JP2020064780A - Charged particle beam device and sample processing observation method - Google Patents

Charged particle beam device and sample processing observation method Download PDF

Info

Publication number
JP2020064780A
JP2020064780A JP2018196666A JP2018196666A JP2020064780A JP 2020064780 A JP2020064780 A JP 2020064780A JP 2018196666 A JP2018196666 A JP 2018196666A JP 2018196666 A JP2018196666 A JP 2018196666A JP 2020064780 A JP2020064780 A JP 2020064780A
Authority
JP
Japan
Prior art keywords
sample
sample piece
cross
section
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018196666A
Other languages
Japanese (ja)
Other versions
JP7152757B2 (en
Inventor
鈴木 秀和
Hidekazu Suzuki
秀和 鈴木
麻畑 達也
Tatsuya Asahata
達也 麻畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2018196666A priority Critical patent/JP7152757B2/en
Priority to KR1020190108650A priority patent/KR20200043895A/en
Priority to TW108131987A priority patent/TWI813760B/en
Priority to US16/573,668 priority patent/US11282672B2/en
Priority to CN201910898398.8A priority patent/CN111081515B/en
Publication of JP2020064780A publication Critical patent/JP2020064780A/en
Application granted granted Critical
Publication of JP7152757B2 publication Critical patent/JP7152757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/208Elements or methods for movement independent of sample stage for influencing or moving or contacting or transferring the sample or parts thereof, e.g. prober needles or transfer needles in FIB/SEM systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a charged particle beam device and a sample processing observation method which can obtain a high-resolution SEM image by narrowing a distance between an electron beam barrel and a sample without changing the size of a stage, and obtain the SEM image opposite to an observation face of the sample.SOLUTION: A sample processing observation method includes: a sample piece formation step of emitting the focused ion beam to a sample and cutting out a sample piece from the sample; a cross section processing step of supporting the sample piece by a sample piece support body, emitting the focused ion beam to the cross section of the sample piece and performing processing of the cross section; a sample piece proximity movement step of supporting the sample piece by the sample piece support body and moving the sample piece to the position proximate to the electron beam barrel with respect to the intersection between the beam optical axis of the focused ion beam and the beam optical axis of the electron beam; and a SEM image acquisition step of emitting the electron beam to the cross section of the sample piece and acquiring the SEM image of the cross section.SELECTED DRAWING: Figure 2

Description

本発明は、荷電粒子ビームを用いて試料の加工および観察を行う荷電粒子ビーム装置および試料加工観察方法に関する。   The present invention relates to a charged particle beam apparatus and a sample processing and observation method for processing and observing a sample using a charged particle beam.

例えば、半導体デバイス等の試料の内部構造を解析したり、立体的な観察を行ったりする手法の1つとして、集束イオンビーム(Focused Ion Beam;FIB)鏡筒、電子ビーム(Electron Beam;EB)鏡筒を搭載した荷電粒子ビーム複合装置を用いて、FIBによる断面形成加工と、その断面を走査型電子顕微鏡(Scanning Electron Microscope;SEM)により観察を行う断面加工観察方法が知られている(例えば、特許文献1を参照)。   For example, as one of the methods for analyzing the internal structure of a sample such as a semiconductor device or performing three-dimensional observation, a focused ion beam (FIB) lens barrel, an electron beam (EB) is used. A cross-section processing and observing method is known in which a cross-section forming process by FIB and a cross-section observing the cross-section by a scanning electron microscope (SEM) are performed by using a charged particle beam composite apparatus equipped with a lens barrel (for example, , Patent Document 1).

この断面加工観察方法は、FIBによる断面形成加工とSEMによる断面観察を繰り返して3次元画像を構築する手法が知られている。この手法では、再構築した3次元立体像から、対象試料の立体的な形体を様々な方向から詳細に解析することができる。特に、試料の厚さに依存することなく高分解能で観察することができるという、他の方法にはない利点を有している。   As this cross-section processing and observation method, there is known a method of constructing a three-dimensional image by repeating cross-section formation processing by FIB and cross-section observation by SEM. With this method, the three-dimensional shape of the target sample can be analyzed in detail from various directions from the reconstructed three-dimensional stereoscopic image. In particular, it has an advantage over other methods that observation can be performed with high resolution without depending on the thickness of the sample.

その一方で、SEMは原理上、高倍率(高分解能)の観察に限界があり、また得られる情報も試料表面近くに限定される。このため、より高倍率で高分解能の観察のために、薄膜状に加工した試料に電子を透過させる透過型電子顕微鏡(Transmission Electron Microscopy:TEM)を用いた観察方法も知られている。   On the other hand, the SEM has a limit to observation at high magnification (high resolution) in principle, and the obtained information is limited to near the sample surface. For this reason, an observation method using a transmission electron microscope (TEM) that allows electrons to pass through a sample processed into a thin film is also known for higher magnification and high resolution observation.

特開2010−232195号公報JP, 2010-232195, A

複合荷電粒子ビーム装置を用いて試料の断面加工を高精度に行うためには、高解像度のSEM画像を取得する必要がある。高解像度のSEM画像を取得するためには、電子ビーム鏡筒と試料との距離(working distance:WD)を可能な限り狭めることが望ましい。しかしながら、従来の複合荷電粒子ビーム装置は、試料が載置されたステージと電子ビーム鏡筒との干渉を避ける必要があり、WDを狭めることは困難であった。   In order to perform the cross-section processing of the sample with high accuracy using the composite charged particle beam device, it is necessary to acquire a high-resolution SEM image. In order to obtain a high-resolution SEM image, it is desirable to make the working distance (WD) between the electron beam column and the sample as narrow as possible. However, in the conventional composite charged particle beam apparatus, it is necessary to avoid interference between the stage on which the sample is placed and the electron beam lens barrel, and it is difficult to narrow the WD.

また、ステージと電子ビーム鏡筒との干渉を避けるために、ステージをより小型化することも考えられるが、この場合、小型化したステージに載置できる試料サイズが制限されるため、大きなステージに載置された試料から観察対象部分をピックアップして、小型化した専用のステージに移載してSEM画像を取得することになる。この場合、大きなステージと小型化した専用のステージとでは形状や容量が異なるため、試料観察位置付近の電界分布が異なってしまい、電界の補正が必要となる。しかしながら電界の補正が可能な範囲には制限があり、電界の補正範囲を超える場合は二次電子検出器の検出効率が低下し、コントラストが低いSEM画像しか得られないという課題もある。   Further, in order to avoid the interference between the stage and the electron beam lens barrel, it is possible to make the stage smaller, but in this case, the size of the sample that can be mounted on the miniaturized stage is limited, so it is possible to use a large stage. A portion to be observed is picked up from the mounted sample and transferred to a miniaturized dedicated stage to acquire an SEM image. In this case, since the large stage and the miniaturized dedicated stage have different shapes and capacities, the electric field distribution near the sample observation position is different, and the electric field needs to be corrected. However, there is a limit to the range in which the electric field can be corrected, and if the electric field is beyond the correction range, the detection efficiency of the secondary electron detector decreases, and there is also the problem that only SEM images with low contrast can be obtained.

また、従来の一般的な複合荷電粒子ビーム装置の場合、試料断面に対して電子ビーム鏡筒の観察角度(電子ビームの入射角度)は概ね54°になっており、得られたSEM画像は上下方向に収縮した画像となる。このため、縦横比を実際の試料と合致させるためにSEM画像を縦方向に引き伸ばす補正を行っているが、ソフトウエア的に画像加工されたSEM画像は、実際の試料断面像を正確に反映していない不正確な画像になってしまうという課題もある。   Further, in the case of the conventional general compound charged particle beam apparatus, the observation angle of the electron beam lens barrel (incident angle of the electron beam) is approximately 54 ° with respect to the sample cross section, and the obtained SEM image is up and down. The image shrinks in the direction. Therefore, in order to match the aspect ratio with the actual sample, correction is performed to stretch the SEM image in the vertical direction, but the SEM image processed by software accurately reflects the actual sample cross-sectional image. There is also the problem that the image will not be accurate.

本発明は、前述した事情に鑑みてなされたものであって、ステージのサイズを変更することなく電子ビーム鏡筒と試料との距離を狭めて高解像度のSEM画像を得ることが可能であり、かつ試料の観察面に正対したSEM画像を得ることが可能な荷電粒子ビーム装置、および試料加工観察方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and it is possible to obtain a high-resolution SEM image by reducing the distance between the electron beam column and the sample without changing the size of the stage. Another object of the present invention is to provide a charged particle beam device capable of obtaining an SEM image directly facing the observation surface of a sample, and a sample processing and observation method.

上記課題を解決するために、本実施形態の態様は、以下のような荷電粒子ビーム装置、および試料加工観察方法を提供した。
すなわち、本発明の荷電粒子ビーム装置は、集束イオンビームを照射する集束イオンビーム鏡筒と、電子ビームを照射する電子ビーム鏡筒と、試料を載置するステージと、前記試料から切り出された観察対象部を含む試料片を保持する試料片支持体と、前記集束イオンビーム鏡筒、前記電子ビーム鏡筒、前記ステージおよび前記試料片支持体の動作を制御する制御部と、を備え、前記制御部は、前記試料の観察対象部を含む断面のSEM画像を取得する際に、前記集束イオンビームのビーム光軸と前記電子ビームのビーム光軸との交点よりも前記電子ビーム鏡筒に近接する位置まで前記試料片を移動させる制御を行うことを特徴とする。
In order to solve the above-mentioned subject, the mode of this embodiment provided the following charged particle beam devices, and the sample processing observation method.
That is, the charged particle beam device of the present invention includes a focused ion beam column for irradiating a focused ion beam, an electron beam column for irradiating an electron beam, a stage for mounting a sample, and an observation cut out from the sample. A sample piece support that holds a sample piece including a target portion; and a controller that controls the operations of the focused ion beam lens barrel, the electron beam lens barrel, the stage, and the sample piece support, and the control The part is closer to the electron beam column than the intersection of the beam optical axis of the focused ion beam and the beam optical axis of the electron beam when acquiring the SEM image of the cross section including the observation target part of the sample. It is characterized in that control is performed to move the sample piece to a position.

