. In order to impart high antibacterial properties to stainless steel, it is preferable that the content of copper is large.

圧延された本発明に係る銅鉄合金は、圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率200倍の画像を目視で観察すると両断面共に平行する複数の線状部を含む線状構造である。図2及び図4に示されるように、複数の線は、同一方向に交差することなく概ね平行している。また、図3及び図5に示されるように、圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率1000倍の画像を目視で観察すると色の濃い不定形領域が点在している。   The rolled copper-iron alloy according to the present invention has a plurality of linear portions that are parallel to each other when visually observing images of a cross section cut parallel to the rolling direction and a cross section cut perpendicularly with an optical microscope at a magnification of 200 times. It is a linear structure including. As shown in FIGS. 2 and 4, the lines are substantially parallel without intersecting in the same direction. Further, as shown in FIGS. 3 and 5, when visually observing an image of a cross section cut in parallel to the rolling direction and a cross section cut in the vertical direction with an optical microscope at a magnification of 1000, irregular regions having a dark color are scattered. is doing.

本発明に係る銅鉄合金は、どのような形状に加工されていてもよく、例えば、スラブ、ビレット、粉末状、線状、又は板状でもよいが、線状又は板状であるのが好ましい。   The copper-iron alloy according to the present invention may be processed into any shape, and may be, for example, a slab, a billet, a powder, a linear shape, or a plate shape, but is preferably a linear shape or a plate shape. ..

本発明に係る銅鉄合金は、導電率が5〜92%[IACS単位]、引張強度が300〜2500N/mm、及び熱伝導率が340W/m・K以下であることが好ましい。 The copper-iron alloy according to the present invention preferably has an electric conductivity of 5 to 92% [IACS unit], a tensile strength of 300 to 2500 N / mm 2 , and a thermal conductivity of 340 W / m · K or less.

《銅鉄合金の製造方法》
本発明に係る銅鉄合金は、例えば、以下のような第1の方法又は第2の方法によって製造することができる。
<< Copper-iron alloy manufacturing method >>
The copper-iron alloy according to the present invention can be manufactured, for example, by the following first method or second method.

〈第1の方法〉
第1の方法においては、本発明に係る銅鉄合金は、銅及び鉄を含む母合金と、銅又は鉄とを溶融して製造することができる。
<First method>
In the first method, the copper-iron alloy according to the present invention can be manufactured by melting a mother alloy containing copper and iron and copper or iron.

母合金は、銅及び鉄を加熱して溶湯とし、溶湯を冷却して得るのが好ましい。銅と鉄の比率は、銅100容量部に対して、鉄が、好ましくは20〜500容量部、より好ましくは50〜200容量部である。母合金は、実質的に銅と鉄のみからなるのが好ましい。   The mother alloy is preferably obtained by heating copper and iron into a molten metal and then cooling the molten metal. The ratio of copper to iron is preferably 20 to 500 parts by volume, and more preferably 50 to 200 parts by volume, with respect to 100 parts by volume of copper. The mother alloy preferably consists essentially of copper and iron.

母合金の原料である銅と鉄は、合金の状態図に従って加熱される。また、銅と鉄が均一に加熱されるようにするのが好ましい。加熱して得られた溶湯は、室温下で自然冷却させることが好ましい。例えば、溶湯を、直接型枠に鋳込み、放置する。   The raw materials for the master alloy, copper and iron, are heated according to the alloy phase diagram. Further, it is preferable that the copper and iron are uniformly heated. The molten metal obtained by heating is preferably allowed to cool naturally at room temperature. For example, the molten metal is directly cast into a mold and left to stand.

得られた母合金と、銅又は鉄とを溶融する。好ましくは、母合金と銅とを溶融する。母合金と共に加熱される銅又は鉄の量は、最終的に得られる銅鉄合金の銅鉄比率を考慮して決定することができる。   The obtained master alloy and copper or iron are melted. Preferably, the master alloy and copper are melted. The amount of copper or iron heated with the mother alloy can be determined in consideration of the copper-iron ratio of the finally obtained copper-iron alloy.

