JP2020075836A - Nanoparticles - Google Patents

Nanoparticles Download PDF

Info

Publication number
JP2020075836A
JP2020075836A JP2018210298A JP2018210298A JP2020075836A JP 2020075836 A JP2020075836 A JP 2020075836A JP 2018210298 A JP2018210298 A JP 2018210298A JP 2018210298 A JP2018210298 A JP 2018210298A JP 2020075836 A JP2020075836 A JP 2020075836A
Authority
JP
Japan
Prior art keywords
nanoparticles
mol
ingap
mmol
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018210298A
Other languages
Japanese (ja)
Inventor
勇介 馬渕
Yusuke Mabuchi
勇介 馬渕
正彦 平谷
Masahiko Hiratani
正彦 平谷
暢一郎 岡崎
Choichiro Okazaki
暢一郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2018210298A priority Critical patent/JP2020075836A/en
Publication of JP2020075836A publication Critical patent/JP2020075836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

To provide nanoparticles excellent in quantum efficiency of light emission.SOLUTION: Nanoparticles comprise core particles containing InGaP and a shell containing a II-VI group semiconductor provided on surfaces of the core particles, with the ratio between In and Ga in the InGaP being 0.03 mol to 0.25 mol of Ga relative to 1 mol of In.SELECTED DRAWING: Figure 1

Description

本発明は、ナノ粒子に関する。   The present invention relates to nanoparticles.

半導体ナノ粒子(量子ドットとも称される。)は数ナノメートルサイズの粒子径を有する半導体材料であって、数百から数千個程度の原子から構成される。   Semiconductor nanoparticles (also referred to as quantum dots) are semiconductor materials having a particle size of several nanometers and are composed of hundreds to thousands of atoms.

半導体ナノ粒子はその大きさが非常に小さいため、単位体積当たりの表面積が大きく、量子閉じ込め効果等を発現する。したがって、半導体ナノ粒子は、半導体物質そのものの固有な特性とは異なる特有の物理化学的特性を示す(例えば、特許文献1参照。)。   Since the semiconductor nanoparticles have a very small size, they have a large surface area per unit volume and exhibit a quantum confinement effect and the like. Therefore, the semiconductor nanoparticles exhibit unique physicochemical properties different from the unique properties of the semiconductor substance itself (see, for example, Patent Document 1).

特に、粒子径を調節すること等によって、ナノ結晶の光電子工学特性を調節することができるため、半導体ナノ粒子は、ディスプレイ素子、生体発光標識素子等への応用開発が行われている。   In particular, since the optoelectronic properties of nanocrystals can be adjusted by adjusting the particle size, etc., semiconductor nanoparticles have been applied and developed for display devices, bioluminescent labeling devices, and the like.

さらに、重金属を含有しない半導体ナノ粒子は、環境親和的であるので、発光材料として様々な長所を有する。そのため、粒子径、粒子の構造、粒度分布等を調節するなどの、優れた特性を示し様々な分野へ応用が可能となる半導体ナノ粒子を合成するための様々な技術が開発されている(例えば、非特許文献1参照。)。   Furthermore, since the semiconductor nanoparticles containing no heavy metal are environmentally friendly, they have various advantages as a light emitting material. Therefore, various techniques have been developed for synthesizing semiconductor nanoparticles that exhibit excellent properties and can be applied to various fields, such as adjusting the particle size, particle structure, and particle size distribution (for example, , Non-Patent Document 1.).

また、半導体ナノ粒子をディスプレイ素子等に利用するために、半導体ナノ粒子の安定性、発光効率、寿命等を向上させるための技術が求められている。   Further, in order to use the semiconductor nanoparticles in a display device or the like, there is a demand for a technique for improving the stability, light emission efficiency, life span, etc. of the semiconductor nanoparticles.

特開2010−106119号公報JP, 2010-106119, A

Mickael D. Tessier; Economic and Size−Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27(27), p. 4893−4898.Mickael D. Tessier; Economic and Size-Tunable Synthesis of InP / ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater.

しかしながら、特許文献1によると、重金属を含まないコア粒子組成の組み合わせは限られている。また、III族及びV族からなる二元素化合物のコア粒子に対して第三元素を添加することにより得られる効果に関する報告例は少ない。
本開示の一形態は、上記従来の事情に鑑みてなされたものであり、発光の量子効率に優れるナノ粒子を提供することを目的とする。
However, according to Patent Document 1, combinations of core particle compositions that do not contain heavy metals are limited. In addition, there are few reports on the effect obtained by adding the third element to the core particles of the di-element compound consisting of group III and group V.
One form of the present disclosure has been made in view of the above-mentioned conventional circumstances, and an object thereof is to provide nanoparticles having excellent quantum efficiency of light emission.

