JP2020062768A - Manufacturing method of carbon fiber-reinforced resin molded article, and carbon fiber-reinforced resin molded article - Google Patents

Manufacturing method of carbon fiber-reinforced resin molded article, and carbon fiber-reinforced resin molded article Download PDF

Info

Publication number
JP2020062768A
JP2020062768A JP2018194585A JP2018194585A JP2020062768A JP 2020062768 A JP2020062768 A JP 2020062768A JP 2018194585 A JP2018194585 A JP 2018194585A JP 2018194585 A JP2018194585 A JP 2018194585A JP 2020062768 A JP2020062768 A JP 2020062768A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced resin
fiber reinforced
resin molded
ferromagnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018194585A
Other languages
Japanese (ja)
Other versions
JP7149577B2 (en
Inventor
啓輔 山根
Keisuke Yamane
啓輔 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROSE KANAGATA KK
Original Assignee
HIROSE KANAGATA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROSE KANAGATA KK filed Critical HIROSE KANAGATA KK
Priority to JP2018194585A priority Critical patent/JP7149577B2/en
Publication of JP2020062768A publication Critical patent/JP2020062768A/en
Application granted granted Critical
Publication of JP7149577B2 publication Critical patent/JP7149577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a manufacturing method of a carbon fiber-reinforced resin molded article, further comprising a new application by exhibiting a new property.SOLUTION: Carbon fiber-reinforced resin thin plates in a state where a carbon fiber-reinforced resin is cured are prepared from at least one ferromagnetic particle-containing prepreg obtained by impregnating UD material drawn/aligned in one direction with a thermosetting resin containing a ferromagnetic material to prepare a carbon fiber-reinforced resin molded article by laminating a plurality of the carbon fiber-reinforced resin thin plates via interposing of an electrical insulation layer therebetween. The carbon fiber-reinforced resin thin plates each exhibit magnetic anisotropy on a carbon fiber direction.SELECTED DRAWING: Figure 1

Description

本発明は、炭素繊維強化樹脂成形品の製造方法、及び、該製造方法により製造される炭素繊維強化樹脂成形品に関するものである。   The present invention relates to a method for producing a carbon fiber reinforced resin molded product and a carbon fiber reinforced resin molded product produced by the production method.

炭素繊維強化樹脂(CFRP)は、軽量で機械的強度が高い。例えば、鉄と比べると、CFRPの比重は約1/5であり、引張強度は約6倍である。そのため、CFRPは金属材料に代替し得る材料として期待されているが、現状では、航空機や自動車の車体、釣り竿やゴルフクラブのシャフトなど構造材料としての使用に留まり、まだまだ用途が限定されている。   Carbon fiber reinforced resin (CFRP) is lightweight and has high mechanical strength. For example, compared to iron, CFRP has a specific gravity of about 1/5 and a tensile strength of about 6 times. Therefore, CFRP is expected as a material that can substitute for a metal material, but at present, its use is still limited as a structural material such as a body of an aircraft or an automobile, a shaft of a fishing rod or a golf club, and its application is still limited.

本出願人は、これまで、切削が困難であると言われているCFRPを容易に切削加工するノウハウを積み重ねると共に、CFRPの新規な用途を模索してきた。その過程で、既に、炭素繊維、未硬化の熱硬化性樹脂、及び強磁性体の粉末粒子を含有する混合原料から、炭素繊維強化樹脂成形品を製造することを提案している(この提案にかかる特許出願は出願公開前であるため、公知文献に該当しない)。これにより、炭素繊維強化樹脂成形品が強磁性を示すものとなり、炭素繊維強化樹脂成形品に新たな用途を提供することができる。   The present applicant has accumulated know-how for easily cutting CFRP, which is said to be difficult to cut, and has sought a new application of CFRP. In the process, it has already been proposed to produce a carbon fiber reinforced resin molded product from a mixed raw material containing carbon fiber, uncured thermosetting resin, and ferromagnetic powder particles (in this proposal, Since such a patent application has not yet been published, it does not correspond to a known document). As a result, the carbon fiber reinforced resin molded product exhibits ferromagnetism, and a new application can be provided for the carbon fiber reinforced resin molded product.

本発明は、上記の提案にかかる研究開発の延長上にあるものであり、新たな特性を示すことにより更に新たな用途を有する炭素繊維強化樹脂成形品の製造方法、及び、該製造方法により製造される炭素繊維強化樹脂成形品の提供を、課題とするものである。   The present invention is an extension of the research and development according to the above-mentioned proposal, and a method for producing a carbon fiber reinforced resin molded article having a new use by exhibiting new characteristics, and a method for producing the same. It is an object of the present invention to provide a carbon fiber reinforced resin molded product.

上記の課題を解決するため、本発明にかかる炭素繊維強化樹脂成形品の製造方法(以下、単に「製造方法」と称することがある)は、
「強磁性体粒子を含有する熱硬化性樹脂を、炭素繊維を一方向に引き揃えたUD材に含浸させた強磁性体粒子含有プリプレグの一以上から、前記熱硬化性樹脂が硬化している状態の炭素繊維強化樹脂薄板を製造し、
該炭素繊維強化樹脂薄板の複数を、間に電気絶縁性の層を介在させて積層する」ものである。
In order to solve the above problems, a method for producing a carbon fiber reinforced resin molded product according to the present invention (hereinafter, may be simply referred to as “production method”),
"The thermosetting resin is cured from one or more prepregs containing ferromagnetic particles in which a UD material in which carbon fibers are aligned in one direction is impregnated with a thermosetting resin containing ferromagnetic particles. Manufacture thin carbon fiber reinforced resin sheet,
A plurality of the carbon fiber reinforced resin thin plates are laminated with an electrically insulating layer interposed therebetween.