また、本発明では、前記集束イオンビームによって前記断面を形成する際に、前記交点に前記試料片を移動させる制御を行うことを特徴とする。   Further, in the present invention, when the cross section is formed by the focused ion beam, control for moving the sample piece to the intersection is performed.

また、本発明では、前記断面に前記集束イオンビームを照射して前記断面の加工を行う際、前記試料の観察対象部を含む断面のSEM画像を取得する際、の少なくともいずれか一方において、前記ステージを前記試料片に向けて接近動作させる制御を行うことを特徴とする。   Further, in the present invention, in processing at least one of the cross-section including the observation target portion of the sample, when the cross-section is processed by irradiating the cross-section with the focused ion beam, It is characterized in that the stage is controlled to move toward the sample piece.

本発明の試料加工観察方法は、集束イオンビームを照射する集束イオンビーム鏡筒と、電子ビームを照射する電子ビーム鏡筒と、試料から切り出された観察対象部を含む試料片を保持する試料片支持体と、を備えた荷電粒子ビーム装置を用いて、前記試料の観察対象部を含む断面の加工およびSEM画像を得る試料加工観察方法であって、前記集束イオンビームを前記試料に照射して、前記試料から前記試料片を切り出す試料片形成工程と、前記試料片を前記試料片支持体で支持し、前記試料片の前記断面に前記集束イオンビームを照射して、前記断面の加工を行う断面加工工程と、前記試料片を前記試料片支持体で支持し、前記集束イオンビームのビーム光軸と前記電子ビームのビーム光軸との交点よりも前記電子ビーム鏡筒に近接する位置まで前記試料片を移動させる試料片近接移動工程と、前記試料片の前記断面に向けて前記電子ビームを照射して、前記断面のSEM画像を取得するSEM画像取得工程と、を備えたことを特徴とする。   A sample processing and observation method of the present invention is a sample piece for holding a sample piece including a focused ion beam column for irradiating a focused ion beam, an electron beam column for irradiating an electron beam, and an observation target portion cut out from the sample. A sample processing and observation method for obtaining a SEM image by processing a cross section of the sample including an observation target part by using a charged particle beam device including a support, and irradiating the sample with the focused ion beam. A sample piece forming step of cutting out the sample piece from the sample, supporting the sample piece with the sample piece support, irradiating the cross section of the sample piece with the focused ion beam, and processing the cross section A cross-section processing step, supporting the sample piece by the sample piece support, and moving the sample piece closer to the electron beam lens barrel than the intersection of the beam optical axis of the focused ion beam and the beam optical axis of the electron beam. To a sample piece proximity moving step of moving the sample piece, and an SEM image acquisition step of irradiating the cross section of the sample piece with the electron beam to acquire an SEM image of the cross section. Characterize.

また、本発明では、前記試料片を前記試料片支持体で支持し、前記試料片の前記断面が前記電子ビームのビーム光軸に対して直角になるように傾斜させる試料片角度調節工程を更に備えたことを特徴とする。   Further, in the present invention, a sample piece angle adjusting step of supporting the sample piece with the sample piece support and inclining the sample piece so that the cross section of the sample piece is perpendicular to the beam optical axis of the electron beam is further included. It is characterized by having.

また、本発明では、前記試料片にドリフト補正マークを形成する補正マーク形成工程を更に備えたことを特徴とする。   Further, the present invention is characterized by further comprising a correction mark forming step of forming a drift correction mark on the sample piece.

また、本発明では、前記試料片支持体は複数形成され、前記試料片角度調節工程は、複数の前記試料片支持体どうしの間で前記試料片を受け渡して行うことを特徴とする。   Further, in the present invention, a plurality of the sample piece supports are formed, and the sample piece angle adjusting step is performed by passing the sample piece between the plurality of sample piece supports.

また、本発明では、前記断面加工工程またはSEM画像取得工程の少なくともいずれか一方では、前記試料を載置するステージを前記試料片に向けて接近動作させることを特徴とする。   Further, in the present invention, at least one of the cross-section processing step and the SEM image acquisition step is characterized in that a stage on which the sample is placed is moved toward the sample piece.

また、本発明では、前記断面加工工程では、前記試料片の周縁部分の少なくとも一部よりも内側だけを薄膜化させることを特徴とする。   Further, in the present invention, in the cross-section processing step, only the inner side of at least a part of the peripheral portion of the sample piece is thinned.

また、本発明では、前記断面加工工程から前記試料片近接移動工程を経て前記画像取得工程までを、予め設定した回数繰り返すことを特徴とする。   Further, the present invention is characterized in that the section processing step, the sample piece proximity moving step, and the image acquisition step are repeated a preset number of times.

本発明によれば、特殊なステージを用いることなく電子ビーム鏡筒と試料との距離を狭めて、高解像度のSEM画像を容易に得ることが可能な荷電粒子ビーム装置、および試料加工観察方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charged particle beam apparatus and sample processing observation method which can narrow the distance between an electron beam lens barrel and a sample without using a special stage, and can obtain a high-resolution SEM image easily are provided. Can be provided.

本発明の荷電粒子ビーム装置の一例を示す構成図である。It is a block diagram which shows an example of the charged particle beam apparatus of this invention. 本発明の試料加工観察方法を段階的に示したフローチャートである。It is the flowchart which showed the sample processing observation method of this invention step by step. 第1実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment. 第1実施形態の変形例を示す説明図である。It is explanatory drawing which shows the modification of 1st Embodiment. 第2実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment. 第3実施形態を示す説明図である。It is explanatory drawing which shows 3rd Embodiment. 第4実施形態を示す説明図である。It is explanatory drawing which shows 4th Embodiment. 第4実施形態を示す説明図である。It is explanatory drawing which shows 4th Embodiment.

以下、図面を参照して、本発明の一実施形態である荷電粒子ビーム装置、および試料加工観察方法について説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, a charged particle beam device and a sample processing and observation method according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are specifically described in order to better understand the gist of the invention, and do not limit the invention unless otherwise specified. Further, in the drawings used in the following description, in order to facilitate understanding of the features of the present invention, for convenience, there are cases where essential parts are enlarged and shown, and the dimensional ratios of each component are the same as the actual ones. Not necessarily.

(荷電粒子ビーム装置)
図1は、本発明の一実施形態の荷電粒子ビーム装置を示す構成図である。
本発明の一実施形態の荷電粒子ビーム装置(複合荷電粒子ビーム装置)10は、図1に示すように、内部を真空状態に維持可能な試料室11と、試料室11の内部において、バルクの試料Vを保持するための試料ホルダPを固定可能なステージ12と、ステージ12を駆動するステージ駆動機構13と、を備えている。
(Charged particle beam device)
FIG. 1 is a configuration diagram showing a charged particle beam system according to an embodiment of the present invention.
As shown in FIG. 1, a charged particle beam device (composite charged particle beam device) 10 according to an embodiment of the present invention includes a sample chamber 11 capable of maintaining a vacuum state inside, and a bulk chamber inside the sample chamber 11. A stage 12 capable of fixing a sample holder P for holding the sample V and a stage drive mechanism 13 for driving the stage 12 are provided.

荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域(つまり走査範囲)内の照射対象に荷電粒子ビーム、例えば集束イオンビーム(FIB)を照射する集束イオンビーム鏡筒14を備えている。本実施形態では、集束イオンビーム(FIB)として、ガリウムイオンビームが用いられる。   The charged particle beam apparatus 10 includes a focused ion beam lens barrel 14 that irradiates a charged particle beam, for example, a focused ion beam (FIB) onto an irradiation target within a predetermined irradiation region (that is, a scanning range) inside the sample chamber 11. There is. In this embodiment, a gallium ion beam is used as the focused ion beam (FIB).

荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域内の照射対象に電子ビーム(EB)を照射する電子ビーム鏡筒15を備えている。
荷電粒子ビーム装置10は、集束イオンビーム(FIB)または電子ビーム(EB)の照射によって照射対象から発生する二次荷電粒子(二次電子、二次イオン)Rを検出する検出器16を備えている。
The charged particle beam system 10 includes an electron beam column 15 that irradiates an irradiation target in a predetermined irradiation region inside the sample chamber 11 with an electron beam (EB).
The charged particle beam device 10 includes a detector 16 that detects secondary charged particles (secondary electrons, secondary ions) R generated from an irradiation target by irradiation with a focused ion beam (FIB) or an electron beam (EB). There is.

荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域内の照射対象に荷電粒子ビームである気体イオンビーム(GB)を照射する気体イオンビーム鏡筒18を備えている。本実施形態では、気体イオンビーム(GB)として、アルゴンイオンビームが用いられる。   The charged particle beam device 10 includes a gas ion beam column 18 that irradiates an irradiation target in a predetermined irradiation region inside the sample chamber 11 with a gas ion beam (GB) that is a charged particle beam. In this embodiment, an argon ion beam is used as the gas ion beam (GB).

