JP2020075866A - Bisphenol compound having fluorene skeleton - Google Patents

Bisphenol compound having fluorene skeleton Download PDF

Info

Publication number
JP2020075866A
JP2020075866A JP2018208056A JP2018208056A JP2020075866A JP 2020075866 A JP2020075866 A JP 2020075866A JP 2018208056 A JP2018208056 A JP 2018208056A JP 2018208056 A JP2018208056 A JP 2018208056A JP 2020075866 A JP2020075866 A JP 2020075866A
Authority
JP
Japan
Prior art keywords
crystals
crystal
compound represented
temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018208056A
Other languages
Japanese (ja)
Inventor
正晃 松原
Masaaki Matsubara
正晃 松原
侑加 森永
Yuka Morinaga
侑加 森永
秀樹 河井
Hideki Kawai
秀樹 河井
崇史 佐伯
Takashi Saeki
崇史 佐伯
英樹 森尾
Hideki Morio
英樹 森尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP2018208056A priority Critical patent/JP2020075866A/en
Publication of JP2020075866A publication Critical patent/JP2020075866A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a crystal of bisphenol compound that has a high bulk density fluorene skeleton represented by the following formula (1), and a method for producing the same.SOLUTION: By precipitating a compound represented by the following formula (1) from a solution containing a bisphenol compound having a fluorene skeleton represented by the formula (1) at 70°C or more, it has been found that a crystal of bisphenol compound having a high bulk density fluorene skeleton represented by the formula (1) can be provided.SELECTED DRAWING: None

Description

本発明は、フルオレン骨格を有するビスフェノール化合物の結晶及びその製造方法に関する。   The present invention relates to crystals of a bisphenol compound having a fluorene skeleton and a method for producing the same.

フルオレン骨格を有するビスフェノール類は、高屈折率かつ耐熱性等に優れることから、ポリカーボネートやポリエステル等の透明樹脂の原料として注目されている。前記ビスフェノール類の中でも下記式(1):   Bisphenols having a fluorene skeleton have attracted attention as raw materials for transparent resins such as polycarbonate and polyester because of their high refractive index and excellent heat resistance. Among the bisphenols, the following formula (1):

Figure 2020075866
で表される化合物から製造される樹脂は、高屈折率、高耐熱性に加え、置換基にフェニル基を有するにもかかわらず、低溶融粘度や有機溶媒への優れた溶解性等の特徴を有することから取扱性、加工性にも優れることが知られている(特許文献1、2)。
Figure 2020075866
The resin produced from the compound represented by is characterized by high refractive index, high heat resistance, and low melting viscosity and excellent solubility in organic solvents in spite of having a phenyl group as a substituent. It is known that it has excellent handleability and processability because it has (Patent Documents 1 and 2).

特開2018−090560号公報JP, 2008-090560, A 特開2018−076419号公報JP, 2008-076419, A

本発明者らが前記特許文献に記載の上記式(1)で表される化合物の結晶の嵩密度を測定したところ、0.5g/cm程度であった。さらに嵩密度の高い上記式(1)で表される化合物の結晶を得ることができれば、輸送容器の小型化や樹脂等の製造時に該化合物の仕込み量を増加させることが可能となることから、輸送コストや樹脂等の製造コストを低下させることができる。 When the present inventors measured the bulk density of the crystal of the compound represented by the above formula (1) described in the patent document, it was about 0.5 g / cm 3 . If crystals of the compound represented by the formula (1) having a higher bulk density can be obtained, it is possible to reduce the size of the transportation container and increase the amount of the compound charged at the time of manufacturing a resin or the like. It is possible to reduce transportation costs and manufacturing costs for resins and the like.

本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、上記式(1)で表される化合物を特定の条件下で晶析することにより、前記課題が解決可能であることを見出した。具体的には以下の発明を含む。   As a result of intensive studies to solve the above problems, the inventors of the present invention can solve the above problems by crystallizing the compound represented by the formula (1) under specific conditions. Found. Specifically, the following inventions are included.

[1]
示差走査熱量分析による融解吸熱最大温度が201〜205℃である、上記式(1)で表される化合物の結晶。
[1]
A crystal of a compound represented by the above formula (1), which has a maximum melting endotherm of 201 to 205 ° C. by differential scanning calorimetry.

[2]
CuKα線による粉末X線回折パターンにおいて、回折角2θ=6.9±0.2°、10.4±0.2°、11.4±0.2°、13.8±0.2°、17.1±0.2°、19.2±0.2°、19.8±0.2°および21.4±0.2°にピークを有する、上記式(1)で表される化合物の結晶。
[2]
In the powder X-ray diffraction pattern by CuKα ray, diffraction angle 2θ = 6.9 ± 0.2 °, 10.4 ± 0.2 °, 11.4 ± 0.2 °, 13.8 ± 0.2 °, A compound represented by the above formula (1) having peaks at 17.1 ± 0.2 °, 19.2 ± 0.2 °, 19.8 ± 0.2 ° and 21.4 ± 0.2 °. Crystals.