本発明は、強磁性体粒子含有プリプレグから炭素繊維強化樹脂薄板(薄板状の炭素繊維強化樹脂成形品)を製造し、更に積層体としての炭素繊維強化樹脂成形品を製造するものである。具体的には、炭素繊維を一方向に引き揃えたUD材に、強磁性体粒子を含有する熱硬化性樹脂を含浸させた強磁性体粒子含有プリプレグの1プライ、または2プライ以上を重ね合わせた状態で、熱硬化性樹脂を完全硬化させて炭素繊維強化樹脂薄板とする。この炭素繊維強化樹脂薄板は、詳細は後述するように、従来の電磁鋼板に代替して使用することが可能である。従って、金属材料より軽量で機械的強度が高い炭素繊維強化樹脂の利点を活かしつつ、従来の炭素繊維強化樹脂にはなかった新しい用途を提供することができる。   The present invention is to manufacture a carbon fiber reinforced resin thin plate (a thin plate-shaped carbon fiber reinforced resin molded product) from a prepreg containing ferromagnetic particles, and further to manufacture a carbon fiber reinforced resin molded product as a laminate. Specifically, one-ply or two or more plies of a prepreg containing ferromagnetic particles impregnated with a thermosetting resin containing ferromagnetic particles is superposed on a UD material in which carbon fibers are aligned in one direction. Then, the thermosetting resin is completely cured into a carbon fiber reinforced resin thin plate. This carbon fiber reinforced resin thin plate can be used in place of a conventional electromagnetic steel plate, as will be described later in detail. Therefore, while utilizing the advantages of the carbon fiber reinforced resin which is lighter in weight and higher in mechanical strength than the metal material, it is possible to provide a new application which the conventional carbon fiber reinforced resin does not have.

また、炭素繊維強化樹脂薄板の厚さを小さくし、複数の炭素繊維強化樹脂薄板の間に電気絶縁性の層を介在させて積層することにより、外部からかける磁場の方向の変動によって誘導される渦電流による発熱としての損失である、渦電流損失を低下させることができる。   Further, by reducing the thickness of the carbon fiber reinforced resin thin plate and stacking a plurality of carbon fiber reinforced resin thin plates with an electrically insulating layer interposed therebetween, it is induced by a change in the direction of a magnetic field applied from the outside. It is possible to reduce the eddy current loss, which is a loss due to heat generation due to the eddy current.

本発明にかかる炭素繊維強化樹脂成形品の製造方法は、上記構成に加え、
「前記強磁性体粒子含有プリプレグは、強磁性体粒子を含有する熱硬化性樹脂フィルムを前記UD材に重ね合わせた状態で、前記熱硬化性樹脂が完全硬化しない温度で加熱しつつ加圧することにより製造する」ものとすることができる。
The method for producing a carbon fiber reinforced resin molded product according to the present invention, in addition to the above configuration,
"The ferromagnetic particle-containing prepreg is a state in which a thermosetting resin film containing ferromagnetic particles is superposed on the UD material, and is pressed while being heated at a temperature at which the thermosetting resin is not completely cured. Manufactured according to the above.

強磁性体粒子を含有する熱硬化性樹脂を炭素繊維のUD材に含浸させる方法としては、強磁性体粒子を含有する熱硬化性樹脂をUD材に直接塗布する方法、或いは、強磁性体粒子を含有する熱硬化性樹脂中にUD材を浸漬する方法も想到し得る。しかしながら、このような方法で熱硬化性樹脂を含浸させる場合、有機溶媒を多く添加して熱硬化性樹脂の粘性を低下させる必要がある。その場合、UD材において一方向に引き揃えられた炭素繊維を接合しているサイジング剤が有機溶媒によって溶けてしまい、炭素繊維がばらばらになったり方向が不揃いとなったりするおそれがある。これに対し、本構成では、予め強磁性体粒子を含有する熱硬化性樹脂をフィルム化しておき、これをUD材に重ね合わせて加熱しつつ加圧することにより含浸させるため、UD材のサイジング剤が有機溶媒によって溶解するおそれがない。   As a method of impregnating a thermosetting resin containing ferromagnetic particles into a carbon fiber UD material, a method of directly applying a thermosetting resin containing ferromagnetic particles to the UD material, or a ferromagnetic particle A method of immersing the UD material in a thermosetting resin containing a can be conceived. However, when the thermosetting resin is impregnated by such a method, it is necessary to add a large amount of an organic solvent to reduce the viscosity of the thermosetting resin. In that case, the sizing agent that joins the carbon fibers aligned in one direction in the UD material may be dissolved by the organic solvent, and the carbon fibers may be separated or the directions may be uneven. On the other hand, in this configuration, the thermosetting resin containing the ferromagnetic particles is formed into a film in advance, and the thermosetting resin is superposed on the UD material and impregnated by heating and pressing, so that the sizing agent for the UD material is used. Is not likely to be dissolved by an organic solvent.

また、強磁性体粒子を含有する熱硬化性樹脂をUD材に塗布する方法や、強磁性体粒子を含有する熱硬化性樹脂中にUD材を浸漬する方法では、強磁性体粒子がUD材の表面に付着する程度に留まったり、低粘度の樹脂液中に強磁性体粒子が沈殿したりするおそれがある。これに対し、本構成では、予め熱硬化性樹脂をフィルム化する際に強磁性体粒子を分散させておけば、UD材の全体に対して均一に分散した状態で、炭素繊維と炭素繊維との間に強磁性体粒子を進入させることができる。   Further, in the method of applying the thermosetting resin containing the ferromagnetic particles to the UD material or the method of immersing the UD material in the thermosetting resin containing the ferromagnetic particles, the ferromagnetic particles are the UD material. There is a risk that the particles will remain so as to adhere to the surface of, and the ferromagnetic particles will precipitate in the low-viscosity resin liquid. On the other hand, in this configuration, if the ferromagnetic particles are dispersed in advance when the thermosetting resin is formed into a film, the carbon fibers and the carbon fibers are uniformly dispersed in the entire UD material. Ferromagnetic particles can be introduced between the two.

