JP2020073265A - Waste treatment system - Google Patents

Waste treatment system Download PDF

Info

Publication number
JP2020073265A
JP2020073265A JP2019232689A JP2019232689A JP2020073265A JP 2020073265 A JP2020073265 A JP 2020073265A JP 2019232689 A JP2019232689 A JP 2019232689A JP 2019232689 A JP2019232689 A JP 2019232689A JP 2020073265 A JP2020073265 A JP 2020073265A
Authority
JP
Japan
Prior art keywords
steam
hydrothermal treatment
waste
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019232689A
Other languages
Japanese (ja)
Other versions
JP7050043B2 (en
Inventor
敦弘 行本
Atsuhiro Yukimoto
敦弘 行本
野間 彰
Akira Noma
野間  彰
清木 義夫
Yoshio Seiki
義夫 清木
青木 泰道
Taido Aoki
泰道 青木
鵜飼 展行
Nobuyuki Ukai
展行 鵜飼
一寛 河合
Kazuhiro Kawai
一寛 河合
佐藤 淳
Atsushi Sato
佐藤  淳
進 沖野
Susumu Okino
沖野  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019232689A priority Critical patent/JP7050043B2/en
Publication of JP2020073265A publication Critical patent/JP2020073265A/en
Application granted granted Critical
Publication of JP7050043B2 publication Critical patent/JP7050043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To provide a waste treatment system capable of changing the amount of steam corresponding to the amount of wastes.SOLUTION: The waste treatment system for conducting hydrothermal treatment of wastes comprises: at least one batch type hydrothermal treatment apparatus for conducting hydrothermal treatment by contact of steam to wastes; a fuel manufacturing apparatus for producing a solid fuel from a solid reaction product of the hydrothermal treatment; a methane fermentation apparatus for production of biogas by methane fermentation of a liquid reaction product; a first storage facility for storage of a solid fuel; a third storage facility for storage of a biogas; and at least two steam generation apparatuses for generation of steam to be supplied to the hydrothermal treatment apparatus, wherein the at least two steam generation apparatuses include a first steam generation apparatus for generating steam by using combustion energy generated by combustion of a fuel involving wastes and a second steam generation apparatus for generating steam by using combustion energy generated by at least one combustion of a solid fuel stored in the first storage facility or a biogas stored in the third storage facility.SELECTED DRAWING: Figure 14

Description

本開示は、廃棄物処理システムに関する。   The present disclosure relates to waste treatment systems.

家庭、食品工場等から排出された都市廃棄物、稲わら、麦わら、パーム残渣等の農業廃棄物、家畜糞尿、下水汚泥等、未利用バイオマスの有効利用が望まれている。例えば、特許文献1に記載の技術では、廃棄物は水熱処理され、水熱処理により得られた反応物の固相から固形燃料(燃料)が製造されている。そして、固形燃料の燃焼により生成する燃焼エネルギを用いて蒸気が生成され、生成した蒸気を用いて上記の水熱処理が行われる。   Effective utilization of unused biomass such as municipal waste discharged from homes, food factories, agricultural waste such as rice straw, straw and palm residue, livestock excrement, and sewage sludge is desired. For example, in the technique described in Patent Document 1, the waste is hydrothermally treated, and solid fuel (fuel) is produced from the solid phase of the reaction product obtained by the hydrothermal treatment. Then, steam is generated by using combustion energy generated by the combustion of the solid fuel, and the hydrothermal treatment is performed by using the generated steam.

特表2013−511386号公報(特に図2参照)Japanese Patent Publication No. 2013-511386 (see particularly FIG. 2)

廃棄物の量は、例えば収集の時間帯、季節、収集場所等の収集条件により異なる。そのため、水熱処理を行うために使用される蒸気量も収集条件により変動する。しかし、上記の特許文献1に記載の技術では、水熱処理の反応物から製造された燃料はそのまま燃焼されており、蒸気量を任意に変更することができない。そのため、特許文献1に記載の技術では、廃棄物量に応じて蒸気量を変更することができない。   The amount of waste varies depending on the collection conditions such as time of collection, season and collection place. Therefore, the amount of steam used for performing hydrothermal treatment also varies depending on the collection conditions. However, in the technique described in Patent Document 1 above, the fuel produced from the reaction product of the hydrothermal treatment is burned as it is, and the amount of vapor cannot be arbitrarily changed. Therefore, the technique described in Patent Document 1 cannot change the amount of steam according to the amount of waste.

本発明の少なくとも一実施形態は、廃棄物量に応じて蒸気量を変更可能な廃棄物処理システムを提供することを目的とする。   An object of at least one embodiment of the present invention is to provide a waste treatment system in which the amount of steam can be changed according to the amount of waste.

上記目的を達成するため、本開示に係る廃棄物処理システムは、廃棄物の水熱処理を行うための廃棄物処理システムであって、前記廃棄物への蒸気の接触により前記水熱処理を行うための少なくとも1つの水熱処理装置と、前記少なくとも1つの水熱処理の反応物の固体から固形の燃料を製造するための燃料製造装置と、前記反応物の液体をメタン発酵させてバイオガスを生成させるためのメタン発酵装置と、前記固形の燃料を貯蔵するための第1貯蔵設備と、前記バイオガスを貯蔵するための第3貯蔵設備と、前記水熱処理装置に供給される前記蒸気を発生させるための少なくとも2つの蒸気発生装置とを備え、前記少なくとも1つの水熱処理装置は、内部に蒸気が注入される筐体と、前記筐体内に前記廃棄物を投入する投入口と、前記筐体から前記反応物を排出する排出口と、を備えるバッチ式の水熱処理装置であり、前記少なくとも2つの蒸気発生装置は、前記廃棄物を含む燃料の燃焼により発生した燃焼エネルギを用いて蒸気を発生させる第1蒸気発生装置と、前記第1貯蔵設備に貯蔵された前記固形の燃料又は前記第3貯蔵設備に貯蔵された前記バイオガスの少なくとも1つの燃焼により発生した燃焼エネルギを用いて蒸気を発生させる第2蒸気発生装置とを含む。   In order to achieve the above object, a waste treatment system according to the present disclosure is a waste treatment system for performing a hydrothermal treatment of waste, and is for performing the hydrothermal treatment by contacting steam with the waste. At least one hydrothermal treatment apparatus, a fuel production apparatus for producing a solid fuel from the solid of the at least one hydrothermal treatment reactant, and a methane fermentation of the liquid of the reactant to produce biogas A methane fermentation device, a first storage facility for storing the solid fuel, a third storage facility for storing the biogas, and at least for generating the steam supplied to the hydrothermal treatment device. The at least one hydrothermal treatment apparatus comprises two steam generators, a casing into which steam is injected, an inlet for introducing the waste into the casing, and the casing. And a discharge port for discharging the reaction product from the reactor, wherein the at least two steam generators generate steam by using combustion energy generated by combustion of the fuel containing the waste. And a first steam generator for generating steam by using combustion energy generated by combustion of at least one of the solid fuel stored in the first storage facility or the biogas stored in the third storage facility. A second steam generating device.

本発明の少なくとも一実施位形態によれば、廃棄物量に応じて水蒸気量を変更可能な廃棄物処理システム及び廃棄物処理方法を提供することができる。   According to at least one embodiment of the present invention, it is possible to provide a waste treatment system and a waste treatment method capable of changing the amount of water vapor according to the amount of waste.

本発明の第1実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste disposal system which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste disposal system which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste processing system which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste treatment system which concerns on 12th Embodiment of this invention. 本発明の第13実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste disposal system which concerns on 13th Embodiment of this invention. 本発明の第14実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste disposal system which concerns on 14th Embodiment of this invention. 本発明の第15実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste disposal system which concerns on 15th Embodiment of this invention. 本発明の第16実施形態に係る廃棄物処理システムの系統図である。It is a systematic diagram of the waste disposal system which concerns on 16th Embodiment of this invention. 本発明の第17実施形態に係る水熱処理装置の断面図である。It is sectional drawing of the hydrothermal treatment apparatus which concerns on 17th Embodiment of this invention. 本発明の第18実施形態に係る水熱処理装置の断面図である。It is sectional drawing of the hydrothermal processing apparatus which concerns on 18th Embodiment of this invention. 複数の単位水熱処理装置を併用した際の蒸気の流れを示す図である。It is a figure which shows the flow of steam at the time of using together several unit hydrothermal processing apparatuses. 複数の単位水熱処理装置を併用した際の各単位水熱処理装置における作用を説明するための図である。It is a figure for demonstrating the effect | action in each unit hydrothermal treatment apparatus at the time of using a some unit hydrothermal treatment apparatus together. 図20に示す各単位水熱処理装置における内圧変化を示すタイムチャートである。It is a time chart which shows the internal pressure change in each unit hydrothermal treatment apparatus shown in FIG.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、以下に実施形態として記載されている内容又は図面に記載されている内容は、あくまでも例示に過ぎず、本発明の要旨を逸脱しない範囲内で、任意に変更して実施することができる。また、各実施形態は、2つ以上を任意に組み合わせて実施することができる。さらに、各実施形態において、共通する部材については同じ符号を付すものとし、説明の簡略化のために重複する説明は省略する。   Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the contents described below as the embodiments or the contents described in the drawings are merely examples, and can be implemented by being arbitrarily modified without departing from the scope of the present invention. Moreover, each embodiment can be implemented by arbitrarily combining two or more. Further, in each embodiment, common members are denoted by the same reference numerals, and duplicate description is omitted for simplification of description.

また、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Further, the dimensions, materials, shapes, relative arrangements, and the like of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Absent.
For example, the expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric", or "coaxial" are strict. In addition to representing such an arrangement, it also represents a state of relative displacement, or a state of relative displacement with an angle or distance such that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous" that indicate that they are in the same state are not limited to a state in which they are exactly equal to each other. It also represents the existing state.
For example, the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained. The shape including parts and the like is also shown.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.

図1は、本発明の第1実施形態に係る廃棄物処理システム100の系統図である。廃棄物処理システム100は、廃棄物の水熱処理を行うためのシステムである。廃棄物処理システム100は、上記水熱処理を行うための水熱処理装置10(燃料製造装置)と、固液分離装置11(燃料製造装置)と、乾燥装置12(燃料製造装置)と、分級装置13(燃料製造装置)と、成形装置14(燃料製造装置)と、貯蔵設備8と、ガス化炉15と、メタン発酵装置16と、貯蔵設備9と、ガスエンジン17と、排熱回収ボイラ18とを備える。以下、廃棄物に由来する各成分の流れを説明しながら、各装置の説明を行う。   FIG. 1 is a system diagram of a waste treatment system 100 according to the first embodiment of the present invention. The waste treatment system 100 is a system for performing hydrothermal treatment of waste. The waste treatment system 100 includes a hydrothermal treatment device 10 (fuel production device) for performing the hydrothermal treatment, a solid-liquid separation device 11 (fuel production device), a drying device 12 (fuel production device), and a classification device 13. (Fuel production device), molding device 14 (fuel production device), storage facility 8, gasification furnace 15, methane fermentation device 16, storage facility 9, gas engine 17, exhaust heat recovery boiler 18 Equipped with. Hereinafter, each device will be described while explaining the flow of each component derived from waste.

廃棄物処理システム100において処理される廃棄物(例えば有機物を含む廃棄物。具体的には例えばバイオマスを含む廃棄物)は、水熱処理装置10において水熱処理が行われる。具体的には、水熱処理装置10では、廃棄物(図1では未分別ごみを例示)への蒸気(水蒸気。以下同じ)の接触により、上記の水熱処理が行われる。水熱処理に使用される蒸気は、後記する排熱回収ボイラ18から供給される。   The waste treated in the waste treatment system 100 (for example, waste containing organic matter, specifically, waste containing biomass, for example) is subjected to hydrothermal treatment in the hydrothermal treatment apparatus 10. Specifically, in the hydrothermal treatment apparatus 10, the hydrothermal treatment is performed by contacting waste (unsorted refuse is illustrated in FIG. 1) with steam (steam; the same applies hereinafter). The steam used for the hydrothermal treatment is supplied from an exhaust heat recovery boiler 18 described later.

水熱処理装置10は、例えばバッチ式水熱処理装置を含む。これにより、例えば、廃棄物を収集するための車両(図示しない)からそのまま水熱処理装置10に廃棄物を投入でき、廃棄物処理システム100のピットレス化を図ることができる。バッチ式水処理装置の具体的な構造は、例えば後記する図17、図18等に記載の構造とすることができる。   The hydrothermal treatment apparatus 10 includes, for example, a batch hydrothermal treatment apparatus. Thereby, for example, the waste can be directly introduced into the hydrothermal treatment apparatus 10 from a vehicle (not shown) for collecting the waste, and the waste treatment system 100 can be made pitless. The specific structure of the batch-type water treatment device can be, for example, the structure shown in FIGS. 17 and 18 described later.

水熱処理の条件としては特に制限されないが、例えば、140℃以上250℃以下、1.5MPa以上2.5MPa、反応時間は15分以上2時間以下とすることができる。   The conditions of the hydrothermal treatment are not particularly limited, but for example, 140 ° C. or higher and 250 ° C. or lower, 1.5 MPa or higher and 2.5 MPa, and the reaction time can be 15 minutes or longer and 2 hours or shorter.

水熱処理により得られた反応物は、固液分離装置11(燃料製造装置)に供給される。固液分離装置11は、例えば、ろ過装置、遠心分離装置等により構成される。固液分離装置11では、水熱処理により得られた反応物は、固体と液体との各成分に分離される。   The reaction product obtained by the hydrothermal treatment is supplied to the solid-liquid separation device 11 (fuel production device). The solid-liquid separation device 11 is composed of, for example, a filtration device, a centrifugal separation device, and the like. In the solid-liquid separator 11, the reaction product obtained by hydrothermal treatment is separated into solid and liquid components.

分離された固体は、水熱処理の反応物の固体から固形の燃料を製造するための燃料製造装置により、燃料化される。具体的には、分離された固体は、水熱処理装置10(燃料製造装置)において得られた固形の反応物であって水分を含む反応物の固体を乾燥させるための乾燥装置12(燃料製造装置)により、十分に乾燥される。これにより、水熱処理の反応物を乾燥させて、燃焼し易い固形の燃料(粒状の乾燥物)を製造できる。また、この乾燥物のほか、例えば金属等の無機成分が混入していた場合には、図示しない分別装置(燃料製造装置)において無機成分が取り除かれる。そして、分級装置13(燃料製造装置)において、例えば篩等を用いることで、同程度の大きさの乾燥物毎に乾燥物が選別され、粒径の大きい乾燥物は再度水熱処理装置10へリサイクルされる。
その他の実施方法として、粒径の大きい乾燥物を細かくするため、固液分離装置出口又は、乾燥装置出口に粉砕設備を設置することもできる。
The separated solid is made into a fuel by a fuel production apparatus for producing a solid fuel from the solid of the reaction product of the hydrothermal treatment. Specifically, the separated solid is a solid reaction product obtained in the hydrothermal treatment device 10 (fuel production device) and is a drying device 12 (fuel production device) for drying the solid of the reaction product containing water. ), It fully dries. As a result, the hydrothermal treatment reaction product can be dried to produce a solid fuel (granular dried product) that is easily combusted. In addition to the dried product, if an inorganic component such as a metal is mixed, the inorganic component is removed by a separation device (fuel production device) not shown. Then, in the classifying device 13 (fuel producing device), for example, a sieve or the like is used to sort the dried products into dried products of the same size, and the dried products having a large particle size are recycled to the hydrothermal treatment device 10 again. To be done.
As another implementation method, in order to make a dried product having a large particle size finer, a crushing facility can be installed at the outlet of the solid-liquid separator or the outlet of the dryer.

最後に、成形装置14(燃料製造装置)において、各大きさの乾燥物は、等量程度になるように混合後、成形される。このとき、バインダを使用して成形してもよい。即ち、混合物とバインダとを接触させて、成形してもよい。バインダとしては、例えばリグニン、澱粉等が使用可能である。これにより、乾燥物が結着され、ペレット状の燃料である燃料ペレット(固形の燃料)が得られる。燃料ペレットは、水熱処理の反応物から製造された固形の燃料を貯蔵するための貯蔵設備8(例えば貯蔵庫。第1貯蔵設備)に貯蔵される。   Finally, in the molding device 14 (fuel production device), the dried products of each size are mixed so as to be approximately equal in amount and then molded. At this time, a binder may be used for molding. That is, the mixture may be brought into contact with the binder to be molded. As the binder, for example, lignin, starch or the like can be used. As a result, the dried product is bound, and fuel pellets (solid fuel) that are pelletized fuels are obtained. The fuel pellets are stored in a storage facility 8 (for example, a storage unit, a first storage facility) for storing a solid fuel produced from a reaction product of hydrothermal treatment.

このように、上記の固形の反応物から燃料ペレットを製造することで、燃料をペレットとして貯蔵でき、電力需要に応じて燃料を燃焼できる。また、バインダを用いて燃料ペレットを製造することで、バインダによって燃料ペレットに含まれる空隙を埋めることができる。これにより、燃料ペレットにおいて空気との接触面積を減らすことができ、貯蔵安定性を高めることができる。   In this way, by producing fuel pellets from the solid reaction product, the fuel can be stored as pellets, and the fuel can be burned according to the demand for electric power. Further, by manufacturing the fuel pellets using the binder, the voids contained in the fuel pellets can be filled with the binder. As a result, the contact area of the fuel pellet with air can be reduced, and the storage stability can be improved.

なお、このようにして製造された燃料ペレットは、上記のように貯蔵されるほか、製品として出荷されてもよい。   The fuel pellets thus manufactured may be stored as described above or shipped as a product.