[3]
示差走査熱量分析による融解吸熱最大温度が201〜205℃である、[2]に記載の化合物の結晶。
[3]
A crystal of the compound according to [2], which has a maximum melting endotherm of 201 to 205 ° C. by differential scanning calorimetry.

[4]
上記式(1)で表される化合物を含む溶液から上記式(1)で表される化合物の結晶を70℃以上で析出開始させる工程を含む、[1]〜[3]いずれかに記載の化合物の結晶の製造方法。
[4]
The method according to any one of [1] to [3], including a step of initiating precipitation of a crystal of the compound represented by the formula (1) at 70 ° C. or higher from a solution containing the compound represented by the formula (1). Method for producing crystal of compound.

本発明の上記式(1)で表される化合物の結晶は公知の該化合物の結晶に比べ嵩密度が高く、容積効率が向上することから、特に該化合物の製造時、輸送時および該化合物の使用時において従来公知の該化合物の結晶に比べ有利である。   The crystal of the compound represented by the above formula (1) of the present invention has a higher bulk density and improved volumetric efficiency than the known crystal of the compound. In use, it is advantageous as compared with the conventionally known crystals of the compound.

実施例1で得られた結晶(本発明の上記式(1)で表される化合物の結晶)の粉末X線回折パターンを示す図である。FIG. 1 is a view showing a powder X-ray diffraction pattern of a crystal (a crystal of a compound represented by the above formula (1) of the present invention) obtained in Example 1. 実施例1で得られた結晶(本発明の上記式(1)で表される化合物の結晶)の示差走査熱量測定(DSC)曲線を示す図である。FIG. 2 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 1 (crystal of the compound represented by the above formula (1) of the present invention).

まずはじめに、本発明の上記式(1)で表される化合物の結晶(以下、「本発明の結晶」と称することもある)の製造方法について詳述する。   First, a method for producing a crystal of the compound represented by the above formula (1) of the present invention (hereinafter, also referred to as “crystal of the present invention”) will be described in detail.

本発明の結晶は、上記式(1)で表される化合物を含む溶液(以下、「晶析溶液」と称することがある)から70℃以上で結晶を析出開始させることで製造される。晶析溶液は、例えば上述した引用文献1または2記載の方法で製造した上記式(1)で表される化合物の結晶を下記する溶媒に溶解させ調製してもよいし、前記引用文献に記載される方法で製造された、上記式(1)で表される化合物を含む反応液を晶析溶液としてもよい。   The crystal of the present invention is produced by initiating precipitation of a crystal at 70 ° C. or higher from a solution containing the compound represented by the above formula (1) (hereinafter sometimes referred to as “crystallization solution”). The crystallization solution may be prepared, for example, by dissolving the crystal of the compound represented by the above formula (1) produced by the method described in the above cited document 1 or 2 in the solvent described below, or described in the above cited document. The reaction liquid containing the compound represented by the above formula (1) produced by the method described above may be used as the crystallization solution.

使用可能な溶媒としては、上記式(1)で表される化合物が可溶な溶媒であればよい。このような溶媒として例えば芳香族炭化水素類、脂肪族炭化水素類、ケトン類、エステル類、エーテル類、アルコール類、ニトリル類、ハロゲン化炭化水素類等が例示される。芳香族炭化水素類としてベンゼン、トルエン、キシレン、エチルベンゼン等が例示され、脂肪族炭化水素類としてヘプタン等が例示され、ケトン類としてメチルイソブチルケトン、2−ヘプタノン、2−オクタノン、シクロヘキサノン等が例示され、エステル類として酢酸エチル、酢酸ブチル等が例示され、エーテル類としてシクロペンチルメチルエーテル、1,2−ジメトキシエタン等が例示され、アルコール類としてエチルアルコール、2−プロパノール等が例示され、ニトリル類としてアセトニトリル、ベンゾニトリル等が例示され、ハロゲン化炭化水素類として1,2−ジクロロベンゼン等が例示される。中でも、芳香族炭化水素類が好ましく、さらに、経済性の観点から、トルエンまたはキシレンが好ましい。これら溶媒は単独で用いてもよく、2種以上を組み合わせてもよい。   As the usable solvent, any solvent in which the compound represented by the above formula (1) is soluble may be used. Examples of such a solvent include aromatic hydrocarbons, aliphatic hydrocarbons, ketones, esters, ethers, alcohols, nitriles, halogenated hydrocarbons and the like. Examples of aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, examples of aliphatic hydrocarbons include heptane, and examples of ketones include methyl isobutyl ketone, 2-heptanone, 2-octanone, and cyclohexanone. Examples of the esters include ethyl acetate and butyl acetate, examples of the ethers include cyclopentyl methyl ether, 1,2-dimethoxyethane and the like, examples of the alcohols include ethyl alcohol, 2-propanol and the like, and examples of the nitriles include acetonitrile. , Benzonitrile and the like, and 1,2-dichlorobenzene and the like as the halogenated hydrocarbons. Of these, aromatic hydrocarbons are preferable, and toluene or xylene is more preferable from the viewpoint of economy. These solvents may be used alone or in combination of two or more.