次に、本発明にかかる炭素繊維強化樹脂成形品は、
「炭素繊維を一方向に引き揃えたUD材の炭素繊維と強磁性体粒子とが、硬化している状態の熱硬化性樹脂に保持されている炭素繊維強化樹脂薄板であり、
炭素繊維の方向に磁場をかけたとき、炭素繊維の方向に直交する方向に磁場をかけたときに比べて透磁率が高い磁気異方性を示す」ものである。
Next, the carbon fiber reinforced resin molded product according to the present invention,
"A carbon fiber reinforced resin thin plate in which carbon fibers of UD material in which carbon fibers are aligned in one direction and ferromagnetic particles are held in a thermosetting resin in a cured state,
When a magnetic field is applied in the direction of the carbon fibers, it exhibits magnetic anisotropy with a higher magnetic permeability than when a magnetic field is applied in the direction orthogonal to the direction of the carbon fibers. "

これは、上記の製造方法の過程で製造される炭素繊維強化樹脂薄板の構成である。詳細は後述するように、この炭素繊維強化樹脂薄板は炭素繊維の方向に対して磁気異方性を示すことが判明した。従って、この炭素繊維強化樹脂薄板を積層した炭素繊維強化樹脂成形品における炭素繊維の方向によって、磁気特性を制御することができる。   This is the structure of the carbon fiber reinforced resin thin plate manufactured in the process of the above manufacturing method. As will be described later in detail, it was found that this carbon fiber reinforced resin thin plate exhibits magnetic anisotropy in the direction of the carbon fibers. Therefore, the magnetic characteristics can be controlled by the direction of the carbon fibers in the carbon fiber reinforced resin molded product obtained by laminating the carbon fiber reinforced resin thin plates.

本発明にかかる炭素繊維強化樹脂成形品は、上記構成に加え、
「前記炭素繊維強化樹脂薄板の複数が、間に電気絶縁性の層を介在させて積層された積層体であり、
該積層体では、炭素繊維の方向が単一方向である」ものとすることができる。
Carbon fiber reinforced resin molded product according to the present invention, in addition to the above configuration,
“A plurality of the carbon fiber reinforced resin thin plates is a laminated body in which an electrically insulating layer is interposed therebetween,
In the laminate, the carbon fibers are oriented in a single direction. "

これは、従来の方向性電磁鋼板に代替して炭素繊維強化樹脂薄板を使用した場合に例示される炭素繊維強化樹脂成形品の構成であり、トランスのコア材として適している。   This is a configuration of a carbon fiber reinforced resin molded product exemplified when a carbon fiber reinforced resin thin plate is used in place of the conventional grain-oriented electrical steel sheet, and is suitable as a core material of a transformer.

本発明にかかる炭素繊維強化樹脂成形品は、上記構成に替えて、
「前記炭素繊維強化樹脂薄板の複数が、間に電気絶縁性の層を介在させて積層された積層体であり、
該積層体では、炭素繊維の方向が放射状をなしている」ものとすることができる。
Carbon fiber reinforced resin molded article according to the present invention, in place of the above configuration,
“A plurality of the carbon fiber reinforced resin thin plates is a laminated body in which an electrically insulating layer is interposed therebetween,
In the laminate, the carbon fibers are oriented in a radial direction. "

上記のように、炭素繊維強化樹脂薄板を積層した炭素繊維強化樹脂成形品では、炭素繊維の方向によって磁気特性を制御することができるが、本構成では炭素繊維の方向を放射状としていることにより、特殊な磁気特性が発揮されると考えられる。例えば、電磁材料がモータのコア材や発電機のコア材など回転体である場合は、磁場の方向が変化する。そのため、種々の角度をとる炭素繊維が放射状をなしていれば、磁場の方向が変化しても常に何れかの角度をとっている炭素繊維の方向が磁場の方向と一致する。従って、本構成の炭素繊維強化樹脂成形品は、高い磁気異方性を有している炭素繊維強化樹脂薄板を使用しているものでありながら、従来の無方向電磁鋼板が適していた用途に適していると考えられる。   As described above, in the carbon fiber reinforced resin molded product in which the carbon fiber reinforced resin thin plates are laminated, the magnetic characteristics can be controlled by the direction of the carbon fiber, but in this configuration, the direction of the carbon fiber is radial, It is thought that special magnetic properties are exhibited. For example, when the electromagnetic material is a rotating body such as a core material of a motor or a core material of a generator, the direction of the magnetic field changes. Therefore, if the carbon fibers that form various angles are radial, the direction of the carbon fibers that are always at any angle matches the direction of the magnetic field even if the direction of the magnetic field changes. Therefore, although the carbon fiber reinforced resin molded product of this configuration uses the carbon fiber reinforced resin thin plate having high magnetic anisotropy, it is suitable for applications where the conventional non-oriented electrical steel sheet is suitable. Considered to be suitable.

以上のように、本発明により、新たな特性を示すことにより更に新たな用途を有する炭素繊維強化樹脂成形品の製造方法、及び、該製造方法により製造される炭素繊維強化樹脂成形品を、提供することができる。   As described above, according to the present invention, a method for producing a carbon fiber reinforced resin molded article having a new application by exhibiting new characteristics, and a carbon fiber reinforced resin molded article produced by the production method are provided. can do.

強磁性体粒子を含有している炭素繊維強化樹脂薄板の磁気異方性を示す磁化曲線である。3 is a magnetization curve showing the magnetic anisotropy of a carbon fiber reinforced resin thin plate containing ferromagnetic particles.

以下、本発明の具体的な実施形態である炭素繊維強化樹脂成形品の製造方法、及び、該製造方法により製造される炭素繊維強化樹脂成形品について説明する。   Hereinafter, a method for manufacturing a carbon fiber reinforced resin molded product, which is a specific embodiment of the present invention, and a carbon fiber reinforced resin molded product manufactured by the manufacturing method will be described.