貯蔵設備8に貯蔵された燃料ペレットは、水熱処理装置10での要求蒸気量に応じて取り出され、燃料ペレット(固形の燃料)をガス化させて燃料ガスを生成させるためのガス化炉15(例えば流動床)において高温で蒸し焼きにされる。これにより、水素、一酸化炭素等を含む燃料ガスが発生し、この燃料ガスは、ガス化炉15で生成した燃料ガスを貯蔵するための貯蔵設備9(例えばガスホルダ。第2貯蔵設備、第3貯蔵設備)に貯蔵される。貯蔵設備8,9を備えることで、固形の燃料と、固形の燃料から生成した燃料ガスとの双方を貯蔵できる。   The fuel pellets stored in the storage facility 8 are taken out according to the required steam amount in the hydrothermal treatment apparatus 10, and the gasification furnace 15 (for gasifying the fuel pellets (solid fuel) to generate fuel gas ( It is steamed at high temperature in a fluidized bed, for example). As a result, a fuel gas containing hydrogen, carbon monoxide, etc. is generated, and this fuel gas is used as a storage facility 9 (for example, a gas holder. Second storage facility, third storage facility) for storing the fuel gas produced in the gasification furnace 15. It is stored in a storage facility). By providing the storage facilities 8 and 9, both solid fuel and fuel gas generated from solid fuel can be stored.

一方で、上記の固液分離装置11において分離された液体は、メタン発酵装置16に供給される。また、メタン発酵装置16には、上記の廃棄物に含まれるバイオマス(図1には生ごみを例示)も供給される。メタン発酵装置16は、バイオマスをメタン発酵させるためのものであり、例えばメタン発酵菌を収容した発酵槽である。従って、メタン発酵装置16では、バイオマス及び上記液体のメタン発酵が行われる。これにより、バイオガスが発生する。なお、メタン発酵は、例えば嫌気性条件下、30℃以上60℃以下、好ましくは50℃以上60℃以下で行うことができる。で行うことができる。   On the other hand, the liquid separated in the solid-liquid separation device 11 is supplied to the methane fermentation device 16. In addition, the methane fermentation device 16 is also supplied with the biomass contained in the above-mentioned waste (raw garbage is illustrated in FIG. 1). The methane fermentation device 16 is for fermenting biomass with methane, and is, for example, a fermenter containing methane-fermenting bacteria. Therefore, in the methane fermentation device 16, methane fermentation of the biomass and the liquid is performed. As a result, biogas is generated. The methane fermentation can be performed, for example, under anaerobic conditions at 30 ° C or higher and 60 ° C or lower, preferably 50 ° C or higher and 60 ° C or lower. Can be done at.

メタン発酵装置16で発生したバイオガスは、メタンを少なくとも含む気体であって、より具体的には例えばメタンと二酸化炭素とを含む混合気体であり、メタン発酵装置16から排出される。そこで、図示しない精製装置によってバイオガスが精製され、精製されたバイオガスは、上記の貯蔵設備9(例えばガスホルダ。第2貯蔵設備、第3貯蔵設備)に貯蔵される。貯蔵設備8,9を備えることで、固形の燃料と、水熱処理の反応物から生成したバイオガス(例えばメタン)との双方を貯蔵できる。なお、ここでは、バイオガスは、上記のガス化炉15で生成した燃料ガスと一緒に同じ貯蔵設備9で貯蔵されるようにしたが、異なる貯蔵設備で貯蔵するようにしてもよい。一方で、メタン発酵装置16におけるメタン発酵後の残渣は、メタン発酵装置16から排出され、例えばコンポストとして利用又は焼却処理される。   The biogas generated in the methane fermentation device 16 is a gas containing at least methane, more specifically, a mixed gas containing methane and carbon dioxide, and is discharged from the methane fermentation device 16. Therefore, the biogas is refined by a refining device (not shown), and the refined biogas is stored in the above-mentioned storage facility 9 (for example, gas holder. Second storage facility, third storage facility). By providing the storage facilities 8 and 9, both solid fuel and biogas (for example, methane) generated from the reaction product of hydrothermal treatment can be stored. Although biogas is stored in the same storage facility 9 together with the fuel gas produced in the gasification furnace 15 here, it may be stored in a different storage facility. On the other hand, the residue after the methane fermentation in the methane fermentation device 16 is discharged from the methane fermentation device 16 and used or combusted as, for example, compost.

貯蔵設備9に貯蔵されたバイオガス及び燃料ガスは、ガスエンジン17(発電装置)に供給される。ここで、ガスエンジン17では、図示しない発電機本体部(発電装置)が接続される。そのため、発電機本体部は、ガスエンジン17に供給され、バイオガス及び燃料ガスの燃焼により生じた燃焼エネルギを用いて、発電を行う。これにより、廃棄物処理システム100で製造された燃料を用いて発電できる。   The biogas and the fuel gas stored in the storage facility 9 are supplied to the gas engine 17 (power generation device). Here, in the gas engine 17, an unillustrated generator body (power generator) is connected. Therefore, the generator main body is supplied to the gas engine 17 and uses the combustion energy generated by the combustion of the biogas and the fuel gas to generate electric power. As a result, power can be generated using the fuel produced by the waste treatment system 100.

特に、ガスエンジン17には、上記のように、ガス化炉15において発生した燃料ガスも供給される。そのため、ガスエンジン17では、上記のメタンに加え、ガス化炉15で発生した燃料ガスも燃焼される。従って、ガスエンジン1に接続される発電機本体部(発電装置)は、上記の水熱処理装置10の反応物(燃料ペレット)から生成された燃料ガスを燃料として、ガス化炉15での燃料の燃焼により、発電を行うようになっている。   In particular, the fuel gas generated in the gasification furnace 15 is also supplied to the gas engine 17, as described above. Therefore, in the gas engine 17, in addition to the above-mentioned methane, the fuel gas generated in the gasification furnace 15 is also burned. Therefore, the generator main body (power generation device) connected to the gas engine 1 uses the fuel gas generated from the reactant (fuel pellet) of the hydrothermal treatment device 10 as a fuel to generate the fuel in the gasification furnace 15. Power is generated by combustion.

より具体的には、発電機本体部(発電装置)は、流動床炉(ガス化炉15)における燃料の燃焼により発生した燃焼エネルギを用いて、発電を行う。このようにすることで、流動床炉により、速やかに、かつ、燃焼ムラを抑制しながら燃料ペレットを燃焼できる。これにより、速やかに、かつ発電量のムラを抑制しながら発電できる。   More specifically, the generator main body (power generator) generates power using combustion energy generated by combustion of fuel in the fluidized bed furnace (gasification furnace 15). By doing so, the fuel pellets can be burned promptly by the fluidized bed furnace while suppressing combustion unevenness. As a result, power can be generated quickly and while suppressing unevenness in the amount of power generation.

なお、上記の例では、ガス化炉15では、燃料ペレットを燃焼させた。しかし、例えば、乾燥装置12により得られた乾燥物を貯蔵し、上記の燃料ペレットに代えて、又は、上記の燃料ペレットとともにガス化炉15で燃焼させるようにしてもよい。成形前の乾燥物を燃焼させることで、成形に伴う時間及びコストを削減できる。   In the above example, the fuel pellets were burned in the gasification furnace 15. However, for example, the dried product obtained by the drying device 12 may be stored and burned in the gasification furnace 15 instead of the above fuel pellets or together with the above fuel pellets. By burning the dried material before molding, the time and cost involved in molding can be reduced.

ガスエンジン17から排出された排ガスは、排熱回収ボイラ18に供給される。排熱回収ボイラ18(蒸気発生装置)は、上記の水熱処理装置10に供給される蒸気を発生させるためのものである。そして、排熱回収ボイラ18は、燃料の燃焼により発生した燃焼エネルギ、即ち排ガスが有する熱(一部でもよい)を用いて、蒸気を発生するようになっている。   The exhaust gas discharged from the gas engine 17 is supplied to the exhaust heat recovery boiler 18. The exhaust heat recovery boiler 18 (steam generation device) is for generating steam supplied to the hydrothermal treatment device 10. Then, the exhaust heat recovery boiler 18 is configured to generate steam by using combustion energy generated by combustion of fuel, that is, heat (a part thereof may be) of the exhaust gas.

ここでいう燃料は、メタン発酵装置16で生成したバイオガスのほか、貯蔵設備8に貯蔵された燃料ペレットのガス化炉15において高温で蒸し焼きされ生じた燃料ガスを含む。特に、燃料ペレットは、ガス化炉15で燃料ガスに変換され、その燃料ガスはさらにガスエンジン17で燃焼され燃焼エネルギに変換される。従って、ガス化炉15で発生したガスにより、蒸気を発生させるための燃焼エネルギが得られる。   The fuel referred to here includes, in addition to the biogas produced in the methane fermentation apparatus 16, the fuel gas produced by steaming the fuel pellets stored in the storage facility 8 at a high temperature in the gasification furnace 15. In particular, the fuel pellets are converted into fuel gas in the gasification furnace 15, and the fuel gas is further combusted in the gas engine 17 and converted into combustion energy. Therefore, the gas generated in the gasification furnace 15 provides combustion energy for generating steam.

このようにすることで、廃棄物に由来する燃料の燃焼エネルギを用いて蒸気を発生できる。そして、発生した蒸気は、上記の水熱処理装置10に供給され、水熱処理装置10では、供給された蒸気を用いた水熱処理が行われる。   By doing so, steam can be generated using the combustion energy of the fuel derived from the waste. Then, the generated steam is supplied to the hydrothermal processing apparatus 10 described above, and the hydrothermal processing apparatus 10 performs hydrothermal processing using the supplied steam.

特に、排熱回収ボイラ18では、上記のように、メタン発酵装置16において発生したメタンをガスエンジン17で燃焼させて生じた燃焼エネルギを少なくとも用いて、蒸気が発生するようになっている。このようにすることで、バイオマスのメタン発酵によりメタンを発生させて、発生したメタンを燃焼させることができる。これにより、発熱量を増大させることができ、蒸気の生成量を増大させることができる。   In particular, in the exhaust heat recovery boiler 18, as described above, steam is generated using at least the combustion energy generated by burning the methane generated in the methane fermentation device 16 in the gas engine 17. By doing so, it is possible to generate methane by methane fermentation of the biomass and burn the generated methane. As a result, the amount of heat generated can be increased, and the amount of steam produced can be increased.

さらには、排熱回収ボイラ18では、上記のように、燃料を燃焼させるための流動床炉により構成されたガス化炉15での燃焼エネルギを用いて、蒸気が発生するようになっている。このようにすることで、流動床炉により、速やかに、かつ、燃焼ムラを抑制しながら燃料を燃焼できる。これにより、速やかに、かつ発生量のムラを抑制しながら蒸気を発生できる。   Further, in the exhaust heat recovery boiler 18, as described above, steam is generated by using the combustion energy in the gasification furnace 15 configured by the fluidized bed furnace for burning the fuel. By doing so, the fluidized bed furnace can rapidly burn the fuel while suppressing the uneven combustion. As a result, steam can be generated promptly and while suppressing unevenness in the generated amount.

廃棄物処理システム100によれば、廃棄物から得られ、貯蔵設備8,9に貯蔵された燃料を用いて、水熱処理装置10で使用される蒸気を生成できる。これにより、廃棄物量に応じて蒸気量を変更できる。   According to the waste treatment system 100, it is possible to generate the steam used in the hydrothermal treatment apparatus 10 by using the fuel obtained from the waste and stored in the storage facilities 8 and 9. Thereby, the amount of steam can be changed according to the amount of waste.

また、水熱処理装置10で得られた固体の反応物(固形分)から生成されたガスを燃料として燃焼させることができる。これにより、その燃焼エネルギを用いて蒸気を発生させることができ、発生した蒸気を、水熱処理装置10で使用することができる。この結果、水熱処理装置10への蒸気の外部からの供給量を低減できる。また、上記の燃焼エネルギを用いて発電を行うことができる。これらにより、燃料としての廃棄物の更なる有効利用を図ることができる。   Further, the gas generated from the solid reaction product (solid content) obtained in the hydrothermal treatment apparatus 10 can be burned as a fuel. Thereby, steam can be generated by using the combustion energy, and the generated steam can be used in the hydrothermal treatment apparatus 10. As a result, the amount of steam supplied to the hydrothermal treatment apparatus 10 from the outside can be reduced. Further, power generation can be performed using the above combustion energy. As a result, it is possible to further effectively use the waste as fuel.

また、上記の廃棄物処理システム100を用いることで、上記のように、廃棄物の水熱処理を行うことができる。即ち、本発明の一実施形態に係る廃棄物処理方法は、上記廃棄物への蒸気の接触により蒸気水熱処理を行う水熱処理ステップを含む。水熱処理ステップは、例えば、上記の水熱処理装置10によって行われることができる。また、本発明の一実施形態に係る廃棄物処理方法は、上記水熱処理の反応物(水熱処理ステップでの反応物)から製造された燃料を貯蔵する貯蔵ステップを含む。貯蔵ステップで貯蔵される燃料は、例えば運搬設備等により、上記の貯蔵設備8,9に貯蔵される。   Further, by using the waste treatment system 100 described above, the hydrothermal treatment of waste can be performed as described above. That is, the waste treatment method according to one embodiment of the present invention includes a hydrothermal treatment step of performing steam hydrothermal treatment by contacting the waste with steam. The hydrothermal treatment step can be performed by the hydrothermal treatment apparatus 10 described above, for example. In addition, the waste treatment method according to an embodiment of the present invention includes a storage step of storing a fuel produced from the reaction product of the hydrothermal treatment (reaction product of the hydrothermal treatment step). The fuel stored in the storage step is stored in the storage facilities 8 and 9 by, for example, a transportation facility.

さらに、本発明の一実施形態に係る廃棄物処理方法は、上記水熱処理ステップで使用される上記蒸気を発生させる蒸気発生ステップを含む。蒸気発生ステップは、例えば上記の排熱回収ボイラ18によって行われることができる。そして、蒸気発生ステップは、上記貯蔵ステップで貯蔵された燃料(燃料ペレット、メタン、燃料ペレットのガス化により生じた燃料ガス等)の燃焼により発生した燃焼エネルギを用いて、上記蒸気を発生させるようになっている。   Furthermore, the waste treatment method according to one embodiment of the present invention includes a steam generation step of generating the steam used in the hydrothermal treatment step. The steam generation step can be performed by, for example, the exhaust heat recovery boiler 18 described above. Then, the steam generation step uses the combustion energy generated by the combustion of the fuel (fuel pellets, methane, fuel gas generated by gasification of the fuel pellets, etc.) stored in the storage step to generate the steam. It has become.

以上のような廃棄物処理方法によれば、廃棄物から得られ、貯蔵設備8,9に貯蔵された燃料を用いて、水熱処理装置10で使用される蒸気を生成できる。これにより、廃棄物量に応じて蒸気を量を変更できる。なお、排熱回収ボイラ18での蒸気生成後の排ガスの一部を乾燥装置12へ供給し、水熱処理装置10で生成した固形物を乾燥するための熱源のひとつとして利用するようにしてもよい。これにより、乾燥に使用するエネルギを低減できる。   According to the waste treatment method as described above, the steam used in the hydrothermal treatment apparatus 10 can be generated by using the fuel obtained from the waste and stored in the storage facilities 8 and 9. As a result, the amount of steam can be changed according to the amount of waste. In addition, a part of the exhaust gas after steam generation in the exhaust heat recovery boiler 18 may be supplied to the drying device 12 and used as one of the heat sources for drying the solid matter generated in the hydrothermal treatment device 10. .. Thereby, the energy used for drying can be reduced.

また、水熱処理ステップで得られた固体の反応物(固形分)又はその固形分から生成されたガスの少なくとも一方を燃料として燃焼させることができる。これにより、その燃焼エネルギを用いて蒸気を発生させることができ、発生した蒸気を水熱処理ステップで使用することができる。この結果、水熱処理ステップへの蒸気の外部からの供給量を低減できる。また、上記の燃焼エネルギを用いて発電を行うことができる。これらにより、燃料としての廃棄物の更なる有効利用を図ることができる。   Further, at least one of the solid reaction product (solid content) obtained in the hydrothermal treatment step and the gas generated from the solid content can be burned as a fuel. As a result, steam can be generated by using the combustion energy, and the generated steam can be used in the hydrothermal treatment step. As a result, the amount of steam supplied to the hydrothermal treatment step from the outside can be reduced. Further, power generation can be performed using the above combustion energy. As a result, it is possible to further effectively use the waste as fuel.

図2は、本発明の第2実施形態に係る廃棄物処理システム200の系統図である。廃棄物処理システム200では、上記の廃棄物処理システム100のメタン発酵装置16において発生した残渣について、水熱処理が行われるものである。廃棄物処理システム200は、メタン発酵装置16で得られた発酵物を固液分離するための固液分離装置19と、メタン発酵装置で得られた発酵物中の固体(消化汚泥)への蒸気の接触により水熱処理を行うための水熱処理装置20(第2水熱処理装置)と、水熱処理装置20で得られた第2反応物を固液分離するための固液分離装置21とを備える。
また、その他の実施方法として、固液分離装置19で得られる固体(消化汚泥)を水熱処理装置10へリサイクルすることもできる。その場合、水熱処理装置20と固液分離装置21は不要となる。
FIG. 2 is a system diagram of a waste treatment system 200 according to the second embodiment of the present invention. In the waste treatment system 200, hydrothermal treatment is performed on the residue generated in the methane fermentation apparatus 16 of the waste treatment system 100 described above. The waste treatment system 200 includes a solid-liquid separation device 19 for solid-liquid separating the fermented product obtained by the methane fermentation device 16, and vapor to a solid (digested sludge) in the fermented product obtained by the methane fermentation device. The hydrothermal treatment apparatus 20 (second hydrothermal treatment apparatus) for performing the hydrothermal treatment by the contact of 1 and the solid-liquid separation apparatus 21 for solid-liquid separating the second reactant obtained by the hydrothermal treatment apparatus 20.
Further, as another implementation method, the solid (digested sludge) obtained in the solid-liquid separation device 19 can be recycled to the hydrothermal treatment device 10. In that case, the hydrothermal treatment apparatus 20 and the solid-liquid separation apparatus 21 are unnecessary.