晶析溶液に含まれる溶媒の総量は、晶析溶液に含まれる上記式(1)で表される化合物1重量倍に対し通常0.5〜25重量倍であり、好ましくは1〜10重量倍、より好ましくは1.2〜6重量倍である。   The total amount of the solvent contained in the crystallization solution is usually 0.5 to 25 times by weight, preferably 1 to 10 times by weight, with respect to 1 time by weight of the compound represented by the formula (1) contained in the crystallization solution. , And more preferably 1.2 to 6 times.

晶析溶液は通常、80℃以上、晶析溶液の沸点以下の温度まで加熱し結晶を完溶させた後冷却し、70℃以上で結晶を析出開始させる。70℃以上で結晶を析出開始させることにより、本発明の結晶を得ることが可能となる。70℃以上で結晶を析出開始させる方法として、結晶が析出するまで70℃以上にて晶析溶液の温度を保持する方法、上記温度範囲で種晶を接種する方法等が例示される。なお、結晶析出後、一定時間同温度で保持し結晶を成長させる方が、より確実に本発明の結晶が得られるため好ましい。   The crystallization solution is usually heated to a temperature of 80 ° C. or higher to a temperature not higher than the boiling point of the crystallization solution to completely dissolve the crystals and then cooled, and precipitation of the crystals is started at 70 ° C. or higher. The crystal of the present invention can be obtained by starting the precipitation of the crystal at 70 ° C. or higher. Examples of the method of starting the precipitation of crystals at 70 ° C. or higher include a method of maintaining the temperature of the crystallization solution at 70 ° C. or higher until the crystals are precipitated, a method of inoculating seed crystals in the above temperature range, and the like. Note that it is preferable to hold the same temperature for a certain period of time after crystal precipitation to grow the crystal because the crystal of the present invention can be obtained more reliably.

結晶析出後、更に、通常30℃以下、好ましくは−10℃以下まで冷却を行い、析出した本発明の結晶をろ別してもよい。ろ別前に更に冷却することにより、より多くの本発明の結晶を得ることができる。   After crystal precipitation, cooling to 30 ° C. or lower, preferably -10 ° C. or lower, and the precipitated crystal of the present invention may be filtered off. By further cooling before filtration, more crystals of the present invention can be obtained.

ろ別した本発明の結晶は必要に応じ乾燥してもよい。本発明の結晶を乾燥させる場合、通常、結晶の融点以下で実施する。乾燥操作を実施する際には常圧でも減圧下でもよいが、工業的に実施する際は減圧下とする方がより効率的にろ別された結晶に含まれる溶媒を除去可能であることから好ましい。   The crystals of the present invention separated by filtration may be dried if necessary. When the crystal of the present invention is dried, it is usually performed at a temperature below the melting point of the crystal. When carrying out the drying operation, it may be under normal pressure or under reduced pressure, but under industrial circumstances, it is more efficient to remove under reduced pressure because it is possible to remove the solvent contained in the filtered crystals more efficiently. preferable.

得られた本発明の結晶は必要に応じ、吸着、水蒸気蒸留、再結晶などの通常の精製操作を繰り返し行うこともできる。また、精製操作を実施せず、未精製のままポリカーボネートやポリエステル、ポリアリレート等の樹脂の原料として用いてもよい。 The obtained crystals of the present invention can be subjected to ordinary purification operations such as adsorption, steam distillation and recrystallization, if necessary. Further, it may be used as a raw material of a resin such as polycarbonate, polyester, polyarylate or the like without being purified, without performing a refining operation.

続いて、本発明の結晶について詳述する。本発明の結晶は、示差走査熱量分析(DSC)による融解吸熱最大温度、または粉末X線回折パターンにおける回折角2θにおいて下記する特徴を示す。   Next, the crystal of the present invention will be described in detail. The crystal of the present invention exhibits the following characteristics in the melting endothermic maximum temperature by differential scanning calorimetry (DSC) or the diffraction angle 2θ in the powder X-ray diffraction pattern.

具体的には、本発明の結晶は、示差走査熱量分析による融解吸熱最大温度が201〜205℃である。本発明における示差走査熱量分析による融解吸熱最大温度とは、後述する条件にて示差走査熱量分析を実施した際、最大吸熱ピークが観測される温度のことをいう。   Specifically, the crystal of the present invention has a melting endothermic maximum temperature of 201 to 205 ° C. by differential scanning calorimetry. The melting endothermic maximum temperature by differential scanning calorimetry in the present invention refers to the temperature at which the maximum endothermic peak is observed when the differential scanning calorimetric analysis is carried out under the conditions described below.