本実施形態の製造方法は、樹脂混合物調製工程と、フィルム化工程と、加熱加圧工程と、炭素繊維強化樹脂薄板製造工程と、積層工程とを具備している。   The manufacturing method of the present embodiment includes a resin mixture preparing step, a film forming step, a heating and pressing step, a carbon fiber reinforced resin thin plate manufacturing step, and a laminating step.

樹脂混合物調製工程では、未硬化の熱硬化性樹脂、揮発性有機溶媒、及び強磁性体粒子を含有し、強磁性体粒子が良好に分散している樹脂混合物を調製する。   In the resin mixture preparation step, a resin mixture containing an uncured thermosetting resin, a volatile organic solvent, and ferromagnetic particles and in which the ferromagnetic particles are well dispersed is prepared.

熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、シアネート樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂を例示することができる。熱硬化性樹脂は加熱のみによって硬化するものであっても、加熱に加えて硬化剤の作用により硬化するものであっても良いが、硬化のために硬化剤を要する熱硬化性樹脂を使用する場合は、硬化剤を樹脂混合物に含有させる。更に硬化促進剤を樹脂混合物に含有させても良い。   Examples of the thermosetting resin include phenol resin, epoxy resin, cyanate resin, polyimide resin, unsaturated polyester resin, and vinyl ester resin. The thermosetting resin may be one that is cured only by heating or one that is cured by the action of a curing agent in addition to heating, but a thermosetting resin that requires a curing agent for curing is used. In some cases, a curing agent is included in the resin mixture. Further, a curing accelerator may be contained in the resin mixture.

熱硬化性樹脂としては、常温で液体であり、且つ、熱硬化性であるフェノール樹脂を好適に使用することができる。フェノール樹脂は、原料とするフェノール類やアルデヒド類の種類や割合、触媒の種類などの合成条件によって得られる樹脂の性質が異なり、熱硬化性、熱可塑性、常温硬化性のフェノール樹脂が存在する。また、常温で液体のフェノール樹脂の他にも、顆粒状、微粒子状など常温で固体のフェノール樹脂も存在する。常温で液体である熱硬化性のフェノール樹脂は、樹脂混合物を調製し易く、硬化剤を必要としない利点がある。   As the thermosetting resin, a phenol resin which is liquid at room temperature and thermosetting can be preferably used. Phenolic resins differ in the properties of the resins obtained depending on the synthesis conditions such as the types and proportions of phenols and aldehydes used as raw materials, the types of catalysts, and there are thermosetting, thermoplastic, and room temperature curable phenol resins. In addition to the phenol resin that is liquid at room temperature, there are phenol resins that are solid at room temperature, such as granules and fine particles. The thermosetting phenolic resin which is liquid at room temperature has the advantage that it is easy to prepare a resin mixture and does not require a curing agent.

また、熱硬化性樹脂としては、炭素繊維との接着性が高い液状型のエポキシ樹脂も好適に使用することができる。液状型のエポキシ樹脂の硬化剤としては、ジシアンジアミド、ジクロロフェニルジメチルウレア、フェノールノボラック、ジアミノジフェニルメタンを例示することができる。   Further, as the thermosetting resin, a liquid type epoxy resin having high adhesiveness to carbon fiber can also be preferably used. Examples of the liquid type epoxy resin curing agent include dicyandiamide, dichlorophenyldimethylurea, phenol novolac, and diaminodiphenylmethane.

揮発性有機溶媒としては、メチルエチルケトン、キシレン、シクロヘキサン、アセトン、エタノール、メタノールを例示することができる。   Examples of the volatile organic solvent include methyl ethyl ketone, xylene, cyclohexane, acetone, ethanol and methanol.

強磁性体粒子としては、鉄、コバルト、ニッケル、これらの合金、或いは、マンガン亜鉛フェライトやニッケル亜鉛フェライト等のソフトフェライトを使用することができる。   As the ferromagnetic particles, iron, cobalt, nickel, alloys thereof, or soft ferrite such as manganese zinc ferrite or nickel zinc ferrite can be used.

樹脂混合物調製工程では、熱硬化性樹脂と揮発性有機溶媒との混合物に強磁性体粒子を良好に分散させるために、二以上のロールを使用したロール混錬機、二軸押出機など、せん断力の大きい混錬・混合機を使用することができる。せん断力の大きい混錬・混合機を使用することにより、強磁性体粒子が湿気等により凝集していても、一次粒子となるまで解砕し、熱硬化性樹脂と十分に混合して良好に分散させることができる。   In the resin mixture preparation step, in order to satisfactorily disperse the ferromagnetic particles in the mixture of the thermosetting resin and the volatile organic solvent, a roll kneader using two or more rolls, a twin screw extruder, etc. A kneading / mixing machine with a large force can be used. By using a kneading / mixing machine with a large shearing force, even if the ferromagnetic particles are agglomerated due to moisture, etc., they are crushed until they become primary particles and mixed well with a thermosetting resin to achieve good results. It can be dispersed.

フィルム化工程では、まず、樹脂混合物調製工程で調製された樹脂混合物を、離型シート上にコーティングする。離型シートとしては、紙や樹脂で形成されたシートにシリコーン系樹脂などの離型剤が塗布されたシートを使用可能である。離型シート上への樹脂混合物のコーティングには、ブレードコーター、ナイフコーター、ロールコーター、バーコーターなどのコーター機を使用することができる。ブレードやナイフ等と離型シートとの距離により、コーティングされる樹脂混合物の厚さを調整することができる。   In the film forming step, first, the release sheet is coated with the resin mixture prepared in the resin mixture preparing step. As the release sheet, a sheet formed of paper or resin and coated with a release agent such as silicone resin can be used. A coater machine such as a blade coater, a knife coater, a roll coater or a bar coater can be used for coating the resin mixture on the release sheet. The thickness of the resin mixture to be coated can be adjusted by the distance between the release sheet and the blade or knife.