水熱処理装置20も、上記の水熱処理装置10と同様に、例えばバッチ式水熱処理装置を含む。バッチ式水処理装置の具体的な構造は、例えば後記する図17、図18等に記載の構造とすることができる。   The hydrothermal treatment apparatus 20, like the hydrothermal treatment apparatus 10 described above, includes, for example, a batch hydrothermal treatment apparatus. The specific structure of the batch-type water treatment device can be, for example, the structure shown in FIGS. 17 and 18 described later.

メタン発酵装置16で得られた発酵物は、固液分離装置19によって固液分離される。固液分離装置19は、例えば、ろ過装置、遠心分離装置、重力分離装置(シックナー)等により構成される。固液分離装置19によって分離された固体の成分(消化汚泥)は、水熱処理装置20に供給される。   The fermented material obtained by the methane fermentation device 16 is solid-liquid separated by the solid-liquid separation device 19. The solid-liquid separator 19 is composed of, for example, a filter, a centrifugal separator, a gravity separator (thickener), and the like. The solid component (digested sludge) separated by the solid-liquid separation device 19 is supplied to the hydrothermal treatment device 20.

水熱処理装置20に供給された固体(消化汚泥)の成分は、水熱処理される。水熱処理の条件は、例えば上記の水熱処理装置10における水熱処理の条件と同じにすることができる。なお、水熱処理装置20には、上記の排熱回収ボイラ18からの蒸気が供給されるようにしてもよい。   The components of the solid (digested sludge) supplied to the hydrothermal treatment apparatus 20 are hydrothermally treated. The conditions of the hydrothermal treatment can be the same as the conditions of the hydrothermal treatment in the hydrothermal treatment apparatus 10 described above, for example. The steam from the exhaust heat recovery boiler 18 may be supplied to the hydrothermal treatment apparatus 20.

そして、水熱処理装置20において得られた第2反応物は、固液分離装置21によって固液分離される。固液分離装置21は、例えば、ろ過装置、遠心分離装置重力分離装置(シックナー)等により構成される。固液分離装置21において分離された固体の成分は、上記の固液分離装置11により分離された固体の成分とともに、上記の乾燥装置12に供給される。そして、供給された第2反応物は、上記の固液分離装置11で分離された固体とともに燃料化される。従って、廃棄物処理システム200では、貯蔵設備8は、水熱処理装置20での水熱処理の第2反応物から製造された燃料を貯蔵するように構成される。   Then, the second reaction product obtained in the hydrothermal treatment apparatus 20 is solid-liquid separated by the solid-liquid separator 21. The solid-liquid separation device 21 is composed of, for example, a filtration device, a centrifugal separation device gravity separation device (thickener), and the like. The solid component separated by the solid-liquid separator 21 is supplied to the drying device 12 together with the solid component separated by the solid-liquid separator 11. Then, the supplied second reactant is made into fuel together with the solid separated by the solid-liquid separation device 11 described above. Therefore, in the waste treatment system 200, the storage facility 8 is configured to store the fuel produced from the second reactant of the hydrothermal treatment in the hydrothermal treatment apparatus 20.

このようにすることで、水熱処理装置20により、発酵物についてさらなる水熱処理を行うことができる。これにより、水熱処理装置20での水熱処理後の第2処理物が微細化されることで、脱水効率が向上し、固液分離装置21で固体と液体とに分離し易くでき、燃料を製造し易くできる。   By doing so, the hydrothermal treatment apparatus 20 can perform further hydrothermal treatment on the fermented product. As a result, the second treated product after the hydrothermal treatment in the hydrothermal treatment device 20 is miniaturized, the dehydration efficiency is improved, and the solid-liquid separation device 21 can easily separate the solid and the liquid, thereby producing the fuel. It can be done easily.

また、固液分離装置21において分離された液体も、上記の固液分離装置19によって分離された液体と同様、比較的純度の高い水になっている。そこで、固液分離装置21によって分離された液体の成分も、そのまま排水される。   Further, the liquid separated in the solid-liquid separator 21 is also water of relatively high purity, like the liquid separated by the solid-liquid separator 19 described above. Therefore, the components of the liquid separated by the solid-liquid separation device 21 are also drained as they are.

廃棄物処理システム200では、上記のように、水熱処理装置20で得られた第2反応物の固形分(固体の成分)は、上記の乾燥装置12に供給される。従って、廃棄物処理システム200では、水熱処理装置20によって得られた固形の第2反応物の燃焼により生じた燃焼エネルギを用いて、排熱回収ボイラ18で蒸気を発生させるようになっている。   In the waste treatment system 200, the solid content (solid component) of the second reaction product obtained in the hydrothermal treatment apparatus 20 is supplied to the drying apparatus 12 as described above. Therefore, in the waste treatment system 200, the exhaust heat recovery boiler 18 is made to generate steam by using the combustion energy generated by the combustion of the solid second reactant obtained by the hydrothermal treatment apparatus 20.

廃棄物処理システム200によれば、水熱処理装置20によって得られた固形の第2反応物の燃焼により、発熱量をさらに増大させることができる。これにより、蒸気の生成量をさらに増大させることができる。また、水熱処理装置20により、水熱処理の生成物は微細化されることで、脱水効率が向上し、第2反応物から水分を分離し易くできる。この結果、第2反応物が燃焼し易くなり、発熱量を高めることができる。   According to the waste treatment system 200, the calorific value can be further increased by burning the solid second reactant obtained by the hydrothermal treatment apparatus 20. Thereby, the production amount of steam can be further increased. In addition, the hydrothermal treatment apparatus 20 makes the hydrothermal treatment products finer to improve the dehydration efficiency and facilitate separation of water from the second reactant. As a result, the second reactant is easily combusted, and the calorific value can be increased.

なお、図2において、ガス化炉15は備えられなくてもよい。この場合、貯蔵設備8に貯蔵された燃料ペレットは、必要に応じて、例えば工業製品等として利用することができる。   In addition, in FIG. 2, the gasification furnace 15 may not be provided. In this case, the fuel pellets stored in the storage facility 8 can be used, for example, as an industrial product or the like, if necessary.

さらに、図2において、固液分離装置21は備えられないようにしてもよい。即ち、水熱処理装置20における水熱処理は、上記のように、100℃を超える高温で行うことができる。そのため、水熱処理装置20において、消化汚泥を水熱処理し、汚泥を微細化したのち、消化汚泥に含まれる水を蒸発させることで、水熱処理装置20での第2反応物の乾燥を効率的に行うことができる。即ち、水熱処理装置20は、水熱処理装置20で得られた第2反応物を乾燥させるように構成される。そして、ここで得られた第2反応物は、乾燥装置12と分級装置13との間に供給されるようにしてもよい。このようにすることで、水熱処理により得られた第2反応物を、水熱処理を行った水熱処理装置20自身で乾燥できる。また、乾燥装置12で処理される固体の量を減らすことができ、乾燥装置12の小型化を図ることができる。   Further, in FIG. 2, the solid-liquid separation device 21 may not be provided. That is, the hydrothermal treatment in the hydrothermal treatment apparatus 20 can be performed at a high temperature exceeding 100 ° C. as described above. Therefore, in the hydrothermal treatment apparatus 20, the digested sludge is hydrothermally treated, the sludge is made into fine particles, and then the water contained in the digested sludge is evaporated to efficiently dry the second reaction product in the hydrothermal treatment apparatus 20. It can be carried out. That is, the hydrothermal treatment apparatus 20 is configured to dry the second reactant obtained in the hydrothermal treatment apparatus 20. The second reaction product obtained here may be supplied between the drying device 12 and the classifying device 13. By doing so, the second reaction product obtained by the hydrothermal treatment can be dried by the hydrothermal treatment apparatus 20 itself which has undergone the hydrothermal treatment. Further, the amount of solids processed by the drying device 12 can be reduced, and the drying device 12 can be downsized.

また、図2において、メタン発酵装置16の発酵物について比重分離を行うようにしてもよい。この場合、有機物を多く含む消化汚泥は下に蓄積し、有機物をほとんど含まない上澄み液は上に溜まる。上澄み液は排水することができる。   Further, in FIG. 2, specific gravity separation may be performed on the fermented product of the methane fermentation device 16. In this case, digested sludge containing a large amount of organic matter accumulates at the bottom, and a supernatant liquid containing almost no organic matter accumulates at the top. The supernatant can be drained.

図3は、本発明の第3実施形態に係る廃棄物処理システム300の系統図である。廃棄物処理システム300は、上記の廃棄物処理システム200(図2参照)において、ボイラ22での燃料ペレットの燃焼により蒸気を発生させて、蒸気タービン23を駆動させることで発電するようになっている。   FIG. 3 is a system diagram of a waste treatment system 300 according to the third embodiment of the present invention. In the waste treatment system 200 (see FIG. 2), the waste treatment system 300 generates steam by burning the fuel pellets in the boiler 22 and drives the steam turbine 23 to generate electric power. There is.

廃棄物処理システム300は、ボイラ22(蒸気発生装置)と、蒸気タービン23と、蒸気タービン23に接続された発電機本体部(図示しない)とを備える。これらのうち、ボイラ22は、貯蔵設備8に貯蔵された燃料ペレットを燃料として燃焼させるためのものである。燃料ペレット(燃料)の燃焼により、蒸気が発生する。また、蒸気タービン23(発電装置)は、ボイラ22において発生した蒸気(少なくとも一部でよい)により駆動されるものである。また、蒸気タービン23に接続される発電機本体部(発電装置)は、蒸気タービン23の駆動により発電するためのものである。   The waste treatment system 300 includes a boiler 22 (steam generator), a steam turbine 23, and a generator main body (not shown) connected to the steam turbine 23. Of these, the boiler 22 is for burning the fuel pellets stored in the storage facility 8 as fuel. Combustion of fuel pellets (fuel) produces steam. The steam turbine 23 (power generation device) is driven by the steam (at least a part of it) generated in the boiler 22. Further, the generator main body (power generator) connected to the steam turbine 23 is for driving the steam turbine 23 to generate power.

貯蔵設備8に貯蔵された燃料ペレットは、上記のようにガス化炉15でガス化されるほか、ボイラ22においても燃焼される。そして、ボイラ22では、燃料ペレットの燃焼により蒸気が発生し、発生した蒸気によって蒸気タービン23が駆動される。これにより、蒸気タービン23に接続された発電機本体部が発電を行い、電力が取り出される。即ち、蒸気が蒸気タービン23を駆動させて、蒸気タービン23に接続された発電機本体部により発電できる。なお、この例では、ボイラ22では燃料ペレットを燃焼させたが、例えば、乾燥装置12により得られた乾燥物を、上記の燃料ペレットに代えて、又は、上記の燃料ペレットとともにボイラ22で燃焼させるようにしてもよい。成形前の乾燥物を燃焼させることで、成形に伴う時間及びコストを削減できる。   The fuel pellets stored in the storage facility 8 are gasified in the gasification furnace 15 as described above and also burned in the boiler 22. Then, in the boiler 22, steam is generated by the combustion of the fuel pellets, and the steam turbine 23 is driven by the generated steam. As a result, the generator main body connected to the steam turbine 23 generates electric power and the electric power is taken out. That is, the steam drives the steam turbine 23, and power can be generated by the generator main body connected to the steam turbine 23. In this example, the fuel pellets were burned in the boiler 22, but, for example, the dried material obtained by the drying device 12 is burned in the boiler 22 instead of the above fuel pellets or together with the above fuel pellets. You may do it. By burning the dried material before molding, the time and cost involved in molding can be reduced.

一方で、蒸気タービン23に供給された蒸気は、蒸気タービン23の途中から取り出され、水熱処理装置10に供給される。なお、蒸気タービン23に供給された蒸気は、水熱処理装置20に供給されるようにしてもよい。   On the other hand, the steam supplied to the steam turbine 23 is taken out from the middle of the steam turbine 23 and supplied to the hydrothermal treatment apparatus 10. The steam supplied to the steam turbine 23 may be supplied to the hydrothermal treatment apparatus 20.

廃棄物処理システム300によれば、蒸気が蒸気タービン23を駆動させて、蒸気タービン23に接続された発電機本体部による発電を行うことができる。そして、蒸気タービン23に供給された蒸気は水熱処理装置10に供給されるため、ボイラ22で発生した蒸気を用いて水熱処理を行うことができる。   According to the waste treatment system 300, the steam drives the steam turbine 23, and power can be generated by the generator main body connected to the steam turbine 23. Then, since the steam supplied to the steam turbine 23 is supplied to the hydrothermal treatment apparatus 10, hydrothermal treatment can be performed using the steam generated in the boiler 22.

また、廃棄物処理システム300では、発電装置は、ガスエンジン17(発電装置。第1発電装置)及び蒸気タービン23(発電装置。第2発電装置)を含む。これにより、電力需要に応じて発電装置の使用台数を任意に変更できる。これにより、電力需要に応じて発電量を柔軟に変更でき、安定的な電力供給を行うことができる。   Further, in the waste treatment system 300, the power generation device includes the gas engine 17 (power generation device. First power generation device) and the steam turbine 23 (power generation device. Second power generation device). As a result, the number of power generators used can be arbitrarily changed according to the power demand. As a result, the amount of power generation can be flexibly changed according to the power demand, and stable power supply can be performed.

また、ボイラ22では、水熱処理装置10における固体の反応物である燃料ペレットが燃焼される。水熱処理装置10では、塩分は液側に含まれるため、固体側の塩濃度は十分に低減される。これにより、燃料ペレットをボイラ22で燃焼させる際、ボイラ22への塩分の持ち込みを抑制し、ボイラ22の腐食を抑制できる。   Further, in the boiler 22, the fuel pellets that are solid reactants in the hydrothermal treatment apparatus 10 are burned. In the hydrothermal treatment apparatus 10, since the salt content is included on the liquid side, the salt concentration on the solid side is sufficiently reduced. Thereby, when the fuel pellets are burned in the boiler 22, it is possible to suppress the carry-in of salt into the boiler 22 and suppress the corrosion of the boiler 22.

なお、ボイラ22への燃料ペレットの供給の際、燃料ペレットは、ボイラ22におけるストーカ(図示しない)の中央付近に供給することができる。これにより、速やかに燃料ペレットを燃焼できる。また、図示しないが、ボイラ22に廃棄物も供給する場合、廃棄物の含水量に応じて燃料ペレットの供給量を調整して、ボイラ22に入る水分量が同程度になることが好ましい。   When supplying the fuel pellets to the boiler 22, the fuel pellets can be supplied to the vicinity of the center of a stoker (not shown) in the boiler 22. Thereby, the fuel pellets can be burned quickly. Further, although not shown, when waste is also supplied to the boiler 22, it is preferable that the supply amount of the fuel pellets be adjusted according to the water content of the waste so that the amount of water entering the boiler 22 is about the same.

図4は、本発明の第4実施形態に係る廃棄物処理システム400の系統図である。廃棄物処理システム400は、上記の廃棄物処理システム300(図3参照)において、発電装置を3つ備える。具体的には、廃棄物処理システム400では、上記のガスエンジン17(発電装置。第1発電装置)及び蒸気タービン23(発電装置。第2発電装置)に加えて、蒸気タービン25(発電装置。第3発電装置)を備える。蒸気タービン25には、図示しない発電装置本体部が接続される。また、廃棄物処理システム400は、蒸気タービン25に蒸気を供給するためのボイラ24を備える。なお、発電装置は4つ以上でもよい。   FIG. 4 is a system diagram of a waste treatment system 400 according to the fourth embodiment of the present invention. The waste treatment system 400 includes three power generation devices in the waste treatment system 300 (see FIG. 3) described above. Specifically, in the waste treatment system 400, in addition to the gas engine 17 (power generation device. First power generation device) and the steam turbine 23 (power generation device. Second power generation device), the steam turbine 25 (power generation device. A third power generator). The steam turbine 25 is connected to a power generator main body (not shown). The waste treatment system 400 also includes a boiler 24 for supplying steam to the steam turbine 25. The number of power generators may be four or more.

廃棄物処理システム400では、上記のように、燃料ペレットから生成したガスを用いて、ガスエンジン17が発電する。また、燃料ペレットは、上記のようにボイラ22で燃焼されるほか、必要に応じて、ボイラ24でも燃焼される。これにより、ボイラ24で発生した蒸気によって蒸気タービン25が駆動され、蒸気タービン25に接続された発電装置本体部での発電が行われる。また、蒸気タービン25での蒸気は、上記の蒸気タービン23での蒸気と同様に、水熱処理装置10に供給される。   In the waste treatment system 400, the gas engine 17 uses the gas generated from the fuel pellets to generate power, as described above. Further, the fuel pellets are burned in the boiler 22 as described above and, if necessary, also in the boiler 24. As a result, the steam turbine 25 is driven by the steam generated in the boiler 24, and power is generated in the power generator main body connected to the steam turbine 25. Further, the steam in the steam turbine 25 is supplied to the hydrothermal treatment apparatus 10 similarly to the steam in the steam turbine 23.

廃棄物処理システム400によれば、電力需要に応じて発電装置(ボイラ及び蒸気タービン)の使用台数を任意に変更できる。これにより、電力需要に応じて発電量を柔軟に変更でき、安定的な電力供給を行うことができる。具体的には例えば、ガスエンジン17による発電を基本としつつ、日々の電力需要の変化(例えば昼夜における電力需要の変化)に応じて、ボイラ22及び蒸気タービン23を併用できる。そして、例えば、季節による電力需要の変化に応じて、ボイラ24及び蒸気タービン25をさらに併用できる。   According to the waste treatment system 400, the number of power generators (boilers and steam turbines) used can be arbitrarily changed according to the power demand. As a result, the amount of power generation can be flexibly changed according to the power demand, and stable power supply can be performed. Specifically, for example, the boiler 22 and the steam turbine 23 can be used together in accordance with daily power demand changes (for example, day and night power demand changes) while power generation is basically performed by the gas engine 17. Then, for example, the boiler 24 and the steam turbine 25 can be further used together according to the change in the power demand depending on the season.