これら集束イオンビーム鏡筒14、電子ビーム鏡筒15、および気体イオンビーム鏡筒18は、それぞれのビーム照射軸がステージ12上の実質的な1点である交点Cで交差可能なように配置されている。即ち、本実施形態では、試料室11を側面から平面視した時に、電子ビーム鏡筒15は鉛直方向に沿って配置され、集束イオンビーム鏡筒14と気体イオンビーム鏡筒18は、それぞれ鉛直方向に対して例えば60°と45°傾斜した方向に沿って配置されている。こうした配置レイアウトにより、試料室11を側面から平面視した時に、集束イオンビーム鏡筒14から照射される集束イオンビーム(FIB)のビーム照射軸に対して、気体イオンビーム(GB)のビーム照射軸は、例えば直角に交わる方向になる。   The focused ion beam lens barrel 14, the electron beam lens barrel 15, and the gas ion beam lens barrel 18 are arranged so that their beam irradiation axes can intersect at an intersection C, which is substantially one point on the stage 12. ing. That is, in the present embodiment, when the sample chamber 11 is viewed in a plan view from the side surface, the electron beam column 15 is arranged along the vertical direction, and the focused ion beam column 14 and the gas ion beam column 18 are respectively arranged in the vertical direction. For example, they are arranged along a direction inclined by 60 ° and 45 °. With such an arrangement layout, when the sample chamber 11 is viewed from the side in a plan view, the beam irradiation axis of the gas ion beam (GB) is different from the beam irradiation axis of the focused ion beam (FIB) irradiated from the focused ion beam column 14. Is a direction intersecting at right angles, for example.

荷電粒子ビーム装置10は、照射対象の表面にガスGを供給するガス供給部17を備えている。ガス供給部17は具体的には外径200μm程度のノズル17aなどである。   The charged particle beam device 10 includes a gas supply unit 17 that supplies the gas G to the surface of the irradiation target. The gas supply unit 17 is specifically a nozzle 17a having an outer diameter of about 200 μm.

荷電粒子ビーム装置10は、ステージ12に固定された試料Vから試料片Sを取り出し、この試料片Sを保持するニードル19aおよびニードル19aを駆動して試料片Sを移動、回転させるニードル駆動機構19bからなる試料片支持体19を備えている。
また、ニードル19aに流入する荷電粒子ビームの流入電流(吸収電流とも言う)を検出し、流入電流信号はコンピュータに送り画像化する吸収電流検出器20と、を備えている。
The charged particle beam device 10 takes out a sample piece S from a sample V fixed to the stage 12, drives a needle 19a holding the sample piece S and a needle 19a to move and rotate the sample piece S, a needle drive mechanism 19b. The sample piece support 19 made of
Further, an absorption current detector 20 for detecting an inflow current (also called an absorption current) of the charged particle beam flowing into the needle 19a and sending an inflow current signal to a computer for imaging is provided.

本実施形態では、試料片支持体19は1つだけ形成されているが、試料片支持体19を複数形成することもできる。例えば、試料片支持体19が2つ形成される場合には、試料片支持体19どうしが、水平回りで互いに180°対向して配置されていたり、互いに90°の角度で配置されていればよい。   Although only one sample piece support 19 is formed in the present embodiment, a plurality of sample piece supports 19 may be formed. For example, when two sample piece supports 19 are formed, if the sample piece supports 19 are arranged to face each other by 180 ° in the horizontal direction or are arranged at an angle of 90 ° to each other. Good.

荷電粒子ビーム装置10は、検出器16によって検出された二次荷電粒子Rに基づく画像データなどを表示する表示装置21と、コンピュータ(制御部)22と、入力デバイス23と、を備えている。なお、集束イオンビーム鏡筒14および電子ビーム鏡筒15の照射対象は、ステージ12に固定された試料V、試料片Sなどである。   The charged particle beam device 10 includes a display device 21 that displays image data based on the secondary charged particles R detected by the detector 16, a computer (control unit) 22, and an input device 23. The focused ion beam lens barrel 14 and the electron beam lens barrel 15 are irradiated with the sample V, the sample piece S, etc. fixed to the stage 12.

荷電粒子ビーム装置10は、照射対象の表面に荷電粒子ビームを走査しながら照射することによって、被照射部の画像化やスパッタリングによる各種の加工(掘削、トリミング加工など)と、デポジション膜の形成などが実行可能である。荷電粒子ビーム装置10は、試料Vから試料片Sの切り出し、切り出した試料片SからTEMによる観察に用いる微小試料片(例えば、薄片試料、針状試料など)や電子ビーム利用の分析試料片を形成する加工を実行可能である。   The charged particle beam device 10 irradiates a surface of an irradiation target with a charged particle beam while scanning, thereby performing various processes (excavation, trimming process, etc.) by imaging or irradiating an irradiated part, and forming a deposition film. Is possible. The charged particle beam device 10 cuts out a sample piece S from a sample V and a minute sample piece (for example, a thin piece sample, a needle-shaped sample, etc.) used for observation by a TEM from the cut sample piece S or an analytical sample piece using an electron beam. The forming process can be performed.

荷電粒子ビーム装置10は、試料片支持体19のニードル19aの先端で試料Vから切り出した試料片Sを保持した状態で、試料片Sに向けて集束イオンビーム(FIB)や気体イオンビーム(GB)を照射して、試料片Sの観察対象部を含む断面の加工を行うことができる。   The charged particle beam device 10 holds the sample piece S cut out from the sample V at the tip of the needle 19a of the sample piece support 19, and then the focused ion beam (FIB) or the gas ion beam (GB) toward the sample piece S. ) Can be irradiated to process the cross section including the observation target portion of the sample piece S.

また、荷電粒子ビーム装置10は、試料片支持体19のニードル19aの先端で試料片Sを保持した状態で、試料片Sの断面に向けて電子ビーム(EB)を照射して、試料片Sの断面から生じた二次荷電粒子(二次電子、二次イオン)Rを検出器16で検出することで、試料片Sの断面のSEM画像を取得することができる。   In addition, the charged particle beam device 10 irradiates an electron beam (EB) toward the cross section of the sample piece S while holding the sample piece S at the tip of the needle 19a of the sample piece support 19, and the sample piece S By detecting the secondary charged particles (secondary electrons, secondary ions) R generated from the cross section of the detector 16 with the detector 16, an SEM image of the cross section of the sample piece S can be acquired.

吸収電流検出器20は、プリアンプを備え、ニードルの流入電流を増幅し、コンピュータ22に送る。吸収電流検出器20により検出されるニードル流入電流と荷電粒子ビームの走査と同期した信号により、表示装置21にニードル形状の吸収電流画像を表示でき、ニードル形状や先端位置特定が行える。   The absorption current detector 20 includes a preamplifier, amplifies the inflow current of the needle and sends it to the computer 22. A needle-shaped absorption current image detected by the absorption current detector 20 and a signal synchronized with the scanning of the charged particle beam can be used to display a needle-shaped absorption current image on the display device 21 to identify the needle shape and the tip position.

試料室11は、排気装置(図示略)によって内部を所望の真空状態になるまで排気可能であるとともに、所望の真空状態を維持可能に構成されている。
ステージ12は、試料Vを保持する。ステージ12は、試料Vを固定する試料ホルダPを保持するホルダ固定台12aを備えている。このホルダ固定台12aは複数の試料ホルダPを搭載できる構造であってもよい。
The sample chamber 11 can be evacuated to a desired vacuum state by an evacuation device (not shown), and can maintain the desired vacuum state.
The stage 12 holds the sample V. The stage 12 includes a holder fixing base 12a that holds a sample holder P that fixes the sample V. The holder fixing base 12a may have a structure capable of mounting a plurality of sample holders P.

ステージ駆動機構13は、ステージ12に接続された状態で試料室11の内部に収容されており、コンピュータ(制御部)22から出力される制御信号に応じてステージ12を所定軸に対して変位させる。ステージ駆動機構13は、少なくとも水平面に平行かつ互いに直交するX軸およびY軸と、X軸およびY軸に直交する鉛直方向のZ軸とに沿って平行にステージ12を移動させる移動機構13aを備えている。ステージ駆動機構13は、ステージ12をX軸またはY軸周りに傾斜させる傾斜機構13bと、ステージ12をZ軸周りに回転させる回転機構13cと、を備えている。   The stage drive mechanism 13 is housed inside the sample chamber 11 in a state of being connected to the stage 12, and displaces the stage 12 with respect to a predetermined axis according to a control signal output from a computer (control unit) 22. . The stage driving mechanism 13 includes a moving mechanism 13a that moves the stage 12 in parallel along at least an X axis and a Y axis that are parallel to the horizontal plane and are orthogonal to each other, and a vertical Z axis that is orthogonal to the X axis and the Y axis. ing. The stage drive mechanism 13 includes a tilt mechanism 13b that tilts the stage 12 around the X axis or the Y axis, and a rotation mechanism 13c that rotates the stage 12 around the Z axis.

集束イオンビーム鏡筒14は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向に対して所定角度(例えば60°)傾斜した傾斜方向でステージ12に臨ませるとともに、光軸を傾斜方向に平行にして、試料室11に固定されている。これによって、ステージ12に載置された試料V、試料片S、および照射領域内に存在するニードル19aなどの照射対象に傾斜方向の上方から下方に向かい集束イオンビームを照射可能である。   The focused ion beam lens barrel 14 directs a beam emitting unit (not shown) inside the sample chamber 11 to the stage 12 in an inclined direction inclined by a predetermined angle (for example, 60 °) with respect to the vertical direction of the stage 12 in the irradiation region. It is fixed in the sample chamber 11 with the optical axis parallel to the tilt direction. As a result, it is possible to irradiate the irradiation target such as the sample V, the sample S mounted on the stage 12 and the needle 19a existing in the irradiation region with the focused ion beam from the upper side to the lower side in the tilt direction.

集束イオンビーム鏡筒14は、イオンを発生させるイオン源14aと、イオン源14aから引き出されたイオンを集束および偏向させるイオン光学系14bと、を備えている。イオン源14aおよびイオン光学系14bは、コンピュータ(制御部)22から出力される制御信号に応じて制御され、荷電粒子ビームの照射位置および照射条件などがコンピュータ22によって制御される。   The focused ion beam lens barrel 14 includes an ion source 14a that generates ions, and an ion optical system 14b that focuses and deflects the ions extracted from the ion source 14a. The ion source 14a and the ion optical system 14b are controlled according to a control signal output from a computer (control unit) 22, and the irradiation position and irradiation conditions of the charged particle beam are controlled by the computer 22.