母合金に銅又は鉄を加え加熱するが、銅又は鉄以外にその他の金属を加えてもよい。しかし、実質的に母合金と銅又は鉄のみからなる原材料を加熱するのが好ましい。原材料は合金の状態図に従って加熱するのが好ましい。加熱溶融した後、冷却する。冷却は、ゆっくり行うことが好ましい。例えば、室温下で自然冷却する。母合金を用いて銅鉄合金を製造する場合、ゆっくり冷却することができ、急速に冷却する必要が無い。以上のようにして、鉄の含有率が高く、加工性に優れた従来存在しない銅鉄合金、特に銅と鉄の二元合金を製造することができる。   Copper or iron is added to the mother alloy and heated, but other metals may be added in addition to copper or iron. However, it is preferred to heat a raw material consisting essentially of the master alloy and copper or iron. The raw materials are preferably heated according to the alloy phase diagram. After melting by heating, it is cooled. Cooling is preferably performed slowly. For example, it is naturally cooled at room temperature. When a copper-iron alloy is manufactured using a mother alloy, it can be cooled slowly and does not need to be cooled rapidly. As described above, a copper-iron alloy having a high iron content and excellent workability, which has not existed in the past, particularly a binary alloy of copper and iron can be manufactured.

〈第2の方法〉
第2の方法においては、まず、鉄、銅、及びコバルトを含む原料を誘導加熱炉内で溶解する。誘導加熱炉は、高周波誘導炉であることが好ましい。
<Second method>
In the second method, first, a raw material containing iron, copper, and cobalt is melted in an induction heating furnace. The induction heating furnace is preferably a high frequency induction furnace.

原料は、鉄、銅、及びコバルトを含み、鉄と銅は、好ましくは60:40〜40:60、より好ましくは55:45〜45:55の容量比である。鉄を分散させる観点から、コバルトが鉄と銅の合計に対して0.0001〜0.0020容量%、好ましくは0.0005〜0.0015容量%、更に好ましくは0.0010容量%である。   The raw material contains iron, copper, and cobalt, and iron and copper have a volume ratio of preferably 60:40 to 40:60, more preferably 55:45 to 45:55. From the viewpoint of dispersing iron, cobalt is 0.0001 to 0.0020% by volume, preferably 0.0005 to 0.0015% by volume, and more preferably 0.0010% by volume with respect to the total of iron and copper.

原料は、誘導加熱炉内で状態図に従って好ましくは1400℃〜1550℃、より好ましくは1450℃〜1500℃となるように加熱される。これにより原料が溶けて溶湯となる。   The raw material is heated in an induction heating furnace according to a phase diagram so as to be preferably 1400 ° C to 1550 ° C, more preferably 1450 ° C to 1500 ° C. As a result, the raw materials are melted and become molten metal.

次に、原料が溶解した溶湯を鋳型に注湯する。第2の方法においては、溶湯を磁場の中に置き振動を与えればよいが、注湯中に溶湯を磁場の中に置き振動を与えるのが好ましい。磁場は平均磁束密度1200〜2300ガウス、振動は20〜150Hzである。例えば、電磁コイルが巻かれた、耐熱セラミックと鉄系金属とからなる複層管に溶湯を流すことにより、溶湯を磁場の中に置くことができる。また、低周波発生器を用いて溶湯に振動を与えることができる。磁場の中で振動を与えることにより、銅と鉄の粒子の粒界エネルギーの変化が起こり、銅と鉄とが均一に混ざるものと考えられる。以上のようにして、鉄の含有率が高く、加工性に優れた従来存在しない銅鉄合金を製造することができる。   Next, the molten metal in which the raw materials are melted is poured into a mold. In the second method, the molten metal may be placed in a magnetic field and vibrated, but it is preferable that the molten metal be placed in a magnetic field during pouring and vibrated. The magnetic field has an average magnetic flux density of 1200 to 2300 gauss, and the vibration has a frequency of 20 to 150 Hz. For example, the molten metal can be placed in a magnetic field by flowing the molten metal through a multi-layer tube made of a heat-resistant ceramic and an iron-based metal around which an electromagnetic coil is wound. Further, it is possible to apply a vibration to the molten metal by using a low frequency generator. It is considered that when the vibration is applied in the magnetic field, the grain boundary energies of the copper and iron particles are changed, and the copper and iron are uniformly mixed. As described above, a copper-iron alloy having a high iron content and excellent workability, which has not existed in the past, can be manufactured.