図5は、本発明の第5実施形態に係る廃棄物処理システム500の系統図である。廃棄物処理システム500は、上記の廃棄物処理システム200(図2参照)において燃料ペレットの製造に使用されるバインダを、樹脂、油脂のような廃棄物から生成するものである。なお、図5では、バインダを製造するために水熱処理装置26を記載しているが、水熱処理装置26を用いず、水熱処理装置10に樹脂又は油脂を供給してもよい。   FIG. 5 is a system diagram of a waste treatment system 500 according to the fifth embodiment of the present invention. The waste treatment system 500 generates a binder used for manufacturing fuel pellets in the waste treatment system 200 (see FIG. 2) from waste such as resin and fats and oils. Although FIG. 5 illustrates the hydrothermal treatment device 26 for manufacturing the binder, the hydrothermal treatment device 26 may be omitted and a resin or an oil or fat may be supplied to the hydrothermal treatment device 10.

廃棄物処理システム500は、樹脂又は油脂の少なくとも一方を含む廃棄物の水熱処理により第3反応物を得るための水熱処理装置26(第3水熱処理装置)を備える。ここでいう樹脂又は油脂は、例えば、プラスチック等の樹脂、POME(パームオイル工場廃液)等を油水分離して得られる油脂である。   The waste treatment system 500 includes a hydrothermal treatment device 26 (third hydrothermal treatment device) for obtaining a third reaction product by hydrothermal treatment of waste containing at least one of resin and oil. The resin or fats and oils referred to here are, for example, fats and oils obtained by separating resin such as plastic, POME (palm oil factory waste liquid) and the like into oil and water.

水熱処理装置26における水熱処理の条件としては、上記の水熱処理装置10における水熱処理の条件と同じ条件にすることができる。また、水熱処理装置26では、排熱回収ボイラ18から供給された蒸気を用いた水熱処理が行われてもよいし、それ以外の図示しない蒸気発生装置から供給された蒸気を用いた水熱処理が行われてもよい。さらには、水熱処理装置26も、上記の水熱処理装置10と同様に、例えばバッチ式水熱処理装置を含む。バッチ式水処理装置の具体的な構造は、例えば後記する図17、図18等に記載の構造とすることができる。   The conditions for the hydrothermal treatment in the hydrothermal treatment device 26 can be the same as the conditions for the hydrothermal treatment in the hydrothermal treatment device 10 described above. Further, in the hydrothermal treatment apparatus 26, hydrothermal treatment using steam supplied from the exhaust heat recovery boiler 18 may be performed, or hydrothermal treatment using steam supplied from another steam generator (not shown) may be performed. May be done. Further, the hydrothermal treatment apparatus 26 also includes, for example, a batch hydrothermal treatment apparatus, like the hydrothermal treatment apparatus 10 described above. The specific structure of the batch-type water treatment device can be, for example, the structure shown in FIGS. 17 and 18 described later.

樹脂又は油脂の少なくとも一方を含む廃棄物の水熱処理により、第3反応物が得られる。そして、固液分離装置27(上記の固液分離装置11と同じものを採用できる)において第3反応物を固液分離することで、固体の第3反応物が得られる。一方で、液体の第3反応物はそのまま排水される。固液分離装置27において得られた固体の第3反応物は、樹脂又は油脂の少なくとも一方を含む廃棄物に由来するものである。そのため、第3反応物の粘度が比較的高い。そこで、固体の第3反応物は、乾燥装置28(上記の乾燥装置12と同じものを採用できる)により乾燥された後、バインダとして、成形装置14に供給される。   The third reaction product is obtained by the hydrothermal treatment of the waste containing at least one of the resin and the oil and fat. Then, by solid-liquid separating the third reactant in the solid-liquid separator 27 (the same as the solid-liquid separator 11 described above can be adopted), a solid third reactant is obtained. On the other hand, the liquid third reactant is drained as it is. The solid third reaction product obtained in the solid-liquid separation device 27 is derived from waste containing at least one of resin and oil. Therefore, the viscosity of the third reactant is relatively high. Therefore, the solid third reactant is dried by the drying device 28 (the same one as the above-mentioned drying device 12 can be adopted), and then supplied to the molding device 14 as a binder.

そして、成形装置14では、上記の乾燥物と当該バインダとの接触により、燃料ペレットが製造される。従って、廃棄物処理システム500では、水熱処理装置10、固液分離装置11、乾燥装置12、分級装置13及び成形装置14を含む燃料製造装置は、第3反応物を用いて燃料ペレット(固形の燃料)を製造するように構成される。   Then, in the molding device 14, fuel pellets are manufactured by contacting the dried material with the binder. Therefore, in the waste treatment system 500, the fuel production device including the hydrothermal treatment device 10, the solid-liquid separation device 11, the drying device 12, the classification device 13, and the molding device 14 uses the third reactant to produce fuel pellets (solid pellets). Fuel).

廃棄物処理システム500によれば、水熱処理装置26によって得られた第3反応物をバインダとして用いることで、燃料ペレットの成形を容易に行うことができ、固形の燃料を製造できる。   According to the waste treatment system 500, by using the third reaction product obtained by the hydrothermal treatment device 26 as a binder, the fuel pellets can be easily molded and a solid fuel can be manufactured.

図6は、本発明の第6実施形態に係る廃棄物処理システム600の系統図である。廃棄物処理システム600は、上記の廃棄物処理システム300(図3参照)において、廃棄物を焼却するためのボイラ22から蒸気タービン23に供給される蒸気の温度を高めるものである。廃棄物処理システム600は、燃料の燃焼を行うための燃焼炉29と、燃焼炉29で生成した燃焼エネルギを用いて、ボイラ22から蒸気タービン23に供給される蒸気の過熱を行うための再熱器31とを備える。燃焼炉29では、成形装置14で製造された燃料ペレットが燃焼される。このようにすることで、蒸気タービン23で使用される蒸気を過熱できる。廃棄物をごみ焼却炉で燃焼させる場合、ボイラチューブの高温腐食の問題からボイラ発生蒸気の温度は、通常400℃以上に昇温することができない。しかしながら、システム700のように別置きのバイオガス燃焼炉と再熱器を備えることにより、蒸気タービンへ供給する蒸気を400℃以上に昇温することができ、蒸気タービン効率(発電効率)を向上させることができる。   FIG. 6 is a system diagram of a waste treatment system 600 according to the sixth embodiment of the present invention. The waste treatment system 600 raises the temperature of the steam supplied from the boiler 22 for incinerating the waste to the steam turbine 23 in the waste treatment system 300 (see FIG. 3). The waste treatment system 600 uses the combustion furnace 29 for combusting the fuel and the combustion energy generated in the combustion furnace 29 to reheat the steam supplied from the boiler 22 to the steam turbine 23. And a container 31. In the combustion furnace 29, the fuel pellets manufactured by the molding device 14 are burned. By doing so, the steam used in the steam turbine 23 can be superheated. When burning waste in a refuse incinerator, the temperature of the steam generated by the boiler cannot be usually raised to 400 ° C. or higher due to the problem of high temperature corrosion of the boiler tube. However, by providing a separate biogas combustion furnace and reheater like the system 700, the steam supplied to the steam turbine can be heated to 400 ° C. or higher, and the steam turbine efficiency (power generation efficiency) is improved. Can be made

ボイラ22で燃焼される廃棄物の含水量が多い場合(例えばボイラ22で燃焼される廃棄物が生ごみの場合)、ボイラ22で発生する燃焼ガスの熱量が小さくなる。この結果、ボイラ22における蒸気発生量が少なくなり、安定して電力量を供給することができなくなる。そこで、ボイラ22で発生する燃焼ガスの熱量に応じて、燃焼炉29におけるバイオガスの燃焼量を調整することで、再熱器を通して、蒸気発生量や蒸気温度を安定化させ、安定した電力量を供給させることができようになる。
またこの場合、再熱器31で蒸気を過熱した後の燃焼ガスはごみ焼却炉に供給される。
When the water content of the waste combusted in the boiler 22 is large (for example, when the waste combusted in the boiler 22 is raw garbage), the heat quantity of the combustion gas generated in the boiler 22 becomes small. As a result, the amount of steam generated in the boiler 22 decreases, and it becomes impossible to stably supply the amount of electric power. Therefore, by adjusting the combustion amount of the biogas in the combustion furnace 29 according to the heat amount of the combustion gas generated in the boiler 22, the steam generation amount and the steam temperature are stabilized through the reheater, and the stable electric power amount is obtained. Will be able to supply.
Further, in this case, the combustion gas after the steam is superheated by the reheater 31 is supplied to the refuse incinerator.

廃棄物処理システム600によれば、含水量が多い廃棄物を燃焼させるボイラ22であっても、安定して電力を供給することができる。   According to the waste treatment system 600, electric power can be stably supplied even to the boiler 22 that burns waste having a large water content.

図7は、本発明の第7実施形態に係る廃棄物処理システム700の系統図である。廃棄物処理システム700は、上記の廃棄物処理システム200(図2参照)において、ガスエンジン17及び排熱回収ボイラ18に代えて、ボイラ22及び蒸気タービン23が備えられる。そして、貯蔵設備9に貯蔵されたバイオガスの燃焼エネルギを用いて、蒸気タービン23に供給される蒸気が過熱されるようになっている。   FIG. 7 is a system diagram of a waste treatment system 700 according to the seventh embodiment of the present invention. The waste treatment system 700 includes a boiler 22 and a steam turbine 23 in place of the gas engine 17 and the exhaust heat recovery boiler 18 in the waste treatment system 200 (see FIG. 2) described above. Then, the combustion energy of the biogas stored in the storage facility 9 is used to superheat the steam supplied to the steam turbine 23.

廃棄物処理システム700は、上記のようにボイラ22及び蒸気タービン23を備えるほか、メタン発酵装置16で得られたメタンを燃焼させるための燃焼炉29と、燃焼炉29で発生した燃焼ガスが供給される再熱器31とを備える。再熱器31により、ボイラ22から蒸気タービン23に供給される蒸気を過熱できる。また、再熱器31で蒸気を過熱した後の燃焼ガスはボイラ22に供給される。   The waste treatment system 700 includes the boiler 22 and the steam turbine 23 as described above, and supplies the combustion furnace 29 for burning the methane obtained in the methane fermentation apparatus 16 and the combustion gas generated in the combustion furnace 29. The reheater 31 is provided. The reheater 31 can superheat the steam supplied from the boiler 22 to the steam turbine 23. Further, the combustion gas after the steam is superheated by the reheater 31 is supplied to the boiler 22.

廃棄物処理システム700によれば、燃料ペレットの燃焼により十分に高温になった蒸気を過熱して、上記の廃棄物処理システム600よりもさらに過熱状態の蒸気をボイラ22に供給できる。これにより、発電効率をさらに高めることができる。   According to the waste treatment system 700, it is possible to superheat the vapor that has become sufficiently high temperature by the combustion of the fuel pellets, and supply the steam in a superheated state to the boiler 22 more than the waste treatment system 600 described above. Thereby, the power generation efficiency can be further improved.

図8は、本発明の第8実施形態に係る廃棄物処理システム800の系統図である。廃棄物処理システム800は、上記の廃棄物処理システム300(図3参照)において、ボイラ22での燃料ペレットの燃焼に加えて、ボイラ22と接続される燃焼炉29においても燃料ペレットが燃焼される。廃棄物処理システム700は、例えば、化石燃料を燃焼させるボイラ22を備える既設の火力発電所等に対し、廃棄物処理システム700を新設する場合に好適な形態である。   FIG. 8 is a system diagram of a waste treatment system 800 according to the eighth embodiment of the present invention. In the waste treatment system 800, in the waste treatment system 300 (see FIG. 3), in addition to the combustion of fuel pellets in the boiler 22, the fuel pellets are also combusted in the combustion furnace 29 connected to the boiler 22. .. The waste treatment system 700 is a suitable form when the waste treatment system 700 is newly installed with respect to the existing thermal power plant etc. which equip the boiler 22 which burns fossil fuel, for example.

燃焼炉29は例えば流動床炉により構成され、燃焼炉29での燃料ペレットの完全燃焼により、燃焼排ガスが得られる。そして、この燃焼ガスを用いて、排熱回収ボイラ30によって蒸気が発生する。即ち、排熱回収ボイラ30では、燃料ペレット(燃料)を燃焼させるための流動床炉により構成された燃焼炉29での燃焼エネルギを用いて、蒸気が発生するようになっている。このようにすることで、流動床炉により、速やかに、かつ、燃焼ムラを抑制しながら燃料を燃焼できる。これにより、速やかに、かつ発生量のムラを抑制しながら蒸気を発生できる。   The combustion furnace 29 is constituted by, for example, a fluidized bed furnace, and combustion exhaust gas is obtained by complete combustion of fuel pellets in the combustion furnace 29. Then, using this combustion gas, steam is generated by the exhaust heat recovery boiler 30. That is, in the exhaust heat recovery boiler 30, steam is generated by using the combustion energy in the combustion furnace 29 configured by the fluidized bed furnace for burning the fuel pellets (fuel). By doing so, the fluidized bed furnace can rapidly burn the fuel while suppressing the uneven combustion. As a result, steam can be generated promptly and while suppressing unevenness in the generated amount.

発生した蒸気は蒸気タービン23に供給される。一方で、排熱回収ボイラ30において蒸気を生成させた後の燃焼排ガスは、上記の乾燥装置12に供給される。そして、乾燥装置12において、燃料ペレットの燃焼により生じた燃焼排ガスを用いて、固液分離装置11で得られた固形の反応物の乾燥が行われる。   The generated steam is supplied to the steam turbine 23. On the other hand, the combustion exhaust gas after the steam is generated in the exhaust heat recovery boiler 30 is supplied to the drying device 12 described above. Then, in the drying device 12, the solid reaction product obtained in the solid-liquid separation device 11 is dried using the combustion exhaust gas generated by the combustion of the fuel pellets.

廃棄物処理システム800によれば、蒸気タービン23に供給される蒸気量を増加できる。これにより、発電効率を高めることができる。また、燃焼炉29で発生した燃焼排ガスを用いて固体の反応物の乾燥を行うことができる。   According to the waste treatment system 800, the amount of steam supplied to the steam turbine 23 can be increased. Thereby, power generation efficiency can be improved. Further, it is possible to dry the solid reaction product using the combustion exhaust gas generated in the combustion furnace 29.

図9は、本発明の第8実施形態に係る廃棄物処理システム900の系統図である。廃棄物処理システム900は、燃料の燃焼を行うための流動床炉である燃焼炉29と、ボイラ22(蒸気発生装置)に供給される水を加熱するための給水加熱器33とを備える。そして、給水加熱器33は、流動床炉である燃焼炉29において発生した燃焼エネルギを用いて水を加熱するように構成される。従って、図9に示す廃棄物処理システム900は、上記の廃棄物処理システム800(図8参照)において、排熱回収ボイラ30から排出された燃焼排ガスは、乾燥装置12に供給されるほか、蒸気タービン23からボイラ22に戻る水を加熱するための給水加熱器33に供給される。   FIG. 9 is a system diagram of a waste treatment system 900 according to the eighth embodiment of the present invention. The waste treatment system 900 includes a combustion furnace 29, which is a fluidized bed furnace for burning fuel, and a feed water heater 33 for heating water supplied to the boiler 22 (steam generator). The feed water heater 33 is configured to heat the water by using the combustion energy generated in the combustion furnace 29 which is the fluidized bed furnace. Therefore, in the waste treatment system 900 shown in FIG. 9, in the waste treatment system 800 (see FIG. 8), the combustion exhaust gas discharged from the exhaust heat recovery boiler 30 is supplied to the drying device 12 and steam. The water returned from the turbine 23 to the boiler 22 is supplied to a feed water heater 33 for heating the water.

廃棄物処理システム900によれば、給水加熱器33によって温度が高められた水をボイラ22に供給することができる。これにより、蒸気発生量を増やすことができ、発電効率を高めることができる。また、流動床炉により、速やかに、かつ、燃焼ムラを抑制しながら燃料を燃焼できる。これにより、速やかに、かつ発生量のムラを抑制しながら蒸気を発生できる。   According to the waste treatment system 900, water whose temperature has been raised by the feed water heater 33 can be supplied to the boiler 22. As a result, the amount of steam generated can be increased and power generation efficiency can be increased. In addition, the fluidized bed furnace allows the fuel to be burned quickly and while suppressing combustion unevenness. As a result, steam can be generated promptly and while suppressing unevenness in the generated amount.

図10は、本発明の第10実施形態に係る廃棄物処理システム1000の系統図である。廃棄物処理システム1000は、上記の廃棄物処理システム100〜900とは異なり、メタン発酵装置16を備えていない。そのため、固液分離装置11で分離された液体は、水処理装置43に供給される。水処理装置43では、供給された液体中の塩類等が凝集剤(図示しない)によって凝集される。これにより、液中の塩類等が除去されて、外部に排水される。また、凝集物は、汚泥処理装置44において乾燥される。そして、乾燥物の一部から液肥(液体肥料)が得られ、残部として残渣が得られる。残渣は、必要に応じて焼却処理される。   FIG. 10 is a system diagram of a waste treatment system 1000 according to the tenth embodiment of the present invention. The waste treatment system 1000 does not include the methane fermentation device 16 unlike the waste treatment systems 100 to 900 described above. Therefore, the liquid separated by the solid-liquid separator 11 is supplied to the water treatment device 43. In the water treatment device 43, salts and the like in the supplied liquid are aggregated by an aggregating agent (not shown). As a result, salts and the like in the liquid are removed and drained to the outside. The aggregate is dried in the sludge treatment device 44. Then, liquid fertilizer (liquid fertilizer) is obtained from a part of the dried product, and a residue is obtained as the rest. The residue is incinerated if necessary.

廃棄物処理システム1000によれば、廃棄物から液肥(コンポスト)を製造することができる。また、廃棄物の水熱処理後の反応物に由来し、塩分含有量が少ない燃料ペレットがボイラ22において焼却されるため、ボイラ22の腐食を抑制できる。   According to the waste treatment system 1000, liquid fertilizer (compost) can be produced from waste. Further, since the fuel pellets, which are derived from the reaction product of the waste after the hydrothermal treatment and have a low salt content, are incinerated in the boiler 22, corrosion of the boiler 22 can be suppressed.