次に、離型シート上にコーティングされた樹脂混合物をフィルム化する。このフィルム化は、熱硬化性樹脂の完全硬化温度より低い温度で加熱し熱硬化性樹脂を半硬化させることにより、或いは、揮発性有機溶媒を揮発させて樹脂混合物の流動性を低下させることにより、或いはその双方により、行うことができる。フィルム化工程を経て、強磁性体粒子を含有する熱硬化性樹脂層が離型シートに支持された強磁性体粒子含有樹脂フィルムが形成される。   Next, the resin mixture coated on the release sheet is formed into a film. This film formation is carried out by heating at a temperature lower than the complete curing temperature of the thermosetting resin to semi-cure the thermosetting resin, or by volatilizing the volatile organic solvent to reduce the fluidity of the resin mixture. , Or both. Through the film-forming step, a ferromagnetic particle-containing resin film in which a thermosetting resin layer containing ferromagnetic particles is supported by a release sheet is formed.

加熱加圧工程では、炭素繊維シートに強磁性体粒子含有樹脂フィルムを重ね合わせる。その際、強磁性体粒子含有樹脂フィルムでは、熱硬化性樹脂層側を炭素繊維シートに当接させる。炭素繊維シートとしては、一方向に引き揃えられた炭素繊維がサイジング剤で接合されたUD材を使用する。なお、炭素繊維としては、ポリアクリロニトリルを原料とするPAN系炭素繊維、石油や石炭のピッチを原料とするピッチ系炭素繊維の何れも使用可能である。   In the heating and pressurizing step, the ferromagnetic particle-containing resin film is superposed on the carbon fiber sheet. At that time, in the ferromagnetic particle-containing resin film, the thermosetting resin layer side is brought into contact with the carbon fiber sheet. As the carbon fiber sheet, a UD material in which carbon fibers aligned in one direction are joined with a sizing agent is used. As the carbon fiber, any of PAN-based carbon fiber made of polyacrylonitrile and pitch-based carbon fiber made of pitch of petroleum or coal can be used.

強磁性体粒子含有樹脂フィルムを炭素繊維シートに重ね合わせたら、その状態にある両者を一対のロールで両側から挟み込み、加圧しながら加熱する。ここでの加熱は、熱硬化性樹脂の完全硬化温度より低い温度で行う。加熱により流動性を増した熱硬化性樹脂は、ロールによる加圧に伴い、分散させた強磁性体粒子と共に炭素繊維シートに含浸する。ここで、強磁性体粒子含有樹脂フィルムは、炭素繊維シートの片面に重ね合わせることも、炭素繊維シートの両面それぞれに重ね合わせることもできるが、両面に重ね合わせれば、強磁性体粒子含有樹脂フィルムにおける熱硬化性樹脂層の厚さが薄くても、強磁性体粒子を含有する熱硬化性樹脂を炭素繊維シートに十分に含浸させることができるため、より望ましい。加熱加圧工程を経て、熱硬化性樹脂が完全硬化していない状態で、強磁性体粒子と共に炭素繊維シートに含浸しているシート状の強磁性体粒子含有プリプレグが製造される。   After the resin film containing ferromagnetic particles is superposed on the carbon fiber sheet, both of them in that state are sandwiched by a pair of rolls from both sides and heated while being pressurized. The heating here is performed at a temperature lower than the complete curing temperature of the thermosetting resin. The thermosetting resin whose fluidity is increased by heating is impregnated into the carbon fiber sheet together with the dispersed ferromagnetic particles as the roll is pressed. Here, the ferromagnetic particle-containing resin film can be superposed on one side of the carbon fiber sheet or both sides of the carbon fiber sheet, but if superposed on both sides, the ferromagnetic particle-containing resin film Even if the thickness of the thermosetting resin layer is thin, the thermosetting resin containing the ferromagnetic particles can be sufficiently impregnated into the carbon fiber sheet, which is more desirable. A sheet-shaped prepreg containing ferromagnetic particles is impregnated into the carbon fiber sheet together with the ferromagnetic particles in a state where the thermosetting resin is not completely cured through the heating and pressing step.

ここで、強磁性体粒子の直径、炭素繊維シートの厚さ、及び、シート状の強磁性体粒子含有プリプレグの厚さの関係を制御することにより、炭素繊維と炭素繊維との間に強磁性体粒子を介在させることができる。例えば、炭素繊維シートの厚さを100としたとき、その炭素繊維シートの両面から強磁性体粒子を含有する熱硬化性樹脂を含浸させて得た強磁性体粒子含有プリプレグの厚さを110未満とし、強磁性体粒子の直径を5以上とすれば、炭素繊維と炭素繊維との間に強磁性体粒子を介在させることができる。つまり、炭素繊維シートの表面に強磁性体粒子が付着しているに過ぎないものではないことに加え、炭素繊維シートの表面に強磁性体粒子を含有する熱硬化性樹脂の層が積層されているものでもなく、炭素繊維と炭素繊維との間に強磁性体粒子が存在し、その状態で炭素繊維と強磁性体粒子とを熱硬化性樹脂が保持している構成の強磁性体粒子含有プリプレグとなる。ここで、炭素繊維シートの厚さが0.1mmのとき、強磁性体粒子の直径は5μm〜25μmとすれば、炭素繊維と炭素繊維との間に強磁性体粒子を介在させつつ、炭素繊維と強磁性体粒子とが硬化性樹脂によって十分に保持された強磁性体粒子含有プリプレグを製造し易いため好適であり、強磁性体粒子の直径を5μm〜10μmとすれば同じ理由でより好適である。また、後述のように渦電流損失を低減するためには、強磁性体粒子の直径は小さい方が望ましく、この点からも強磁性体粒子の直径は5μm〜10μmとすると好適である。   Here, by controlling the relationship between the diameter of the ferromagnetic particles, the thickness of the carbon fiber sheet, and the thickness of the sheet-shaped prepreg containing the ferromagnetic particles, the ferromagnetic particles between the carbon fibers can be controlled. Body particles can be interposed. For example, when the thickness of the carbon fiber sheet is 100, the thickness of the ferromagnetic particle-containing prepreg obtained by impregnating both sides of the carbon fiber sheet with a thermosetting resin containing ferromagnetic particles is less than 110. When the diameter of the ferromagnetic particles is 5 or more, the ferromagnetic particles can be interposed between the carbon fibers. That is, not only is the ferromagnetic particles attached to the surface of the carbon fiber sheet, but a layer of thermosetting resin containing ferromagnetic particles is laminated on the surface of the carbon fiber sheet. Ferromagnetic particles having a structure in which ferromagnetic particles are present between the carbon fibers and the carbon fibers and the thermosetting resin holds the carbon fibers and the ferromagnetic particles in that state. It becomes a prepreg. Here, when the thickness of the carbon fiber sheet is 0.1 mm and the diameter of the ferromagnetic particles is set to 5 μm to 25 μm, the carbon fibers are interposed while the ferromagnetic particles are interposed between the carbon fibers. And ferromagnetic particles are suitable because it is easy to manufacture a prepreg containing ferromagnetic particles in which the curable resin is sufficiently held, and it is more preferable for the same reason to set the diameter of the ferromagnetic particles to 5 μm to 10 μm. is there. Further, in order to reduce the eddy current loss as described later, it is desirable that the diameter of the ferromagnetic particles is small. From this point as well, the diameter of the ferromagnetic particles is preferably 5 μm to 10 μm.