前記課題を達成するための具体的手段は以下の通りである。
<1> InGaPを含むコア粒子と、前記コア粒子の表面に設けられるII−VI族半導体を含むシェルと、を有し、前記InGaPにおけるInとGaとの比率が、In1モルに対してGaが0.03モル〜0.25モルであるナノ粒子。
The specific means for achieving the above object are as follows.
<1> A core particle containing InGaP and a shell containing a II-VI group semiconductor provided on the surface of the core particle are included, and the ratio of In to Ga in InGaP is Ga to In1 mol. Nanoparticles that are 0.03 mol to 0.25 mol.

本開示の一形態によれば、発光の量子効率に優れるナノ粒子を提供することができる。   According to one embodiment of the present disclosure, nanoparticles having excellent quantum efficiency of light emission can be provided.

本開示のナノ粒子の構造を説明するための図である。It is a figure for demonstrating the structure of the nanoparticle of this indication.

以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
In the present disclosure, the numerical range indicated by using "to" includes the numerical values before and after "to" as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.

<ナノ粒子>
本開示のナノ粒子は、InGaPを含むコア粒子と、前記コア粒子の表面に設けられるII−VI族半導体を含むシェルと、を有し、前記InGaPにおけるInとGaとの比率が、In1モルに対してGaが0.03モル〜0.25モルである。
本発明者等は、鋭意検討の結果、InPにGaを所定の比率で添加することで、発光の量子効率が向上することを見出した。
<Nano particles>
The nanoparticle of the present disclosure has a core particle containing InGaP and a shell containing a II-VI group semiconductor provided on the surface of the core particle, and the ratio of In to Ga in InGaP is In1 mol. On the other hand, Ga is 0.03 mol to 0.25 mol.
As a result of earnest studies, the present inventors have found that the quantum efficiency of light emission is improved by adding Ga to InP at a predetermined ratio.

以下、ナノ粒子の具体例を、図面を参照しながら説明するが、本開示のナノ粒子はこれに限定されるものではない。また、ナノ粒子を構成するコア粒子及びシェルの大きさの相対的な関係は図面の記載に限定されない。
図1は、本開示のナノ粒子の構造を説明するための図である。図1に示すナノ粒子は、InGaPを含むコア粒子1と、コア粒子1の表面に設けられるII−VI族半導体を含むシェル2とを有する、いわゆるコア/シェル構造とされる。
Hereinafter, specific examples of nanoparticles will be described with reference to the drawings, but the nanoparticles of the present disclosure are not limited thereto. Further, the relative relationship between the sizes of the core particles and the shells forming the nanoparticles is not limited to the description in the drawings.
FIG. 1 is a diagram for explaining the structure of nanoparticles of the present disclosure. The nanoparticles shown in FIG. 1 have a so-called core / shell structure having a core particle 1 containing InGaP and a shell 2 containing a II-VI group semiconductor provided on the surface of the core particle 1.

以下、本開示のナノ粒子を構成する成分について説明する。
−InGaP−
コア粒子に含まれるInGaPは、InとGaとの比率が、In1モルに対してGaが0.03モル〜0.25モルとされる。InとGaとの比率がこの範囲にあることで、ナノ粒子の発光の量子効率が向上する。InとGaとの比率は、0.04モル〜0.23モルであることが好ましく、0.05モル〜0.2モルであることがより好ましい。 なお、InGaPには、不可避の不純物が混入していてもよい。
Hereinafter, components constituting the nanoparticles of the present disclosure will be described.
-InGaP-
InGaP contained in the core particles is such that the ratio of In to Ga is 0.03 mol to 0.25 mol of Ga with respect to 1 mol of In. When the ratio of In and Ga is in this range, the quantum efficiency of light emission of nanoparticles is improved. The ratio of In to Ga is preferably 0.04 mol to 0.23 mol, and more preferably 0.05 mol to 0.2 mol. Incidentally, inevitable impurities may be mixed in InGaP.