《改質ステンレス鋼》
本発明に係る改質ステンレス鋼には、Cu(銅)が6.0質量%以上、好ましくは、10.0〜50.0質量%、より好ましくは20.0〜40.0質量%が含まれる。抗菌性の観点から、Cuの含有量は多い方が好ましい。また、改質ステンレス鋼は、Fe(鉄)を含むのが好ましい。
《Modified stainless steel》
The modified stainless steel according to the present invention contains Cu (copper) in an amount of 6.0% by mass or more, preferably 10.0 to 50.0% by mass, and more preferably 20.0 to 40.0% by mass. Be done. From the viewpoint of antibacterial properties, it is preferable that the Cu content is large. Further, the modified stainless steel preferably contains Fe (iron).

本発明に係る改質ステンレス鋼には、Mn(マンガン)が好ましくは5.0質量%以下であり、より好ましくは1.0〜3.0質量%、更に好ましくは1.0〜2.0質量%含まれる。Cr(クロム)は、好ましくは10.0〜30.0質量%、より好ましくは15.0〜20.0質量%含まれる。Ni(ニッケル)は、好ましくは5.0〜30.0質量%、より好ましくは8.0〜20.0質量%含まれる。C(炭素)は、好ましくは0.1質量%以下であり、より好ましくは0.01〜0.1質量%含まれる。Si(ケイ素)は2.0質量%以下であり、より好ましくは0.1〜1.0質量%、更に好ましくは0.2〜0.8質量%含まれる。   In the modified stainless steel according to the present invention, Mn (manganese) is preferably 5.0 mass% or less, more preferably 1.0 to 3.0 mass%, still more preferably 1.0 to 2.0. Mass% is included. Cr (chromium) is preferably contained in an amount of 10.0 to 30.0% by mass, more preferably 15.0 to 20.0% by mass. Ni (nickel) is preferably contained in an amount of 5.0 to 30.0 mass%, more preferably 8.0 to 20.0 mass%. C (carbon) is preferably 0.1% by mass or less, and more preferably 0.01 to 0.1% by mass. Si (silicon) is 2.0% by mass or less, more preferably 0.1 to 1.0% by mass, and further preferably 0.2 to 0.8% by mass.

本発明に係る改質ステンレス鋼は、例えば、Cuを6.0質量%以上、Crを10.0〜30.0質量%、及びNiを5.0〜30.0質量%を含み、Cが0.1質量%以下、Siが2.0質量%以下、Mnが5.0質量%以下、及び残部が実質的にFeからなる。   The modified stainless steel according to the present invention contains, for example, 6.0 mass% or more of Cu, 10.0 to 30.0 mass% of Cr, and 5.0 to 30.0 mass% of Ni, and C is 0.1 mass% or less, Si is 2.0 mass% or less, Mn is 5.0 mass% or less, and the balance is substantially Fe.

本発明に係る改質ステンレス鋼は、銅の含有量が多いので、種々の優れた特性を示す。例えば、高い抗菌性を有する。また、従来のステンレス鋼に比べて導電率が大きく、高温になっても導電率の急激な減衰がない。さらに、熱伝導率も大きく、耐腐食性にも優れる。   Since the modified stainless steel according to the present invention has a high copper content, it exhibits various excellent properties. For example, it has a high antibacterial property. Further, the electric conductivity is larger than that of the conventional stainless steel, and the electric conductivity does not suddenly decrease even at a high temperature. Further, it has high thermal conductivity and excellent corrosion resistance.

本発明に係る改質ステンレス鋼は、以下のように製造することができる。   The modified stainless steel according to the present invention can be manufactured as follows.

本発明に係る銅鉄合金とステンレス鋼原料を混合し、電気炉で溶解する。ステンレス鋼原料としては、ステンレス鋼、そのスクラップ、クロム、及びニッケル等が挙げられる。混合する銅鉄合金の量は、製造したいステンレス鋼の組成を目安に決めればよい。ステンレス鋼原料と銅鉄合金とを混合して溶解することにより、ステンレス鋼の銅含有量を多くすることができる。溶解した後、別の炉で、成分の調整を行ってもよい。   The copper iron alloy according to the present invention and a stainless steel raw material are mixed and melted in an electric furnace. Examples of the stainless steel raw material include stainless steel, scrap thereof, chromium, nickel, and the like. The amount of the copper-iron alloy to be mixed may be determined based on the composition of the stainless steel to be manufactured. By mixing and melting the stainless steel raw material and the copper-iron alloy, the copper content of the stainless steel can be increased. After melting, the components may be adjusted in another furnace.