図11は、本発明の第11実施形態に係る廃棄物処理システム1100の系統図である。廃棄物処理システム1100は、上記の廃棄物処理システム1000(図10参照)と同様に、メタン発酵装置16を備えていない。そして、廃棄物処理システム1100は、上記の廃棄物処理システム400(図4参照)と同様に、ボイラ22,24及び蒸気タービン23,25(即ち、2つの発電装置)を備える。従って、例えば、ボイラ22で発生した水蒸気により蒸気タービン23を駆動させつつ、必要に応じてボイラ24で水蒸気を発生させて蒸気タービン25による発電を行うことができる。   FIG. 11 is a system diagram of a waste treatment system 1100 according to the eleventh embodiment of the present invention. The waste treatment system 1100 does not include the methane fermentation device 16 like the waste treatment system 1000 (see FIG. 10) described above. And the waste treatment system 1100 is equipped with the boilers 22 and 24 and the steam turbines 23 and 25 (namely, two power generators) similarly to the above-mentioned waste treatment system 400 (refer to Drawing 4). Therefore, for example, while the steam turbine 23 is driven by the steam generated in the boiler 22, the steam can be generated in the boiler 24 as needed to generate power by the steam turbine 25.

廃棄物処理システム1100によれば、電力需要に応じて発電装置(ボイラ及び蒸気タービン)の使用台数を任意に変更できる。これにより、電力需要に応じて発電量を柔軟に変更でき、安定的な電力供給を行うことができる。   According to the waste treatment system 1100, the number of power generators (boilers and steam turbines) used can be arbitrarily changed according to the power demand. As a result, the amount of power generation can be flexibly changed according to the power demand, and stable power supply can be performed.

図12は、本発明の第12実施形態に係る廃棄物処理システム1200の系統図である。廃棄物処理システム1200は、上記の廃棄物処理システム1000(図10参照)と同様に、上記の廃棄物処理システム1000(図10参照)と同様に、メタン発酵装置16を備えていない。そして、廃棄物処理システム1100は、上記の廃棄物処理システム600(図6参照)と同様に、燃焼炉29及び再熱器31を備える。また、ボイラ22では、上記の廃棄物処理システム600と同様に、含水量が多い廃棄物が燃焼される。   FIG. 12 is a system diagram of a waste treatment system 1200 according to the twelfth embodiment of the present invention. The waste treatment system 1200, like the waste treatment system 1000 (see FIG. 10), does not include the methane fermentation device 16 like the waste treatment system 1000 (see FIG. 10). The waste treatment system 1100 includes the combustion furnace 29 and the reheater 31, similarly to the waste treatment system 600 (see FIG. 6). Further, in the boiler 22, as in the waste treatment system 600 described above, waste having a large water content is burned.

廃棄物処理システム1200によれば、含水量が多い廃棄物を燃焼させるボイラ22であっても、過熱蒸気を製造することができ、発電効率を高めることができる。   According to the waste treatment system 1200, even the boiler 22 that burns waste having a large water content can produce superheated steam and can improve power generation efficiency.

図13は、本発明の第13実施形態に係る廃棄物処理システム1300の系統図である。廃棄物処理システム1300は、上記の廃棄物処理システム1000(図10参照)と同様に、メタン発酵装置16を備えていない。そして、廃棄物処理システム1300は、上記の廃棄物処理システム100(図1参照)と同様に、ガス化炉15、ガスエンジン17及び排熱回収ボイラ18を備える。   FIG. 13 is a system diagram of a waste treatment system 1300 according to the thirteenth embodiment of the present invention. The waste treatment system 1300 does not include the methane fermentation device 16 like the waste treatment system 1000 (see FIG. 10) described above. The waste treatment system 1300 includes the gasification furnace 15, the gas engine 17, and the exhaust heat recovery boiler 18, similarly to the waste treatment system 100 (see FIG. 1).

廃棄物処理システム1300では、固液分離装置11で分離された液体は、上記の水処理装置43において処理されるほか、例えば流動床炉により構成されるガス化炉15において、燃料ペレットとともに燃焼される。そのため、廃棄物処理システム1300によれば、水処理装置43における水処理量を減らすことができ、後段の汚泥処理装置44で生成する残渣量を減らすことができる。   In the waste treatment system 1300, the liquid separated by the solid-liquid separation device 11 is treated in the water treatment device 43, and is also burned together with the fuel pellets in the gasification furnace 15 constituted by, for example, a fluidized bed furnace. It Therefore, according to the waste treatment system 1300, the amount of water treatment in the water treatment device 43 can be reduced, and the amount of residue generated in the sludge treatment device 44 in the subsequent stage can be reduced.

図14は、本発明の第14実施形態に係る廃棄物処理システム1400の系統図である。廃棄物処理システム1400は、上記の廃棄物処理システム1000(図10参照)と同様に、メタン発酵装置16を備えていない。そして、廃棄物処理システム1400は、上記の廃棄物処理システム800(図8参照)と同様に、燃焼炉29及び排熱回収ボイラ30を備える。廃棄物処理システム1400では、燃焼炉29において、燃料ペレット(分級する前の乾燥物でもよい)のほか、廃棄物が燃焼される。   FIG. 14 is a system diagram of a waste treatment system 1400 according to the fourteenth embodiment of the present invention. The waste treatment system 1400 does not include the methane fermentation device 16 like the waste treatment system 1000 (see FIG. 10) described above. Then, the waste treatment system 1400 includes the combustion furnace 29 and the exhaust heat recovery boiler 30, similarly to the waste treatment system 800 (see FIG. 8). In the waste treatment system 1400, in the combustion furnace 29, not only the fuel pellets (which may be a dried product before classification) but also the waste products are burned.

廃棄物処理システム1400によれば、蒸気タービン23に供給される蒸気量を増加できる。特に、燃焼炉29において廃棄物が燃焼されるため、上記の廃棄物処理システム800と比べて発熱量がさらに増加する。これにより、蒸気タービン23に供給される蒸気量をさらに増やすことができ、発電効率をさらに高めることができる。   According to the waste treatment system 1400, the amount of steam supplied to the steam turbine 23 can be increased. In particular, since the waste is burned in the combustion furnace 29, the calorific value is further increased as compared with the waste treatment system 800 described above. As a result, the amount of steam supplied to the steam turbine 23 can be further increased, and power generation efficiency can be further increased.

図15は、本発明の第15実施形態に係る廃棄物処理システム1500の系統図である。廃棄物処理システム1500は、上記の廃棄物処理システム1000(図10参照)と同様に、メタン発酵装置16を備えていない。そして、廃棄物処理システム1500は、上記の廃棄物処理システム900(図9参照)と同様に、燃焼炉29と、排熱回収ボイラ30と、給水加熱器33とを備える。また、廃棄物処理システム1500では、燃焼炉29において、燃料ペレット(分級する前の乾燥物でもよい)のほか、廃棄物が燃焼される。   FIG. 15 is a system diagram of a waste treatment system 1500 according to the fifteenth embodiment of the present invention. The waste treatment system 1500 does not include the methane fermentation device 16 like the waste treatment system 1000 (see FIG. 10) described above. Then, the waste treatment system 1500 includes the combustion furnace 29, the exhaust heat recovery boiler 30, and the feed water heater 33, similarly to the waste treatment system 900 (see FIG. 9). Further, in the waste treatment system 1500, in the combustion furnace 29, in addition to the fuel pellets (which may be a dried product before classification), the waste products are burned.

廃棄物処理システム1500によれば、給水加熱器33によって温度が高められた水をボイラ22に供給することができる。これにより、蒸気発生量を増やすことができ、発電効率を高めることができる。特に、燃焼炉29において廃棄物が燃焼されるため、上記の廃棄物処理システム800と比べて発熱量がさらに増加する。これにより、蒸気タービン23に供給される蒸気量をさらに増やすことができ、発電効率をさらに高めることができる。   According to the waste treatment system 1500, water whose temperature has been raised by the feed water heater 33 can be supplied to the boiler 22. As a result, the amount of steam generated can be increased and power generation efficiency can be increased. In particular, since the waste is burned in the combustion furnace 29, the calorific value is further increased as compared with the waste treatment system 800 described above. As a result, the amount of steam supplied to the steam turbine 23 can be further increased, and power generation efficiency can be further increased.

図16は、本発明の第16実施形態に係る廃棄物処理システム1600の系統図である。廃棄物処理システム1600は、上記の廃棄物処理システム1000(図10参照)と同様に、メタン発酵装置16を備えていない。そして、水熱処理装置10で得られた反応物は、乾燥装置12によって乾燥されて乾燥物となった後、乾燥物は燃焼炉29で燃焼される。ただし、当該乾燥物から燃料ペレットを製造し、燃料ペレットを燃焼炉29で燃焼されるようにしてもよい。燃焼炉29で発生した燃焼エネルギから、排熱回収ボイラ30で蒸気が発生する。発生した蒸気は給水加熱器33に供給され、供給された蒸気により、蒸気タービン23で使用された蒸気が加熱される。そして、排熱回収ボイラ30から供給され、蒸気の加熱に使用された蒸気は、燃焼炉29に供給される。   FIG. 16 is a system diagram of a waste treatment system 1600 according to the 16th embodiment of the present invention. The waste treatment system 1600 does not include the methane fermentation device 16 like the waste treatment system 1000 (see FIG. 10) described above. Then, the reaction product obtained in the hydrothermal treatment apparatus 10 is dried by the drying device 12 to become a dried product, and the dried product is burned in the combustion furnace 29. However, it is also possible to manufacture fuel pellets from the dried product and burn the fuel pellets in the combustion furnace 29. Steam is generated in the exhaust heat recovery boiler 30 from the combustion energy generated in the combustion furnace 29. The generated steam is supplied to the feedwater heater 33, and the steam used in the steam turbine 23 is heated by the supplied steam. Then, the steam supplied from the exhaust heat recovery boiler 30 and used for heating the steam is supplied to the combustion furnace 29.

また、廃棄物処理システム1600は、廃棄物を燃焼するためのボイラ22と、蒸気タービン23と、蒸気タービン23に接続された図示しない発電装置本体部とを備える。これらは、例えば、図示しない既設の火力発電所、ごみ焼却場等の設備に備えられたものである。そして、上記の排熱回収ボイラ30で発生した蒸気は蒸気タービン23に供給される。そして、蒸気タービン23で使用された後の水(低温の蒸気)は給水加熱器33で加熱され、再度蒸気タービン23で使用される。従って、蒸気タービン23に接続された発電装置本体部は、ボイラ22で発生した蒸気、及び、排熱回収ボイラ30で発生した蒸気の双方を用いて、発電するようになっている。   The waste treatment system 1600 also includes a boiler 22 for burning waste, a steam turbine 23, and a power generator main body (not shown) connected to the steam turbine 23. These are provided, for example, in facilities such as an existing thermal power plant and a refuse incinerator, which are not shown. Then, the steam generated in the exhaust heat recovery boiler 30 is supplied to the steam turbine 23. Then, the water (low-temperature steam) that has been used in the steam turbine 23 is heated by the feed water heater 33 and used again in the steam turbine 23. Therefore, the power generator main body connected to the steam turbine 23 is configured to generate power using both the steam generated in the boiler 22 and the steam generated in the exhaust heat recovery boiler 30.

廃棄物処理システム1600によれば、例えば既設の設備に対して蒸気を供給することができる。これにより、廃棄物を用いて、既設の設備における発電量を増やすことができる。   According to the waste treatment system 1600, for example, steam can be supplied to existing equipment. This makes it possible to increase the amount of power generation in the existing facility by using the waste.

図17は、本発明の第17実施形態に係る水熱処理装置10の断面図である。図17に示す水熱処理装置10は、上記の廃棄物処理システム100〜1600において使用可能なものである。水熱処理装置10は、水熱処理を行うための本体部10Aと、本体部10Aと排出口102(反応物排出口)を介して連通される内部空間10Baを形成するためのバケット10Bとを備える。バケット10Bは、本体部10Aから排出された反応物を固液分離装置11に送るためのものでもある。   FIG. 17 is a sectional view of the hydrothermal treatment apparatus 10 according to the seventeenth embodiment of the present invention. The hydrothermal treatment apparatus 10 shown in FIG. 17 can be used in the waste treatment systems 100 to 1600 described above. The hydrothermal treatment apparatus 10 includes a main body portion 10A for performing the hydrothermal treatment, and a bucket 10B for forming an internal space 10Ba that communicates with the main body portion 10A via the discharge port 102 (reactant discharge port). The bucket 10B is also for sending the reaction product discharged from the main body 10A to the solid-liquid separation device 11.

本体部10Aは、廃棄物を投入するための投入口101と、水熱処理後の反応物を排出するための排出口102と、水熱処理を行うための空間を内部に有し、当該内部空間を気密可能に構成された筐体103と、廃棄物を攪拌するための攪拌翼106を備える回転軸104と、回転軸104を回転させるためのモータ105とを備える。また、筐体103は、筐体103の内部に蒸気を注入するための蒸気供給口107と、筐体103の内部から蒸気を排出するための蒸気排出口108とを備える。さらに、上記の投入口101にはホッパ109が備えられ、上記の排出口102にもホッパ110が備えられる。   The main body portion 10A has a charging port 101 for charging a waste, a discharging port 102 for discharging a reaction product after the hydrothermal treatment, and a space for performing the hydrothermal treatment therein. A housing 103 configured to be airtight, a rotating shaft 104 having a stirring blade 106 for stirring the waste, and a motor 105 for rotating the rotating shaft 104 are provided. Further, the housing 103 includes a steam supply port 107 for injecting steam into the housing 103 and a steam outlet 108 for discharging steam from the inside of the housing 103. Further, the input port 101 is provided with a hopper 109, and the discharge port 102 is also provided with a hopper 110.

バケット10Bは、内部を気密に構成されるとともに水121を貯留した貯水部120と、貯水部120の水121に浸たるように配置されたコンベア122と、排出口102を通じてバケット10Bの内部に入り込んだガスを抜き出すためのガス抜出し口123とを備える。そして、バケット10Bのガス抜出し口123には、内部空間10Baに存在するガスを内部空間10Baの外部に排出するための排出管(図示しない)が接続される。この排出管は、例えば、図示しない排ガス処理装置に接続される。   The bucket 10 </ b> B enters the inside of the bucket 10 </ b> B through a water storage unit 120 configured to be airtight and storing water 121, a conveyor 122 arranged to be submerged in the water 121 of the water storage unit 120, and a discharge port 102. And a gas outlet 123 for extracting the raw gas. An exhaust pipe (not shown) for exhausting the gas existing in the internal space 10Ba to the outside of the internal space 10Ba is connected to the gas extraction port 123 of the bucket 10B. The exhaust pipe is connected to, for example, an exhaust gas treatment device (not shown).

本体部10Aでの水熱処理により、本体部10Aの内部で、廃棄物中の例えば窒素に由来するアンモニア等が発生し得る。そこで、排出口102を通じて内部空間10Baに入り込んだアンモニア等のガスは、ガス抜出し口123を通じて、内部空間10Baの外部に抜き出される。そして、アンモニア等のガスは、例えば、図示しない排ガス処理装置等において排ガス処理される。このようにすることで、本体部10Aから反応物を取り出す際に、バケット10Bに排気されたガス(例えばアンモニア等)を大気中に排出することを抑制できる。   By the hydrothermal treatment in the main body 10A, ammonia or the like derived from, for example, nitrogen in the waste may be generated inside the main body 10A. Therefore, the gas such as ammonia that has entered the internal space 10Ba through the exhaust port 102 is extracted to the outside of the internal space 10Ba through the gas extraction port 123. Then, the gas such as ammonia is subjected to exhaust gas treatment in, for example, an exhaust gas treatment device (not shown). By doing so, when the reactant is taken out from the main body 10A, it is possible to prevent the gas (for example, ammonia) exhausted to the bucket 10B from being discharged into the atmosphere.

また、バケット10Bにおいて、水121の水面下には、本体部10Aの排出口102が配置される。また、コンベア122は、図17では図示しない固液分離装置11に接続される。従って、本体部10Aでの水熱処理により得られた反応物は、コンベア122により、固液分離装置11に運ばれる。   Further, in the bucket 10B, below the water surface of the water 121, the outlet 102 of the main body 10A is arranged. Further, the conveyor 122 is connected to the solid-liquid separation device 11 not shown in FIG. Therefore, the reaction product obtained by the hydrothermal treatment in the main body 10A is carried to the solid-liquid separation device 11 by the conveyor 122.

図18は、本発明の第18実施形態に係る水熱処理装置10の断面図である。この図18に示す水熱処理装置10は、上記の図17に示した水熱処理装置10において、水121を収容していない形態である。このような水121を収容していない水熱処理装置10によっても、水熱処理によって反応物を得ることができる。   FIG. 18 is a sectional view of the hydrothermal treatment apparatus 10 according to the eighteenth embodiment of the present invention. The hydrothermal treatment apparatus 10 shown in FIG. 18 is a mode in which the water 121 is not contained in the hydrothermal treatment apparatus 10 shown in FIG. Even with the hydrothermal treatment apparatus 10 that does not contain such water 121, the reaction product can be obtained by hydrothermal treatment.

ここで、上記の例えば廃棄物処理システム100(図1参照)を参照しながら説明したように、水熱処理装置10で得られた反応物を乾燥及び成形した燃料ペレット(成形前の乾燥物でもよい)は、ガス化炉15等で燃焼される。そのため、安定的な燃焼を行う観点から、燃料ペレットの含水量は、燃料ペレットの時期によらず同程度であることが好ましい。これにより、ガス化炉15で燃料ペレットを燃焼させた際、含水量が極端に異なることに起因する発熱量の大幅な変化を抑制できる。   Here, as described above with reference to, for example, the waste treatment system 100 (see FIG. 1), the reaction product obtained in the hydrothermal treatment apparatus 10 is dried and molded into fuel pellets (a dried product before molding may be used. ) Is burned in the gasification furnace 15 or the like. Therefore, from the viewpoint of performing stable combustion, the water content of the fuel pellets is preferably the same regardless of the timing of the fuel pellets. Thereby, when burning the fuel pellets in the gasification furnace 15, it is possible to suppress a large change in the calorific value due to an extremely different water content.