本発明の結晶は後述する方法により測定されるCuKα線による粉末X線回折パターンにおいて、回折角2θ=6.9±0.2°、10.4±0.2°、11.4±0.2°、13.8±0.2°、17.1±0.2°、19.2±0.2°、19.8±0.2°および21.4±0.2°に特徴的なピークを示す。   The crystals of the present invention have a diffraction angle 2θ = 6.9 ± 0.2 °, 10.4 ± 0.2 °, 11.4 ± 0. Characteristic at 2 °, 13.8 ± 0.2 °, 17.1 ± 0.2 °, 19.2 ± 0.2 °, 19.8 ± 0.2 ° and 21.4 ± 0.2 ° Shows a peak.

本発明の結晶の嵩密度は、通常0.6g/cm以上、好ましくは0.7g/cmである。嵩密度は、後述する方法で測定する方法の他、Xgの本発明の結晶をメスシリンダー内に自然落下させ、結晶の体積が一定になるまでメスシリンダーの底をたたいた後、メスシリンダーで示された体積を結晶の体積Vcmとして、下記式に基づいて算出してもよい。
嵩密度(g/cm)=結晶の重量X/結晶の体積V
The bulk density of the crystal of the present invention is usually 0.6 g / cm 3 or more, preferably 0.7 g / cm 3 . In addition to the method of measuring the bulk density by the method described below, Xg of the crystal of the present invention is naturally dropped into a graduated cylinder, and the bottom of the graduated cylinder is tapped until the volume of the crystal becomes constant. The volume shown may be calculated as the crystal volume Vcm 3 based on the following equation.
Bulk density (g / cm 3 ) = weight of crystal X / volume of crystal V

以下、実施例等を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下実施例等において、各測定値は、次の方法、測定条件に従った。また、以下実施例等にて記載した各成分の生成率(残存率)及び純度は下記条件で測定したHPLC(高速液体クロマトグラフィー)の面積百分率である。   Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the present invention is not limited thereto. In addition, in the following Examples and the like, each measured value complies with the following method and measuring condition. Further, the production rate (residual rate) and purity of each component described in Examples and the like below are area percentages of HPLC (high performance liquid chromatography) measured under the following conditions.

〔1〕HPLC分析
・装置:島津製作所社製 LC−20A、
・カラム:Waters社製 XBridge Shield RP18(3.5μm,4.6mmφ×250mm)、
・移動相:純水/アセトニトリル:30/70(v/v、0min)→30/70(v/v、10min)→0/100(v/v、20min)→0/100(v/v、30min)、
・流量:1.0ml/min、
・カラム温度:40℃、
・検出波長:254nm。
[1] HPLC analysis / device: LC-20A manufactured by Shimadzu Corporation,
-Column: Waters XBridge Shield RP18 (3.5 μm, 4.6 mmφ × 250 mm),
Mobile phase: pure water / acetonitrile: 30/70 (v / v, 0 min) → 30/70 (v / v, 10 min) → 0/100 (v / v, 20 min) → 0/100 (v / v, 30 min),
・ Flow rate: 1.0 ml / min,
・ Column temperature: 40 ℃
-Detection wavelength: 254 nm.

〔2〕融点(示差走査熱量測定(DSC)による融解吸熱最大温度)
サンプル5mgをアルミパンに精密に秤取し、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社:DSC7020)を用い、酸化アルミニウムを対照として下記操作条件で測定し、検出された融解吸熱最大温度を融点とした。
(操作条件)
・昇温速度:10℃/min、
・測定範囲:30〜250℃、
・雰囲気 :開放、窒素40ml/min。
[2] Melting point (maximum melting endotherm by differential scanning calorimetry (DSC))
A 5 mg sample was precisely weighed in an aluminum pan and measured using a differential scanning calorimeter (SII Nanotechnology Inc .: DSC7020) under the following operating conditions with aluminum oxide as a control, and the maximum melting endothermic temperature detected The melting point was used.
(Operating conditions)
・ Rate of heating: 10 ° C / min,
・ Measurement range: 30 to 250 ° C
Atmosphere: Open, nitrogen 40 ml / min.

〔3〕粉末X線回折
・装置:スペクトリス社製 X’PertPRO、
・X線源:CuKα(Niフィルター使用)、
・出力:1.8kW(45kV−40mA)、
・測角範囲:2θ=5°〜70°、
・走査速度:2θ=2°/min、
・スリット:DS=1°、ソーラースリット=0.04rad、マスク=15mm。
[3] Powder X-ray diffraction / apparatus: Spectris X'PertPRO,
・ X-ray source: CuKα (using Ni filter),
-Output: 1.8 kW (45 kV-40 mA),
・ Angle measurement range: 2θ = 5 ° to 70 °,
・ Scanning speed: 2θ = 2 ° / min,
Slit: DS = 1 °, solar slit = 0.04 rad, mask = 15 mm.

