JP2020066015A - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
JP2020066015A
JP2020066015A JP2018199132A JP2018199132A JP2020066015A JP 2020066015 A JP2020066015 A JP 2020066015A JP 2018199132 A JP2018199132 A JP 2018199132A JP 2018199132 A JP2018199132 A JP 2018199132A JP 2020066015 A JP2020066015 A JP 2020066015A
Authority
JP
Japan
Prior art keywords
laser beam
electrode pad
irradiation
substrate
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018199132A
Other languages
Japanese (ja)
Inventor
洋司 森數
Yoji Morikazu
洋司 森數
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2018199132A priority Critical patent/JP2020066015A/en
Priority to US16/600,739 priority patent/US10985060B2/en
Priority to ATA50906/2019A priority patent/AT521999A2/en
Priority to DE102019216320.3A priority patent/DE102019216320A1/en
Publication of JP2020066015A publication Critical patent/JP2020066015A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • H01L21/76894Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/386Removing material by boring or cutting by boring of blind holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/428Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

To provide a laser processing method that can appropriately form a narrow hole by irradiating a laser beam through a rear surface of a substrate corresponding to an electrode pad of a device.SOLUTION: The laser processing method includes at least: a laser beam irradiation step of irradiating a laser beam LB through a rear surface 10b corresponding to an electrode pad; a detection step of detecting first plasma light emitted from a substrate 10 and second plasma light emitted from the electrode pad when a narrow hole is formed in the substrate 10 by irradiation of the laser beam LB; and a laser irradiation-finishing step of stopping the irradiation of the laser beam LB when the second plasma light is detected in the detection step, where a size of the electrode pad is detected and an irradiation area setting step of setting an irradiation area of the laser beam LB so that the formed narrow hole is positioned inside the electrode pad, before the laser beam irradiation step.SELECTED DRAWING: Figure 3

Description

本発明は、基板の裏面にレーザー光線を照射して電極パッドに至る細孔を形成するレーザー加工方法に関する。   The present invention relates to a laser processing method in which a back surface of a substrate is irradiated with a laser beam to form pores reaching electrode pads.

IC、LSI等のデバイスが分割予定ラインによって区画され表面に形成されたウエーハは、ダイシング装置、レーザー加工装置によって個々のデバイスチップに分割され、携帯電話、パソコン等の電気機器に利用される。   A wafer formed on the surface by dividing devices such as IC and LSI by dividing lines is divided into individual device chips by a dicing device and a laser processing device, and used for electric equipment such as mobile phones and personal computers.

近年では、該デバイスが形成された基板の裏面側から、該デバイスに形成された電極パッドの裏面に達する細孔(ビアホール)を形成し、その後、該細孔にアルミニウム等の導電性部材を埋設して上下にデバイスを積層することでデバイスの高機能化が図られている。   In recent years, a pore (via hole) reaching the back surface of an electrode pad formed on the device is formed from the back surface side of the substrate on which the device is formed, and then a conductive member such as aluminum is embedded in the pore. By stacking the devices on top of each other, the functionality of the device is enhanced.

本出願人は、上記した細孔を形成すべく、デバイスの電極パッドに対応する基板の裏面にレーザー光線を照射して細孔を形成する技術を提案している(特許文献1を参照。)。この特許文献1に記載された技術では、デバイスが表面に形成された基板の裏面にレーザー光線を照射することで発せられるプラズマ光と、レーザー光線が電極パッドに達することで発せられるプラズマ光とを検出し、電極パッドにレーザー光線が到達したことを該プラズマ光により判定することで、電極パッドに穴を開けることなくレーザー光線を停止させようとするものである。   The present applicant has proposed a technique of irradiating a laser beam on the back surface of the substrate corresponding to the electrode pad of the device to form the pores (see Patent Document 1). In the technique described in Patent Document 1, the device detects plasma light emitted by irradiating the back surface of the substrate formed on the surface with a laser beam and plasma light emitted by the laser beam reaching the electrode pad. By determining that the laser beam has reached the electrode pad by the plasma light, the laser beam is stopped without making a hole in the electrode pad.

特許第6034030号公報Japanese Patent No. 6034030

上記した従来技術によれば、基板の裏面側から照射されたレーザー光線が電極パッドに達することで、電極パッドを構成する物質固有のプラズマ光が発生するため、該物質固有のプラズマ光を検出した際に、レーザー光線を停止する。しかし、レーザー光線のスポット径は電極パッドの面積に比べて小さく設定されるため、後に細孔に埋設される導電性部材と電極パッドとを確実に接続するためには、電極パッドを充分に露出させるべくレーザー光線が電極パッドに最初に達してからもある程度繰り返してレーザー光線を照射する必要がある。   According to the above-mentioned conventional technique, when the laser beam irradiated from the back surface side of the substrate reaches the electrode pad, plasma light peculiar to the substance forming the electrode pad is generated. Then, turn off the laser beam. However, since the spot diameter of the laser beam is set to be smaller than the area of the electrode pad, the electrode pad must be sufficiently exposed in order to reliably connect the conductive member and the electrode pad, which will be buried in the pores later. Therefore, it is necessary to repeat the laser beam to some extent after the laser beam first reaches the electrode pad.

他方、デバイス上に形成された電極パッドはその面積が狭く、該電極パッド全域を含むようにレーザー光線の照射領域を設定した場合、ある程度電極パッドが露出した後もレーザー光線が基板に当たり、該基板を構成する物質固有のプラズマ光が出続けるため、電極パッドを構成する物質固有のプラズマ光を充分に検出することができず、その結果、電極パッドにレーザー光線が過剰に照射されることで電極パッドに穴が開いてしまい、適正に細孔を形成することが困難であるという問題がある。   On the other hand, the electrode pad formed on the device has a small area, and when the irradiation area of the laser beam is set so as to include the entire area of the electrode pad, the laser beam hits the substrate even after the electrode pad is exposed to some extent, and the substrate is formed. As the plasma light peculiar to the substance continues to be emitted, it is not possible to sufficiently detect the plasma light peculiar to the substance forming the electrode pad, and as a result, the laser beam is excessively irradiated to the electrode pad, which causes holes in the electrode pad. However, there is a problem that it is difficult to properly form the pores.

本発明は、上記事実に鑑みなされたものであり、その主たる技術課題は、デバイスの電極パッドに対応する基板の裏面からレーザー光線を照射して適正に細孔を形成することができるレーザー加工方法を提供することにある。   The present invention has been made in view of the above facts, and its main technical problem is to provide a laser processing method capable of appropriately forming pores by irradiating a laser beam from the back surface of a substrate corresponding to an electrode pad of a device. To provide.

上記主たる技術課題を解決するため、本発明によれば、電極パッドを備えたデバイスが表面に形成された基板の裏面にレーザー光線を照射して電極パッドに至る細孔を形成するレーザー加工方法であって、電極パッドに対応する裏面からレーザー光線を照射するレーザー光線照射工程と、レーザー光線の照射によって基板に細孔が形成されると共に基板から発せられる第一のプラズマ光と電極パッドから発せられる第二のプラズマ光とを検出する検出工程と、該検出工程において、該第二のプラズマ光を検出した際、レーザー光線の照射を停止するレーザー照射終了工程と、を少なくとも含み、該レーザー光線照射工程の前に、該電極パッドの大きさを検出し、形成される細孔が該電極パッドの内側に位置するようにレーザー光線の照射領域を設定する照射領域設定工程が実施されるレーザー加工方法が提供される。   In order to solve the above-mentioned main technical problem, according to the present invention, a device provided with an electrode pad is a laser processing method of irradiating a laser beam to the back surface of a substrate formed on the surface to form pores reaching the electrode pad. Laser beam irradiation step of irradiating a laser beam from the back surface corresponding to the electrode pad, and the first plasma light emitted from the substrate and the second plasma emitted from the electrode pad as well as the formation of pores in the substrate by the laser beam irradiation. A detection step of detecting light and a laser irradiation termination step of stopping irradiation of a laser beam when the second plasma light is detected in the detection step, and at least including the laser beam irradiation step before the laser beam irradiation step. Laser beam irradiation area so that the size of the electrode pad is detected and the pores formed are located inside the electrode pad Laser processing method irradiation region setting step of setting is performed is provided.

該照射領域設定工程において、該電極パッドに内接する円の面積に対して電極パッドに形成される細孔の断面積が95%以下になるようにレーザー光線の該照射領域を設定することが好ましい。   In the irradiation region setting step, it is preferable to set the irradiation region of the laser beam so that the cross-sectional area of the pores formed in the electrode pad is 95% or less with respect to the area of the circle inscribed in the electrode pad.