溶解した原材料を鋳型に流し込み、例えばスラブ状又はビレット状のステンレス鋼を鋳造する。鋳造されたステンレス鋼を、熱間圧延又は冷間圧延してもよい。   The molten raw material is poured into a mold to cast, for example, slab-shaped or billet-shaped stainless steel. The cast stainless steel may be hot rolled or cold rolled.

《実験例1》
[実施例1]
銅(電線用純銅)質量35kgと鉄(JFEスティール社製純鉄)質量35kgを秤量したのちに、70kgの容量の高周波誘導炉へ投入して1500℃で加熱して完全溶解を行った。これを型枠へ流し込んで室温になるまで自然冷却し母合金のインゴットを鋳造した。
<< Experimental Example 1 >>
[Example 1]
After weighing 35 kg of copper (pure copper for electric wire) and 35 kg of iron (pure iron manufactured by JFE Steel Co., Ltd.), the mixture was put into a high-frequency induction furnace having a capacity of 70 kg and heated at 1500 ° C. for complete melting. This was poured into a mold and naturally cooled to room temperature to cast a master alloy ingot.

銅90容量%、鉄10容量%になるように母合金のインゴットと銅(固体)とを混合し、1250〜1300℃に加熱溶融して銅希釈を行った後、厚み10mmのスラブに鋳造して、改質ステンレス鋼の原料となる実施例1に係る銅鉄合金を得た。   A master alloy ingot and copper (solid) were mixed so that the copper content was 90% by volume and the iron content was 10% by volume, and the mixture was heated and melted at 1250 to 1300 ° C to dilute the copper, and then cast into a slab having a thickness of 10 mm. Thus, a copper-iron alloy according to Example 1 as a raw material for the modified stainless steel was obtained.

[比較例1]
市販の鋳造銅鉄合金(SIRUI社製)を比較例1に係る銅鉄合金として用いた。
[Comparative Example 1]
A commercially available cast copper-iron alloy (manufactured by SIRUI) was used as the copper-iron alloy according to Comparative Example 1.

<構造解析1>
実施例1で得られた銅鉄合金を圧延して、図1の写真に示す銅鉄合金の圧延材(板材)を得た。実施例1で得られた銅鉄合金は圧延しても割れが殆ど生じず、容易に圧延材を製造することができた。この圧延材の圧延方向から垂直に切り出した試験片A及び圧延方向から平行に切り出した試験片Bを得た。
<Structural analysis 1>
The copper iron alloy obtained in Example 1 was rolled to obtain a rolled material (plate material) of the copper iron alloy shown in the photograph of FIG. The copper-iron alloy obtained in Example 1 hardly cracked even when rolled, and a rolled material could be easily manufactured. A test piece A cut out vertically from the rolling direction of this rolled material and a test piece B cut out parallel to the rolling direction were obtained.

試験片Aについて、切り出し断面を研磨した試験片A1、及び切り出し断面を研磨しエッチング処理した試験片A2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片A1の写真を図2の左に、試験片A2の写真を図2の右に示す。   As for the test piece A, a test piece A1 having a cut out cross section polished and a test piece A2 having a cut out cross section polished and etched were prepared, and photographed with an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation) at a magnification of 200 times. Was taken. A photograph of the test piece A1 is shown on the left of FIG. 2, and a photograph of the test piece A2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片A1の写真を図3の左に、試験片A2の写真を図3の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece A1 is shown on the left of FIG. 3, and a photograph of the test piece A2 is shown on the right of FIG.

試験片Bについて、切り出し断面を研磨した試験片B1、及び切り出し断面を研磨しエッチング処理した試験片B2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片B1の写真を図4の左に、試験片B2の写真を図4の右に示す。   As for the test piece B, a test piece B1 having a cut out cross section polished and a test piece B2 having a cut out cross section polished and etched were prepared, and photographed at a magnification of 200 times using an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation). Was taken. A photograph of the test piece B1 is shown on the left of FIG. 4, and a photograph of the test piece B2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片B1の写真を図5の左に、試験片B2の写真を図5の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece B1 is shown on the left of FIG. 5, and a photograph of the test piece B2 is shown on the right of FIG.

<構造解析2>
比較例1の銅鉄合金の鋳造材は図6に示すように、円柱形状であった。この円柱形状の鋳造材を円柱の高さ方向(長手方向)から垂直に切り出した試験片C及び長手方向から平行に切り出した試験片Dを得た。
<Structural analysis 2>
The cast material of the copper-iron alloy of Comparative Example 1 had a columnar shape as shown in FIG. A test piece C obtained by vertically cutting out the columnar cast material from the height direction (longitudinal direction) of the column and a test piece D obtained by cutting out parallel to the longitudinal direction are obtained.