イオン源14aは、例えば、液体ガリウムなどを用いた液体金属イオン源やプラズマ型イオン源、ガス電界電離型イオン源などである。イオン光学系14bは、例えば、コンデンサレンズなどの第1静電レンズと、静電偏向器と、対物レンズなどの第2静電レンズと、などを備えている。イオン源14aとして、プラズマ型イオン源を用いた場合、大電流ビームによる高速な加工が実現でき、サイズの大きな試料片Sの摘出に好適である。例えば、ガス電界電離型イオン源としてアルゴンイオンを用いることで、集束イオンビーム鏡筒14からアルゴンイオンビームを照射することもできる。   The ion source 14a is, for example, a liquid metal ion source using liquid gallium or the like, a plasma type ion source, a gas field ionization type ion source, or the like. The ion optical system 14b includes, for example, a first electrostatic lens such as a condenser lens, an electrostatic deflector, and a second electrostatic lens such as an objective lens. When a plasma type ion source is used as the ion source 14a, high-speed processing with a large current beam can be realized, which is suitable for extracting a large sample piece S. For example, by using argon ions as the gas field ionization type ion source, it is possible to irradiate the argon ion beam from the focused ion beam column 14.

電子ビーム鏡筒15は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向上方の位置でステージ12に臨ませるとともに、光軸を鉛直方向に平行にして、試料室11に固定されている。これによって、ステージ12に固定された試料V、試料片S、および照射領域内に存在するニードル19aなどの照射対象に鉛直方向上方から下方に向かい電子ビームを照射可能である。   The electron beam column 15 makes a beam emitting portion (not shown) inside the sample chamber 11 face the stage 12 at a position above the stage 12 in the irradiation region in the vertical direction, and makes the optical axis parallel to the vertical direction. And is fixed to the sample chamber 11. This makes it possible to irradiate the sample V fixed to the stage 12, the sample piece S, and the irradiation target such as the needle 19a existing in the irradiation region with the electron beam from the upper side to the lower side in the vertical direction.

電子ビーム鏡筒15は、電子を発生させる電子源15aと、電子源15aから射出された電子を集束および偏向させる電子光学系15bと、を備えている。電子源15aおよび電子光学系15bは、コンピュータ(制御部)22から出力される制御信号に応じて制御され、電子ビームの照射位置および照射条件などがコンピュータ22によって制御される。電子光学系15bは、例えば、電磁レンズや偏向器などを備えている。   The electron beam lens barrel 15 includes an electron source 15a that generates electrons, and an electron optical system 15b that focuses and deflects the electrons emitted from the electron source 15a. The electron source 15a and the electron optical system 15b are controlled according to a control signal output from a computer (control unit) 22, and the irradiation position and irradiation conditions of the electron beam are controlled by the computer 22. The electron optical system 15b includes, for example, an electromagnetic lens and a deflector.

なお、電子ビーム鏡筒15と集束イオンビーム鏡筒14の配置を入れ替えて、電子ビーム鏡筒15を鉛直方向に所定角度傾斜した傾斜方向に、集束イオンビーム鏡筒14を鉛直方向に配置してもよい。   The positions of the electron beam lens barrel 15 and the focused ion beam lens barrel 14 are replaced with each other, and the focused ion beam lens barrel 14 is arranged in the vertical direction in the tilt direction in which the electron beam lens barrel 15 is tilted by a predetermined angle in the vertical direction. Good.

気体イオンビーム鏡筒18は、例えばアルゴンイオンビームなどの気体イオンビーム(GB)を照射する。気体イオンビーム鏡筒18は、アルゴンガスをイオン化して1kV程度の低加速電圧で照射することができる。こうした気体イオンビーム(GB)は、集束イオンビーム(FIB)に比べて集束性が低いため、試料片Sや微小試料片Qに対するエッチングレートが低くなる。よって、試料片Sや微小試料片Qの精密な仕上げ加工に好適である。   The gas ion beam column 18 irradiates a gas ion beam (GB) such as an argon ion beam. The gas ion beam column 18 can ionize argon gas and irradiate it with a low acceleration voltage of about 1 kV. Since such a gas ion beam (GB) has a lower focusing property than a focused ion beam (FIB), the etching rate for the sample piece S and the minute sample piece Q is low. Therefore, it is suitable for precise finishing of the sample piece S and the minute sample piece Q.

検出器16は、試料V、試料片Sおよびニードル19aなどの照射対象に荷電粒子ビームや電子ビームが照射された時に照射対象から放射される二次荷電粒子(二次電子、二次イオン)Rの強度(つまり、二次荷電粒子の量)を検出し、二次荷電粒子Rの検出量の情報を出力する。検出器16は、試料室11の内部において二次荷電粒子Rの量を検出可能な位置、例えば照射領域内の試料V、試料片Sなどの照射対象に対して斜め上方の位置などに配置され、試料室11に固定されている。   The detector 16 is a secondary charged particle (secondary electron, secondary ion) R emitted from the irradiation target when the irradiation target such as the sample V, the sample S, and the needle 19a is irradiated with the charged particle beam or the electron beam. Intensity (that is, the amount of the secondary charged particles) is detected, and information on the detected amount of the secondary charged particles R is output. The detector 16 is disposed inside the sample chamber 11 at a position where the amount of the secondary charged particles R can be detected, for example, at a position obliquely above the irradiation target such as the sample V and the sample piece S in the irradiation region. , Is fixed to the sample chamber 11.

ガス供給部17は試料室11に固定されており、試料室11の内部においてガス噴射部(ノズルとも言う)を有し、ステージ12に臨ませて配置されている。ガス供給部17は、集束イオンビーム(FIB)による試料V、試料片Sのエッチングを、これらの材質に応じて選択的に促進するためのエッチング用ガスと、試料V、試料片Sの表面に金属または絶縁体などの堆積物によるデポジション膜を形成するためのデポジション用ガスなどを試料V、試料片Sに供給可能である。   The gas supply unit 17 is fixed to the sample chamber 11, has a gas injection unit (also referred to as a nozzle) inside the sample chamber 11, and is arranged so as to face the stage 12. The gas supply unit 17 uses an etching gas for selectively accelerating the etching of the sample V and the sample piece S by a focused ion beam (FIB) according to the material, and the surface of the sample V and the sample piece S. A deposition gas or the like for forming a deposition film of a deposit such as a metal or an insulator can be supplied to the sample V and the sample piece S.

試料片支持体19を構成するニードル駆動機構19bは、ニードル19aが接続された状態で試料室11の内部に収容されており、コンピュータ(制御部)22から出力される制御信号に応じてニードル19aを変位させる。ニードル駆動機構19bは、ステージ12と一体に設けられており、例えばステージ12が傾斜機構13bによって傾斜軸(つまり、X軸またはY軸)周りに回転すると、ステージ12と一体に移動する。   The needle drive mechanism 19b constituting the sample piece support 19 is housed inside the sample chamber 11 with the needle 19a connected, and the needle 19a is responsive to a control signal output from a computer (control unit) 22. To displace. The needle drive mechanism 19b is provided integrally with the stage 12, and moves integrally with the stage 12 when the stage 12 is rotated around the tilt axis (that is, the X axis or the Y axis) by the tilt mechanism 13b, for example.

ニードル駆動機構19bは、3次元座標軸の各々に沿って平行にニードル19aを移動させる移動機構(図示略)と、ニードル19aの中心軸周りにニードル19aを回転させる回転機構(図示略)と、を備えている。なお、この3次元座標軸は、試料ステージの直交3軸座標系とは独立しており、ステージ12の表面に平行な2次元座標軸とする直交3軸座標系で、ステージ12の表面が傾斜状態、回転状態にある場合、この座標系は傾斜し、回転する。   The needle drive mechanism 19b includes a moving mechanism (not shown) that moves the needle 19a in parallel along each of the three-dimensional coordinate axes, and a rotating mechanism (not shown) that rotates the needle 19a around the central axis of the needle 19a. I have it. It should be noted that this three-dimensional coordinate axis is independent of the orthogonal three-axis coordinate system of the sample stage, and is the orthogonal three-axis coordinate system that is a two-dimensional coordinate axis parallel to the surface of the stage 12, and the surface of the stage 12 is inclined. When in the rotating state, this coordinate system tilts and rotates.

コンピュータ(制御部)22は、少なくともステージ駆動機構13と、集束イオンビーム鏡筒14と、電子ビーム鏡筒15と、ガス供給部17と、ニードル駆動機構19bを制御する。   The computer (control unit) 22 controls at least the stage driving mechanism 13, the focused ion beam lens barrel 14, the electron beam lens barrel 15, the gas supply unit 17, and the needle driving mechanism 19b.

また、コンピュータ22は、試料室11の外部に配置され、表示装置21と、操作者の入力操作に応じた信号を出力するマウスやキーボードなどの入力デバイス23とが接続されている。コンピュータ22は、入力デバイス23から出力される信号または予め設定された自動運転制御処理によって生成される信号などによって、荷電粒子ビーム装置10の動作を統合的に制御する。   The computer 22 is arranged outside the sample chamber 11, and is connected to the display device 21 and an input device 23 such as a mouse or a keyboard that outputs a signal according to an input operation by the operator. The computer 22 integrally controls the operation of the charged particle beam apparatus 10 by a signal output from the input device 23 or a signal generated by a preset automatic operation control process.

コンピュータ22は、荷電粒子ビームの照射位置を走査しながら検出器16によって検出される二次荷電粒子Rの検出量を、照射位置に対応付けた輝度信号に変換して、二次荷電粒子Rの検出量の2次元位置分布によって照射対象の形状を示す画像データを生成する。   The computer 22 converts the detection amount of the secondary charged particles R detected by the detector 16 while scanning the irradiation position of the charged particle beam into a luminance signal associated with the irradiation position, and the secondary charged particles R are detected. Image data showing the shape of the irradiation target is generated by the two-dimensional position distribution of the detection amount.