本発明のレーザー加工方法は、電極パッドを備えたデバイスが表面に形成された基板の裏面にレーザー光線を照射して電極パッドに至る細孔を形成するレーザー加工方法であって、電極パッドに対応する裏面からレーザー光線を照射するレーザー光線照射工程と、レーザー光線の照射によって基板に細孔が形成されると共に基板から発せられる第一のプラズマ光と電極パッドから発せられる第二のプラズマ光とを検出する検出工程と、該検出工程において、該第二のプラズマ光を検出した際、レーザー光線の照射を停止するレーザー照射終了工程と、を少なくとも含み、該レーザー光線照射工程の前に、該電極パッドの大きさを検出し、形成される細孔が該電極パッドの内側に位置するようにレーザー光線の照射領域を設定する照射領域設定工程が実施される。これにより、電極パッドに細孔が至った際に、レーザー光線が確実に電極パッドに照射され、第二のプラズマ光を充分に検出することができ、電極パッドに穴が開くという問題が解消する。   The laser processing method of the present invention is a laser processing method in which a device provided with an electrode pad is irradiated with a laser beam on the back surface of a substrate formed on the surface to form pores reaching the electrode pad, and corresponds to the electrode pad. A laser beam irradiation step of irradiating a laser beam from the back surface, and a detection step of detecting a first plasma light emitted from the substrate and a second plasma light emitted from the electrode pad as well as pores are formed in the substrate by the irradiation of the laser beam. And a laser irradiation ending step of stopping the irradiation of the laser beam when the second plasma light is detected in the detecting step, and the size of the electrode pad is detected before the laser beam applying step. And setting the irradiation area of the laser beam so that the formed pores are located inside the electrode pad. Degree is carried out. With this, when the pore reaches the electrode pad, the laser beam is surely applied to the electrode pad, the second plasma light can be sufficiently detected, and the problem that the electrode pad has a hole is solved.

本実施形態における被加工物としての基板、及び該基板がフレームに支持される態様を示す斜視図である。It is a perspective view showing a substrate as a work piece in this embodiment, and a mode in which the substrate is supported by a frame. 図1に示す基板にレーザー加工を施すレーザー加工装置の全体斜視図である。FIG. 2 is an overall perspective view of a laser processing apparatus that performs laser processing on the substrate shown in FIG. 1. 図2に示すレーザー加工装置に備えられるレーザー光線照射手段、及びプラズマ検出手段の概略を示すブロック図である。It is a block diagram which shows the outline of the laser beam irradiation means and plasma detection means with which the laser processing apparatus shown in FIG. 2 is equipped. 照射領域設定工程を実施する態様を説明するための概念図である。It is a conceptual diagram for demonstrating the aspect which implements an irradiation area | region setting process. (a)照射領域に対応してレーザー光線のスポットが位置付けられる電極パッドの平面図、(b)(a)に示された平面図のA−A部の断面図である。(A) is a plan view of an electrode pad on which a spot of a laser beam is positioned corresponding to an irradiation region, and (b) is a cross-sectional view taken along the line AA of the plan view shown in (a). 第一のホトデテクター、及び第二のホトデテクターの出力(電圧値)の変化を示すグラフである。It is a graph which shows the change of the output (voltage value) of a 1st photo detector and a 2nd photo detector.

以下、本発明に基づき構成されるレーザー加工方法に係る実施形態について添付図面を参照して、更に詳細に説明する。   Hereinafter, embodiments of a laser processing method configured according to the present invention will be described in more detail with reference to the accompanying drawings.

図1には、本実施形態においてレーザー加工される被加工物として用意される円盤状の基板10の斜視図が示されている。図1に示す基板10は、例えば、厚みが300μmのリチウムタンタレート(LT)で構成され、表面10aに格子状に配列された複数の分割予定ライン14によって複数の領域が区画され、この区画された領域にデバイス12がそれぞれ形成されている。デバイス12の表面には、図1におけるA部を右方に拡大して示すように、略矩形状の複数(10個)の電極パッド12aが形成されている。この電極パッド12aは、500μm×600μm程度の大きさであり、図示の実施形態においては銅(Cu)によって形成されている。用意された基板10は、図1に示すように、環状のフレームFに装着された保護テープTに対して表面10a側を下に、裏面10bを上側にして貼着され支持される。   FIG. 1 shows a perspective view of a disk-shaped substrate 10 prepared as a workpiece to be laser processed in this embodiment. The substrate 10 shown in FIG. 1 is made of, for example, lithium tantalate (LT) having a thickness of 300 μm, and a plurality of dividing lines 14 arranged in a grid pattern on the surface 10 a divide a plurality of regions. The devices 12 are formed in the respective regions. A plurality of (10) electrode pads 12a having a substantially rectangular shape are formed on the surface of the device 12, as shown by enlarging the portion A in FIG. 1 to the right. The electrode pad 12a has a size of about 500 μm × 600 μm, and is made of copper (Cu) in the illustrated embodiment. As shown in FIG. 1, the prepared substrate 10 is attached and supported with the front surface 10a side facing downward and the back surface 10b facing upward with respect to the protective tape T mounted on the annular frame F.

図2には、本実施形態において基板10に対してレーザー光線を照射するレーザー加工装置1の全体斜視図が示されている。レーザー加工装置1は、フレームFに保護テープTを介して支持された基板10を保持する保持手段20と、保持手段20を移動させる移動手段30と、保持手段20に保持された基板10にレーザー加工を施すレーザー光線照射手段50と、保持手段20に保持される基板10を撮像する撮像手段60と、基板10から発せられるプラズマ光を検出するプラズマ検出手段70と、を備えている。   FIG. 2 shows an overall perspective view of the laser processing apparatus 1 that irradiates the substrate 10 with a laser beam in the present embodiment. The laser processing apparatus 1 includes a holding unit 20 that holds the substrate 10 supported by the frame F via the protective tape T, a moving unit 30 that moves the holding unit 20, and a laser on the substrate 10 held by the holding unit 20. A laser beam irradiation means 50 for processing, an image pickup means 60 for picking up an image of the substrate 10 held by the holding means 20, and a plasma detection means 70 for detecting plasma light emitted from the substrate 10 are provided.

保持手段20は、図中に矢印Xで示すX軸方向において移動自在に基台2に載置される矩形状のX軸方向可動板21と、該X軸方向と直交し、該X軸方向と実質水平面を構成する矢印Yで示すY軸方向において移動自在にX軸方向可動板21上に載置される矩形状のY軸方向可動板22と、Y軸方向可動板22の上面に固定された円筒状の支柱24と、支柱24の上端に固定された矩形状のカバー板26とを含む。カバー板26には、カバー板26上に形成された長穴を通って上方に延びる円形状のチャックテーブル28が配設されている。チャックテーブル28は基板10を保持し、支柱24内に収容された図示しない回転駆動手段により回転可能に構成されている。チャックテーブル28の上面には、多孔質材料から形成され実質上水平に延在する円形状の吸着チャック40が配置されている。吸着チャック40は、支柱24の内部を通る流路によって図示しない吸引手段に接続されている。チャックテーブル28には、基板10を支持するフレームFを固定するためのクランプ42が配設されている。   The holding means 20 is a rectangular X-axis direction movable plate 21 that is mounted on the base 2 so as to be movable in the X-axis direction indicated by an arrow X in the figure, and is orthogonal to the X-axis direction, and the X-axis direction. And a rectangular Y-axis direction movable plate 22 movably mounted on the X-axis direction movable plate 21 in the Y-axis direction shown by the arrow Y forming a substantially horizontal plane, and fixed to the upper surface of the Y-axis direction movable plate 22. It includes a cylindrical support 24 and a rectangular cover plate 26 fixed to the upper end of the support 24. The cover plate 26 is provided with a circular chuck table 28 extending upward through a long hole formed on the cover plate 26. The chuck table 28 holds the substrate 10 and is configured to be rotatable by a rotation driving unit (not shown) housed in the column 24. On the upper surface of the chuck table 28, a circular suction chuck 40 formed of a porous material and extending substantially horizontally is arranged. The suction chuck 40 is connected to a suction unit (not shown) by a flow path passing through the inside of the support column 24. A clamp 42 for fixing the frame F supporting the substrate 10 is arranged on the chuck table 28.