−II−VI族半導体−
シェルを構成するII−VI族半導体は特に限定されるものではなく、例えば、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS等の二元素化合物、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS等の三元素化合物、HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe等の四元素化合物などが挙げられる。
これらの中でも、II−VI族半導体としては、Cd、Hg等の重金属を含まないZnSが好ましい。
なお、II−VI族半導体には、不可避の不純物が混入していてもよい。
-II-VI group semiconductor-
The II-VI group semiconductor forming the shell is not particularly limited, and examples thereof include binary elements such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, and MgS, CdSeS, CdSeTe. , CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, ternary compounds such MgZnS, HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, Examples include quaternary compounds such as CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, and HgZnSeTe.
Among these, ZnS that does not contain heavy metals such as Cd and Hg is preferable as the II-VI group semiconductor.
Inevitable impurities may be mixed in the II-VI group semiconductor.

ナノ粒子の製造方法は特に限定されるものではなく、従来から公知の液相コロイド法(solution−phase colloidal method)等の湿式法により製造することができる。   The method for producing the nanoparticles is not particularly limited, and the nanoparticles can be produced by a conventionally known wet method such as a solution-phase colloidal method.

以下、本発明の作用効果を、下記実施例及び比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。   Hereinafter, the effects of the present invention will be described with reference to the following examples and comparative examples. However, the technical scope of the present invention is not limited to the following examples.

(実施例1)
InClの0.45mmol、GaClの0.0225mmol、0.045mmol又は0.09mmol、及びオレイルアミン(oleylamine)の5mLを窒素雰囲気下、120℃で30分撹拌した後、窒素下でトリスジエチルアミノホスフィン(tris(diethylamino)phosphine)を1.61mmol注入して溶液を得た。
(Example 1)
After stirring 0.45 mmol of InCl 3 , 0.0225 mmol, 0.045 mmol or 0.09 mmol of GaCl 3 and 5 mL of oleylamine at 120 ° C. for 30 minutes under a nitrogen atmosphere, trisdiethylaminophosphine ( A solution was obtained by injecting 1.61 mmol of tris (diethylamino) phosphine).

上記溶液に、ステアリン酸亜鉛(zinc stearate)の1.8mmol、1−ドデカンチオール(1−dodecanethiol)の4.8mL、及び1−オクタデセン(1−octadecene)の10mLを混合した混合液を窒素雰囲気下で滴下し3時間加熱撹拌した。得られた混合物を常温(25℃)まで冷却し、目的物をエタノールで分離後クロロホルムに分散させた。これにより、InGaPコア粒子にZnSが被覆されたナノ粒子であるInGaP/ZnSを得た。In1モルに対するGaのモル比は0.05(GaClが0.0225mmolの場合)、0.1(GaClが0.045mmolの場合)、又は0.2(GaClが0.09mmolの場合)であった。 A mixture of 1.8 mmol of zinc stearate, 4.8 mL of 1-dodecanethiol, and 10 mL of 1-octadecene was added to the above solution under a nitrogen atmosphere. It was dripped at and heated and stirred for 3 hours. The obtained mixture was cooled to room temperature (25 ° C.), the target product was separated with ethanol and then dispersed in chloroform. In this way, InGaP / ZnS, which is nanoparticles in which InGaP core particles are coated with ZnS, was obtained. The molar ratio of Ga to 1 mol of In is 0.05 (when GaCl 3 is 0.0225 mmol), 0.1 (when GaCl 3 is 0.045 mmol), or 0.2 (when GaCl 3 is 0.09 mmol). Met.

(比較例1)
InClの0.45mmol、及びオレイルアミン(oleylamine)の5mLを窒素雰囲気下、120℃で30分撹拌した後、窒素下でトリスジエチルアミノホスフィン(tris(diethylamino)phosphine)の1.61mmolを注入して溶液を得た。
(Comparative Example 1)
0.45 mmol of InCl 3 and 5 mL of oleylamine were stirred at 120 ° C. for 30 minutes under a nitrogen atmosphere, and then 1.61 mmol of tris (diethylamino) phosphine was injected under nitrogen to obtain a solution. Got

上記溶液に、ステアリン酸亜鉛(zinc stearate)の1.8mmol、1−ドデカンチオール(1−dodecanethiol)の4.8mL、及び1−オクタデセン(1−octadecene)の10mLを混合した混合液を窒素雰囲気下で滴下し3時間加熱撹拌した。得られた混合物を常温(25℃)まで冷却し、目的物をエタノールで分離後クロロホルムに分散させた。これにより、InPコア粒子にZnSが被覆されたナノ粒子であるInP/ZnSを得た。   A mixture of 1.8 mmol of zinc stearate, 4.8 mL of 1-dodecanethiol, and 10 mL of 1-octadecene was added to the above solution under a nitrogen atmosphere. Was added dropwise with stirring and the mixture was heated and stirred for 3 hours. The obtained mixture was cooled to room temperature (25 ° C.), the target product was separated with ethanol and then dispersed in chloroform. As a result, InP / ZnS, which is nanoparticles in which InP core particles are coated with ZnS, was obtained.