このようにして製造された強磁性体粒子含有プリプレグは、常温まで冷却した状態で保存することができる。炭素繊維シートの片面から強磁性体粒子を含有する熱硬化性樹脂を含浸させた場合は、もう一方の面も離型シートで被覆した状態で保存する。   The prepreg containing ferromagnetic particles produced in this manner can be stored in a state of being cooled to room temperature. When a thermosetting resin containing ferromagnetic particles is impregnated from one side of the carbon fiber sheet, the other side is also stored in a state of being covered with a release sheet.

炭素繊維強化樹脂薄板製造工程では、上記のシート状の強磁性体粒子含有プリプレグを、離型シートから外し、加圧しつつ熱硬化性樹脂の完全硬化温度以上の温度で加熱して硬化させることにより、強磁性体粒子を含有する炭素繊維強化樹脂薄板(以下、「強磁性体粒子含有CFRP薄板」と称する)を得ることができる。このとき、強磁性体粒子含有プリプレグを複数プライ重ね合わせてから熱硬化させることにより、ハンドリングし易い厚さの強磁性体粒子含有CFRP薄板とすることができる。後述するように、渦電流損失を低減するためには、強磁性体粒子含有CFRP薄板の厚さは小さい方が望ましく、厚さ0.23mm〜0.50mmとすると好適である。   In the carbon fiber reinforced resin thin plate manufacturing process, the sheet-shaped ferromagnetic particle-containing prepreg is removed from the release sheet, and heated and cured at a temperature not lower than the complete curing temperature of the thermosetting resin while applying pressure. A carbon fiber reinforced resin thin plate containing ferromagnetic particles (hereinafter referred to as "ferromagnetic particle-containing CFRP thin plate") can be obtained. At this time, a plurality of plies of ferromagnetic particle-containing prepregs are superposed on each other and then heat-cured to obtain a ferromagnetic particle-containing CFRP thin plate having a thickness easy to handle. As described later, in order to reduce the eddy current loss, it is desirable that the thickness of the ferromagnetic material particle-containing CFRP thin plate is small, and it is preferable that the thickness is 0.23 mm to 0.50 mm.

ここで、炭素繊維の方向が単一方向となるように複数プライの強磁性体粒子含有プリプレグを重ね合わせてから熱硬化させた強磁性体粒子含有CFRP薄板について、外部磁場をかけたときの磁場の強さを振動試料型磁力計によって測定したところ、磁気異方性を示すことが確認された。具体的には、炭素繊維シートに対する割合として33.2質量%の鉄粒子を含有する強磁性体粒子含有プリプレグを、炭素繊維の方向が同一となるように重ね合わせて熱硬化させることにより、サイズ5mm×5mm×2mm厚さの強磁性体粒子含有CFRP薄板とした。この試料について、炭素繊維の方向と同一方向、及び、炭素繊維の方向に対して直交する方向に、それぞれ外部磁場をかけて磁場の強さを測定した。その結果を図1に示す。   Here, a magnetic field when an external magnetic field is applied to a ferromagnetic particle-containing CFRP thin plate obtained by stacking a plurality of plies of ferromagnetic particle-containing prepreg so that the carbon fibers are oriented in a single direction and then thermally curing the prepregs. Was measured by a vibrating sample magnetometer, it was confirmed to exhibit magnetic anisotropy. Specifically, the prepregs containing ferromagnetic particles containing iron particles in an amount of 33.2% by mass relative to the carbon fiber sheet are superposed in such a manner that the carbon fibers are oriented in the same direction, and heat-cured to obtain a size. A CFRP thin plate containing ferromagnetic particles having a thickness of 5 mm × 5 mm × 2 mm was prepared. An external magnetic field was applied to each of the samples in the same direction as the carbon fiber direction and in the direction orthogonal to the carbon fiber direction, and the strength of the magnetic field was measured. The result is shown in FIG.