移動手段30は、基台2上に配設され、保持手段20とレーザー光線照射手段50とを相対的に移動させる手段として備えられるものであり、保持手段20をX軸方向に加工送りするX軸移動手段31と、保持手段20をY軸方向に割り出し送りするY軸移動手段32と、を備えている。X軸移動手段31は、パルスモータ31aの回転運動をボールねじ31bを介して直線運動に変換してX軸方向可動板21に伝達し、基台2上の案内レール2a、2aに沿ってX軸方向可動板21をX軸方向において進退させる。Y軸移動手段32は、パルスモータ32aの回転運動を、ボールねじ32bを介して直線運動に変換してY軸方向可動板22に伝達し、X軸方向可動板21上の案内レール21a、21aに沿ってY軸方向可動板22をY軸方向において進退させる。さらに、支柱24の内部には図示しない回転駆動手段が収容されており、チャックテーブル28の位置を任意の角度に回転させて制御することが可能に構成されている。なお、図示は省略するが、X軸移動手段31、Y軸移動手段32、及び回転駆動手段には、位置検出手段が配設されており、基台2上におけるチャックテーブル28のX軸方向の位置、Y軸方向の位置、周方向の回転位置が正確に検出され、後述する制御手段100(図3を参照。)に伝達されることで、制御手段100から指示される指示信号に基づいてX軸移動手段31、Y軸移動手段32、及び図示しない回転駆動手段が駆動され、所望のX座標位置、Y座標位置、及び角度θになるようにチャックテーブル28の位置を制御することが可能である。   The moving means 30 is provided on the base 2 and is provided as means for relatively moving the holding means 20 and the laser beam irradiation means 50, and an X axis for processing and feeding the holding means 20 in the X axis direction. The moving means 31 and the Y-axis moving means 32 for indexing and feeding the holding means 20 in the Y-axis direction are provided. The X-axis moving means 31 converts the rotational motion of the pulse motor 31a into a linear motion via the ball screw 31b and transmits the linear motion to the X-axis direction movable plate 21, and the X-axis moving along the guide rails 2a, 2a on the base 2. The axially movable plate 21 is moved back and forth in the X-axis direction. The Y-axis moving means 32 converts the rotational movement of the pulse motor 32a into a linear movement via the ball screw 32b and transmits it to the Y-axis direction movable plate 22, and guide rails 21a, 21a on the X-axis direction movable plate 21. The Y-axis direction movable plate 22 is moved back and forth along the Y-axis direction. Further, a rotation driving means (not shown) is housed inside the column 24, and the position of the chuck table 28 can be rotated at an arbitrary angle to be controlled. Although not shown, the X-axis moving means 31, the Y-axis moving means 32, and the rotation driving means are provided with position detecting means, and the chuck table 28 on the base 2 in the X-axis direction. The position, the position in the Y-axis direction, and the rotational position in the circumferential direction are accurately detected and transmitted to the control unit 100 (see FIG. 3) described later, and based on the instruction signal instructed from the control unit 100. The X-axis moving means 31, the Y-axis moving means 32, and a rotation driving means (not shown) are driven, and the position of the chuck table 28 can be controlled so that the desired X coordinate position, Y coordinate position, and angle θ can be obtained. Is.

移動手段30の側方には、枠体4が立設される。枠体4は、基台2上に配設される垂直壁部4a、及び垂直壁部4aの上端部から水平方向に延びる水平壁部4bと、を備えている。枠体4の水平壁部4bの内部には、図示しないレーザー光線照射手段50の光学系が内蔵されている。水平壁部4bの先端部下面には、レーザー光線照射手段50の一部を構成する集光器52が配設されている。レーザー光線照射手段50において発振されたレーザー光線は、保持手段20に保持される基板10の所望の位置に照射される。   The frame 4 is erected on the side of the moving means 30. The frame body 4 includes a vertical wall portion 4a arranged on the base 2, and a horizontal wall portion 4b extending horizontally from an upper end portion of the vertical wall portion 4a. Inside the horizontal wall portion 4b of the frame body 4, an optical system of a laser beam irradiation means 50 (not shown) is built in. A condenser 52 that constitutes a part of the laser beam irradiation means 50 is disposed on the lower surface of the tip of the horizontal wall 4b. The laser beam oscillated by the laser beam application means 50 is applied to a desired position on the substrate 10 held by the holding means 20.

レーザー光線照射手段50は、図3に示すように、パルス状のレーザー光線LBを発振するパルスレーザー光線発振器51と、パルスレーザー光線発振器51が発振したレーザー光線LBの出力を調整するアッテネータ53と、レーザー光線LBの光路を任意の加工送り方向(X軸方向)に偏向制御する光偏向手段として少なくとも音響光学素子を含む第一の音響光学偏向手段54と、レーザー光線LBの光路を任意の割り出し送り方向(Y軸方向)に偏向制御する光偏向手段として少なくとも音響光学素子を含む第二の音響光学偏向手段55と、第二の音響光学偏向手段55からのレーザー光線LBの光路の方向を変換する反射ミラー56と、を備え、反射ミラー56から反射されたパルスレーザー光線LBの光路を、fθレンズを備えた集光器52に導くように構成されている。上記したパルスレーザー光線発振器51、アッテネータ53、第一の音響光学偏向手段54、第二の音響光学偏向手段55は、制御手段100に接続され、制御手段100から送信される指示信号に基づいてその作動が制御される。   As shown in FIG. 3, the laser beam irradiation means 50 includes a pulse laser beam oscillator 51 that oscillates a pulsed laser beam LB, an attenuator 53 that adjusts the output of the laser beam LB oscillated by the pulse laser beam oscillator 51, and an optical path of the laser beam LB. A first acousto-optic deflecting means 54 including at least an acousto-optic element as a light deflecting means for controlling deflection in an arbitrary processing feed direction (X axis direction), and an optical path of the laser beam LB in an arbitrary indexing feed direction (Y axis direction). A second acousto-optical deflecting means 55 including at least an acousto-optical element as a light deflecting means for controlling deflection, and a reflecting mirror 56 for converting the direction of the optical path of the laser beam LB from the second acousto-optical deflecting means 55 are provided. An optical path of the pulse laser beam LB reflected from the reflection mirror 56 is provided with an fθ lens. It is configured to direct the optical device 52. The pulse laser beam oscillator 51, the attenuator 53, the first acousto-optic deflecting means 54, and the second acousto-optic deflecting means 55 described above are connected to the control means 100 and operate based on an instruction signal transmitted from the control means 100. Is controlled.

第一の音響光学偏向手段54に対し、制御手段100から例えば5Vの電圧が印加され、図示しない音響光学素子に5Vに対応する周波数が印加された場合には、パルスレーザー光線発振器51から発振されたレーザー光線LBは、その光軸が図3においてLB1で示すように偏向され集光点P1に集光される。また、第一の音響光学偏向手段54に制御手段100から例えば10Vの電圧が印加され、該音響光学素子に10Vに対応する周波数が印加された場合には、パルスレーザー光線発振器51から発振されたレーザー光線LBは、その光軸が図3においてLB0で示すように偏向され、上記集光点P1から加工送り方向(X軸方向)に図3において右方に所定量変位した集光点P0に集光される。さらに、第一の音響光学偏向手段54に制御手段100から例えば15Vの電圧が印加され、該音響光学素子に15Vに対応する周波数が印加された場合には、パルスレーザー光線発振器51から発振されたレーザー光線LBは、その光軸が図3においてLB2で示すように偏向され、上記集光点P0から加工送り方向(X軸方向)に図3においてさらに右方に所定量変位した集光点P2に集光される。第二の音響光学偏向手段55は、上記した第一の音響光学偏向手段54に対し、偏向方向が基板10上の割り出し送り方向(Y軸方向:図面に対して垂直な方向)である点でのみ相違し、それ以外は同様の動作をするように構成されている。このように、第一の音響光学偏向手段54、及び第二の音響光学偏向手段55によって偏向されるレーザー光線LBは、印加される電圧に対応して加工送り方向(X軸方向)、割り出し送り方向(Y軸方向)の所定の範囲において任意の位置に偏向させることができる。   When a voltage of, for example, 5V is applied from the control means 100 to the first acousto-optic deflecting means 54 and a frequency corresponding to 5V is applied to an acousto-optic element (not shown), the pulse laser beam oscillator 51 oscillates. The laser beam LB has its optical axis deflected as indicated by LB1 in FIG. 3 and is condensed at the condensing point P1. Further, when a voltage of, for example, 10 V is applied to the first acousto-optic deflecting means 54 from the control means 100 and a frequency corresponding to 10 V is applied to the acousto-optic element, the laser beam oscillated from the pulse laser beam oscillator 51. The optical axis of LB is deflected as indicated by LB0 in FIG. 3, and the light is condensed at the light condensing point P0 displaced from the light condensing point P1 in the machining feed direction (X-axis direction) to the right in FIG. 3 by a predetermined amount. To be done. Further, when a voltage of, for example, 15 V is applied to the first acousto-optic deflecting means 54 from the control means 100 and a frequency corresponding to 15 V is applied to the acousto-optic element, the laser beam oscillated from the pulse laser beam oscillator 51. The optical axis of the LB is deflected as shown by LB2 in FIG. 3, and the LB is converged on the condensing point P2 which is further displaced from the condensing point P0 to the right in FIG. Be illuminated. The second acousto-optic deflecting means 55 is different from the above-mentioned first acousto-optic deflecting means 54 in that the deflection direction is the indexing feed direction on the substrate 10 (Y-axis direction: direction perpendicular to the drawing). Only the difference is made, and other than that, the same operation is performed. As described above, the laser beam LB deflected by the first acousto-optic deflecting means 54 and the second acousto-optic deflecting means 55 corresponds to the applied voltage in the machining feed direction (X-axis direction) and the index feed direction. It can be deflected to an arbitrary position within a predetermined range in the (Y-axis direction).