(比較例2)
InClの0.45mmol、GaClの0.27mmol、及びオレイルアミン(oleylamine)の5mLを窒素雰囲気下、120℃で30分撹拌した後、窒素下でトリスジエチルアミノホスフィン(tris(diethylamino)phosphine)を1.61mmolを注入して溶液を得た。
(Comparative example 2)
0.45 mmol of InCl 3 , 0.27 mmol of GaCl 3 , and 5 mL of oleylamine were stirred under a nitrogen atmosphere at 120 ° C. for 30 minutes, and then trisdiethylaminophosphine (tris (diethylamino) phosphine) was added to the mixture under nitrogen. A solution was obtained by injecting 0.61 mmol.

上記溶液に、ステアリン酸亜鉛(zinc stearate)の1.8mmol、1−ドデカンチオール(1−dodecanethiol)の4.8mL、及び1−オクタデセン(1−octadecene)の10mLを混合した混合液を窒素雰囲気下で滴下し3時間加熱撹拌した。得られた混合物を常温(25℃)まで冷却し、目的物をエタノールで分離後クロロホルムに分散させた。これにより、InGaPコア粒子にZnSが被覆されたナノ粒子であるInGaP/ZnSを得た。In1モルに対するGaのモル比は0.6であった。   A mixture of 1.8 mmol of zinc stearate, 4.8 mL of 1-dodecanethiol, and 10 mL of 1-octadecene was added to the above solution under a nitrogen atmosphere. Was added dropwise with stirring and the mixture was heated and stirred for 3 hours. The obtained mixture was cooled to room temperature (25 ° C.), the target product was separated with ethanol and then dispersed in chloroform. In this way, InGaP / ZnS, which is nanoparticles in which InGaP core particles are coated with ZnS, was obtained. The molar ratio of Ga to In1 mol was 0.6.

実施例1で得られたナノ粒子の蛍光スペクトルを絶対PL量子収率測定装置(浜松ホトニクス株式会社)を用いて測定した結果、Gaの添加量に関わらず580nmにピークが検出された。   As a result of measuring the fluorescence spectrum of the nanoparticles obtained in Example 1 by using an absolute PL quantum yield measuring device (Hamamatsu Photonics KK), a peak was detected at 580 nm regardless of the added amount of Ga.

比較例1及び2で得られたナノ粒子の蛍光スペクトルを絶対PL量子収率測定装置(浜松ホトニクス株式会社)を用いて測定した結果、比較例1において580nmにピークが検出された。一方、比較例2では発光の量子効率を検出可能な強度の蛍光スペクトルが検出されなかった。
上記の結果より、In1モルに対するGaのモル比が0、0.05、0.1又は0.2のナノ粒子では、Gaの添加量がコア粒子のバンドギャップに影響を与えないことが示唆された。
The fluorescence spectra of the nanoparticles obtained in Comparative Examples 1 and 2 were measured using an absolute PL quantum yield measuring device (Hamamatsu Photonics KK), and as a result, a peak was detected at 580 nm in Comparative Example 1. On the other hand, in Comparative Example 2, no fluorescence spectrum having an intensity capable of detecting the quantum efficiency of light emission was detected.
From the above results, it is suggested that the addition amount of Ga does not affect the band gap of the core particle in the nanoparticles having the molar ratio of Ga to In1 mol of 0, 0.05, 0.1 or 0.2. It was

実施例1、比較例1及び2で得られたナノ粒子について絶対PL量子収率測定装置(浜松ホトニクス株式会社)を用いて発光の量子効率を測定した結果を表1に示す。比較例1のナノ粒子の発光の量子効率は18%であり、比較例2のナノ粒子の発光の量子効率は検出限界未満であった。一方、実施例1のナノ粒子の発光の量子効率は、In1モルに対するGaのモル比が0.05〜0.2の範囲において18%以上となった。In1モルに対するGaのモル比が0.05であるナノ粒子では、比較例1に比べ発光の量子効率が78%向上した。
以上の結果より、本開示のナノ粒子は、コア粒子構造を変化させることなく、発光の量子効率を向上できることが示された。
Table 1 shows the results of measuring the quantum efficiency of light emission of the nanoparticles obtained in Example 1 and Comparative Examples 1 and 2 using an absolute PL quantum yield measuring device (Hamamatsu Photonics KK). The emission quantum efficiency of the nanoparticles of Comparative Example 1 was 18%, and the emission quantum efficiency of the nanoparticles of Comparative Example 2 was below the detection limit. On the other hand, the quantum efficiency of light emission of the nanoparticles of Example 1 was 18% or more when the molar ratio of Ga to In1 mol was 0.05 to 0.2. Nanoparticles in which the molar ratio of Ga to In1 mol was 0.05 was 78% higher in quantum efficiency of light emission than in Comparative Example 1.
The above results indicate that the nanoparticles of the present disclosure can improve the quantum efficiency of light emission without changing the core particle structure.