図1から明らかなように、炭素繊維に対する何れの方向に外部磁場をかけた場合も、外部磁場を正逆方向に増加させるのに伴い磁化の強さが増加しており、強磁性を示している。また、炭素繊維に対する何れの方向に外部磁場をかけた場合も、磁化曲線において保持力は小さく、軟磁性を示している。そして、炭素繊維の方向と同一方向に外部磁場をかけた場合、炭素繊維の方向に対して直交する方向に外部磁場をかけた場合より磁化曲線が立ち上がるときの傾き(透磁率)が大きく、より磁化し易いことが分かる。これは、炭素繊維と炭素繊維との間に強磁性体粒子が介在することにより、炭素繊維の方向に沿って強磁性体粒子が配列しており、その方向に磁性を示すためと考えらえた。また、炭素繊維と炭素繊維との間に強磁性体粒子が介在することにより、炭素繊維の方向に対して直交する方向に外部磁場をかけた場合は、非磁性体である炭素繊維によって外部磁場が遮られて強磁性体粒子に作用しにくいためと考えられた。   As is clear from FIG. 1, regardless of the direction of the external magnetic field applied to the carbon fiber, the strength of the magnetization increases as the external magnetic field is increased in the forward and reverse directions. There is. Further, when the external magnetic field is applied to the carbon fiber in any direction, the coercive force is small in the magnetization curve, which shows soft magnetism. When the external magnetic field is applied in the same direction as the carbon fiber direction, the inclination (permeability) when the magnetization curve rises is larger than when the external magnetic field is applied in the direction orthogonal to the carbon fiber direction, and It turns out that it is easy to magnetize. It is thought that this is because the ferromagnetic particles are arranged along the direction of the carbon fiber due to the existence of the ferromagnetic particles between the carbon fibers and the magnetism is exhibited in that direction. . Further, when the external magnetic field is applied in the direction orthogonal to the direction of the carbon fibers due to the interposition of the ferromagnetic particles between the carbon fibers, the external magnetic field generated by the non-magnetic carbon fibers. It was considered that the particles were blocked and did not easily act on the ferromagnetic particles.

上記のように、本実施形態の強磁性体粒子含有CFRP薄板では、炭素繊維の方向に対して磁気異方性を示すことが判明したことから、強磁性体粒子含有CFRP薄板を従来の方向性電磁鋼板に代替して使用するという、新規な用途を想到した。例えば、磁化方向が単一方向であるトランスのコア材として、本実施形態の強磁性体粒子含有CFRPを使用して製造した炭素繊維強化樹脂成形品を使用することができる。コア材の磁束密度を高めるためには、磁化方向の変動によって誘導される渦電流による発熱としての損失である、渦電流損失を低下させる必要がある。そこで、上記のように、(1)強磁性体粒子の粒子径を小さくする(例えば、5μm〜10μm)、(2)強磁性体粒子含有CFRP薄板の厚さを小さくする(例えば、0.23mm〜0.50mm)ことに加え、(3)積層する強磁性体粒子含有CFRP薄板の間の電気抵抗を高める、ことが考えられる。   As described above, it was found that the ferromagnetic particle-containing CFRP thin plate of the present embodiment exhibits magnetic anisotropy with respect to the carbon fiber direction. We have conceived a new application, which is to use it instead of electrical steel sheet. For example, a carbon fiber reinforced resin molded product manufactured by using the ferromagnetic particle-containing CFRP of this embodiment can be used as a core material of a transformer whose magnetization direction is a single direction. In order to increase the magnetic flux density of the core material, it is necessary to reduce the eddy current loss, which is a loss as heat generation due to the eddy current induced by the change in the magnetization direction. Therefore, as described above, (1) the particle diameter of the ferromagnetic particles is reduced (for example, 5 μm to 10 μm), and (2) the thickness of the CFRP thin plate containing the ferromagnetic particles is reduced (for example, 0.23 mm). In addition to (0.50 mm), it is considered that (3) the electric resistance between the laminated ferromagnetic substance particle-containing CFRP thin plates is increased.

そこで、トランスのコア材としての炭素繊維樹脂成形品を製造する際の積層工程では、強磁性体粒子含有CFRP薄板の複数を、炭素繊維の方向を同一として積層するに当たり、層間に絶縁層を設ける。絶縁層は、電気絶縁性であることに加えて、強磁性体粒子含有CFRP薄板どうしを良好に接着できるもので形成することが望ましく、例えば、熱硬化性の樹脂接着剤を用いることができる。   Therefore, in a laminating step for manufacturing a carbon fiber resin molded product as a core material of a transformer, an insulating layer is provided between layers when laminating a plurality of ferromagnetic particle-containing CFRP thin plates in the same carbon fiber direction. . In addition to being electrically insulating, it is desirable that the insulating layer be formed of a material that can satisfactorily adhere the ferromagnetic particle-containing CFRP thin plates to each other. For example, a thermosetting resin adhesive can be used.

また、強磁性体粒子含有CFRP薄板が炭素繊維の方向に対して磁気異方性を示すことを利用して、強磁性体粒子含有CFRP薄板を使用して製造する炭素繊維樹脂成形品において、磁化し易い方向を制御することができる。   Further, the fact that the ferromagnetic particle-containing CFRP thin plate exhibits magnetic anisotropy with respect to the direction of the carbon fiber is used to produce a carbon fiber resin molded product manufactured using the ferromagnetic particle-containing CFRP thin plate. It is possible to control the direction in which it is easy to do.

ここで、モータのコア材や発電機のコア材は、回転体であるため、磁気異方性を示さない方が望ましい。そのため、従来、モータや発電機のコア材は、無方向性電磁鋼板を使用して製造されてきた。本実施形態では、モータのコア材や発電機のコア材としての炭素繊維樹脂成形品を製造する際の積層工程において、炭素繊維の方向が放射状となるように、複数の強磁性体粒子含有CFRP薄板を積層する。この場合も、渦電流損失を低下させるために、複数の強磁性体粒子含有CFRP薄板の層間に絶縁層を設ける。   Since the core material of the motor and the core material of the generator are rotating bodies, it is desirable that they do not exhibit magnetic anisotropy. Therefore, conventionally, core materials for motors and generators have been manufactured using non-oriented electrical steel sheets. In this embodiment, a plurality of ferromagnetic particle-containing CFRPs are used so that the carbon fibers are oriented in a radial direction in a laminating step when manufacturing a carbon fiber resin molded product as a core material of a motor or a core material of a generator. Laminate thin plates. Also in this case, in order to reduce the eddy current loss, an insulating layer is provided between the plurality of ferromagnetic material particle-containing CFRP thin plates.