制御手段100は、コンピュータにより構成され、制御プログラムに従って演算を実行する中央演算処理装置(CPU)と、制御プログラム等を格納するリードオンリメモリ(ROM)と、検出した検出値、演算結果等を格納するための読み書き可能なランダムアクセスメモリ(RAM)と、入力インターフェース、及び出力インターフェースとを備えている。制御手段100には、上記したレーザー光線照射手段50のみならず、移動手段30、撮像手段60、及びプラズマ光検出手段70等が接続され、制御手段100からの指示信号により制御可能に構成されている。   The control means 100 is composed of a computer, and a central processing unit (CPU) that executes an operation according to a control program, a read-only memory (ROM) that stores a control program and the like, and stores a detected value, an operation result, and the like. And a readable / writable random access memory (RAM) for input / output, an input interface, and an output interface. The control means 100 is connected not only to the laser beam irradiation means 50 described above but also to the moving means 30, the imaging means 60, the plasma light detecting means 70, etc., and is configured to be controllable by an instruction signal from the control means 100. .

撮像手段60は、水平壁部4bの先端部下面において、集光器52のX軸方向で隣接した位置に配設される。撮像手段60は、可視光線により撮像する通常の撮像素子、被加工物を照明する照明手段、赤外線撮像素子、及び赤外線照射手段等を備え、撮像手段60により撮像された画像情報は、制御手段100に送信される。撮像手段60は、レーザー加工を実施する際に、基板10と集光器52との位置合わせ(アライメント)を実施する際に使用されると共に、デバイス12に形成された各電極パッド12aの大きさ等を検出するために使用される。   The image pickup means 60 is arranged at a position adjacent to the light collector 52 in the X-axis direction on the lower surface of the front end portion of the horizontal wall portion 4b. The image pickup means 60 includes a normal image pickup element for picking up an image with visible light, an illuminating means for illuminating a workpiece, an infrared ray image pickup element, an infrared ray irradiating means, and the like. Sent to. The imaging unit 60 is used when performing alignment between the substrate 10 and the condenser 52 when performing laser processing, and the size of each electrode pad 12a formed in the device 12 is also used. And so on.

プラズマ光検出手段70の本体部は、枠体4の水平壁部4bに収容されており、プラズマ光検出手段70の一部を構成するプラズマ受光手段71は、図2に示すように、枠体4の水平壁部4bの先端部下面において、集光器52のX軸方向で隣接した位置であって、撮像手段60とは反対側の位置に取り付けられる。このプラズマ光検出手段70は、図3に示すようにレーザー光線照射手段50の集光器52から照射されるレーザー光線LBがチャックテーブル40に保持された基板10に照射されることによって発生するプラズマ光を受光するプラズマ受光手段71と、プラズマ受光手段71によって受光されたプラズマ光を第一の光路72aと第二の光路72bに分岐するビームスプリッター72と、第一の光路72aに配設され波長が第一の設定波長(基板10の基板を形成するリチウムタンタレートが発する波長)の光のみを通過させる第一のバンドパスフィルター73と、第一のバンドパスフィルター73を通過した光を受光して光強度信号を出力する第一のホトデテクター74と、第二の光路72bに配設された方向変換ミラー75と、方向変換ミラー75によって方向変換された波長が第二の設定波長(電極パッド12を形成する銅が発する波長)の光のみを通過させる第二のバンドパスフィルター76と、第二のバンドパスフィルター76を通過した光を受光して光強度信号を出力する第二のホトデテクター77とを備えている。上記したプラズマ受光手段71は、図示しない集光レンズと、該集光レンズを収容するレンズケースとからなっている。   The main body of the plasma light detecting means 70 is housed in the horizontal wall portion 4b of the frame body 4, and the plasma light receiving means 71 which constitutes a part of the plasma light detecting means 70, as shown in FIG. On the lower surface of the front end portion of the horizontal wall portion 4b of No. 4, the condenser 52 is attached at a position adjacent to the condenser 52 in the X-axis direction and on a side opposite to the image pickup means 60. The plasma light detecting means 70 generates plasma light generated by irradiating the substrate 10 held on the chuck table 40 with the laser beam LB emitted from the condenser 52 of the laser beam irradiating means 50 as shown in FIG. A plasma light receiving means 71 for receiving light, a beam splitter 72 for branching the plasma light received by the plasma light receiving means 71 into a first optical path 72a and a second optical path 72b, and a wavelength arranged in the first optical path 72a and having a wavelength of A first bandpass filter 73 that allows only light of one set wavelength (wavelength emitted by lithium tantalate forming the substrate of the substrate 10) and light that has passed through the first bandpass filter 73 to be received A first photodetector 74 for outputting an intensity signal, a direction changing mirror 75 arranged in the second optical path 72b, and a direction changing The second bandpass filter 76 that allows only the light of the second set wavelength (the wavelength emitted by the copper forming the electrode pad 12) whose wavelength is changed by the laser 75 and the second bandpass filter 76 to pass therethrough. The second photo detector 77 that receives the generated light and outputs a light intensity signal is provided. The plasma light receiving means 71 is composed of a condenser lens (not shown) and a lens case that accommodates the condenser lens.

上記した第一のバンドパスフィルター73は、図示の実施形態においてはリチウムタンタレートから発せられる第一のプラズマ光の波長(670nm)のみを通過させるために波長が660〜680nmの範囲の光を通過させるようになっている。また、上記した第二のバンドパスフィルター76は図示の実施形態においては銅から発せられる第二のプラズマ光の波長(515nm)のみを通過させるために波長が510〜520nmの範囲の光を通過させるようになっている。図示の実施形態におけるプラズマ検出手段70は以上のように構成されており、第一のホトデテクター74、及び第二のホトデテクター77は、受光した光強度に対応する電圧値の信号を制御手段100に出力する。   In the illustrated embodiment, the above-mentioned first band-pass filter 73 passes light in the wavelength range of 660 to 680 nm in order to pass only the wavelength (670 nm) of the first plasma light emitted from lithium tantalate. It is designed to let you. Further, in the illustrated embodiment, the above-mentioned second bandpass filter 76 allows only the wavelength (515 nm) of the second plasma light emitted from copper to pass therethrough, and thus allows the light in the wavelength range of 510 to 520 nm to pass. It is like this. The plasma detection means 70 in the illustrated embodiment is configured as described above, and the first photodetector 74 and the second photodetector 77 output a voltage value signal corresponding to the received light intensity to the control means 100. To do.

本実施形態で使用されるレーザー加工装置1は概ね上記したように構成されており、上記したレーザー加工装置1を用い、基板10に形成された各デバイス12の電極パッド12aに対応する位置に、基板10の裏面10b側から電極パッド12aに達する細孔(ビアホール)を形成するレーザー加工の実施形態について説明する。   The laser processing apparatus 1 used in the present embodiment is generally configured as described above. Using the laser processing apparatus 1 described above, the laser processing apparatus 1 is formed at a position corresponding to the electrode pad 12a of each device 12 formed on the substrate 10. An embodiment of laser processing for forming pores (via holes) reaching the electrode pads 12a from the back surface 10b side of the substrate 10 will be described.

基板10は、上記したように、裏面10b側を上側にして環状のフレームFに保護テープTを介して支持されており、図2に示すレーザー加工装置1のチャックテーブル28の吸着チャック40上に保護テープT側を下にして載置する。そして、基板10は、図示しない吸引手段を作動することにより、保護テープTを介してチャックテーブル28に吸引保持され、環状のフレームFは、クランプ42によって固定される。   As described above, the substrate 10 is supported by the annular frame F via the protective tape T with the back surface 10b side facing upward, and is placed on the suction chuck 40 of the chuck table 28 of the laser processing apparatus 1 shown in FIG. Place the protective tape T side down. Then, the substrate 10 is suction-held on the chuck table 28 via the protective tape T by operating suction means (not shown), and the annular frame F is fixed by the clamp 42.

上述したように基板10を吸引保持したチャックテーブル28は、X軸移動手段31によって撮像手段60の直下に位置付けられる。チャックテーブル28が撮像手段60の直下に位置付けられると、チャックテーブル28に保持された基板10に形成されている格子状の分割予定ライン14がX軸方向とY軸方向に平行に位置付けられているか否かを確認して基板10の方向を調整するアライメント作業を実施する。   The chuck table 28 holding the substrate 10 by suction as described above is positioned directly below the image pickup means 60 by the X-axis moving means 31. When the chuck table 28 is positioned directly below the image pickup means 60, is the grid-like planned dividing line 14 formed on the substrate 10 held by the chuck table 28 positioned parallel to the X-axis direction and the Y-axis direction? It is confirmed whether or not the alignment work for adjusting the direction of the substrate 10 is performed.

上記したように、チャックテーブル28に保持された基板10のアライメントを実施したならば、次いで、各デバイス12に形成されている電極パッド12aの大きさを検出し、追って実施されるレーザー光線照射工程において形成される細孔が電極パッド12aの内側に位置するようにレーザー光線LBの照射領域を設定する照射領域設定工程を実施する。図4、図5を参照しながらより具体的に説明する。   After the substrate 10 held on the chuck table 28 is aligned as described above, the size of the electrode pad 12a formed on each device 12 is detected, and the size of the electrode pad 12a formed in each device 12 is detected in the laser beam irradiation step which is performed later. The irradiation region setting step of setting the irradiation region of the laser beam LB is performed so that the formed pores are located inside the electrode pad 12a. A more specific description will be given with reference to FIGS. 4 and 5.