〔4〕嵩密度
粉体特性評価装置(ホソカワミクロン株式会社製:パウダテスタPT−X)を用いて、かため嵩密度を測定した。
[4] Bulk Density A firm bulk density was measured using a powder property evaluation device (Powder Tester PT-X manufactured by Hosokawa Micron Co., Ltd.).

<実施例1>
攪拌器、冷却器及び温度計を備えたガラス製反応容器に、9−フルオレノン25.0g(0.139mol)、2−ベンジル−6−フェニルフェノール74.1g(0.285mol)、パラトルエンスルホン酸一水和物16.4g(0.0862mol)、ドデシルメルカプタン1.4g(0.0069mol)およびトルエン100gを投入し、内圧を33.3kPaまで減圧し、同圧力下、82℃で還流脱水しながら8.5時間攪拌した。得られた反応液にトルエンおよび水を加え、24重量%水酸化ナトリウム水溶液で中和後、水層を除去し、さらに水を用いて3回水洗した。その後、トルエンを濃縮により表1に記載の量となるまで留去することで晶析溶液を得た。前記晶析溶液を87℃とし、結晶が完溶していることを確認した後、87℃から0.2℃/minの冷却速度で冷却することにより、85℃で結晶を析出開始させた。同温度で1時間保温した後、同じ冷却速度で冷却を行い、5℃まで冷却したのち同温度で一時間保温した。次いで、得られた結晶をろ別後、トルエンで3回洗浄し、内圧2.7kPa、90℃で乾燥させることにより上記式(1)で表される化合物の結晶94.7g(収率77.3%、純度98.7%)を得た。得られた結晶の析出開始温度、融点、嵩密度を表1に、粉末X線のパターンを図1に、示差走査熱量測定(DSC)曲線を図2に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表2に示す。
<Example 1>
25.0 g (0.139 mol) of 9-fluorenone, 74.1 g (0.285 mol) of 2-benzyl-6-phenylphenol, and paratoluenesulfonic acid were placed in a glass reaction container equipped with a stirrer, a cooler and a thermometer. 16.4 g (0.0862 mol) of monohydrate, 1.4 g (0.0069 mol) of dodecyl mercaptan and 100 g of toluene were added, the internal pressure was reduced to 33.3 kPa, and the mixture was refluxed and dehydrated at 82 ° C. under the same pressure. It was stirred for 8.5 hours. Toluene and water were added to the obtained reaction solution, and the mixture was neutralized with a 24 wt% sodium hydroxide aqueous solution, the aqueous layer was removed, and the mixture was washed with water three times. Then, toluene was distilled off by concentration until the amount described in Table 1 was obtained to obtain a crystallization solution. After the crystallization solution was brought to 87 ° C. and it was confirmed that the crystals were completely dissolved, the crystals were precipitated at 85 ° C. by cooling from 87 ° C. at a cooling rate of 0.2 ° C./min. After keeping the temperature at the same temperature for 1 hour, it was cooled at the same cooling rate, cooled to 5 ° C., and then kept at the same temperature for 1 hour. Next, the obtained crystals are filtered off, washed with toluene three times, and dried at 90 ° C. under an internal pressure of 2.7 kPa to give 94.7 g of a crystal of the compound represented by the above formula (1) (yield 77. 3%, purity 98.7%) was obtained. The precipitation initiation temperature, melting point, and bulk density of the obtained crystals are shown in Table 1, the powder X-ray pattern is shown in FIG. 1, the differential scanning calorimetry (DSC) curve is shown in FIG. 2, and the main peaks of the powder X-ray (5 Those having a relative strength of more than%) are shown in Table 2.

<実施例2>
内圧27kPa、反応温度75℃、攪拌時間を6時間に変更した以外は実施例1と同様にして得られた反応液にトルエンおよび水を加え、24重量%水酸化ナトリウム水溶液で中和後、水層を除去し、さらに水を用いて5回水洗した。その後、トルエンを濃縮により表1に記載の量となるまで留去することで晶析溶液を得た。前記晶析溶液を95℃とし、結晶が完溶していることを確認した後、95℃から0.1℃/minの冷却速度で冷却することにより、92℃で結晶を析出開始させた。その後、同じ冷却速度で冷却し、得られた結晶を22℃でろ別後、トルエンで3回洗浄し、内圧3.1kPa、90℃で乾燥させることにより、上記式(1)で表される化合物の結晶75.5g(収率79.7%、純度98.0%)を得た。得られた結晶の析出開始温度、融点、嵩密度を表1に示す。
<Example 2>
Toluene and water were added to the reaction solution obtained in the same manner as in Example 1 except that the internal pressure was 27 kPa, the reaction temperature was 75 ° C., and the stirring time was 6 hours. After neutralization with a 24 wt% sodium hydroxide aqueous solution, water was added. The layer was removed and washed with water 5 times. Then, toluene was distilled off by concentration until the amount described in Table 1 was obtained to obtain a crystallization solution. After the crystallization solution was heated to 95 ° C. and it was confirmed that the crystals were completely dissolved, the crystals were precipitated at 92 ° C. by cooling from 95 ° C. at a cooling rate of 0.1 ° C./min. Thereafter, the mixture was cooled at the same cooling rate, the obtained crystals were separated by filtration at 22 ° C., washed with toluene three times, and dried at 90 ° C. under an internal pressure of 3.1 kPa to give the compound represented by the above formula (1). 75.5 g of crystals (yield 79.7%, purity 98.0%) were obtained. Table 1 shows the precipitation start temperature, melting point, and bulk density of the obtained crystals.