しかし、廃棄物は、予め含水量を制御可能なものではなく、収集の時間帯、季節、場所等によって異なる。また、通常、廃棄物は、いずれも図示しないが、例えばピット等いったん入れられて、廃棄物は、このピットからクレーン等によって水熱処理装置10に運ばれる。そして、水熱処理装置10に運ばれる廃棄物の含水量は、クレーン等によるピット内部の採取場所によっても異なる。   However, the amount of water in the waste is not controllable in advance, and depends on the time of collection, season, place, etc. Although not shown in the drawings, wastes are usually put in a pit or the like once, and the wastes are transported from the pits to the hydrothermal treatment apparatus 10 by a crane or the like. The water content of the waste carried to the hydrothermal treatment apparatus 10 also differs depending on the collection location inside the pit by a crane or the like.

そこで、廃棄物処理システム100〜1600においては、乾燥後に得られる燃料ペレットの含水量を同程度にするために、廃棄物又は乾燥前の反応物のうちの少なくとも一方の含水量が調整されることが好ましい。これにより、乾燥装置12における乾燥条件を反応物ごとに変える必要が無く、安定的に乾燥物を得ることができる。   Therefore, in the waste treatment systems 100 to 1600, the water content of at least one of the waste and the reactant before drying is adjusted in order to make the water content of the fuel pellets obtained after drying the same. Is preferred. Accordingly, it is not necessary to change the drying conditions in the drying device 12 for each reaction product, and a dried product can be stably obtained.

廃棄物又は乾燥前の反応物のうちの少なくとも一方の含水量の調整のため、まず、廃棄物の含水量が予測される。廃棄物の含水量の予測は、例えば以下のようにして行うことができる。具体的には、例えば、廃棄物を貯蔵したピットの側面からスペクトルカメラ等によって撮影することで、ピット内部の廃棄物の含水量を予測できる。また、例えば、クレーン等でピットから廃棄物を採取した際に、採取した廃棄物の体積と、当該体積から予測される有機廃棄物の乾燥重量とに基づいて、採取した廃棄物の含水量を予測できる。   In order to adjust the water content of at least one of the waste or the reactant before drying, first the water content of the waste is predicted. The water content of waste can be predicted, for example, as follows. Specifically, for example, the water content of the waste inside the pit can be predicted by photographing from the side of the pit storing the waste with a spectrum camera or the like. Further, for example, when the waste is collected from the pit with a crane or the like, the water content of the collected waste is determined based on the volume of the collected waste and the dry weight of the organic waste predicted from the volume. Can be predicted.

そして、予測された廃棄物の量に基づいて、乾燥装置12に供給される固体(より具体的には、固液分離装置11に供給される反応物)における含水量を同程度になるように、水熱処理装置10において水分量の調整が行われる。具体的には例えば、廃棄物の含水量が少ない場合には、例えば、ピット内部に水を入れたり、ピットから投入口101に廃棄物を運ぶためのコンベア上で水を吹き付けてもよいし、投入口101に廃棄物を入れる際に一緒に水を入れるようにしてもよい。   Then, based on the predicted amount of waste, the water content in the solids supplied to the drying device 12 (more specifically, the reaction product supplied to the solid-liquid separation device 11) should be made similar. The water content is adjusted in the hydrothermal treatment apparatus 10. Specifically, for example, when the water content of the waste is small, for example, water may be put inside the pit, or water may be sprayed on a conveyor for carrying the waste from the pit to the inlet 101, Water may be added to the input port 101 when the waste is added.

さらには、例えば、本体部10Aの内部に直接水を入れてもよい。この場合、例えば、投入口101を密閉するために本体部10Aに備えられたボール弁のパッキン(図示しない)を洗浄するための水を、投入口101を通じて本体部10Aの内部に入れるようにしてもよい。これにより、水分を調整できるとともに、パッキンを洗浄でき、本体部10Aの内部をボール弁により気密にできる。   Further, for example, water may be directly put inside the main body 10A. In this case, for example, water for cleaning the packing (not shown) of the ball valve provided in the main body 10A for sealing the input opening 101 is introduced into the main body 10A through the input opening 101. Good. Thereby, the water content can be adjusted, the packing can be washed, and the inside of the main body 10A can be made airtight by the ball valve.

また、水分調整は、例えば、排出口102から排出された反応物について、バケット10Bにおいて行うようにしてもよい。特に、バケット10Bに行うようにすることで、反応物の流動性を高め、固液分離装置11に反応物を運びやすくできる。   Further, the water content may be adjusted in the bucket 10B for the reaction product discharged from the discharge port 102, for example. In particular, by performing the process in the bucket 10B, the fluidity of the reaction product can be improved and the reaction product can be easily carried to the solid-liquid separation device 11.

なお、この図18及び上記の図17に示す水熱処理装置10は、いずれもバッチ式の水熱処理装置である。水熱処理装置には、大きな廃棄物もそのまま投入することができる例えば400〜600mmの投入口を含む。例えば、バッチ式の水熱処理装置10を使用することで、廃棄物を収集するための車両(図示しない)からそのまま水熱処理装置10に廃棄物を投入でき、廃棄物処理システム100〜1600のピットレス化を図ることができる。   The hydrothermal treatment apparatus 10 shown in FIG. 18 and FIG. 17 is a batch hydrothermal treatment apparatus. The hydrothermal treatment apparatus includes an input port of, for example, 400 to 600 mm that can directly input large waste. For example, by using the batch type hydrothermal treatment apparatus 10, the waste can be directly input to the hydrothermal treatment apparatus 10 from a vehicle (not shown) for collecting the waste, and the waste treatment systems 100 to 1600 can be made pitless. Can be planned.

図19は、複数の単位水熱処理装置10a〜10dを併用した際の蒸気の流れを示す図である。図19に示すように、水熱処理装置10が、第1単位水熱処理装置10aと、第2単位水熱処理装置10bと、第3単位水熱処理装置10cと、第4単位水熱処理装置10dとを含む。ただし、水熱処理装置10は2つ又は3つでもよく、5つ以上でもよい。   FIG. 19: is a figure which shows the flow of steam at the time of using together several unit hydrothermal processing apparatuses 10a-10d. As shown in FIG. 19, the hydrothermal treatment apparatus 10 includes a first unit hydrothermal treatment apparatus 10a, a second unit hydrothermal treatment apparatus 10b, a third unit hydrothermal treatment apparatus 10c, and a fourth unit hydrothermal treatment apparatus 10d. .. However, the number of hydrothermal treatment devices 10 may be two or three, or may be five or more.

これらの水熱処理装置10は、直列に接続される。具体的には例えば、第1単位水熱処理装置10a(第1単位水熱処理装置)の蒸気排出口108(図19では図示しない)と、第2単位水熱処理装置10b(第2単位水熱処理装置)の蒸気供給口107とは配管(図示しない)により接続される。このようにすることで、第1単位水熱処理装置10aで使用した蒸気を、第2単位水熱処理装置10bで使用できる。これにより、新たな蒸気の使用量を削減できる。   These hydrothermal processing apparatuses 10 are connected in series. Specifically, for example, the steam outlet 108 (not shown in FIG. 19) of the first unit hydrothermal treatment apparatus 10a (first unit hydrothermal treatment apparatus) and the second unit hydrothermal treatment apparatus 10b (second unit hydrothermal treatment apparatus). The steam supply port 107 is connected by a pipe (not shown). By doing so, the steam used in the first unit hydrothermal treatment apparatus 10a can be used in the second unit hydrothermal treatment apparatus 10b. This can reduce the amount of new steam used.

例えば、第1単位水熱処理装置10aにおいて、廃棄物を投入して蒸気を供給することで、水熱処理が行われる。そして、水熱処理後には、反応物は第1単位水熱処理装置10aから抜きだされ、後段の固液分離装置11に供給される。一方で、第1単位水熱処理装置10aにおいて使用された蒸気は、蒸気排出口108を通じて第1単位水熱処理装置10aから抜き出される。そして、抜き出された蒸気は、第2単位水熱処理装置10bの蒸気供給口107を通じて、第2単位水熱処理装置10bの内部に供給される。このとき、供給された蒸気量が水熱処理に必要な蒸気量に満たないときには、必要に応じて蒸気の追加が行われる。これにより、第2単位水熱処理装置10bでは、第1単位水熱処理装置10aから供給された蒸気を再利用して、水熱処理が行われる。同様にして、第3単位水熱処理装置10c及び第4単位水熱処理装置10dにおいても、蒸気を再利用しながら、水熱処理が行われる。   For example, in the first unit hydrothermal treatment apparatus 10a, the hydrothermal treatment is performed by charging waste and supplying steam. Then, after the hydrothermal treatment, the reaction product is extracted from the first unit hydrothermal treatment device 10a and supplied to the solid-liquid separation device 11 in the subsequent stage. On the other hand, the steam used in the first unit hydrothermal treatment apparatus 10a is extracted from the first unit hydrothermal treatment apparatus 10a through the steam outlet 108. Then, the extracted steam is supplied to the inside of the second unit hydrothermal treatment apparatus 10b through the steam supply port 107 of the second unit hydrothermal treatment apparatus 10b. At this time, when the amount of steam supplied is less than the amount of steam required for the hydrothermal treatment, additional steam is added as necessary. Thereby, in the second unit hydrothermal treatment apparatus 10b, the hydrothermal treatment is performed by reusing the steam supplied from the first unit hydrothermal treatment apparatus 10a. Similarly, in the third unit hydrothermal treatment apparatus 10c and the fourth unit hydrothermal treatment apparatus 10d, hydrothermal treatment is performed while reusing steam.

図20は、複数の単位水熱処理装置10を併用した際の各単位水熱処理装置10における作用を説明するための図である。図20に示す例では、上記の図19に示すように、4つの水熱処理装置10(第1単位水熱処理装置10a、第2単位水熱処理装置10b、第3単位水熱処理装置10c及び第4単位水熱処理装置10d)を併用することで、水熱処理装置10が構成される。図20においては、水熱処理装置10の起動時の様子を示している。   FIG. 20 is a diagram for explaining the action in each unit hydrothermal treatment apparatus 10 when a plurality of unit hydrothermal treatment apparatuses 10 are used together. In the example shown in FIG. 20, as shown in FIG. 19 described above, four hydrothermal treatment devices 10 (a first unit hydrothermal treatment device 10a, a second unit hydrothermal treatment device 10b, a third unit hydrothermal treatment device 10c and a fourth unit) are used. The hydrothermal treatment apparatus 10 is configured by using the hydrothermal treatment apparatus 10d) together. In FIG. 20, the state at the time of starting the hydrothermal treatment apparatus 10 is shown.

まず、4つの水熱処理装置10のうち、第1単位水熱処理装置10a及び第3単位水熱処理装置10cのそれぞれに、廃棄物が投入される(図20(a))。そして、廃棄物の投入後、第1単位水熱処理装置10a及び第3単位水熱処理装置10cのそれぞれに蒸気が供給される(図20(b))。これにより、第1単位水熱処理装置10a及び第3単位水熱処理装置10cでは、廃棄物の水熱処理が行われる。   First, of the four hydrothermal treatment apparatuses 10, waste is put into each of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c (FIG. 20 (a)). Then, after the waste is charged, steam is supplied to each of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c (FIG. 20 (b)). Thus, the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c perform the hydrothermal treatment of waste.

なお、第2単位水熱処理装置10b及び第4単位水熱処理装置10dでは、図20(a)及び図20(b)に示す時点では特段の操作は行われない。しかし、第1単位水熱処理装置10a及び第3単位水熱処理装置10cにおいて水熱処理開始のとき、即ち、図20(c)に示すときに、第2単位水熱処理装置10b及び第4単位水熱処理装置10dに対しても廃棄物が投入される。   In the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d, no special operation is performed at the time points shown in FIGS. 20 (a) and 20 (b). However, when the hydrothermal treatment is started in the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c, that is, at the time shown in FIG. 20C, the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus are performed. Waste is also input to 10d.

一方で、第1単位水熱処理装置10a及び第3単位水熱処理装置10cにおいて水熱処理が終了すると、第1単位水熱処理装置10a及び第3単位水熱処理装置10cで使用された蒸気が、第2単位水熱処理装置10b及び第4単位水熱処理装置10dのそれぞれ供給される(図20(d))。そして、第1単位水熱処理装置10a及び第3単位水熱処理装置10cの筐体(図示しない)から反応物が取り出される(図20(e))。   On the other hand, when the hydrothermal treatment is completed in the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c, the steam used in the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c becomes the second unit. The hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d are supplied (FIG. 20 (d)). Then, the reaction product is taken out from the casings (not shown) of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c (FIG. 20 (e)).

これとともに、第1単位水熱処理装置10a及び第3単位水熱処理装置10cからの蒸気供給時における漏出等により失われた蒸気、即ち不足分の蒸気が、追加蒸気として第2単位水熱処理装置10b及び第4単位水熱処理装置10dに供給される(図20(e))。そして、第2単位水熱処理装置10b及び第4単位水熱処理装置10dでは、水熱処理が開始される(図20(f))。一方で、反応物が取り出されることで内部が空になった第1単位水熱処理装置10a及び第3単位水熱処理装置10cには、新たに廃棄物が投入される(図20(f))。   Along with this, the steam lost due to leakage or the like at the time of steam supply from the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c, that is, a shortage of steam, is used as additional steam by the second unit hydrothermal treatment apparatus 10b and It is supplied to the fourth unit hydrothermal treatment apparatus 10d (FIG. 20 (e)). Then, in the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d, hydrothermal treatment is started (FIG. 20 (f)). On the other hand, waste is newly introduced into the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c, whose interiors have become empty due to the removal of the reaction product (FIG. 20 (f)).

図21は、図20に示す各単位水熱処理装置10の内圧変化を示すタイムチャートである。図21に示す(a)〜(f)は、上記の図20に示す(a)〜(f)に対応する。上記のように、第1単位水熱処理装置10aと第3単位水熱処理装置10cとは、同じタイミングで駆動する。従って、第1単位水熱処理装置10aの内圧と、第3単位水熱処理装置10cの内圧とも、同じようにタイミングで変化する。一方で、第2単位水熱処理装置10bと第4単位水熱処理装置10dとも、同じタイミングで駆動する。従って、第2単位水熱処理装置10bの内圧と、第4単位水熱処理装置10dの内圧とも、同じようにタイミングで変化する。   FIG. 21 is a time chart showing changes in the internal pressure of each unit hydrothermal treatment apparatus 10 shown in FIG. (A) to (f) shown in FIG. 21 correspond to (a) to (f) shown in FIG. As described above, the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c are driven at the same timing. Therefore, the internal pressure of the first unit hydrothermal treatment apparatus 10a and the internal pressure of the third unit hydrothermal treatment apparatus 10c also change at the same timing. On the other hand, both the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d are driven at the same timing. Therefore, the internal pressure of the second unit hydrothermal treatment apparatus 10b and the internal pressure of the fourth unit hydrothermal treatment apparatus 10d also change at the same timing.

図21(a)に示すように、廃棄物投入時の第1単位水熱処理装置10a及び第3単位水熱処理装置10cの内圧は大気圧である。また、この時点ではまだ駆動していない第1単位水熱処理装置10a及び第3単位水熱処理装置10cにおいても、その内圧は大気圧である。そして、廃棄物を投入した第1単位水熱処理装置10a及び第3単位水熱処理装置10cに蒸気を注入することで、第1単位水熱処理装置10a及び第3単位水熱処理装置10cの内圧は圧力Pに上昇し、この圧力Pで水熱処理が進行する(図21(b)及び(c))。なお、この圧力Prは、水熱処理を生じさせることが可能な圧力である。 As shown in FIG. 21 (a), the internal pressure of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c at the time of charging the waste is atmospheric pressure. Further, the internal pressures of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c, which are not driven at this time, are atmospheric pressure. Then, by injecting the steam into the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c into which the waste has been put, the internal pressure of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c is the pressure P. R , and hydrothermal treatment proceeds at this pressure P r (FIGS. 21B and 21C). The pressure Pr is a pressure capable of causing hydrothermal treatment.

一方で、第2単位水熱処理装置10bと第4単位水熱処理装置10dにおいては、廃棄物の投入後(図20(c))、第1単位水熱処理装置10a及び第3単位水熱処理装置10cからの蒸気注入により、内圧がPに上昇する(図21(d))。しかし、上記のように、第1単位水熱処理装置10a及び第3単位水熱処理装置10cから第2単位水熱処理装置10b及び第4単位水熱処理装置10dへの蒸気供給の際、例えば漏出等により、第1単位水熱処理装置10a及び第3単位水熱処理装置10cで使用された蒸気の全てが供給されるわけではない。 On the other hand, in the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d, after the waste is charged (FIG. 20 (c)), the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c The internal pressure rises to P r due to the steam injection (FIG. 21 (d)). However, as described above, when steam is supplied from the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c to the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d, for example, due to leakage, Not all of the steam used in the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c is supplied.

そこで、第2単位水熱処理装置10b及び第4単位水熱処理装置10dには、水熱処理に使用される量になるまで、追加蒸気の注入が行われる(図21(d))。蒸気供給後、第1単位水熱処理装置10a及び第3単位水熱処理装置10cから、反応物が排出される(図20(e))。そして、第1単位水熱処理装置10a及び第3単位水熱処理装置10cの内部温度が十分に低下後、投入口101が開けられ、新たな廃棄物が投入される(図20(f))。特に、これらの内部温度が十分に低下後に投入口101が開けられることで、内部が負圧になり、投入口101を通じた、内部のガス(例えばアンモニア)の外部への放出が抑制される。一方で、第2単位水熱処理装置10b及び第4単位水熱処理装置10dでは、廃棄物の水熱処理が進行する(図20(f))。   Therefore, the additional steam is injected into the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d until the amount used for the hydrothermal treatment is reached (FIG. 21 (d)). After the steam is supplied, the reactant is discharged from the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c (FIG. 20 (e)). Then, after the internal temperatures of the first unit hydrothermal treatment apparatus 10a and the third unit hydrothermal treatment apparatus 10c are sufficiently lowered, the charging port 101 is opened and new waste is charged (FIG. 20 (f)). In particular, when the charging port 101 is opened after the internal temperatures thereof are sufficiently lowered, the inside becomes a negative pressure, and the discharge of the internal gas (for example, ammonia) through the charging port 101 to the outside is suppressed. On the other hand, in the second unit hydrothermal treatment apparatus 10b and the fourth unit hydrothermal treatment apparatus 10d, hydrothermal treatment of waste proceeds (FIG. 20 (f)).