(照射領域設定工程)
まず、デバイス12に形成された電極パッド12aを撮像手段60で撮像される領域の中央に位置付ける。撮像手段60には、上記したように赤外線照射手段、赤外線撮像素子が備えられており、図4(a)に示されているように、基板10の表面10a側に形成されたデバイス12の電極パッド12a(点線で示す。)を撮像することができる。撮像手段60によって撮像された電極パッド12aの画像情報は制御手段100に送られて、電極パッド12aの大きさ、形状等を確認する。その後、図に示された略矩形状の電極パッド12aの形状を考慮して、電極パッド12aに内接する円(内接円)121を特定する(2点鎖線で示す。)。内接円121を特定したならば、内接円121の直径を特定し内接円121の面積を演算する。本実施形態では、電極パッド12aの内接円121の直径は500μmであることから、面積は、62,500πμm(0.0625πmm)である。この内接円121の面積が演算されたならば、レーザー光線LBが照射される照射領域を設定する際の面積の最大値となる基準値を演算する。本実施形態では、該基準値は、内接円121の面積の95%であり、以下の如く演算する。

62,500πμm×0.95
=59,375πμm(=0.059375πmm
(Irradiation area setting process)
First, the electrode pad 12a formed on the device 12 is positioned at the center of the area imaged by the imaging means 60. The image pickup means 60 is provided with the infrared ray irradiation means and the infrared ray image pickup element as described above, and as shown in FIG. 4A, the electrodes of the device 12 formed on the surface 10 a side of the substrate 10. The pad 12a (shown by a dotted line) can be imaged. The image information of the electrode pad 12a picked up by the image pickup means 60 is sent to the control means 100 to confirm the size, shape, etc. of the electrode pad 12a. After that, a circle (inscribed circle) 121 inscribed in the electrode pad 12a is specified in consideration of the shape of the substantially rectangular electrode pad 12a shown in the drawing (indicated by a chain double-dashed line). After the inscribed circle 121 is specified, the diameter of the inscribed circle 121 is specified and the area of the inscribed circle 121 is calculated. In this embodiment, since the diameter of the inscribed circle 121 of the electrode pad 12a is 500 μm, the area is 62,500πμm 2 (0.0625πmm 2 ). When the area of the inscribed circle 121 is calculated, the reference value that is the maximum value of the area when setting the irradiation region to be irradiated with the laser beam LB is calculated. In the present embodiment, the reference value is 95% of the area of the inscribed circle 121 and is calculated as follows.

62,500 πμm 2 × 0.95
= 59,375πμm 2 (= 0.059375πmm 2 )

上記した基準値に基づいて、面積が上記した基準値となる円(基準円)の半径を演算すると、略243.67μmとなる。すなわち、本実施形態では、レーザー光線LBの照射領域122aを、直径が487.34μmの該基準円と同等以下となるように設定する。   When the radius of the circle (reference circle) whose area is the above-mentioned reference value is calculated based on the above-mentioned reference value, it is approximately 243.67 μm. That is, in this embodiment, the irradiation area 122a of the laser beam LB is set to be equal to or less than the reference circle having a diameter of 487.34 μm.

本実施形態においては、レーザー光線LBが照射される照射領域について、図4(b)に示すように、上記した電極パッド12aの形状、大きさから演算される基準円と同等以下となるように、直径が450μmの円122を外形とするレーザー光線LBの照射領域122aを設定する。この照射領域122aは、上記した内接円121と中心が一致するようにその位置も設定され、内接円121が内接する電極パッド12aの各辺から均等に内側に離間するように設定される。このようにして、電極パッド12aにおける照射領域122aが設定されたならば、照射領域122aの大きさ(直径)、中心の座標位置等の情報が電極パッド12aに対応した情報として制御手段100に記憶される。このような照射領域設定工程を基板10上に形成された各デバイス12、各電極パッド12aについて実施し、各デバイス12の各電極パッド12aに対応して設定される照射領域122aの情報が制御手段100のランダムアクセスメモリ(RAM)に記憶される。以上により、照射領域設定工程が完了する。照射領域設定工程が完了したならば、電極パッド12aに対応する裏面10bからレーザー光線LBを照射するレーザー光線照射工程を実施する。   In the present embodiment, the irradiation area irradiated with the laser beam LB is, as shown in FIG. 4B, equal to or less than the reference circle calculated from the shape and size of the electrode pad 12a described above. An irradiation region 122a of the laser beam LB having a contour of a circle 122 having a diameter of 450 μm is set. The position of the irradiation area 122a is set so that the center coincides with the inscribed circle 121 described above, and the irradiation area 122a is set so as to be evenly spaced inward from each side of the electrode pad 12a inscribed therein. . When the irradiation area 122a in the electrode pad 12a is set in this way, information such as the size (diameter) of the irradiation area 122a and the coordinate position of the center is stored in the control means 100 as information corresponding to the electrode pad 12a. To be done. Such an irradiation region setting step is performed for each device 12 and each electrode pad 12a formed on the substrate 10, and information of the irradiation region 122a set corresponding to each electrode pad 12a of each device 12 is the control means. It is stored in 100 random access memories (RAMs). With the above, the irradiation region setting step is completed. When the irradiation region setting step is completed, the laser beam irradiation step of irradiating the laser beam LB from the back surface 10b corresponding to the electrode pad 12a is performed.

なお、本発明の照射領域設定工程では、全ての電極パッド12a毎に電極パッド12aの大きさを検出して照射領域122aを一つ一つ設定する必要はなく、代表する1つの電極パッド12aの大きさを検出して照射領域122aの大きさを設定し、その照射領域122aの大きさを他の電極パッド12aの照射領域122aとして適用するようにしてもよい。また、照射領域設定工程は、上記したアライメントを終了した後に実施することに限定されず、アライメントの前に実施することも可能であり、さらに、図2に記載されたレーザー加工装置1に基板10を搬送する前に、事前に基板10の表面10a側から電極パッド12aを撮像して各電極パッド12aに対応する照射領域122aの設定を行うこともできる。さらにいえば、基板10上にデバイス12を形成する際の製造公差が小さい場合は、実際に電極パッドを撮像して照射領域122aを設定することに限定されず、設計図面上で電極パッドの大きさを検出(演算)し、照射領域122aを設定するものであってもよい。   In the irradiation area setting step of the present invention, it is not necessary to detect the size of the electrode pad 12a for every electrode pad 12a and set each irradiation area 122a one by one. The size of the irradiation region 122a may be set by detecting the size, and the size of the irradiation region 122a may be applied as the irradiation region 122a of another electrode pad 12a. The irradiation region setting step is not limited to being performed after the above-described alignment is completed, and may be performed before the alignment. Furthermore, the laser processing apparatus 1 shown in FIG. It is also possible to image the electrode pads 12a from the front surface 10a side of the substrate 10 and set the irradiation region 122a corresponding to each electrode pad 12a in advance before the transfer. Furthermore, when the manufacturing tolerance when forming the device 12 on the substrate 10 is small, the size of the electrode pad is not limited to the actual size of the electrode pad set by imaging the electrode pad and setting the irradiation region 122a. The irradiation area 122a may be set by detecting (calculating) the height.

(レーザー光線照射工程)
上記したように、アライメント、照射領域設定工程を終えた状態で、レーザー光線照射工程を実施する。チャックテーブル28に保持された基板10の各デバイス12、電極パッド12aの座標位置は、制御手段100に記憶され管理されており、上記したアライメント、及び照射領域設定工程が実施されることで、基板10上の電極パッド12aを任意の位置に正確に位置付けることが可能になっている。
(Laser beam irradiation process)
As described above, the laser beam irradiation step is performed in the state where the alignment and irradiation area setting steps have been completed. The coordinate position of each device 12 and the electrode pad 12a of the substrate 10 held on the chuck table 28 is stored and managed by the control means 100, and the alignment and the irradiation region setting process described above are performed, so that the substrate It is possible to accurately position the electrode pad 12a on 10 at an arbitrary position.