<比較例1>
攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9−フルオレノン10.0g(0.0555mol)、2−ベンジル−6−フェニルフェノール43.3g(0.166mol)、パラトルエンスルホン酸一水和物6.5g(0.034mol)、ドデシルメルカプタン0.56g(0.0028mol)、トルエン56gを仕込んだ後、110℃まで昇温し、同温度で3時間撹拌を実施した。撹拌終了後、反応液を高速液体クロマトグラフィーにて分析を行ったところ、ビスフェノールの生成率が20.3%と低かったため、内圧を40kPaまで減圧し、同圧力下、90℃で還流脱水しながらさらに6時間撹拌した。撹拌終了後、反応を高速液体クロマトグラフィーにて分析を行ったところ、ビスフェノールの生成率が89.9%であった。得られた反応液に水を加え、24重量%水酸化ナトリウム水溶液で中和後、水層を除去し、さらに水を用いて3回水洗した。トルエンを濃縮により表1に記載の量となるまで留去した後、該濃縮液に表1に記載の量のヘプタンを添加することで晶析溶液を得た。前記晶析溶液を48℃とし、結晶が完溶していることを確認した後、48℃から0.5℃/minの冷却速度で冷却することにより、44℃で結晶を析出開始させた。その後0.1℃/minの冷却速度で更に冷却し、析出した結晶を25℃でろ別した。ろ別した結晶をヘプタンで2回洗浄した後、内圧1.3kPa、80℃で乾燥することにより、上記式(1)で表される化合物の結晶14.6g(収率38.6%、純度97.0%)を得た。得られた結晶の析出開始温度、融点、嵩密度を表1に示す。
<Comparative Example 1>
In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 10.0 g (0.0555 mol) of 9-fluorenone, 43.3 g (0.166 mol) of 2-benzyl-6-phenylphenol, and paratoluene were added. After charging 6.5 g (0.034 mol) of sulfonic acid monohydrate, 0.56 g (0.0028 mol) of dodecyl mercaptan and 56 g of toluene, the temperature was raised to 110 ° C., and stirring was carried out at the same temperature for 3 hours. After the completion of stirring, the reaction solution was analyzed by high performance liquid chromatography. The production rate of bisphenol was low at 20.3%. Therefore, the internal pressure was reduced to 40 kPa, and reflux dehydration was performed at 90 ° C. under the same pressure. It was stirred for another 6 hours. After completion of stirring, the reaction was analyzed by high performance liquid chromatography to find that the production rate of bisphenol was 89.9%. Water was added to the obtained reaction solution, the solution was neutralized with a 24 wt% sodium hydroxide aqueous solution, the aqueous layer was removed, and the mixture was washed with water three times. After toluene was distilled off by concentration until the amount shown in Table 1 was reached, heptane in the amount shown in Table 1 was added to the concentrated liquid to obtain a crystallization solution. After the crystallization solution was set to 48 ° C. and it was confirmed that the crystals were completely dissolved, the crystals were precipitated at 44 ° C. by cooling from 48 ° C. at a cooling rate of 0.5 ° C./min. Then, it was further cooled at a cooling rate of 0.1 ° C./min, and the precipitated crystals were filtered off at 25 ° C. The crystals separated by filtration were washed twice with heptane, and then dried at 80 ° C. under an internal pressure of 1.3 kPa to give 14.6 g of crystals of the compound represented by the above formula (1) (yield 38.6%, purity). 97.0%) was obtained. Table 1 shows the precipitation start temperature, melting point, and bulk density of the obtained crystals.