以上の図20及び図21を参照しながら説明した駆動を繰り返すことで、複数の水熱処理装置10における複数の水熱処理が同時に進行する。これにより、廃棄物の水熱処理量を増やし、反応物の生成量を増やすことができる。この結果、廃棄物の効率的な処理を行うことができる。   By repeating the driving described with reference to FIGS. 20 and 21, the plurality of hydrothermal treatments in the plurality of hydrothermal treatment apparatuses 10 simultaneously proceed. This makes it possible to increase the amount of hydrothermal treatment of waste and the amount of reaction product produced. As a result, the waste can be efficiently processed.

(1)本発明の少なくとも一実施形態に係る廃棄物処理システムは、
廃棄物の水熱処理を行うための廃棄物処理システムであって、
前記廃棄物への蒸気の接触により前記水熱処理を行うための少なくとも1つの水熱処理装置と、
前記水熱処理の反応物の固体から固形の燃料を製造するための燃料製造装置と、
前記反応物の液体をメタン発酵させてバイオガスを生成させるためのメタン発酵装置と、
前記燃料を貯蔵するための第1貯蔵設備と、
前記バイオガスを貯蔵するための第3貯蔵設備と、
前記水熱処理装置に供給される前記蒸気を発生させるための少なくとも2つの蒸気発生装置と、
を備え、
前記少なくとも1つの水熱処理装置は、
内部に蒸気が注入される筐体と、
前記筐体内に前記廃棄物を投入する投入口と、
前記筐体から前記反応物を排出する排出口と、
を備えるバッチ式の水熱処理装置であり、
前記少なくとも2つの蒸気発生装置は、
前記第1貯蔵設備に貯蔵された前記燃料の燃焼により発生した燃焼エネルギを用いて前記蒸気を発生させる第1蒸気発生装置と、
前記第3貯蔵設備に貯蔵された前記バイオガスの燃焼により発生した燃焼エネルギを用いて前記蒸気を発生させる第2蒸気発生装置と
を含むことを特徴とする。
(1) A waste treatment system according to at least one embodiment of the present invention,
A waste treatment system for hydrothermal treatment of waste,
At least one hydrothermal treatment apparatus for performing the hydrothermal treatment by contacting steam with the waste;
A fuel production apparatus for producing a solid fuel from the solid of the hydrothermal treatment reactant,
A methane fermentation device for methane fermenting the liquid of the reaction product to generate biogas,
A first storage facility for storing the fuel;
A third storage facility for storing the biogas,
At least two steam generators for generating the steam supplied to the hydrothermal treatment apparatus;
Equipped with
The at least one hydrothermal treatment device comprises:
A housing into which steam is injected,
An input port for inputting the waste into the housing,
A discharge port for discharging the reactant from the housing,
Is a batch-type hydrothermal treatment apparatus equipped with
The at least two steam generators are
A first steam generator that generates the steam using combustion energy generated by combustion of the fuel stored in the first storage facility;
A second steam generator for generating the steam using combustion energy generated by combustion of the biogas stored in the third storage facility.

上記(1)の構成によれば、廃棄物量に応じて蒸気量を変更可能な廃棄物処理システムを提供でき、水熱処理の反応物を乾燥させて、燃焼し易い固形の燃料を製造でき、固形の燃料と、水熱処理の反応物から生成したバイオガスとの双方を貯蔵できる。   According to the above configuration (1), it is possible to provide a waste treatment system in which the amount of vapor can be changed according to the amount of waste, dry the reaction product of the hydrothermal treatment, and manufacture a solid fuel that is easy to burn. Both the fuel and the biogas produced from the hydrothermal reaction products can be stored.

(2)幾つかの実施形態では、上記(1)の構成において、
前記廃棄物処理システムは、
前記固形の前記燃料をガス化させて燃料ガスを生成させるためのガス化炉と、
前記ガス化炉で生成した燃料ガスを貯蔵するための第2貯蔵設備と
を備えることを特徴とする。
(2) In some embodiments, in the configuration of (1) above,
The waste treatment system is
A gasification furnace for gasifying the solid fuel to generate fuel gas;
A second storage facility for storing the fuel gas generated in the gasification furnace is provided.

上記(2)の構成によれば、固形の燃料と、固形の燃料から生成した燃料ガスとの双方を貯蔵できる。   According to the above configuration (2), both the solid fuel and the fuel gas generated from the solid fuel can be stored.

(3)本発明の少なくとも一実施形態に係る廃棄物処理システムは、
廃棄物の水熱処理を行うための廃棄物処理システムであって、
前記廃棄物への蒸気の接触により前記水熱処理を行うための少なくとも1つの水熱処理装置と、
前記反応物の液体をメタン発酵させてバイオガスを生成させるためのメタン発酵装置と、
前記メタン発酵装置で得られた発酵物中の固体への蒸気の接触により水熱処理を行うための第2水熱処理装置と、
前記水熱処理の反応物及び前記第2水熱処理装置での水熱処理の第2反応物から製造された燃料を貯蔵する第1貯蔵設備と、
前記バイオガスを貯蔵するための第3貯蔵設備と、
前記少なくとも1つの水熱処理装置に供給される前記蒸気を発生させるための少なくとも1つの蒸気発生装置と、
を備え、
前記蒸気発生装置は、前記第1貯蔵設備に貯蔵された前記燃料又は前記第3貯蔵設備に貯蔵された前記バイオガスの燃焼により発生した燃焼エネルギを用いて、前記蒸気を発生させるように構成されたことを特徴とする。
(3) The waste treatment system according to at least one embodiment of the present invention,
A waste treatment system for hydrothermal treatment of waste,
At least one hydrothermal treatment apparatus for performing the hydrothermal treatment by contacting steam with the waste;
A methane fermentation device for methane fermenting the liquid of the reaction product to generate biogas,
A second hydrothermal treatment apparatus for performing hydrothermal treatment by contacting steam with solids in the fermented material obtained by the methane fermentation apparatus,
A first storage facility for storing fuel produced from the hydrothermal treatment reactant and the hydrothermal treatment second reactant in the second hydrothermal treatment apparatus;
A third storage facility for storing the biogas,
At least one steam generator for generating the steam supplied to the at least one hydrothermal treatment apparatus;
Equipped with
The steam generator is configured to generate the steam using combustion energy generated by combustion of the fuel stored in the first storage facility or the biogas stored in the third storage facility. It is characterized by

上記(3)の構成によれば、第2水熱処理装置により、発酵物についてさらなる水熱処理を行うことができる。これにより、前記発酵物が微細化され、脱水効率が向上し、第2水熱処理装置での水熱処理後の第2処理物を固体と液体とに分離し易くでき、燃料を製造し易くできる。   According to the configuration of (3) above, the second hydrothermal treatment apparatus can perform further hydrothermal treatment on the fermented product. As a result, the fermented product is miniaturized, the dehydration efficiency is improved, the second treated product after the hydrothermal treatment in the second hydrothermal treatment device can be easily separated into solid and liquid, and the fuel can be easily produced.

(4)幾つかの実施形態では、上記(3)の構成において、
前記第2水熱処理装置は、前記第2水熱処理装置での水熱処理により得られた第2反応物を乾燥させるように構成されたことを特徴とする。
上記(4)の構成によれば、水熱処理により得られた第2反応物を、水熱処理を行った第2水熱処理装置自身で乾燥できる。
(4) In some embodiments, in the configuration of (3) above,
The second hydrothermal treatment apparatus is configured to dry the second reaction product obtained by the hydrothermal treatment in the second hydrothermal treatment apparatus.
According to the configuration of (4), the second reaction product obtained by the hydrothermal treatment can be dried by the second hydrothermal treatment apparatus itself which has undergone the hydrothermal treatment.

(5)幾つかの実施形態では、上記(1)〜(4)の何れか1の構成において、
前記廃棄物処理システムは、前記燃料又は前記バイオガスの燃焼により発生した燃焼エネルギを用いて発電を行うための発電装置を備えることを特徴とする。
上記(5)の構成によれば、廃棄物処理システムで製造された燃料を用いて発電できる。
(5) In some embodiments, in any one of the configurations (1) to (4) above,
The waste treatment system is characterized by including a power generation device for generating power using combustion energy generated by combustion of the fuel or the biogas.
According to the configuration of (5) above, it is possible to generate electric power using the fuel manufactured by the waste treatment system.

(6)幾つかの実施形態では、上記(5)の構成において、
前記発電装置は、蒸気タービンと、前記蒸気タービンに接続された発電機本体部とを含み、
前記蒸気タービンは、前記蒸気発生装置において発生した蒸気のうちの少なくとも一部によって駆動するように構成されたことを特徴とする。
上記(6)の構成によれば、蒸気が蒸気タービンを駆動させて、蒸気タービンに接続された発電機本体部により発電できる。
(6) In some embodiments, in the configuration of (5) above,
The power generation device includes a steam turbine and a generator main body connected to the steam turbine,
The steam turbine is configured to be driven by at least a part of steam generated in the steam generator.
According to the above configuration (6), the steam drives the steam turbine, and the generator main body connected to the steam turbine can generate electric power.

(7)幾つかの実施形態では、上記(5)の構成において、
前記発電装置は、ガスエンジンと、前記ガスエンジンに接続された発電機本体部とを含み、
前記蒸気発生装置は、前記ガスエンジンの排熱で、蒸気を発生するように構成されたことを特徴とする。
(7) In some embodiments, in the configuration of (5) above,
The power generator includes a gas engine and a generator main body connected to the gas engine,
The steam generator is configured to generate steam by exhaust heat of the gas engine.

(8)幾つかの実施形態では、上記(5)〜(7)の何れか1の構成において、
前記廃棄物処理システムは、前記燃料の燃焼により発生した燃焼エネルギを用いて発電を行うための発電装置を備え、
前記廃棄物処理システムは、前記第1蒸気発生装置を2つ備え、
前記発電装置は、2つの前記第1蒸気発生装置で発生した蒸気のそれぞれによって駆動される第1発電装置と第2発電装置とを含むことを特徴とする。
上記(8)の構成によれば、電力需要に応じて発電装置の使用台数を任意に変更できる。これにより、電力需要に応じて発電量を柔軟に変更でき、安定的な電力供給を行うことができる。
(8) In some embodiments, in any one of the configurations (5) to (7) above,
The waste treatment system includes a power generation device for generating power using combustion energy generated by combustion of the fuel,
The waste treatment system includes two first steam generators,
The power generation device includes a first power generation device and a second power generation device driven by each of the steam generated by the two first steam generation devices.
According to the configuration of (8), the number of power generators used can be arbitrarily changed according to the power demand. As a result, the amount of power generation can be flexibly changed according to the power demand, and stable power supply can be performed.

(9)幾つかの実施形態では、上記(5)〜(8)の何れか1の構成において、
前記廃棄物処理システムは、前記燃料の燃焼を行うための燃焼炉を備え、
前記第1蒸気発生装置は、前記燃焼炉で発生した燃焼エネルギを用いて蒸気を発生させるように構成されたことを特徴とする。
上記(9)の構成によれば、燃焼炉により、速やかに、かつ、燃焼ムラを抑制しながら燃料を燃焼できる。これにより、速やかに、かつ発生量のムラを抑制しながら蒸気を発生できる。
(9) In some embodiments, in the configuration according to any one of (5) to (8) above,
The waste treatment system includes a combustion furnace for burning the fuel,
The first steam generator is configured to generate steam by using combustion energy generated in the combustion furnace.
According to the above configuration (9), the fuel can be burned by the combustion furnace promptly and while suppressing uneven combustion. As a result, steam can be generated promptly and while suppressing unevenness in the generated amount.

(10)幾つかの実施形態では、上記(9)の構成において、
前記燃焼炉は流動床炉により構成されていることを特徴とする。
上記(10)の構成によれば、流動床炉により、速やかに、かつ、燃焼ムラを抑制しながら燃料を燃焼できる。これにより、速やかに、かつ発生量のムラを抑制しながら蒸気を発生できる。
(10) In some embodiments, in the configuration of (9) above,
The combustion furnace is configured by a fluidized bed furnace.
According to the above configuration (10), the fluidized bed furnace can rapidly burn the fuel while suppressing uneven combustion. As a result, steam can be generated promptly and while suppressing unevenness in the generated amount.

(11)幾つかの実施形態では、上記(1)〜(10)の何れか1の構成において、
前記少なくとも1つの水熱処理装置は、2つの水熱処理装置を備え、該2つの水熱処理装置はそれぞれ蒸気供給口及び蒸気排出口を備え、
前記2つの水熱処理装置の一方の前記蒸気排出口と、前記2つの水熱処理装置の他方の前記蒸気供給口とは配管により接続されることを特徴とする。
上記(11)の構成によれば、2つの水熱処理装置のうち一方で使用した蒸気を、他方の水熱処理装置で使用できる。これにより、新たな蒸気の使用量を削減できる。
(11) In some embodiments, in the configuration according to any one of (1) to (10) above,
The at least one hydrothermal treatment device comprises two hydrothermal treatment devices, each of the two hydrothermal treatment devices comprising a steam supply port and a steam discharge port,
The steam discharge port of one of the two hydrothermal treatment devices and the steam supply port of the other of the two hydrothermal treatment devices are connected by a pipe.
With configuration (11) above, the steam used in one of the two hydrothermal treatment devices can be used in the other hydrothermal treatment device. This can reduce the amount of new steam used.

(12)幾つかの実施形態では、上記(3)又は(4)の構成において、
前記少なくとも1つの水熱処理装置は、バッチ式の水熱処理装置を含むことを特徴とする。
上記(12)の構成によれば、例えば、廃棄物を収集するための車両(図示しない)からそのまま水熱処理装置に廃棄物を投入でき、廃棄物処理システムのピットレス化を図ることができる。
(12) In some embodiments, in the configuration of (3) or (4) above,
The at least one hydrothermal treatment apparatus includes a batch hydrothermal treatment apparatus.
According to the above configuration (12), for example, the waste can be directly introduced into the hydrothermal treatment apparatus from a vehicle (not shown) for collecting the waste, and the waste treatment system can be made pitless.

(13)本発明の少なくとも一実施形態に係る廃棄物処理方法は、
廃棄物の水熱処理を行うための廃棄物処理方法であって、
前記廃棄物への蒸気の接触により前記水熱処理を行う水熱処理ステップと、
前記水熱処理の反応物の固体から固形の燃料を製造するための燃料製造ステップと、
前記反応物の液体をメタン発酵させてバイオガスを生成させるためのメタン発酵ステップと、
前記燃料及び前記バイオガスを貯蔵する貯蔵ステップと、
前記水熱処理ステップで使用される前記蒸気を発生させるための蒸気発生ステップと、
を含み、
前記蒸気発生ステップは、前記貯蔵ステップで貯蔵された前記燃料の燃焼により発生した燃焼エネルギを用いて、前記蒸気を発生させ、
前記燃料は第1貯蔵設備に貯蔵され、前記バイオガスは、前記第1貯蔵設備とは別の第3貯蔵設備に貯蔵され、
前記水熱処理が行われる少なくとも1つの水熱処理装置は、
内部に蒸気が注入される筐体と、
前記筐体内に前記廃棄物を投入する投入口と、
前記筐体から前記反応物を排出する排出口と、
を備えるバッチ式の水熱処理装置であり、
前記蒸気発生ステップは、
前記第1貯蔵設備に貯蔵された前記燃料の燃焼により発生した燃焼エネルギを用いて前記蒸気を発生させることと、
前記第3貯蔵設備に貯蔵された前記バイオガスの燃焼により発生した燃焼エネルギを用いて前記蒸気を発生させることと
を含むことを特徴とする。
(13) The waste treatment method according to at least one embodiment of the present invention is
A waste treatment method for hydrothermally treating waste, comprising:
A hydrothermal treatment step of performing the hydrothermal treatment by contacting steam with the waste;
A fuel production step for producing a solid fuel from the solid product of the hydrothermal treatment reactants,
A methane fermentation step for methane fermenting the reactant liquid to produce biogas,
A storage step of storing the fuel and the biogas;
A steam generation step for generating the steam used in the hydrothermal treatment step,
Including,
The steam generation step uses the combustion energy generated by the combustion of the fuel stored in the storage step to generate the steam,
The fuel is stored in a first storage facility, the biogas is stored in a third storage facility different from the first storage facility,
The at least one hydrothermal treatment apparatus in which the hydrothermal treatment is performed is
A housing into which steam is injected,
An input port for inputting the waste into the housing,
A discharge port for discharging the reactant from the housing,
Is a batch-type hydrothermal treatment apparatus equipped with
The steam generation step,
Generating the steam using combustion energy generated by combustion of the fuel stored in the first storage facility;
Generating the steam using combustion energy generated by combustion of the biogas stored in the third storage facility.

上記(13)の構成によれば、廃棄物量に応じて蒸気量を変更可能な廃棄物処理方法を提供でき、水熱処理の反応物を乾燥させて、燃焼し易い固形の燃料を製造でき、固形の燃料と、水熱処理の反応物から生成したバイオガスとの双方を貯蔵できる。   According to the configuration of the above (13), it is possible to provide a waste treatment method capable of changing the amount of steam according to the amount of waste, dry the reaction product of the hydrothermal treatment, and manufacture a solid fuel that is easy to burn. Both the fuel and the biogas produced from the hydrothermal reaction products can be stored.