試験片Cについて、切り出し断面を研磨した試験片C1、及び切り出し断面を研磨しエッチング処理した試験片C2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片C1の写真を図7の左に、試験片C2の写真を図7の右に示す。   As for the test piece C, a test piece C1 having a cut-out cross section polished and a test piece C2 having a cut-out cross section polished and etched were prepared, and photographed at a magnification of 200 using an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation). Was taken. A photograph of the test piece C1 is shown on the left of FIG. 7, and a photograph of the test piece C2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片C1の写真を図8の左に、試験片C2の写真を図8の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece C1 is shown on the left of FIG. 8, and a photograph of the test piece C2 is shown on the right of FIG.

試験片Dについて、切り出し断面を研磨した試験片D1、及び切り出し断面を研磨しエッチング処理した試験片D2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片D1の写真を図9の左に、試験片D2の写真を図9の右に示す。   As for the test piece D, a test piece D1 having a cut out cross section polished and a test piece D2 having a cut out cross section polished and etched were prepared, and photographed at a magnification of 200 using an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation). Was taken. A photograph of the test piece D1 is shown on the left of FIG. 9, and a photograph of the test piece D2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片D1の写真を図10の左に、試験片D2の写真を図10の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece D1 is shown on the left of FIG. 10, and a photograph of the test piece D2 is shown on the right of FIG.

比較例1に係る銅鉄合金は、圧延すると割れてしまった。また、鋳造材は、切り出し断面の一方は線状構造であったが、他方の切り出し断面は線状構造ではなく、不規則な構造であることが分かる。   The copper-iron alloy according to Comparative Example 1 cracked when rolled. Further, it can be seen that one of the cut-out cross sections of the cast material had a linear structure, but the other cut-out cross section had an irregular structure instead of a linear structure.

Claims (9)

銅を10.0〜97.0容量%、及び鉄を3.0〜90.0容量%含み、
圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率200倍の画像を目視で観察すると両断面共に平行する複数の線状部を含む線状構造である
ことを特徴とするステンレス鋼改質用銅鉄合金。
Contains 10.0 to 97.0% by volume of copper and 3.0 to 90.0% by volume of iron,
Visual observation of images of a cross section cut parallel to the rolling direction and a cross section cut perpendicularly with an optical microscope at a magnification of 200 is characterized by a linear structure including a plurality of linear portions parallel to each other. Copper-iron alloy for modifying stainless steel.
導電率が5〜92%[IACS単位]、引張強度が300〜2500N/mm、及び熱伝導率が340W/m・K以下である請求項1に記載のステンレス鋼改質用銅鉄合金。 The copper-iron alloy for modifying stainless steel according to claim 1, which has an electric conductivity of 5 to 92% [IACS unit], a tensile strength of 300 to 2500 N / mm 2 , and a thermal conductivity of 340 W / m · K or less. 銅及び鉄を含む母合金と、銅又は鉄とを溶融する工程を備える請求項1又は2に記載のステンレス鋼改質用銅鉄合金の製造方法。   The method for producing a copper-iron alloy for modifying stainless steel according to claim 1 or 2, further comprising the step of melting a mother alloy containing copper and iron and copper or iron. 銅及び鉄を加熱して溶湯とし、前記溶湯を冷却して前記母合金を得る工程を備える請求項3に記載のステンレス鋼改質用銅鉄合金の製造方法。   The method for producing a copper-iron alloy for modifying stainless steel according to claim 3, further comprising a step of heating copper and iron into a molten metal and cooling the molten metal to obtain the master alloy. 鉄、銅、及びコバルトを含む原料を誘導加熱炉内で溶解して溶湯を得る工程、及び
前記溶湯に、平均磁束密度1200〜2300ガウスの磁場の中で20〜150Hzの振動を与える工程
を備える請求項1又は2に記載のステンレス鋼改質用銅鉄合金の製造方法。
A step of melting a raw material containing iron, copper, and cobalt in an induction heating furnace to obtain a molten metal, and a step of giving the molten metal a vibration of 20 to 150 Hz in a magnetic field having an average magnetic flux density of 1200 to 2300 gauss The method for producing a copper-iron alloy for modifying stainless steel according to claim 1 or 2.
Cuを6.0質量%以上含むことを特徴とする改質ステンレス鋼。   Modified stainless steel containing at least 6.0 mass% of Cu. Mnが5.0質量%以下であり、Crを10.0〜30.0質量%、Niを5.0〜30.0質量%、及びFeを含む請求項6に記載の改質ステンレス鋼。   The modified stainless steel according to claim 6, wherein Mn is 5.0 mass% or less, Cr is 10.0 to 30.0 mass%, Ni is 5.0 to 30.0 mass%, and Fe. Cuを6.0質量%以上、Crを10.0〜30.0質量%、及びNiを5.0〜30.0質量%を含み、Cが0.1質量%以下、Siが2.0質量%以下、Mnが5.0質量%以下、及び残部が実質的にFeからなることを特徴とする改質ステンレス鋼。   Cu is 6.0 mass% or more, Cr is 10.0 to 30.0 mass%, and Ni is 5.0 to 30.0 mass%. C is 0.1 mass% or less and Si is 2.0. A modified stainless steel, characterized in that it is not more than mass%, Mn is not more than 5.0 mass%, and the balance is substantially Fe. 請求項1又は2に記載のステンレス鋼改質用銅鉄合金とステンレス鋼原料とを混合する工程を備えることを特徴とする改質ステンレス鋼の製造方法。
A method for producing modified stainless steel, comprising the step of mixing the copper-iron alloy for modifying stainless steel according to claim 1 or 2 with a stainless steel raw material.
JP2018211314A 2018-11-09 2018-11-09 Copper-iron alloy for stainless steel modification, and modified stainless steel Pending JP2020076137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018211314A JP2020076137A (en) 2018-11-09 2018-11-09 Copper-iron alloy for stainless steel modification, and modified stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211314A JP2020076137A (en) 2018-11-09 2018-11-09 Copper-iron alloy for stainless steel modification, and modified stainless steel