1:コア粒子
2:シェル
1: core particle 2: shell

Claims (1)

InGaPを含むコア粒子と、前記コア粒子の表面に設けられるII−VI族半導体を含むシェルと、を有し、前記InGaPにおけるInとGaとの比率が、In1モルに対してGaが0.03モル〜0.25モルであるナノ粒子。   It has a core particle containing InGaP and a shell containing a II-VI group semiconductor provided on the surface of the core particle, and the ratio of In to Ga in InGaP is 0.03 for 1 mol of In. Nanoparticles that are moles to 0.25 moles.
JP2018210298A 2018-11-08 2018-11-08 Nanoparticles Pending JP2020075836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210298A JP2020075836A (en) 2018-11-08 2018-11-08 Nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210298A JP2020075836A (en) 2018-11-08 2018-11-08 Nanoparticles

Publications (1)

Publication Number Publication Date
JP2020075836A true JP2020075836A (en) 2020-05-21

Family

ID=70723476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210298A Pending JP2020075836A (en) 2018-11-08 2018-11-08 Nanoparticles

Country Status (1)

Country Link
JP (1) JP2020075836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243968A1 (en) * 2022-06-14 2023-12-21 삼성디스플레이주식회사 Quantum dot preparation method, quantum dots prepared thereby, and optical member and electronic device comprising quantum dots

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243968A1 (en) * 2022-06-14 2023-12-21 삼성디스플레이주식회사 Quantum dot preparation method, quantum dots prepared thereby, and optical member and electronic device comprising quantum dots

Similar Documents

Publication Publication Date Title
KR102299162B1 (en) Quantum dots with inorganic ligands in an inorganic matrix
US10577484B2 (en) Compositions and polymer composites prepared from the same
KR102427698B1 (en) Quantum dot-polymer micronized composite, production method thereof, and article and electronic device including the same
KR102296763B1 (en) Oxo- and hydroxo-based composite inorganic ligands for quantum dots
US20180031926A1 (en) Nanocrystal polymer composites and production methods thereof
KR102223504B1 (en) Quantum dot-resin nanocomposite and method of preparing same
US8658439B2 (en) Quantum dot phosphor for light emitting diode and method of preparing the same
US20110084250A1 (en) Nanoparticle complex, method of manufacturing the same, and device including the nanoparticle complex
US20080012031A1 (en) White light-emitting diode using semiconductor nanocrystals and preparation method thereof
US11066597B2 (en) Intraband transition-based infrared device of nonstoichiometric quantum dots
KR20190060753A (en) Emissive nanocrystal particle, method of preparing the same and device including emissive nanocrystal particle
KR101176510B1 (en) LED lamp using quantum dots and Method for producing
KR101185618B1 (en) LED for plant grow using quantum dots
KR20120129604A (en) Optoelectronic device and laminated structure
KR102398107B1 (en) Method for Preparing Core/Shell Quantum Dot
US20160214862A1 (en) Processes for synthesizing magnesium selenide nanocrystals
JP2020075836A (en) Nanoparticles
US20220052285A1 (en) Semiconductor nanoparticle, color conversion member including the semiconductor nanoparticle, and electronic apparatus including the color conversion member
KR102243744B1 (en) Quantum-dot based on multi-shell structure including luminosity dopant
US20230028670A1 (en) Method of manufacturing multi-component semiconductor nanocrystal, multi-component semiconductor nanocrystal, and quantum dot including the same
US20230193122A1 (en) Method of preparing quantum dot, quantum dot, and electronic apparatus including the quantum dot
KR102303927B1 (en) Manufacture method of micellar polymer protective layer using block copolymer and quantum dot used thereby
KR102193724B1 (en) A surface-treated inorganic nanoemitter and preparation method thereof
EP4202008A1 (en) Semiconductor nanoparticle and electronic device comprising same
KR20170023909A (en) Composite, method of manufacturing the same, and device including composite