コンピュータ22は、生成した各画像データとともに、各画像データの拡大、縮小、移動、および回転などの操作を実行するための画面を、表示装置21に表示させる。コンピュータ22は、自動的なシーケンス制御におけるモード選択および加工設定などの各種の設定を行なうための画面を、表示装置21に表示させる。   The computer 22 causes the display device 21 to display a screen for executing operations such as enlarging, reducing, moving, and rotating each image data together with the generated image data. The computer 22 causes the display device 21 to display a screen for performing various settings such as mode selection and processing settings in automatic sequence control.

(試料加工観察方法:第1実施形態)
上述した構成の荷電粒子ビーム装置10を用いた本発明の第1実施形態の試料加工観察方法を、図1〜4を用いて説明する。
図2は、本発明の試料加工観察方法を段階的に示したフローチャートである。
本発明の試料加工観察方法によって観察対象部を含む試料片Sの観察断面を形成する際には、まず、観察対象部が含まれるバルクの試料Vを試料ホルダPにセットして、ステージ12上に載置する。観察対象部が含まれる試料Vとしては、例えば、微細な集積回路を形成した半導体チップなどが挙げられる。
(Sample processing and observation method: first embodiment)
A sample processing and observation method of the first embodiment of the present invention using the charged particle beam device 10 having the above-described configuration will be described with reference to FIGS.
FIG. 2 is a flow chart showing stepwise the sample processing and observation method of the present invention.
When the observation cross section of the sample piece S including the observation target portion is formed by the sample processing and observation method of the present invention, first, the bulk sample V including the observation target portion is set on the sample holder P and then on the stage 12. Place on. Examples of the sample V including the observation target portion include a semiconductor chip on which a fine integrated circuit is formed.

次に、ステージ12上に載置された試料Vから、観察対象部を含む小領域を切り出して、試料片Sを作成する(試料片形成工程S1)。試料片形成工程S1では、集束イオンビーム鏡筒14から試料Vに向けて集束イオンビーム(FIB)、例えばガリウムイオンビームを照射する。この時、試料Vに予め設定された観察対象部を含む小領域の外縁に沿って集束イオンビーム(FIB)を照射する。これにより、試料Vから、観察対象部を含む小領域を切り出した試料片Sが得られる。試料片Sは、例えば矩形の薄板状に形成される。   Next, a small area including the observation target portion is cut out from the sample V placed on the stage 12 to create a sample piece S (sample piece forming step S1). In the sample piece forming step S1, a focused ion beam (FIB), for example, a gallium ion beam is irradiated from the focused ion beam lens barrel 14 toward the sample V. At this time, the focused ion beam (FIB) is applied to the sample V along the outer edge of the small region including the observation target portion set in advance. As a result, the sample piece S obtained by cutting out the small region including the observation target portion from the sample V is obtained. The sample piece S is formed in a rectangular thin plate shape, for example.

次に、試料片支持体19のニードル駆動機構19bを操作して、ニードル19aの先端を、切り出した試料片Sの外面、例えばSEMによる観察断面を形成する加工面(断面)に直角な側面に接触させる。   Next, the needle drive mechanism 19b of the sample piece support 19 is operated so that the tip of the needle 19a is moved to the outer surface of the cut sample piece S, for example, the side surface perpendicular to the processed surface (cross section) forming the observation cross section by SEM. Contact.

そして、ガス供給部17のノズル17aからニードル19aと試料片Sとの接触部分に向けてデポジション用ガス、例えばカーボン系ガスを供給しつつ、この部分に集束イオンビーム鏡筒14から集束イオンビーム(FIB)を照射する。これにより、ニードル19aの先端と試料片Sとの接触部分にデポジション膜が形成される。こうしたデポジション膜によって、ニードル19aの先端と試料片Sとが接着され、試料片Sはニードル19aに支持される。   Then, while supplying a deposition gas, for example, a carbon-based gas, from the nozzle 17a of the gas supply unit 17 toward the contact portion between the needle 19a and the sample piece S, the focused ion beam lens barrel 14 focuses the focused ion beam on this portion. Irradiate (FIB). As a result, a deposition film is formed at the contact portion between the tip of the needle 19a and the sample piece S. By such a deposition film, the tip of the needle 19a and the sample piece S are adhered, and the sample piece S is supported by the needle 19a.

次に、集束イオンビーム(FIB)によって、試料片Sに対してマッチング用マーク(1ポイントドリフト補正マーク)を形成する。マッチング用マークの形成位置は、次工程である断面加工工程S2で消滅しない位置に形成される。次に、試料片Sに加工面(断面)であるスライス加工枠を設定する。この時、ドリフト補正機能をセットする。   Next, a matching mark (1 point drift correction mark) is formed on the sample piece S by a focused ion beam (FIB). The matching mark is formed at a position that does not disappear in the cross-section processing step S2, which is the next step. Next, a slice processing frame which is a processing surface (cross section) is set on the sample piece S. At this time, the drift correction function is set.

次に、図3(a)に示すように、この試料片Sの加工面が、それぞれのビーム照射軸が1点で交差する交点Cに一致するように、試料片Sを支持するニードル19aを動かす。そして、例えば試料片Sの加工面(断面)に対して平行な方向に集束イオンビーム鏡筒14から集束イオンビーム(FIB)を照射して、試料片Sの加工面を所定の深さまで削る(断面加工工程S2)。   Next, as shown in FIG. 3A, the needle 19a supporting the sample piece S is placed so that the processed surface of the sample piece S coincides with the intersection C where the beam irradiation axes intersect at one point. move. Then, for example, the focused ion beam lens barrel 14 irradiates a focused ion beam (FIB) in a direction parallel to the processed surface (cross section) of the sample piece S, and the processed surface of the sample piece S is ground to a predetermined depth ( Section processing step S2).

次に、図3(b)に示すように、試料片Sをニードル19aに保持させたまま、ニードル駆動機構19bを介してニードル19aを操作し、試料片Sの加工面が交点Cよりも電子ビーム鏡筒15の照射端に近接するように試料片Sを移動(図3(b)中のZ方向)させる(試料片近接移動工程S3)。すなわち、試料片Sの加工面に対する電子ビーム鏡筒15のワーキングディスタンスが交点Cに比べて小さくなる位置に試料片Sを移動させる。   Next, as shown in FIG. 3B, while the sample piece S is held by the needle 19a, the needle 19a is operated via the needle drive mechanism 19b so that the processed surface of the sample piece S is more electron-shaped than the intersection point C. The sample piece S is moved (Z direction in FIG. 3B) so as to be close to the irradiation end of the beam barrel 15 (sample piece proximity moving step S3). That is, the sample piece S is moved to a position where the working distance of the electron beam lens barrel 15 with respect to the processed surface of the sample piece S is smaller than the intersection point C.

次に、図3(c)に示すように、ニードル駆動機構19bを介してニードル19aを回転させ、試料片Sの加工面(断面)が電子ビーム鏡筒15のビーム光軸に対して直角になるように傾斜させる(試料片角度調節工程S4)。なお、ここで試料片Sの加工面(断面)と電子ビーム鏡筒15のビーム光軸とは、90°±5°範囲でほぼ直角になっていれば、後述するSEM画像の取得時に完全な直角(90°)とほぼ同等の効果が得られる。   Next, as shown in FIG. 3 (c), the needle 19 a is rotated via the needle drive mechanism 19 b so that the processed surface (cross section) of the sample piece S is perpendicular to the beam optical axis of the electron beam lens barrel 15. The sample is tilted so that the sample piece angle is adjusted (S4). Here, if the processed surface (cross section) of the sample piece S and the beam optical axis of the electron beam lens barrel 15 are substantially perpendicular to each other within a range of 90 ° ± 5 °, it is possible to obtain a perfect SEM image at the time of acquisition, which will be described later. An effect almost equal to that of a right angle (90 °) is obtained.

次に、電子ビーム鏡筒15のビーム光軸に対して加工面(断面)が直角に広がるようにされた試料片Sに向けて、電子ビーム鏡筒15から電子ビーム(EB)を照射する。この時、前工程の試料片角度調節工程S4を経ることで、電子ビーム(EB)は、試料片Sの加工面(断面)に対してほとんど直角に入射する。そして、試料片Sの加工面(断面)から出た二次電子(二次荷電粒子)を検出器16で検出し、検出器16の出力信号に基づいて加工面(断面)のSEM画像をコンピュータ22で形成し、表示装置21に表示する(SEM画像取得工程S5)。なお、SEM画像取得工程S5においては、試料片Sのエッジ部分などでマッチングを行い、SEM画像取得の際の中心位置を自動認識する。   Next, the electron beam (EB) is irradiated from the electron beam lens barrel 15 toward the sample piece S whose processing surface (cross section) is spread at right angles to the beam optical axis of the electron beam lens barrel 15. At this time, the electron beam (EB) is incident almost at right angles to the processed surface (cross section) of the sample piece S through the sample piece angle adjusting step S4 of the previous step. Then, the detector 16 detects secondary electrons (secondary charged particles) emitted from the processed surface (cross section) of the sample piece S, and the SEM image of the processed surface (cross section) is calculated by the computer based on the output signal of the detector 16. 22 and display it on the display device 21 (SEM image acquisition step S5). In the SEM image acquisition step S5, matching is performed at the edge portion of the sample piece S and the center position at the time of acquiring the SEM image is automatically recognized.