Publications (1)

Publication Number Publication Date
JP2020076137A true JP2020076137A (en) 2020-05-21

Family

ID=70723647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211314A Pending JP2020076137A (en) 2018-11-09 2018-11-09 Copper-iron alloy for stainless steel modification, and modified stainless steel

Country Status (1)

Country Link
JP (1) JP2020076137A (en)

Similar Documents

Publication Publication Date Title
CN107686928B (en) A kind of high-performance NiCoCrFeMnTi system high-entropy alloy and preparation method thereof
Munitz et al. Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy
Qi et al. Soft magnetic Fe25Co25Ni25 (B, Si) 25 high entropy bulk metallic glasses
Liu et al. Preparation of amorphous Fe-based magnetic powder by water atomization
JP2015038243A (en) Bulk-solidifying amorphous alloy
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP2018123424A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
Lee et al. Age hardening of the Al 0.5 CoCrNiTi 0.5 high-entropy alloy
CN107012417B (en) A kind of preparation method of high-intensity high-damping MnCu based alloys
Belov et al. Structure and properties of Al-0.6% Zr-0.4% Fe-0.4% Si (wt.%) wire alloy manufactured by electromagnetic casting
EP2749658A1 (en) Method for as-cast production of ausferritic ductile iron
WO1998010111A1 (en) Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
JP2016505713A (en) Heat resistant aluminum base alloy and manufacturing method
CN1584080A (en) TiAl intermetallic compound materials containing yttebium and preparing method thereof
CN105568019A (en) Refining method for CuAlMn shape memory alloy grains
Yang et al. Effects of Nb addition and different cooling methods on microstructures and properties of Cu-Cr alloys
JP2020076137A (en) Copper-iron alloy for stainless steel modification, and modified stainless steel
Cai et al. Effect of industrial raw materials on the glass-forming ability, magnetic and mechanical properties of fe-based bulk metallic glasses
Ali et al. Spatial Characterization of Internal Defects in Medium Carbon Steel via X‐Ray Computed Tomography
WO2003080881A1 (en) Process for the production of al-fe-v-si alloys
JP6023499B2 (en) Iron alloy for casting and manufacturing method thereof
RU2715513C1 (en) Method of producing cast composite material based on copper
JP2020076136A (en) Copper-iron alloy, and manufacturing method thereof
CA2515509C (en) Cast iron semi-finished product excellent in workability and method of production of the same
Panov et al. Influence of the Degree of Oxidation of Magnesium Master Alloys on the Mechanical Properties of Nodular Irons