ここで、基板10の裏面10b側から所望のデバイス12の電極パッド12aに達する細孔を形成すべく、レーザー加工を開始するデバイス12、及び電極パッド12aを定める。次いで、移動手段30を作動してチャックテーブル28を移動して、上記制御手段100に格納されている電極パッド12aの座標位置情報に基づき、細孔を形成する電極パッド12aに対応する位置を、レーザー光線照射手段50の集光器52の直下に位置付ける。このように集光器52の直下に電極パッド12aを位置付けた状態から、X軸移動手段31を作動して所定の速度でX軸方向に加工送りを開始し、集光器52から照射されるレーザー光線LBの照射可能な範囲に電極パッド12aに対応して設定された照射領域122aがあるか否かを判断し、レーザー光線LBが照射される範囲に照射領域122aが入っていると判断された状態で、レーザー光線照射手段50を作動し、集光器52からレーザー光線LBを照射する。レーザー光線LBが照射される領域は、図5(a)に示すように、上記した照射領域工程において設定された照射領域122aであり、第一の音響光学偏向手段54、及び第二の音響光学偏向手段55に印加される電圧を適宜制御することにより、レーザー光線LBのスポットSP(φ50μm)が、照射領域122a内において一箇所に偏ることなく、均一に分散して位置付けられる。そして、レーザー光線LBが繰り返し照射領域122aに照射されて、図5(a)のA−A断面として示されている図5(b)から理解されるように、裏面10b側から細孔16(φ450μm)が形成される。   Here, in order to form pores reaching the electrode pad 12a of the desired device 12 from the back surface 10b side of the substrate 10, the device 12 for starting laser processing and the electrode pad 12a are determined. Then, the moving means 30 is operated to move the chuck table 28, and based on the coordinate position information of the electrode pad 12a stored in the control means 100, the position corresponding to the electrode pad 12a forming the pore is moved to It is positioned directly below the condenser 52 of the laser beam irradiation means 50. From the state where the electrode pad 12a is positioned immediately below the condenser 52 in this way, the X-axis moving means 31 is operated to start the machining feed in the X-axis direction at a predetermined speed, and the condenser 52 is irradiated. A state in which it is determined whether or not there is an irradiation area 122a set corresponding to the electrode pad 12a in the irradiation possible range of the laser beam LB, and it is judged that the irradiation area 122a is included in the irradiation range of the laser beam LB. Then, the laser beam irradiation means 50 is operated, and the laser beam LB is emitted from the condenser 52. The area irradiated with the laser beam LB is, as shown in FIG. 5A, the irradiation area 122a set in the irradiation area step described above, and includes the first acousto-optical deflection unit 54 and the second acousto-optical deflection. By appropriately controlling the voltage applied to the means 55, the spot SP (φ50 μm) of the laser beam LB is uniformly distributed and positioned without being concentrated in one place in the irradiation region 122a. Then, the laser beam LB is repeatedly irradiated to the irradiation region 122a, and as can be understood from FIG. 5B shown as the AA cross section of FIG. 5A, the pores 16 (φ450 μm are formed from the back surface 10b side. ) Is formed.

なお、上記レーザー光線照射工程におけるレーザー加工条件は、以下のように設定される。
レーザー光線の波長 :343nm
繰り返し周波数 :40kHz
平均出力 :2W
パルス幅 :10ps
スポット径 :50μm
The laser processing conditions in the laser beam irradiation step are set as follows.
Laser beam wavelength: 343nm
Repetition frequency: 40 kHz
Average output: 2W
Pulse width: 10 ps
Spot diameter: 50 μm

(検出工程)
上記したレーザー光線照射工程が実施されると共に、基板10を構成するリチウムタンタレートから発せられる第一のプラズマ光と、電極パッド12aから発せられる第二のプラズマ光とを検出する検出工程を実施する。該検出工程について、以下に説明する。
(Detection process)
The laser beam irradiation step described above is performed, and the detection step of detecting the first plasma light emitted from the lithium tantalate forming the substrate 10 and the second plasma light emitted from the electrode pad 12a is performed. The detection step will be described below.

検出工程では、上述したレーザー光線照射工程を実施している状態において、制御手段100に対し、プラズマ検出手段70の第一のホトデテクター74、及び第二のホトデテクター75から光強度信号が電圧値で出力される。図6には、第一プラズマ光の光強度を検出する第一のホトデテクター74から出力される電圧値V(LT)と、第二のプラズマ光の光強度を検出する第二のホトデテクター77から出力される電圧値V(Cu)とが、時間経過とともに示されている。図6において横軸は時間(T)を示し、縦軸は光強度に相当する電圧値(V)を示している。   In the detection step, in the state where the above laser beam irradiation step is performed, the light intensity signal is output as a voltage value from the first photodetector 74 and the second photodetector 75 of the plasma detection means 70 to the control means 100. It In FIG. 6, the voltage value V (LT) output from the first photodetector 74 that detects the light intensity of the first plasma light and the output from the second photodetector 77 that detects the light intensity of the second plasma light. The voltage value V (Cu) to be applied is shown over time. In FIG. 6, the horizontal axis represents time (T) and the vertical axis represents voltage value (V) corresponding to light intensity.

図6に示すように、基板10の裏面10bから上記した照射領域122aに対するレーザー光線LBの照射を開始すると、基板10にレーザー光線LBが照射されることで第一のプラズマ光が発生し、第一のホトデテクター54から出力される電圧値V(LT)が上昇し始め、所定の電圧値(例えば2.5V)に到達し、レーザー光線LBが電極パッド12aに到達するまでは、略一定の値で推移する。その後、レーザー光線LBが電極パッド12aに達することで、第一のホトデテクター74によって出力される電圧値V(LT)が下降し始める。   As shown in FIG. 6, when the irradiation of the laser beam LB from the back surface 10b of the substrate 10 to the irradiation region 122a is started, the substrate 10 is irradiated with the laser beam LB to generate the first plasma light, and the first plasma light is generated. The voltage value V (LT) output from the photodetector 54 starts to rise, reaches a predetermined voltage value (for example, 2.5V), and changes at a substantially constant value until the laser beam LB reaches the electrode pad 12a. . Then, when the laser beam LB reaches the electrode pad 12a, the voltage value V (LT) output by the first photodetector 74 starts to drop.

(レーザー照射終了工程)
上記した検出工程によれば、第一のプラズマ光と、第二のプラズマ光の発生状態を検出することができる。この検出工程において第二のプラズマ光を検出することにより、レーザー光線LBの照射を停止するレーザー照射終了工程を実施する。該レーザー照射終了工程について、より具体的に説明する。
(Laser irradiation end process)
According to the detection process described above, the generation states of the first plasma light and the second plasma light can be detected. By detecting the second plasma light in this detecting step, the laser irradiation ending step of stopping the irradiation of the laser beam LB is carried out. The laser irradiation termination step will be described more specifically.

レーザー光線LBが電極パッド12aに達した場合、図6に示すように、第二のホトデテクター75によって出力される電圧値V(Cu)が上昇し始める。しかし、上昇直後は、細孔16が電極パッド12aに対して照射領域122a全域で充分に貫通したとはいえず、細孔16に導電性部材を埋設しても導通不良を起こすおそれがある。これに対処すべく、本実施形態では、細孔16が電極パッド12aに対して充分な領域で達したことを検出するため、図6に示すように、第二のホトデテクター75から出力される電圧値V(Cu)に対する閾値S(例えば、1.0V)が設定されている。第二のホトデテクター75から出力される電圧値V(Cu)と、この閾値Sとを比較して、電圧値V(Cu)が閾値Sを上回ったことが判定されたならば、細孔16が電極パッド12aに充分な領域で達して適正な細孔16が形成されたと判断し、制御手段100によって、レーザー光線照射手段50に指示信号を出し、レーザー光線LBの照射を終了させる。なお、閾値Sによる上記判定を行わず、レーザー光線照射工程をそのまま継続して実施すると、点線で示すように、電圧値V(Cu)’はさらに上昇し、略一定の電圧値(例えば、2.5V)で推移する状態となる。しかし、ここまで上昇させてしまうと、電極パッド12aに貫通孔が開いてしまう恐れがあるため、閾値Sはこれよりも低い値に設定される。   When the laser beam LB reaches the electrode pad 12a, the voltage value V (Cu) output by the second photodetector 75 starts to rise, as shown in FIG. However, immediately after the ascent, it cannot be said that the pores 16 have sufficiently penetrated the electrode pad 12a in the entire irradiation region 122a, and even if a conductive member is embedded in the pores 16, there is a possibility that conduction failure will occur. In order to deal with this, in the present embodiment, in order to detect that the pores 16 have reached the electrode pad 12a in a sufficient area, the voltage output from the second photodetector 75 as shown in FIG. A threshold value S (for example, 1.0 V) for the value V (Cu) is set. If the voltage value V (Cu) output from the second photodetector 75 is compared with this threshold value S and it is determined that the voltage value V (Cu) exceeds the threshold value S, the pores 16 are It is judged that the proper pores 16 have been formed by reaching the electrode pad 12a in a sufficient area, and the control means 100 issues an instruction signal to the laser beam irradiation means 50 to terminate the irradiation of the laser beam LB. If the laser beam irradiation step is continued without performing the above determination based on the threshold value S, the voltage value V (Cu) ′ is further increased as indicated by the dotted line, and a substantially constant voltage value (for example, 2. It will be in a state of transition at 5 V). However, if it is raised to this level, the through hole may open in the electrode pad 12a, so the threshold value S is set to a value lower than this.