このように、試料片近接移動工程S3を経た試料片Sの加工面(断面)のSEM画像は、従来のように、試料片Sの加工面(断面)が交点Cの位置にある状態で得られたSEM画像と比較して、試料片Sの加工面(断面)の位置がより電子ビーム鏡筒15に近接した位置でのSEM画像であるので、加工面(断面)の様子がより一層鮮明になり、拡大倍率を上げても細部まで鮮明に映し出すことができる。従って、観察対象物の構造が微細で複雑な試料片Sであっても、加工面(断面)の状態を正確に把握することができる。   As described above, the SEM image of the processed surface (cross section) of the sample piece S that has undergone the sample piece proximity moving step S3 is obtained in a state where the processed surface (cross section) of the sample piece S is at the position of the intersection C as in the conventional case. Compared with the obtained SEM image, the processed surface (cross section) of the sample piece S is an SEM image at a position closer to the electron beam lens barrel 15, so that the processed surface (cross section) is much clearer. Therefore, even if the magnification is increased, the details can be clearly displayed. Therefore, even if the observation target is a fine and complicated sample piece S, the state of the processed surface (cross section) can be accurately grasped.

また、試料片角度調節工程S4によって、試料片Sの加工面(断面)と電子ビーム鏡筒15のビーム光軸とが直角になるように試料片Sを動かす(回転させる)ことによって、SEM画像取得工程S5で得られる加工面(断面)のSEM画像は、従来のように電子ビーム鏡筒15のビーム光軸に対して直角よりも傾斜した(例えば54°)状態でのSEM画像と比較して、上下方向に収縮が殆どない。これにより、得られたSEM画像をソフトウエア的に画像加工することなく、加工面(断面)の形状を歪みなく正確に反映されたSEM画像を得ることができる。   Further, in the sample piece angle adjusting step S4, the sample piece S is moved (rotated) so that the processed surface (cross section) of the sample piece S and the beam optical axis of the electron beam lens barrel 15 are perpendicular to each other, so that the SEM image is obtained. The SEM image of the processed surface (cross section) obtained in the acquisition step S5 is compared with the SEM image in a state inclined (for example, 54 °) with respect to the beam optical axis of the electron beam lens barrel 15 as in the conventional case. And there is almost no vertical contraction. This makes it possible to obtain an SEM image in which the shape of the processed surface (cross section) is accurately reflected without distortion, without performing image processing on the obtained SEM image by software.

この後、SEM画像取得工程S5で得られる加工面(断面)の様子を確認し、再び断面加工工程S2からSEM画像取得工程S5までを、所望の加工面(断面)が得られるまで繰り返す。試料片Sが集束イオンビーム(FIB)による加工位置に戻った際には、ドリフト補正マークの認識を実行する。   After that, the state of the processed surface (cross section) obtained in the SEM image acquisition step S5 is confirmed, and the section processing step S2 to the SEM image acquisition step S5 are repeated until the desired processed surface (cross section) is obtained. When the sample piece S returns to the processing position by the focused ion beam (FIB), the drift correction mark is recognized.

また、断面加工工程S2からSEM画像取得工程S5までを、予め設定した所望の回数繰り返し、試料片Sの特定領域における連続した複数の断面のSEM画像を取得して、試料片Sの特定領域の立体像を生成することもできる。つまり、少なくとも、断面加工工程S2において試料片Sを交点Cに移動させ、加工面をスライス加工し、試料片近接移動工程S3において試料片Sを交点Cよりも電子ビーム鏡筒15の照射端に近接するように移動させ、SEM画像取得工程S5においてSEM画像を取得するプロセスを繰り返し実施する。コンピュータ22は、加工位置と観察位置との間を試料片Sが往復するようにニードル駆動機構19bを制御する。これにより、試料片の連続的な断面加工観察を実施することができる。また、断面加工観察により取得した情報に基づき断面工観察を施した領域の立体像を生成することができる。   Further, the cross-section processing step S2 to the SEM image acquisition step S5 are repeated a preset number of times to obtain SEM images of a plurality of continuous cross-sections in a specific region of the sample piece S, and It is also possible to generate a stereoscopic image. That is, at least in the cross-section processing step S2, the sample piece S is moved to the intersection C, the processed surface is sliced, and in the sample piece proximity moving step S3, the sample piece S is positioned more toward the irradiation end of the electron beam lens barrel 15 than the intersection point C. The process is moved so as to be close to each other, and the process of acquiring the SEM image in the SEM image acquisition step S5 is repeatedly performed. The computer 22 controls the needle drive mechanism 19b so that the sample piece S reciprocates between the processing position and the observation position. Thereby, continuous cross-section processing observation of the sample piece can be performed. In addition, it is possible to generate a stereoscopic image of the area subjected to the cross-section observation based on the information acquired by the cross-section processing observation.

SEM画像取得工程S5から断面加工工程S2に移行する際には、試料片Sをニードル19aに固定したまま、試料片角度調節工程S4の逆回転操作を行い、続けて試料片近接移動工程S3の逆行操作を行えばよい。   When shifting from the SEM image acquisition step S5 to the cross-section processing step S2, the sample piece S is fixed to the needle 19a, the reverse rotation operation of the sample piece angle adjusting step S4 is performed, and then the sample piece proximity moving step S3 is performed. A reverse operation may be performed.

以上のように、本発明の試料加工観察方法によれば、このように、試料片Sの加工面(断面)の加工とSEM画像による観察とを、試料片Sをニードル19aに固定したまま行うことができるので、試料片Sを例えば専用ステージに移動させることなく観察することができ、作業時間を大幅に短縮できる。   As described above, according to the sample processing and observation method of the present invention, the processing of the processed surface (cross section) of the sample piece S and the observation by the SEM image are thus performed while the sample piece S is fixed to the needle 19a. Therefore, the sample piece S can be observed without moving it to, for example, a dedicated stage, and the working time can be significantly shortened.

また、試料片Sをニードル19aに固定したままSEM画像による観察ができるので、観察位置付近でニードル19aよりも体積の大きい専用のステージを用いた場合よりも電界分布の変化が小く抑えられる。よって、取得したSEM画像のコントラストの低下を防止でき、高コントラストの鮮明なSEM画像を得ることができる。   Further, since the SEM image can be observed while the sample piece S is fixed to the needle 19a, the change in the electric field distribution can be suppressed smaller than in the case where a dedicated stage having a larger volume than the needle 19a is used near the observation position. Therefore, the contrast of the acquired SEM image can be prevented from being lowered, and a clear SEM image with high contrast can be obtained.

上述した第1実施形態の試料加工観察方法の変形例として、集束イオンビーム(FIB)を用いた断面加工工程S2の完了後に、気体イオンビーム鏡筒18から気体イオンビーム(GB)、例えばアルゴンイオンビームを照射して、試料片Sの加工面(断面)の仕上げ加工を行うことも好ましい(図4参照)。   As a modified example of the sample processing and observation method of the first embodiment described above, after completion of the cross-section processing step S2 using a focused ion beam (FIB), a gas ion beam (GB), eg, argon ions, is emitted from the gas ion beam column 18. It is also preferable to irradiate the beam to finish the processing surface (cross section) of the sample piece S (see FIG. 4).

気体イオンビーム鏡筒18は、アルゴンガスをイオン化して、例えば、1.0keV程度の低加速電圧で照射することができる。こうしたアルゴンイオンビームは、ガリウムイオンビームなどの集束イオンビーム(FIB)に比べて集束性が低いため、試料片Sの加工面(断面)に対するエッチングレートが低くなる。従って、アルゴンイオンビームは、ガリウムイオンビームによって試料片Sの加工面(断面)の加工を行った後の精密な仕上げ加工に好適である。   The gas ion beam column 18 can ionize argon gas and irradiate it with a low acceleration voltage of, for example, about 1.0 keV. Since such an argon ion beam has a lower focusing property than a focused ion beam (FIB) such as a gallium ion beam, the etching rate for the processed surface (cross section) of the sample piece S becomes low. Therefore, the argon ion beam is suitable for precise finishing after the processing surface (cross section) of the sample piece S is processed by the gallium ion beam.

このように、気体イオンビーム(GB)によって試料片Sの加工面(断面)の仕上げ加工を行うことによって、SEM画像取得工程S5で得られる加工面(断面)のSEM画像をより鮮明なものにすることができる。   In this way, by finishing the processed surface (cross section) of the sample piece S with the gas ion beam (GB), the SEM image of the processed surface (cross section) obtained in the SEM image acquisition step S5 becomes clearer. can do.

(試料加工観察方法:第2実施形態)
SEM画像の高分解能化のために、電子ビーム鏡筒15と試料片Sとの間に電子レンズを形成させるセミインレンズ方式の電子ビーム鏡筒15を用いる場合、電子レンズの磁場が電子ビーム鏡筒15の外側に生じるために、断面加工工程S2で試料片Sを集束イオンビーム(FIB)で加工する際に、特に低加速の集束イオンビーム(FIB)は、電子ビーム鏡筒15の電子レンズの磁場によってビーム軌道が曲がったり、ビーム形状が歪んだりする虞がある。
(Sample processing observation method: second embodiment)
In order to improve the resolution of the SEM image, when a semi-in-lens type electron beam lens barrel 15 in which an electron lens is formed between the electron beam lens barrel 15 and the sample piece S is used, the magnetic field of the electron lens is an electron beam mirror. When the sample piece S is processed by the focused ion beam (FIB) in the cross-section processing step S2 because it is generated outside the cylinder 15, the focused ion beam (FIB) with a particularly low acceleration is generated by the electron lens of the electron beam lens barrel 15. There is a possibility that the beam orbit may be bent or the beam shape may be distorted due to the magnetic field.

このため、第2実施形態では、断面加工工程S2において、ステージ駆動機構13を操作してステージ12を、ニードル19aに保持された試料片Sに接近させる(図5(a)参照)。ステージ12は、集束イオンビーム(FIB)のビーム軌道を中心に磁場が概ね対称になるように配置すればよい。   Therefore, in the second embodiment, in the cross-section processing step S2, the stage drive mechanism 13 is operated to bring the stage 12 close to the sample piece S held by the needle 19a (see FIG. 5A). The stage 12 may be arranged so that the magnetic field is substantially symmetrical about the beam orbit of the focused ion beam (FIB).