(14)本発明の少なくとも一実施形態に係る廃棄物処理方法は、
廃棄物の水熱処理を行うための廃棄物処理方法であって、
前記廃棄物への蒸気の接触により前記水熱処理を行う水熱処理ステップと、
前記水熱処理の反応物の液体をメタン発酵させてバイオガスを生成させるためのメタン発酵ステップと、
前記メタン発酵装置で得られた発酵物中の固体への蒸気の接触により水熱処理を行うための第2水熱処理ステップと、
前記水熱処理ステップ及び前記第2水熱処理ステップでのそれぞれの前記水熱処理の反応物から製造された燃料を貯蔵するステップと、
前記水熱処理ステップで使用される前記蒸気を発生させるための蒸気発生ステップと、
を含み、
前記蒸気発生ステップは、前記貯蔵ステップで貯蔵された前記燃料の燃焼により発生した燃焼エネルギを用いて、前記蒸気を発生させることを特徴とする。
(14) The waste treatment method according to at least one embodiment of the present invention is
A waste treatment method for hydrothermally treating waste, comprising:
A hydrothermal treatment step of performing the hydrothermal treatment by contacting steam with the waste;
A methane fermentation step for methane fermenting the liquid of the hydrothermal reaction product to produce biogas,
A second hydrothermal treatment step for performing hydrothermal treatment by contacting steam with solids in the fermented material obtained in the methane fermentation apparatus,
Storing a fuel produced from each of the hydrothermal treatment reactants in the hydrothermal treatment step and the second hydrothermal treatment step;
A steam generation step for generating the steam used in the hydrothermal treatment step,
Including,
The steam generating step is characterized in that the steam is generated by using combustion energy generated by combustion of the fuel stored in the storing step.

上記(14)の構成によれば、第2水熱処理ステップにより、発酵物についてさらなる水熱処理を行うことができる。これにより、前記発酵物が微細化され、脱水効率が向上し、第2水熱処理ステップでの水熱処理後の第2処理物を固体と液体とに分離し易くでき、燃料を製造し易くできる。   According to the above configuration (14), the fermented product can be further hydrothermally treated by the second hydrothermal treatment step. Thereby, the fermented product is miniaturized, the dehydration efficiency is improved, the second treated product after the hydrothermal treatment in the second hydrothermal treatment step can be easily separated into solid and liquid, and the fuel can be easily produced.

1,17 ガスエンジン(発電装置、第1発電装置、第2発電装置、第3発電装置)
8,9 貯蔵設備(第1貯蔵設備、第2貯蔵設備、第3貯蔵設備)
10,20,26 水熱処理装置(燃料製造装置、第1水熱処理装置、第2水熱処理装置、第3水熱処理装置)
10A 本体部
10B バケット
10Ba 内部空間
10a 第1単位水熱処理装置
10b 第2単位水熱処理装置
10c 第3単位水熱処理装置
10d 第4単位水熱処理装置
11,19,21,27 固液分離装置(燃料製造装置)
12,28 乾燥装置(燃料製造装置)
13 分級装置(燃料製造装置)
14 成形装置(燃料製造装置)
15 ガス化炉
16 メタン発酵装置
18,30 排熱回収ボイラ(蒸気発生装置)
22,24 ボイラ(蒸気発生装置)
23,25 蒸気タービン(発電装置、第1発電装置、第2発電装置、第3発電装置)
29 燃焼炉
31 再熱器
33 給水加熱器
43 水処理装置
44 汚泥処理装置
100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600 廃棄物処理システム
101 投入口
102 排出口
103 筐体
104 回転軸
105 モータ
106 攪拌翼
107 蒸気供給口
108 蒸気排出口
109,110 ホッパ
120 貯水部
121 水
122 コンベア
123 ガス抜出し口
1,17 Gas engine (power generator, first power generator, second power generator, third power generator)
8,9 Storage equipment (first storage equipment, second storage equipment, third storage equipment)
10, 20, 26 Hydrothermal treatment equipment (Fuel production equipment, 1st hydrothermal treatment equipment, 2nd hydrothermal treatment equipment, 3rd hydrothermal treatment equipment)
10A Main body 10B Bucket 10Ba Internal space 10a First unit hydrothermal treatment device 10b Second unit hydrothermal treatment device 10c Third unit hydrothermal treatment device 10d Fourth unit hydrothermal treatment device 11, 19, 21, 27 Solid-liquid separation device (fuel production apparatus)
12,28 Dryer (Fuel production equipment)
13 Classification device (fuel production device)
14 Molding equipment (fuel production equipment)
15 Gasification furnace 16 Methane fermentation device 18, 30 Exhaust heat recovery boiler (steam generator)
22,24 Boiler (steam generator)
23,25 Steam turbine (power generator, first power generator, second power generator, third power generator)
29 Combustion furnace 31 Reheater 33 Feed water heater 43 Water treatment device 44 Sludge treatment device 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600 Waste treatment system 101 Input port 102 Discharge port 103 Housing 104 Rotating shaft 105 Motor 106 Stirring blade 107 Steam supply port 108 Steam discharge ports 109, 110 Hopper 120 Water storage section 121 Water 122 Conveyor 123 Gas extraction port

Claims (10)

廃棄物の水熱処理を行うための廃棄物処理システムであって、
前記廃棄物への蒸気の接触により前記水熱処理を行うための少なくとも1つの水熱処理装置と、
前記少なくとも1つの水熱処理の反応物の固体から固形の燃料を製造するための燃料製造装置と、
前記反応物の液体をメタン発酵させてバイオガスを生成させるためのメタン発酵装置と、
前記固形の燃料を貯蔵するための第1貯蔵設備と、
前記バイオガスを貯蔵するための第3貯蔵設備と、
前記水熱処理装置に供給される前記蒸気を発生させるための少なくとも2つの蒸気発生装置と
を備え、
前記少なくとも1つの水熱処理装置は、
内部に蒸気が注入される筐体と、
前記筐体内に前記廃棄物を投入する投入口と、
前記筐体から前記反応物を排出する排出口と、
を備えるバッチ式の水熱処理装置であり、
前記少なくとも2つの蒸気発生装置は、
前記廃棄物を含む燃料の燃焼により発生した燃焼エネルギを用いて蒸気を発生させる第1蒸気発生装置と、
前記第1貯蔵設備に貯蔵された前記固形の燃料又は前記第3貯蔵設備に貯蔵された前記バイオガスの少なくとも1つの燃焼により発生した燃焼エネルギを用いて蒸気を発生させる第2蒸気発生装置と
を含む廃棄物処理システム。
A waste treatment system for hydrothermal treatment of waste,
At least one hydrothermal treatment apparatus for performing the hydrothermal treatment by contacting steam with the waste;
A fuel production apparatus for producing a solid fuel from the solid of the at least one hydrothermal treatment reactant;
A methane fermentation device for methane fermenting the liquid of the reaction product to generate biogas,
A first storage facility for storing the solid fuel;
A third storage facility for storing the biogas,
And at least two steam generators for generating the steam supplied to the hydrothermal treatment apparatus,
The at least one hydrothermal treatment device comprises:
A housing into which steam is injected,
An input port for inputting the waste into the housing,
A discharge port for discharging the reactant from the housing,
Is a batch-type hydrothermal treatment apparatus equipped with
The at least two steam generators are
A first steam generator for generating steam using combustion energy generated by combustion of fuel containing the waste;
A second steam generator for generating steam using combustion energy generated by combustion of at least one of the solid fuel stored in the first storage facility or the biogas stored in the third storage facility; Waste treatment system including.
前記第1蒸気発生装置が前記蒸気を発生させるために用いる前記燃焼エネルギは、前記廃棄物及び前記固形の燃料の燃焼により発生したエネルギを含む、請求項1に記載の廃棄物処理システム。   The waste treatment system according to claim 1, wherein the combustion energy used by the first steam generator to generate the steam includes energy generated by combustion of the waste and the solid fuel. 前記廃棄物処理システムは、前記廃棄物の燃焼により発生した燃焼エネルギを用いて発電を行うための発電装置を備える、請求項1または2に記載の廃棄物処理システム。   The waste treatment system according to claim 1 or 2, wherein the waste treatment system includes a power generation device that generates electric power by using combustion energy generated by combustion of the waste. 前記発電装置は、
蒸気タービンと、
前記蒸気タービンに接続された発電機本体部と
を含み、
前記蒸気タービンは、前記第1蒸気発生装置において発生した蒸気によって駆動するように構成される、請求項3に記載の廃棄物処理システム。
The power generator is
A steam turbine,
Including a generator main body connected to the steam turbine,
The waste treatment system of claim 3, wherein the steam turbine is configured to be driven by steam generated in the first steam generator.
前記廃棄物処理システムは、
前記固形の燃料の少なくとも一部の燃焼を行うための燃焼炉と、
前記燃焼炉で生成した燃焼エネルギを用いて、前記第1蒸気発生装置において発生した前記蒸気を、前記蒸気タービンに流入する前に過熱するための過熱器と
を備える、請求項4に記載の廃棄物処理システム。
The waste treatment system is
A combustion furnace for burning at least a portion of the solid fuel;
The waste according to claim 4, further comprising: a superheater that superheats the steam generated in the first steam generator using the combustion energy generated in the combustion furnace before flowing into the steam turbine. Material processing system.
前記蒸気タービンの途中から取り出された前記蒸気
を前記少なくとも1つの水熱処理装置に供給するように構成されている、請求項4または5に記載の廃棄物処理システム。
The waste treatment system according to claim 4 or 5, which is configured to supply the steam taken out from the middle of the steam turbine to the at least one hydrothermal treatment apparatus.
前記廃棄物処理システムは、
前記固形の燃料の少なくとも一部をガス化させて燃料ガスを生成させるためのガス化炉と、
前記ガス化炉で生成した前記燃料ガスを貯蔵するための第2貯蔵設備と
を備え、
前記第2蒸気発生装置は、前記第2貯蔵設備に貯蔵される前記固形の燃料をガス化させた燃料ガス
及び前記第3貯蔵設備に貯蔵される前記バイオガスの燃焼により発生した燃焼エネルギを用いて蒸気を発生させる、請求項1〜6のいずれか一項に記載の廃棄物処理システム。
The waste treatment system is
A gasification furnace for gasifying at least a part of the solid fuel to generate a fuel gas;
A second storage facility for storing the fuel gas produced in the gasification furnace,
The second steam generator uses combustion energy generated by combustion of the fuel gas obtained by gasifying the solid fuel stored in the second storage facility and the biogas stored in the third storage facility. The waste treatment system according to any one of claims 1 to 6, wherein steam is generated to generate steam.
前記燃料製造装置は、前記少なくとも1つの水熱処理の反応物の固体を乾燥する乾燥装置を含み、
前記乾燥装置は、前記少なくとも2つの蒸気発生装置において前記蒸気を発生させた後の燃焼排ガスによって、前記少なくとも1つの水熱処理の反応物の固体を乾燥する、請求項1〜7のいずれか一項に記載の廃棄物処理システム。
The fuel production apparatus includes a drying device for drying solids of the at least one hydrothermal treatment reactant,
8. The drying device dries the solid matter of the at least one hydrothermal treatment reactant with the combustion exhaust gas after the steam is generated in the at least two steam generation devices. Waste treatment system described in.
前記少なくとも1つの水熱処理装置は、前記水熱処理を行った後に前記反応物を乾燥させるように構成されている、請求項1〜8のいずれか一項に記載の廃棄物処理システム。   The waste treatment system according to any one of claims 1 to 8, wherein the at least one hydrothermal treatment apparatus is configured to dry the reaction product after performing the hydrothermal treatment. 前記少なくとも1つの水熱処理装置は、2つの水熱処理装置を備え、該2つの水熱処理装置はそれぞれ蒸気供給口及び蒸気排出口を備え、
前記2つの水熱処理装置の一方の前記蒸気排出口と、前記2つの水熱処理装置の他方の前記蒸気供給口とは配管により接続されることを特徴とする、請求項1〜9のいずれか一項に記載の廃棄物処理システム。
The at least one hydrothermal treatment device comprises two hydrothermal treatment devices, each of the two hydrothermal treatment devices comprising a steam supply port and a steam discharge port,
10. The steam discharge port of one of the two hydrothermal treatment devices and the steam supply port of the other of the two hydrothermal treatment devices are connected by piping. Waste treatment system according to paragraph.
JP2019232689A 2019-12-24 2019-12-24 Waste treatment system Active JP7050043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232689A JP7050043B2 (en) 2019-12-24 2019-12-24 Waste treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232689A JP7050043B2 (en) 2019-12-24 2019-12-24 Waste treatment system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018077942A Division JP6640268B2 (en) 2018-04-13 2018-04-13 Waste treatment system and waste treatment method

Publications (2)

Publication Number Publication Date
JP2020073265A true JP2020073265A (en) 2020-05-14
JP7050043B2 JP7050043B2 (en) 2022-04-07

Family

ID=70609901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232689A Active JP7050043B2 (en) 2019-12-24 2019-12-24 Waste treatment system

Country Status (1)

Country Link
JP (1) JP7050043B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893673B1 (en) * 2020-12-02 2021-06-23 サステイナブルエネルギー開発株式会社 Waste treatment system, waste treatment method and pellets
WO2022004806A1 (en) * 2020-07-02 2022-01-06 三菱重工業株式会社 Waste treatment system and waste treatment method
JP7055916B1 (en) 2021-03-31 2022-04-18 テラサークルテクノロジーズ株式会社 Organic waste treatment system
CN115490411A (en) * 2022-11-21 2022-12-20 广东昕旺环保科技发展有限公司 Sludge treatment agent and sludge treatment process
WO2023085241A1 (en) * 2021-11-12 2023-05-19 三菱重工業株式会社 Waste treatment facility
JP7477929B1 (en) 2023-11-07 2024-05-02 タオ・エンジニアリング株式会社 Biogas plant, biogas production and processing method, and biogas production and processing residue

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040671A (en) * 2003-07-24 2005-02-17 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and system for treating biomass resource to use it effectively
JP2005314549A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification furnace apparatus
JP2010185021A (en) * 2009-02-13 2010-08-26 Kubota Kankyo Service Kk Method and apparatus for producing dechlorinated fuel
JP2010195994A (en) * 2009-02-27 2010-09-09 Kubota Kankyo Service Kk Method and apparatus for producing dechlorinated fuel
JP2011200836A (en) * 2010-03-26 2011-10-13 Ibiden Co Ltd Hydrothermal treatment apparatus, treatment apparatus, hydrothermal treatment method, and treatment method of garbage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040671A (en) * 2003-07-24 2005-02-17 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and system for treating biomass resource to use it effectively
JP2005314549A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification furnace apparatus
JP2010185021A (en) * 2009-02-13 2010-08-26 Kubota Kankyo Service Kk Method and apparatus for producing dechlorinated fuel
JP2010195994A (en) * 2009-02-27 2010-09-09 Kubota Kankyo Service Kk Method and apparatus for producing dechlorinated fuel
JP2011200836A (en) * 2010-03-26 2011-10-13 Ibiden Co Ltd Hydrothermal treatment apparatus, treatment apparatus, hydrothermal treatment method, and treatment method of garbage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004806A1 (en) * 2020-07-02 2022-01-06 三菱重工業株式会社 Waste treatment system and waste treatment method
JP6893673B1 (en) * 2020-12-02 2021-06-23 サステイナブルエネルギー開発株式会社 Waste treatment system, waste treatment method and pellets
JP2022088272A (en) * 2020-12-02 2022-06-14 サステイナブルエネルギー開発株式会社 Waste treatment system, waste treatment method, and pellets
JP7055916B1 (en) 2021-03-31 2022-04-18 テラサークルテクノロジーズ株式会社 Organic waste treatment system
JP2022156354A (en) * 2021-03-31 2022-10-14 テラサークルテクノロジーズ株式会社 Organic waste treatment system
WO2023085241A1 (en) * 2021-11-12 2023-05-19 三菱重工業株式会社 Waste treatment facility
CN115490411A (en) * 2022-11-21 2022-12-20 广东昕旺环保科技发展有限公司 Sludge treatment agent and sludge treatment process
JP7477929B1 (en) 2023-11-07 2024-05-02 タオ・エンジニアリング株式会社 Biogas plant, biogas production and processing method, and biogas production and processing residue

Also Published As

Publication number Publication date
JP7050043B2 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP7050043B2 (en) Waste treatment system
JP6640268B2 (en) Waste treatment system and waste treatment method
CA2501841C (en) Carbonization and gasification of biomass and power generation system
DK1799796T3 (en) Slurry drainage and sludge conversion into a renewable fuel
US10435638B2 (en) Pyrolysis processing of solid waste from a water treatment plant
US20100105127A1 (en) Systems and methods for generating resources using wastes
JP4276973B2 (en) Biomass power generation system
US20110239620A1 (en) Method for processing organic waste and a device for carrying out said method
JP5938788B2 (en) Method for thermochemical carbonization and gasification of wet biomass
KR102235889B1 (en) Power generating system by using syngas that pyrolysis and gasification using combustible renewable fuels including biomass
JP7101160B2 (en) Waste treatment system
Tosun 5MW hybrid power generation with agriculture and forestry biomass waste co-incineration in stoker and subsequent solar panel (CSP) ORC station
JP7101159B2 (en) Waste treatment system
Hamzah et al. Prospective for power generation of solid fuel from hydrothermal treatment of biomass and waste in Malaysia
JP2020510179A (en) Woody biomass cogeneration plant that continuously generates heat and electricity
JP7101158B2 (en) Waste treatment system
CN103571544A (en) Systems for preheating feedstock
CN111718756A (en) Thermal power plant pyrolysis hydrogen production system and hydrogen production method
RU2631450C1 (en) Method of producing electricity from substandard fuel biomass and device for its implementation
CN213944291U (en) Carbon-containing organic solid waste comprehensive treatment and recycling system and mobile offshore platform
JP2019147881A (en) Apparatus for converting sludge into fuel, system for converting sludge into fuel, sludge fuel utilization type factory and method for producing solid fuel
CN210122559U (en) Thermal power plant pyrolysis hydrogen production system
JP2024503769A (en) Multiphase continuous vertical reactor and thermochemical methods carried out therein for clean production of hydrocarbons and energy
RU2631456C1 (en) Method for producing electricity from sub-standart (wet) fuel biomass and device for its implementation
JP2018193421A (en) Syngas power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7050043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150