上記したように、レーザー光線照射工程、検出工程、及びレーザー照射終了工程を、X軸送り手段31によってチャックテーブル28をX軸方向に加工送りしながら実施し、一の電極パッド12aに対応して電極パッド12aに達する適正な細孔16が形成されたならば、X軸方向で隣接する隣の電極パッド12aが集光器52の直下のレーザー光線LBの照射領域に位置付けられたか否かを判定し、上記と同様のレーザー光線照射工程、検出工程、及びレーザー照射終了工程を実施する。これを繰り返すことにより、X軸方向に配列された全ての電極パッド12aに対して細孔16を形成する。X軸方向に配列された全ての電極パッド12aに対応する細孔16を形成したならば、Y軸移動手段32を作動して、基板10をY軸方向に割り出し送りして、Y軸方向で隣接する電極パッド12aの列に対して、上記したのと同様の一連のレーザー加工を実施する。これらを繰り返すことにより、基板10上に形成された全ての電極パッド12aに対応する適正な細孔16を形成することができる。   As described above, the laser beam irradiation step, the detection step, and the laser irradiation end step are performed while the chuck table 28 is processed and fed in the X-axis direction by the X-axis feed means 31, and the electrode corresponding to one electrode pad 12a is formed. When the proper pores 16 reaching the pad 12a are formed, it is determined whether or not the adjacent electrode pad 12a adjacent in the X-axis direction is positioned in the irradiation region of the laser beam LB immediately below the condenser 52, The same laser beam irradiation step, detection step, and laser irradiation end step as described above are performed. By repeating this, the pores 16 are formed in all the electrode pads 12a arranged in the X-axis direction. When the pores 16 corresponding to all the electrode pads 12a arranged in the X-axis direction are formed, the Y-axis moving means 32 is operated to index and feed the substrate 10 in the Y-axis direction, A series of laser processing similar to that described above is performed on the row of adjacent electrode pads 12a. By repeating these steps, it is possible to form appropriate pores 16 corresponding to all the electrode pads 12a formed on the substrate 10.

上記したように、本実施形態では、照射領域設定工程により、電極パッド12aの大きさを検出し、形成される細孔16が電極パッド12aの内側に位置するようにレーザー光線LBの照射領域122aを設定している。これにより、電極パッド12aに細孔16が至った際に、レーザー光線LBが確実に電極パッド12aに照射され、第二のプラズマ光を充分に検出することができ、電極パッド12aに穴を開けることなく、適正な細孔16を形成することができる。なお、照射領域設定工程において、照射領域122aを設定する際に、電極パッド12aに内接する円121の面積に対し、照射領域122aの面積が95%以下となるように照射領域を設定することが好ましい。この照射領域122aの設定条件の根拠について以下のように説明する。   As described above, in the present embodiment, in the irradiation area setting step, the size of the electrode pad 12a is detected, and the irradiation area 122a of the laser beam LB is set so that the pores 16 to be formed are located inside the electrode pad 12a. It is set. With this, when the pores 16 reach the electrode pad 12a, the laser beam LB is surely applied to the electrode pad 12a, the second plasma light can be sufficiently detected, and a hole can be opened in the electrode pad 12a. Therefore, proper pores 16 can be formed. In the irradiation area setting step, when setting the irradiation area 122a, the irradiation area may be set so that the area of the irradiation area 122a is 95% or less of the area of the circle 121 inscribed in the electrode pad 12a. preferable. The basis of the setting conditions of the irradiation area 122a will be described as follows.

本発明の発明者らは、電極パッド12aに対応して基板10の裏面10bからレーザー光線LBを照射して適正な細孔16を形成するための好適な照射領域122aの面積について検討すべく、以下のような実験を行った。なお、下記の各実験において変更したパラメータ以外の加工条件は、上記した本実施形態の加工条件に沿って設定しており、以下の説明ではその余の加工条件に関する説明は省略している。   The inventors of the present invention consider the area of a suitable irradiation region 122a for forming the proper pores 16 by irradiating the laser beam LB from the back surface 10b of the substrate 10 corresponding to the electrode pad 12a. Experiments such as The processing conditions other than the parameters changed in the following experiments are set according to the processing conditions of the present embodiment described above, and the description of the remaining processing conditions is omitted in the following description.

<実験1>
電極パッド12aに内接する円(直径500μm)の面積に対し、照射領域122aを構成する円の面積が略110%になるように直径524μmの円の照射領域を設定し、上記した実施形態と同条件で細孔16を形成した。その結果、電極パッド12aには貫通孔が開いてしまった。
<Experiment 1>
The irradiation area of the circle having a diameter of 524 μm is set so that the area of the circle forming the irradiation area 122a is approximately 110% of the area of the circle (diameter 500 μm) inscribed in the electrode pad 12a. The pores 16 were formed under the conditions. As a result, a through hole was opened in the electrode pad 12a.

<実験2>
電極パッド12aに内接する円(直径500μm)の面積に対し、照射領域122aを構成する円の面積が略100%になるように直径500μmの円の照射領域を設定し、上記した実施形態と同条件で細孔16を形成した。その結果、電極パッド12aには実験1と比較して小さいが、貫通孔が開いてしまった。
<Experiment 2>
With respect to the area of the circle (diameter 500 μm) inscribed in the electrode pad 12a, the irradiation area of the circle having a diameter of 500 μm is set so that the area of the circle forming the irradiation area 122a is approximately 100%. The pores 16 were formed under the conditions. As a result, a through hole was opened in the electrode pad 12a although it was smaller than in Experiment 1.

<実験3>
電極パッド12aに内接する円(直径500μm)の面積に対し、照射領域122aを構成する円の面積が略96%になるように直径490μmの円の照射領域を設定し、上記した実施形態と同条件で細孔16を形成した。その結果、電極パッド12aには窪みは見られたものの、貫通孔は開かなかった。
<Experiment 3>
The circular irradiation area having a diameter of 490 μm is set so that the area of the circle forming the irradiation area 122a is approximately 96% of the area of the circle (diameter 500 μm) inscribed in the electrode pad 12a. The pores 16 were formed under the conditions. As a result, the electrode pad 12a had a depression, but the through hole was not opened.

上記した実験結果から、本発明者らは、第二のプラズマ光を検出して、電極パッド12aに穴を開けることなく適正な細孔16を形成するためには、照射領域設定工程において照射領域122aを設定する際に、電極パッド12aに内接する内接円121の面積よりも照射領域122aを規定する円の面積を小さくすればよいこと、特に、照射領域122aの面積が、該内接円121に対して95%以下であることが好ましいことを見出した。これにより、第二のプラズマ光を充分に検出することができ、電極パッド12aに穴を開けることなく、適正な細孔16を形成することができる。   From the above experimental results, the present inventors have found that in order to detect the second plasma light and form the proper pores 16 without making holes in the electrode pad 12a, the irradiation region setting step is performed. When the area 122a is set, the area of the circle defining the irradiation area 122a may be smaller than the area of the inscribed circle 121 inscribed in the electrode pad 12a, and in particular, the area of the irradiation area 122a is the inscribed circle. It was found that it is preferably 95% or less with respect to 121. As a result, the second plasma light can be sufficiently detected, and proper pores 16 can be formed without making a hole in the electrode pad 12a.

上記した実施形態では、基板10をリチウムタンタレートにより構成した例を示したが、本発明はこれらに限定されない。基板10をシリコン、リチウムナイオベート(LN)、ガラス等、他の部材により構成することもできる。その場合は、基板10として採用する物質に応じて第一のプラズマ光の波長も変化するため、これに対応すべく第一のバンドパスフィルター73によって通過させる波長域を調整する。なお、電極パッド12aとしては銅が採用されることが一般的であるが、本発明は他の部材(例えば金等)により構成することを除外しない。その場合は、上記した第一のバンドパスフィルター73と同様に、採用する金属に応じて第二のバンドパスフィルター76によって通過させる波長を調整するとよい。   In the above-described embodiment, an example in which the substrate 10 is made of lithium tantalate has been shown, but the present invention is not limited to these. The substrate 10 can also be made of other members such as silicon, lithium niobate (LN), and glass. In that case, the wavelength of the first plasma light also changes depending on the substance used as the substrate 10, so that the wavelength band to be passed by the first bandpass filter 73 is adjusted to accommodate this. Although copper is generally used for the electrode pad 12a, the present invention does not exclude that the electrode pad 12a is made of another member (such as gold). In that case, similarly to the first bandpass filter 73 described above, the wavelength passed by the second bandpass filter 76 may be adjusted according to the metal used.