同様に、SEM画像取得工程S5においても、ステージ駆動機構13を操作してステージ12を、ニードル19aに保持された試料片Sに接近させる(図5(b)参照)。これによって、電子ビーム(EB)に対して磁場が適切な分布になるように制御できる。ステージ12は、電子ビーム(EB)のビーム軌道を中心に磁場が概ね対称になるように配置すればよい。   Similarly, also in the SEM image acquisition step S5, the stage drive mechanism 13 is operated to bring the stage 12 close to the sample piece S held by the needle 19a (see FIG. 5B). This makes it possible to control the magnetic field to have an appropriate distribution with respect to the electron beam (EB). The stage 12 may be arranged so that the magnetic field is substantially symmetrical about the beam orbit of the electron beam (EB).

(試料加工観察方法:第3実施形態)
第3実施形態では、断面加工工程S2において、試料片Sに対して額縁加工を行う。即ち、図6(a)に示すように、試料片Sの一方に向けて第1の照射角度から集束イオンビーム(FIB)を照射し、試料片Sの矩形の加工面(断面)の3辺を所定幅で額縁状に周縁部分を残し(額縁部Sa)、その内側を薄膜化(薄膜部Sb)する。
(Sample processing observation method: third embodiment)
In the third embodiment, frame processing is performed on the sample piece S in the cross-section processing step S2. That is, as shown in FIG. 6A, the focused ion beam (FIB) is irradiated from one of the first irradiation angles toward one side of the sample piece S, and the three sides of the rectangular processed surface (cross section) of the sample piece S are irradiated. Is left in a frame shape with a predetermined width (frame portion Sa), and the inside is thinned (thin film portion Sb).

次に、図6(b)に示すように、ニードル19aを回転させて試料片Sの表裏を逆にして、第2の照射角度から集束イオンビーム(FIB)を照射し、試料片Sの矩形の加工面(断面)の3辺を所定幅で額縁状に残し(額縁部Sc)、その内側を薄膜化(薄膜部Sd)する(図6(b)参照)。   Next, as shown in FIG. 6B, the needle 19a is rotated to reverse the front and back of the sample piece S, and the focused ion beam (FIB) is irradiated from the second irradiation angle to form a rectangle of the sample piece S. The three sides of the processed surface (cross section) are left in a frame shape with a predetermined width (frame portion Sc), and the inside thereof is thinned (thin film portion Sd) (see FIG. 6B).

このような第3実施形態によれば、試料片Sの一部だけを薄膜化し、その周囲を額縁部として薄膜化しない部分を残すことで、一部を薄膜化した試料の強度を保つことができる。そして、試料片Sの表裏で異なる方向から額縁加工することで、薄片部の全ての周囲を額縁化できるので試料の強度を保つことができ、かつ、試料片にカーテン効果による縞が形成されることを抑制できる。   According to the third embodiment as described above, only a part of the sample piece S is thinned, and the periphery of the sample piece S is used as a frame portion to leave a portion which is not thinned, so that the strength of the thinned sample can be maintained. it can. Frame processing is performed on the front and back sides of the sample piece S from different directions, so that the entire periphery of the thin piece portion can be framed, so that the strength of the sample can be maintained, and stripes due to the curtain effect are formed on the sample piece. Can be suppressed.

(試料加工観察方法:第4実施形態)
第4実施形態は、試料片支持体19を2つ備えた荷電粒子ビーム装置10を用いた例であり、互いに離間して配置された2つのニードル19a1,19a2を有する(図7参照)。まず、第1のニードル19a1で試料片Sを保持する。
(Sample Processing Observation Method: Fourth Embodiment)
The fourth embodiment is an example in which the charged particle beam device 10 provided with two sample piece supports 19 is used, and has two needles 19a1 and 19a2 arranged apart from each other (see FIG. 7). First, the sample piece S is held by the first needle 19a1.

そして、試料片Sを第2のニードル19a2に移し変え、第2のニードル19a2を回転させることにより、試料片Sへの集束イオンビーム(FIB)の入射角度を変更する(図7(a)参照)。図7(b)に示すように、第2のニードル19a2を、電子ビーム(EB)のビーム光軸と、集束イオンビーム(FIB)のビーム光軸のなす面の法線方向に平行になるように配置する。   Then, the sample piece S is transferred to the second needle 19a2, and the second needle 19a2 is rotated to change the incident angle of the focused ion beam (FIB) to the sample piece S (see FIG. 7A). ). As shown in FIG. 7B, the second needle 19a2 is made parallel to the normal line of the plane formed by the beam optical axis of the electron beam (EB) and the beam optical axis of the focused ion beam (FIB). To place.

まず、第1のニードル19a1で試料片Sを支持した状態で、第1の入射角度で集束イオンビーム(FIB)を照射してFIB加工を行う(図8(a)参照)。次に、第2のニードル19a2を試料片Sに接続する(図8(b)参照)。次に、第1のニードル19a1から試料片Sを分離し、第2のニードル19a2を回転させる(図8(c)参照)。そして、第1の入射角度で集束イオンビーム(FIB)を照射してFIB加工を行う(図8(d)参照)。   First, with the sample piece S supported by the first needle 19a1, the focused ion beam (FIB) is irradiated at the first incident angle to perform FIB processing (see FIG. 8A). Next, the second needle 19a2 is connected to the sample piece S (see FIG. 8B). Next, the sample piece S is separated from the first needle 19a1 and the second needle 19a2 is rotated (see FIG. 8C). Then, a focused ion beam (FIB) is irradiated at the first incident angle to perform FIB processing (see FIG. 8D).

このような第4実施形態の試料加工観察方法によれば、第2のニードル19a2は集束イオンビーム(FIB)のビーム光軸に対して、垂直方向を中心に回転可能であるため、集束イオンビーム(FIB)の試料片Sに対する入射角度の調整が容易になり、試料片Sの加工容易性を高めることができる。   According to the sample processing and observation method of the fourth embodiment as described above, the second needle 19a2 is rotatable about the vertical direction with respect to the beam optical axis of the focused ion beam (FIB). The incidence angle of (FIB) with respect to the sample piece S can be easily adjusted, and the workability of the sample piece S can be improved.

本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although the embodiments of the present invention have been described, the embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

10…荷電粒子ビーム装置、11…試料室、12…ステージ(試料ステージ)、13…ステージ駆動機構、14…集束イオンビーム鏡筒、15…電子ビーム鏡筒、16…検出器、17…ガス供給部、18…気体イオンビーム鏡筒、19a…ニードル、19b…ニードル駆動機構、21…表示装置、22…コンピュータ、23…入力デバイス、33…試料台、P…試料ホルダ、R…二次荷電粒子、S…試料片、V…試料。   10 ... Charged particle beam device, 11 ... Sample chamber, 12 ... Stage (sample stage), 13 ... Stage drive mechanism, 14 ... Focused ion beam column, 15 ... Electron beam column, 16 ... Detector, 17 ... Gas supply Part, 18 ... Gas ion beam column, 19a ... Needle, 19b ... Needle drive mechanism, 21 ... Display device, 22 ... Computer, 23 ... Input device, 33 ... Sample stand, P ... Sample holder, R ... Secondary charged particles , S ... sample piece, V ... sample.

Claims (10)