<実施例3>
比較例1で得られた上記式(1)で表される化合物の結晶9.0gにトルエン31.5gを加え、85℃まで昇温して完溶させた。トルエンを濃縮により表1に記載の量となるまで留去することで晶析溶液を得た。前記晶析溶液を94℃とし、結晶が完溶していることを確認した後、94℃から0.1℃/minの冷却速度で冷却することにより、71℃で結晶を析出開始させた。その後同じ冷却速度で冷却し、析出した結晶を16℃でろ別後、トルエンおよびヘプタンで洗浄し、内圧1.3kPa、80℃で乾燥することにより、上記式(1)で表される化合物の結晶7.2g(収率80.5%、純度97.9%)を得た。得られた結晶の析出開始温度、融点、嵩密度を表1に示す。
<Example 3>
To 9.0 g of the crystal of the compound represented by the above formula (1) obtained in Comparative Example 1, 31.5 g of toluene was added, and the temperature was raised to 85 ° C. to completely dissolve it. Toluene was distilled off by concentration until the amount described in Table 1 was obtained to obtain a crystallization solution. After the crystallization solution was set to 94 ° C. and it was confirmed that the crystals were completely dissolved, the crystals were precipitated at 71 ° C. by cooling from 94 ° C. at a cooling rate of 0.1 ° C./min. After cooling at the same cooling rate, the precipitated crystals are filtered off at 16 ° C., washed with toluene and heptane, and dried at an internal pressure of 1.3 kPa and 80 ° C. to give crystals of the compound represented by the above formula (1). 7.2 g (yield 80.5%, purity 97.9%) was obtained. Table 1 shows the precipitation start temperature, melting point, and bulk density of the obtained crystals.

<実施例4>
実施例1で得られた結晶5.0gにメチルイソブチルケトン(MIBK)15.0gを添加することで晶析溶液を得た。前記晶析溶液を113℃とし、結晶が完溶していることを確認した後、113℃から0.5℃/minの冷却速度で冷却することにより、85℃で結晶を析出開始させた。その後同じ冷却速度で冷却し、析出した結晶を25℃でろ別した。ろ別した結晶をMIBKで2回洗浄した後、内圧1.3kPa、90℃で乾燥させることにより上記式(1)で表される化合物の結晶2.6g(回収率52.6%、純度99.8%)を得た。得られた結晶の析出開始温度、融点、嵩密度を以下表1に示す。
<Example 4>
A crystallization solution was obtained by adding 15.0 g of methyl isobutyl ketone (MIBK) to 5.0 g of the crystals obtained in Example 1. After the crystallization solution was heated to 113 ° C. and it was confirmed that the crystals were completely dissolved, the crystals were precipitated at 85 ° C. by cooling from 113 ° C. at a cooling rate of 0.5 ° C./min. Then, the mixture was cooled at the same cooling rate, and the precipitated crystals were filtered off at 25 ° C. The filtered crystals were washed twice with MIBK and dried at 90 ° C. under an internal pressure of 1.3 kPa to give 2.6 g of crystals of the compound represented by the above formula (1) (recovery rate 52.6%, purity 99). .8%) was obtained. The precipitation start temperature, melting point and bulk density of the obtained crystals are shown in Table 1 below.

<実施例5>
内圧40kPa、反応温度83℃、攪拌時間を5.5時間とした以外は実施例1と同様にして得られた反応液にトルエン、水を加え、24重量%水酸化ナトリウム水溶液で中和後、水層を除去し、さらに水を用いて4回水洗した。その後、トルエンを濃縮により表1に記載の量となるまで留去した後、該濃縮液にヘプタン150gを添加することで晶析溶液を得た。前期晶析溶液を90℃とし、結晶が完溶していることを確認した後、90℃から0.4℃/minの冷却速度で冷却することにより、78℃で結晶を析出開始させた。その後同じ冷却速度で冷却し、析出した結晶を23℃でろ別した。ろ別した結晶をヘプタンで1回洗浄した後、内圧1.3kPa、80℃で乾燥させることにより、上記式(1)で表される化合物の結晶83.4g(収率87.9%、純度98.8%)を得た。得られた結晶の析出開始温度、融点、嵩密度を表1に示す。
<Example 5>
Toluene and water were added to the reaction solution obtained in the same manner as in Example 1 except that the internal pressure was 40 kPa, the reaction temperature was 83 ° C., and the stirring time was 5.5 hours. After neutralization with a 24 wt% sodium hydroxide aqueous solution, The aqueous layer was removed, and further washed with water four times. After that, toluene was distilled off by concentration until the amount described in Table 1 was obtained, and then 150 g of heptane was added to the concentrated liquid to obtain a crystallization solution. After the initial crystallization solution was brought to 90 ° C. and it was confirmed that the crystals were completely dissolved, the crystals were precipitated at 78 ° C. by cooling from 90 ° C. at a cooling rate of 0.4 ° C./min. Then, the mixture was cooled at the same cooling rate, and the precipitated crystals were filtered off at 23 ° C. The crystals separated by filtration were washed once with heptane and then dried at 80 ° C. under an internal pressure of 1.3 kPa to give 83.4 g of crystals of the compound represented by the above formula (1) (yield 87.9%, purity). 98.8%) was obtained. Table 1 shows the precipitation start temperature, melting point, and bulk density of the obtained crystals.