1:レーザー加工装置
10:基板
12:デバイス
12a:電極パッド
121:内接円
122a:照射領域
14:分割予定ライン
16:細孔
20:保持手段
21:X軸方向可動板
22:Y軸方向可動板
24:支柱
26:カバー板
28:チャックテーブル
30:移動手段
40:吸着チャック
42:クランプ
50:レーザー光線照射手段
52:集光器
54:第一の音響光学偏向手段
55:第二の音響光学偏向手段
60:撮像手段
70:プラズマ検出手段
71:プラズマ光受光手段
72a:第一の光路
72b:第二の光路
73:第一のバンドパスフィルター
74:第一のホトデテクター
76:第二のバンドパスフィルター
77:第二のホトデテクター
100:制御手段
1: Laser processing device 10: Substrate 12: Device 12a: Electrode pad 121: Inscribed circle 122a: Irradiation area 14: Divided line 16: Pore 20: Holding means 21: X-axis direction movable plate 22: Y-axis direction movable Plate 24: Post 26: Cover plate 28: Chuck table 30: Moving means 40: Adsorption chuck 42: Clamp 50: Laser beam irradiating means 52: Concentrator 54: First acousto-optical deflecting means 55: Second acousto-optical deflecting Means 60: Imaging means 70: Plasma detection means 71: Plasma light receiving means 72a: First optical path 72b: Second optical path 73: First bandpass filter 74: First photodetector 76: Second bandpass filter 77: Second photo detector 100: Control means

Claims (2)

電極パッドを備えたデバイスが表面に形成された基板の裏面にレーザー光線を照射して電極パッドに至る細孔を形成するレーザー加工方法であって、
電極パッドに対応する裏面からレーザー光線を照射するレーザー光線照射工程と、
レーザー光線の照射によって基板に細孔が形成されると共に基板から発せられる第一のプラズマ光と電極パッドから発せられる第二のプラズマ光とを検出する検出工程と、
該検出工程において、該第二のプラズマ光を検出した際、レーザー光線の照射を停止するレーザー照射終了工程と、
を少なくとも含み、
該レーザー光線照射工程の前に、該電極パッドの大きさを検出し、形成される細孔が該電極パッドの内側に位置するようにレーザー光線の照射領域を設定する照射領域設定工程が実施されるレーザー加工方法。
A laser processing method for forming pores reaching a electrode pad by irradiating a laser beam on the back surface of a substrate on the surface of which a device having an electrode pad is formed,
A laser beam irradiation step of irradiating a laser beam from the back surface corresponding to the electrode pad,
A detection step of detecting the first plasma light emitted from the substrate and the second plasma light emitted from the electrode pad together with the formation of pores in the substrate by the irradiation of the laser beam,
In the detecting step, when the second plasma light is detected, a laser irradiation ending step of stopping irradiation of a laser beam,
Including at least
Before the laser beam irradiation step, an irradiation area setting step is performed in which the size of the electrode pad is detected and the irradiation area of the laser beam is set so that the pores formed are located inside the electrode pad. Processing method.
該照射領域設定工程において、該電極パッドに内接する円の面積に対して電極パッドに形成される細孔の断面積が95%以下になるようにレーザー光線の該照射領域を設定する請求項1に記載のレーザー加工方法。   In the irradiation area setting step, the irradiation area of the laser beam is set such that the cross-sectional area of the pores formed in the electrode pad is 95% or less with respect to the area of the circle inscribed in the electrode pad. The laser processing method described.
JP2018199132A 2018-10-23 2018-10-23 Laser processing method Pending JP2020066015A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018199132A JP2020066015A (en) 2018-10-23 2018-10-23 Laser processing method
US16/600,739 US10985060B2 (en) 2018-10-23 2019-10-14 Laser processing method using plasma light detection for forming a pore in a substrate
ATA50906/2019A AT521999A2 (en) 2018-10-23 2019-10-22 Laser processing
DE102019216320.3A DE102019216320A1 (en) 2018-10-23 2019-10-23 LASER PROCESSING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199132A JP2020066015A (en) 2018-10-23 2018-10-23 Laser processing method

Publications (1)

Publication Number Publication Date
JP2020066015A true JP2020066015A (en) 2020-04-30

Family

ID=70279746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018199132A Pending JP2020066015A (en) 2018-10-23 2018-10-23 Laser processing method

Country Status (4)

Country Link
US (1) US10985060B2 (en)
JP (1) JP2020066015A (en)
AT (1) AT521999A2 (en)
DE (1) DE102019216320A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623889A (en) * 1985-06-27 1987-01-09 Sony Corp Piercing method for printed board
US20010045419A1 (en) * 2000-03-30 2001-11-29 Dunsky Corey M. Laser system and method for single pass micromachining of multilayer workpieces
JP2004188483A (en) * 2002-12-13 2004-07-08 Sumitomo Heavy Ind Ltd Laser beam working method and laser beam working apparatus
JP2008068270A (en) * 2006-09-12 2008-03-27 Disco Abrasive Syst Ltd Laser beam machine
JP2013163190A (en) * 2012-02-09 2013-08-22 Disco Corp Laser beam machining apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034030B2 (en) 1976-05-20 1985-08-06 工業技術院長 solar collector unit
WO2003090258A2 (en) 2002-04-19 2003-10-30 Xsil Technology Limited Laser machining
US7602822B2 (en) 2004-09-28 2009-10-13 Hitachi Via Mechanics, Ltd Fiber laser based production of laser drilled microvias for multi-layer drilling, dicing, trimming of milling applications
US7772115B2 (en) 2005-09-01 2010-08-10 Micron Technology, Inc. Methods for forming through-wafer interconnects, intermediate structures so formed, and devices and systems having at least one solder dam structure
US20080242052A1 (en) 2007-03-30 2008-10-02 Tao Feng Method of forming ultra thin chips of power devices
JP5011072B2 (en) * 2007-11-21 2012-08-29 株式会社ディスコ Laser processing equipment
KR20130059337A (en) 2010-03-30 2013-06-05 아이엠알에이 아메리카, 인코포레이티드. Laser-based material processing apparatus and methods
JP5912293B2 (en) * 2011-05-24 2016-04-27 株式会社ディスコ Laser processing equipment
US20130288425A1 (en) 2011-08-05 2013-10-31 Solexel, Inc. End point detection for back contact solar cell laser via drilling
JP5869259B2 (en) * 2011-08-24 2016-02-24 株式会社ディスコ Drilling method and laser processing apparatus
JP5878330B2 (en) * 2011-10-18 2016-03-08 株式会社ディスコ Laser beam output setting method and laser processing apparatus
KR20140089386A (en) 2011-11-08 2014-07-14 메이코 일렉트로닉스 컴파니 리미티드 Method for manufacturing component-embedded substrate and component-embedded substrate manufactured thereby
JP5969767B2 (en) * 2012-01-27 2016-08-17 株式会社ディスコ Laser processing equipment
JP6261844B2 (en) * 2012-02-20 2018-01-17 株式会社ディスコ Laser processing method and laser processing apparatus
JP6034030B2 (en) 2012-03-09 2016-11-30 株式会社ディスコ Laser processing method and laser processing apparatus
JP5902540B2 (en) * 2012-04-02 2016-04-13 株式会社ディスコ Laser processing method and laser processing apparatus
US9293409B2 (en) 2013-09-11 2016-03-22 Infineon Technologies Ag Method for manufacturing a semiconductor device, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623889A (en) * 1985-06-27 1987-01-09 Sony Corp Piercing method for printed board
US20010045419A1 (en) * 2000-03-30 2001-11-29 Dunsky Corey M. Laser system and method for single pass micromachining of multilayer workpieces
JP2004188483A (en) * 2002-12-13 2004-07-08 Sumitomo Heavy Ind Ltd Laser beam working method and laser beam working apparatus
JP2008068270A (en) * 2006-09-12 2008-03-27 Disco Abrasive Syst Ltd Laser beam machine
JP2013163190A (en) * 2012-02-09 2013-08-22 Disco Corp Laser beam machining apparatus

Also Published As

Publication number Publication date
US10985060B2 (en) 2021-04-20
DE102019216320A1 (en) 2020-04-23
US20200126856A1 (en) 2020-04-23
AT521999A2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP5912293B2 (en) Laser processing equipment
US7630421B2 (en) Laser beam irradiation apparatus and laser working machine
US10207369B2 (en) Method for forming a laser processed hole
KR102316369B1 (en) Laser machining method and laser machining apparatus
US9656347B2 (en) Laser processing method for forming a laser processed hole in a work piece
US20080061042A1 (en) Laser beam machining system
JP5869259B2 (en) Drilling method and laser processing apparatus
JP2010123723A (en) Laser processing method of wafer
JP2008207210A (en) Laser beam radiating apparatus, and laser beam machine
KR20130103357A (en) Laser machining method and laser machining apparatus
JP2016076671A (en) Processing method for wafer
JP2016107330A (en) Laser processing device and method of processing wafer
CN105312772A (en) Laser machining apparatus
US11114341B2 (en) Laser processing method
JP7037425B2 (en) How to detect the focal position of the laser beam
JP2020066015A (en) Laser processing method
JP2014063786A (en) Gettering layer formation method
JP7239298B2 (en) Laser processing method
JP6552948B2 (en) Wafer processing method and processing apparatus
JP2012091218A (en) Laser-machining apparatus
US20230415262A1 (en) Laser processing apparatus
JP2021087982A (en) Adjustment method for laser processing apparatus
JP2020040113A (en) Laser processing device
JP2016140914A (en) Laser processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220913