集束イオンビームを照射する集束イオンビーム鏡筒と、電子ビームを照射する電子ビーム鏡筒と、試料を載置するステージと、前記試料から切り出された観察対象部を含む試料片を保持する試料片支持体と、前記集束イオンビーム鏡筒、前記電子ビーム鏡筒、前記ステージおよび前記試料片支持体の動作を制御する制御部と、を備え、
前記制御部は、前記試料の観察対象部を含む断面のSEM画像を取得する際に、前記集束イオンビームのビーム光軸と前記電子ビームのビーム光軸との交点よりも前記電子ビーム鏡筒に近接する位置まで前記試料片を移動させる制御を行うことを特徴とする荷電粒子ビーム装置。
A focused ion beam column for irradiating a focused ion beam, an electron beam column for irradiating an electron beam, a stage for mounting a sample, and a sample piece for holding a sample piece including an observation target portion cut out from the sample A support; and a control unit that controls the operations of the focused ion beam column, the electron beam column, the stage, and the sample piece support,
When acquiring a SEM image of a cross section including the observation target portion of the sample, the control unit causes the electron beam lens barrel to move to the electron beam barrel rather than the intersection of the beam optical axis of the focused ion beam and the beam optical axis of the electron beam. A charged particle beam device, characterized in that control is performed to move the sample piece to a position in proximity to it.
前記制御部は、前記集束イオンビームによって前記断面を形成する際に、前記交点に前記試料片を移動させる制御を行うことを特徴とする請求項1記載の荷電粒子ビーム装置。   The charged particle beam apparatus according to claim 1, wherein the control unit performs control to move the sample piece to the intersection when the cross section is formed by the focused ion beam. 前記制御部は、前記断面に前記集束イオンビームを照射して前記断面の加工を行う際、前記試料の観察対象部を含む断面のSEM画像を取得する際、の少なくともいずれか一方において、前記ステージを前記試料片に向けて接近動作させる制御を行うことを特徴とする請求項1または2記載の荷電粒子ビーム装置。   The control unit is configured to irradiate the focused ion beam to the cross section to process the cross section, and to acquire an SEM image of a cross section including an observation target part of the sample, in at least one of the stages. 3. The charged particle beam device according to claim 1, wherein the charged particle beam device is controlled so as to approach the sample piece. 集束イオンビームを照射する集束イオンビーム鏡筒と、電子ビームを照射する電子ビーム鏡筒と、試料から切り出された観察対象部を含む試料片を保持する試料片支持体と、を備えた荷電粒子ビーム装置を用いて、前記試料の観察対象部を含む断面の加工およびSEM画像を得る試料加工観察方法であって、
前記集束イオンビームを前記試料に照射して、前記試料から前記試料片を切り出す試料片形成工程と、
前記試料片を前記試料片支持体で支持し、前記試料片の前記断面に前記集束イオンビームを照射して、前記断面の加工を行う断面加工工程と、
前記試料片を前記試料片支持体で支持し、前記集束イオンビームのビーム光軸と前記電子ビームのビーム光軸との交点よりも前記電子ビーム鏡筒に近接する位置まで前記試料片を移動させる試料片近接移動工程と、
前記試料片の前記断面に向けて前記電子ビームを照射して、前記断面のSEM画像を取得するSEM画像取得工程と、
を備えたことを特徴とする試料加工観察方法。
Charged particles including a focused ion beam column for irradiating a focused ion beam, an electron beam column for irradiating an electron beam, and a sample piece support for holding a sample piece including an observation target portion cut out from a sample, A sample processing and observation method for obtaining a SEM image by processing a cross section of the sample including an observation target portion using a beam device,
Irradiating the sample with the focused ion beam, a sample piece forming step of cutting out the sample piece from the sample,
A cross-section processing step of supporting the sample piece with the sample piece support, irradiating the cross-section of the sample piece with the focused ion beam, and processing the cross-section,
The sample piece is supported by the sample piece support, and the sample piece is moved to a position closer to the electron beam lens barrel than the intersection of the beam optical axis of the focused ion beam and the beam optical axis of the electron beam. Sample piece proximity moving step,
SEM image acquisition step of acquiring the SEM image of the cross section by irradiating the electron beam toward the cross section of the sample piece,
A sample processing and observing method comprising:
前記試料片を前記試料片支持体で支持し、前記試料片の前記断面が前記電子ビームのビーム光軸に対して直角になるように傾斜させる試料片角度調節工程を更に備えたことを特徴とする請求項4記載の試料加工観察方法。   Further comprising a sample piece angle adjusting step of supporting the sample piece by the sample piece support and inclining the sample piece so that the cross section of the sample piece is perpendicular to the beam optical axis of the electron beam. The sample processing and observation method according to claim 4. 前記試料片にドリフト補正マークを形成する補正マーク形成工程を更に備えたことを特徴とする請求項4または5記載の試料加工観察方法。   The sample processing and observation method according to claim 4, further comprising a correction mark forming step of forming a drift correction mark on the sample piece. 前記試料片角度調節工程は、複数の前記試料片支持体どうしの間で前記試料片を受け渡して行うことを特徴とする請求項5記載の試料加工観察方法。   The sample processing and observation method according to claim 5, wherein the sample piece angle adjusting step is performed by passing the sample piece between a plurality of the sample piece supports. 前記断面加工工程またはSEM画像取得工程の少なくともいずれか一方では、前記試料を載置するステージを前記試料片に向けて接近動作させることを特徴とする請求項4ないし7いずれか一項記載の試料加工観察方法。   The sample according to any one of claims 4 to 7, wherein a stage on which the sample is mounted is moved toward the sample piece in at least one of the cross-section processing step and the SEM image acquisition step. Processing observation method. 前記断面加工工程では、前記試料片の周縁部分の少なくとも一部よりも内側だけを薄膜化させることを特徴とする請求項4ないし8いずれか一項記載の試料加工観察方法。   9. The sample processing and observing method according to claim 4, wherein in the cross-section processing step, only the inside of at least a part of the peripheral portion of the sample piece is thinned. 前記断面加工工程から前記試料片近接移動工程を経て前記画像取得工程までを、予め設定した回数繰り返すことを特徴とする請求項4ないし9いずれか一項記載の試料加工観察方法。   10. The sample processing and observation method according to claim 4, wherein the cross-section processing step, the sample piece proximity moving step, and the image acquisition step are repeated a preset number of times.
JP2018196666A 2018-10-18 2018-10-18 Sample processing observation method Active JP7152757B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018196666A JP7152757B2 (en) 2018-10-18 2018-10-18 Sample processing observation method
KR1020190108650A KR20200043895A (en) 2018-10-18 2019-09-03 Charged particle beam apparatus and sample processing observation method
TW108131987A TWI813760B (en) 2018-10-18 2019-09-05 Sample Processing Observation Method
US16/573,668 US11282672B2 (en) 2018-10-18 2019-09-17 Charged particle beam apparatus and sample processing observation method
CN201910898398.8A CN111081515B (en) 2018-10-18 2019-09-23 Charged particle beam device and sample processing and observing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196666A JP7152757B2 (en) 2018-10-18 2018-10-18 Sample processing observation method

Publications (2)

Publication Number Publication Date
JP2020064780A true JP2020064780A (en) 2020-04-23
JP7152757B2 JP7152757B2 (en) 2022-10-13

Family

ID=70280886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196666A Active JP7152757B2 (en) 2018-10-18 2018-10-18 Sample processing observation method

Country Status (5)

Country Link
US (1) US11282672B2 (en)
JP (1) JP7152757B2 (en)
KR (1) KR20200043895A (en)
CN (1) CN111081515B (en)
TW (1) TWI813760B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084772A1 (en) * 2021-11-15 2023-05-19 株式会社日立ハイテクサイエンス Charged particle beam device and method for controlling charged particle beam device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150990A (en) * 2000-11-02 2002-05-24 Hitachi Ltd Working observation method for trace sample and apparatus
JP2006114225A (en) * 2004-10-12 2006-04-27 Hitachi High-Technologies Corp Charged particle beam device
JP2006128068A (en) * 2004-09-29 2006-05-18 Hitachi High-Technologies Corp Ion beam processing apparatus and processing method
JP2007018928A (en) * 2005-07-08 2007-01-25 Hitachi High-Technologies Corp Charged particle beam device
JP2007250371A (en) * 2006-03-16 2007-09-27 Hitachi High-Technologies Corp Ion beam processing device
JP2013197046A (en) * 2012-03-22 2013-09-30 Hitachi High-Tech Science Corp Composite charged particle beam device
JP2014041734A (en) * 2012-08-22 2014-03-06 Hitachi High-Technologies Corp Composite charged particle beam device
WO2014195998A1 (en) * 2013-06-03 2014-12-11 株式会社日立製作所 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828566B2 (en) * 1997-07-22 2004-12-07 Hitachi Ltd Method and apparatus for specimen fabrication
EP1956634A1 (en) * 2007-02-06 2008-08-13 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Method and apparatus for in-situ sample preparation
JP5362236B2 (en) * 2007-03-12 2013-12-11 株式会社日立ハイテクサイエンス Sample processing / observation device and cross-section processing / observation method
JPWO2009020150A1 (en) * 2007-08-08 2010-11-04 エスアイアイ・ナノテクノロジー株式会社 Composite focused ion beam apparatus and processing observation method and processing method using the same
JP2010232195A (en) 2010-07-09 2010-10-14 Hitachi Ltd Method and device for observation of microsample processing
CZ2013547A3 (en) * 2013-07-11 2014-11-19 Tescan Orsay Holding, A.S. Sample treatment method in a device with two or more particle beams and apparatus for making the same
US9679743B2 (en) * 2015-02-23 2017-06-13 Hitachi High-Tech Science Corporation Sample processing evaluation apparatus
JP6974820B2 (en) * 2017-03-27 2021-12-01 株式会社日立ハイテクサイエンス Charged particle beam device, sample processing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150990A (en) * 2000-11-02 2002-05-24 Hitachi Ltd Working observation method for trace sample and apparatus
JP2006128068A (en) * 2004-09-29 2006-05-18 Hitachi High-Technologies Corp Ion beam processing apparatus and processing method
JP2006114225A (en) * 2004-10-12 2006-04-27 Hitachi High-Technologies Corp Charged particle beam device
JP2007018928A (en) * 2005-07-08 2007-01-25 Hitachi High-Technologies Corp Charged particle beam device
JP2007250371A (en) * 2006-03-16 2007-09-27 Hitachi High-Technologies Corp Ion beam processing device
JP2013197046A (en) * 2012-03-22 2013-09-30 Hitachi High-Tech Science Corp Composite charged particle beam device
JP2014041734A (en) * 2012-08-22 2014-03-06 Hitachi High-Technologies Corp Composite charged particle beam device
CN104520963A (en) * 2012-08-22 2015-04-15 株式会社日立高新技术 Composite charged particle beam device
WO2014195998A1 (en) * 2013-06-03 2014-12-11 株式会社日立製作所 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084772A1 (en) * 2021-11-15 2023-05-19 株式会社日立ハイテクサイエンス Charged particle beam device and method for controlling charged particle beam device

Also Published As

Publication number Publication date
KR20200043895A (en) 2020-04-28
CN111081515B (en) 2024-01-30
TW202025210A (en) 2020-07-01
US11282672B2 (en) 2022-03-22
TWI813760B (en) 2023-09-01
JP7152757B2 (en) 2022-10-13
US20200126755A1 (en) 2020-04-23
CN111081515A (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6224612B2 (en) High-throughput TEM preparation process and hardware for backside thinning of cross-section observation slices
EP2811506B1 (en) Method for imaging a sample in a dual-beam charged particle apparatus
KR102590634B1 (en) Charged particle beam apparatus and sample processing method
JP6359351B2 (en) Preparation of planar sample
JP6207081B2 (en) Focused ion beam device
JP5981744B2 (en) Sample observation method, sample preparation method, and charged particle beam apparatus
US20200168433A1 (en) Method of imaging a sample using an electron microscope
JP7152757B2 (en) Sample processing observation method
JP2011222426A (en) Composite charged particle beam device
JP5489295B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
US11199480B2 (en) Thin-sample-piece fabricating device and thin-sample-piece fabricating method
JP7214262B2 (en) Charged particle beam device, sample processing method
WO2023084772A1 (en) Charged particle beam device and method for controlling charged particle beam device
US20230162945A1 (en) Method Of Imaging And Milling A Sample
WO2023084773A1 (en) Charged particle beam device and method for controlling charged particle beam device
JP6487294B2 (en) Compound charged particle beam system
JP5541818B2 (en) Cross-section sample preparation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7152757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150