Figure 2020075866
Figure 2020075866

Figure 2020075866
Figure 2020075866

Claims (4)

示差走査熱量分析による融解吸熱最大温度が201〜205℃である、以下式(1)で表される化合物の結晶。
Figure 2020075866
A crystal of a compound represented by the following formula (1), which has a maximum melting endotherm of 201 to 205 ° C. by differential scanning calorimetry.
Figure 2020075866
CuKα線による粉末X線回折パターンにおいて、回折角2θ=6.9±0.2°、10.4±0.2°、11.4±0.2°、13.8±0.2°、17.1±0.2°、19.2±0.2°、19.8±0.2°および21.4±0.2°にピークを有する、以下式(1)で表される化合物の結晶。
Figure 2020075866
In the powder X-ray diffraction pattern by CuKα ray, diffraction angle 2θ = 6.9 ± 0.2 °, 10.4 ± 0.2 °, 11.4 ± 0.2 °, 13.8 ± 0.2 °, A compound represented by the following formula (1) having peaks at 17.1 ± 0.2 °, 19.2 ± 0.2 °, 19.8 ± 0.2 ° and 21.4 ± 0.2 °. Crystals.
Figure 2020075866
示差走査熱量分析による融解吸熱最大温度が201〜205℃である、請求項2に記載の化合物の結晶。   The crystal of the compound according to claim 2, which has a maximum melting endotherm of 201 to 205 ° C. by differential scanning calorimetry. 以下式(1)で表される化合物を含む溶液から以下式(1)で表される化合物の結晶を70℃以上で析出させる工程を含む、請求項1〜3いずれか一項に記載の化合物の結晶の製造方法。
Figure 2020075866
The compound according to any one of claims 1 to 3, comprising a step of precipitating a crystal of the compound represented by the following formula (1) from a solution containing the compound represented by the following formula (1) at 70 ° C or higher. Of manufacturing the crystals of.
Figure 2020075866
JP2018208056A 2018-11-05 2018-11-05 Bisphenol compound having fluorene skeleton Pending JP2020075866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208056A JP2020075866A (en) 2018-11-05 2018-11-05 Bisphenol compound having fluorene skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208056A JP2020075866A (en) 2018-11-05 2018-11-05 Bisphenol compound having fluorene skeleton

Publications (1)

Publication Number Publication Date
JP2020075866A true JP2020075866A (en) 2020-05-21

Family

ID=70724904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208056A Pending JP2020075866A (en) 2018-11-05 2018-11-05 Bisphenol compound having fluorene skeleton

Country Status (1)

Country Link
JP (1) JP2020075866A (en)

Similar Documents

Publication Publication Date Title
JP6426226B2 (en) Crystal form of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
JP6739136B2 (en) Crystal of alcohol having fluorene skeleton and method for producing the same
JP6739137B2 (en) Crystal of alcohol having fluorene skeleton and method for producing the same
WO2021015083A1 (en) Crystal of 2, 2&#39;-bis(ethoxycarbonylmethoxy)-1, 1&#39;-binaphthyl
TW202003442A (en) Crystal substance of 2,2&#39;-bis (carboxymethoxy)-1,1&#39;-binaphthyl
JP2020075866A (en) Bisphenol compound having fluorene skeleton
TW202024008A (en) Crystal of compound having fluorene skeleton and method for producing same
WO2022138178A1 (en) Crystal of 1,1,1-tris(4-hydroxy-3,5-dimethylphenyl)ethane and production method therefor
TW202110779A (en) Hexamethyl-substituted/dimethyl-substituted-4,4&#39;-bis(2-propene-1-ylosy)-1,1&#39;-biphenyl crystal body
JP6537388B2 (en) Inclusion compound using alcohols having a fluorene skeleton
JP7379770B2 (en) Crystalline form of bisfluorene compound
WO2016002607A1 (en) New bis(hydroxyalkoxyphenyl)diphenylmethanes
CN108424396B (en) Preparation method of light stabilizer TINUVIN1600
JP7315386B2 (en) Compound having a binaphthalene skeleton, crystal polymorph thereof, and method for producing the same
US7910780B2 (en) Method for purifying terephthalaldehyde
KR102236738B1 (en) 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane crystalline body and production method therefor
JP7358696B2 (en) Crystalline mixture of bisfluorene compounds
JP2020037546A (en) Composition for resin raw material containing alcohol compound having fluorene skeleton
JP2020158401A (en) Method for producing crystal of diol compound having fluorene skeleton
WO2008002028A1 (en) Method for purifying terephthalaldehyde
WO2020004207A1 (en) Crystalline body of 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene
WO2022215460A1 (en) Method for producing 2,2&#39;-bis(2-hydroxyethoxy)-1,1&#39;-binaphthalene
JPS631928B2 (en)