回転体であるモータのコア材や発電機のコア材では、磁場の方向が変化する。これに対し、炭素繊維の方向を放射状としている本実施形態では、磁場の方向が変化しても常に何れかの角度をとっている炭素繊維の方向が磁場の方向と一致する。そのため、高い磁気異方性を示す強磁性体粒子含有CFRP薄板を使用しているものでありながら、従来は無方向電磁鋼板が適していた用途であるモータのコア材や発電機のコア材としての炭素繊維樹脂成形品を製造することができる。   The direction of the magnetic field changes in the core material of the motor and the core material of the generator that are rotating bodies. On the other hand, in the present embodiment in which the direction of the carbon fiber is radial, the direction of the carbon fiber that always takes any angle matches the direction of the magnetic field even if the direction of the magnetic field changes. Therefore, while using a CFRP thin plate containing ferromagnetic particles exhibiting high magnetic anisotropy, as a core material for a motor or a generator, which has conventionally been suitable for a non-oriented electrical steel sheet. It is possible to manufacture the above carbon fiber resin molded article.

或いは、磁気異方性を示す本実施形態の強磁性体粒子含有CFRP薄板を使用して、モータのコア材や発電機のコア材としての炭素繊維樹脂成形品を製造する際の積層工程において、炭素繊維の方向が回転に対する周方向となるように、複数の強磁性体粒子含有CFRP薄板を積層する。この場合も、渦電流損失を低下させるために、複数の強磁性体粒子含有CFRP薄板の層間に絶縁層を設ける。   Alternatively, in the laminating step when manufacturing a carbon fiber resin molded product as a core material of a motor or a core material of a generator using the CFRP thin plate containing ferromagnetic particles of the present embodiment exhibiting magnetic anisotropy, A plurality of CFRP thin plates containing ferromagnetic particles are laminated so that the direction of the carbon fibers is the circumferential direction with respect to the rotation. Also in this case, in order to reduce the eddy current loss, an insulating layer is provided between the plurality of ferromagnetic material particle-containing CFRP thin plates.

実際に、炭素繊維の方向が放射状となるように、複数の強磁性体粒子含有CFRP薄板を積層した炭素繊維樹脂成形品の試料E1と、炭素繊維の方向が周方向となるように、複数の強磁性体粒子含有CFRP薄板を積層した炭素繊維樹脂成形品の試料E2を、以下のように作製した。また、比較例としての試料Rを、以下のように作製した。   Actually, a sample E1 of a carbon fiber resin molded product obtained by laminating a plurality of ferromagnetic particle-containing CFRP thin plates so that the carbon fibers are radially oriented, and a plurality of carbon fiber resin molded articles E1 are arranged so that the carbon fibers are circumferentially oriented. A carbon fiber resin molded product sample E2, in which ferromagnetic particles-containing CFRP thin plates were laminated, was prepared as follows. Moreover, the sample R as a comparative example was produced as follows.

<試料E1>
炭素繊維のUD材の両面に、強磁性体粒子含有樹脂フィルムを重ね合わせ、加熱加圧により強磁性体粒子含有プリプレグを得た。この強磁性体粒子含有プリプレグでは、強磁性体粒子として鉄粒子を使用し、熱硬化性樹脂としては、常温で液体であり熱硬化性であるフェノール樹脂を使用した。熱硬化樹脂及び揮発性有機溶媒の質量割合は、炭素繊維50質量%に対してそれぞれ45質量%及び5質量%であり、炭素繊維とフェノール樹脂との和に対する強磁性体粒子の割合は、質量比で1.7:1.2とした。強磁性体粒子含有プリプレグを炭素繊維の方向が直交する方向に4プライ重ね合わせ(0°+90°+0°+90°)、加圧しながら熱硬化させることにより、厚さ約0.4mmの強磁性体粒子含有CFRP薄板とした。このようにして作製された強磁性体粒子含有CFRP薄板の複数を、同一の中心軸に対して、それぞれの薄板の対応する層における炭素繊維の方向が30°をなすように積層した。各層間には、エポキシ系接着剤を用いて絶縁層を設けた。このような積層の方法によれば、強磁性体粒子含有CFRP薄板を三枚積層することによって、炭素繊維の方向が中心軸に対して30°間隔の放射状となる。このような積層を所定の回数繰り返すことにより得た積層体から、外径25mm、内径15mm、厚さ5mmの円環状の炭素繊維樹脂成形品の試料E1を得た。
<Sample E1>
Ferromagnetic material particle-containing resin films were superposed on both sides of the carbon fiber UD material, and heated and pressed to obtain a ferromagnetic material particle-containing prepreg. In this prepreg containing ferromagnetic particles, iron particles were used as the ferromagnetic particles, and as the thermosetting resin, a phenol resin that was liquid at room temperature and thermosetting was used. The mass ratios of the thermosetting resin and the volatile organic solvent are 45% by mass and 5% by mass, respectively, relative to 50% by mass of the carbon fiber, and the ratio of the ferromagnetic particles to the sum of the carbon fiber and the phenol resin is the mass. The ratio was 1.7: 1.2. Ferromagnetic material having a thickness of about 0.4 mm is obtained by stacking 4 plies of ferromagnetic particle-containing prepregs in a direction orthogonal to the direction of carbon fibers (0 ° + 90 ° + 0 ° + 90 °) and thermosetting while applying pressure. The particle-containing CFRP thin plate was used. A plurality of the CFRP thin plates containing ferromagnetic particles produced in this way were laminated so that the directions of the carbon fibers in the corresponding layers of the respective thin plates were 30 ° with respect to the same central axis. An insulating layer was provided between the layers using an epoxy adhesive. According to such a stacking method, by stacking three ferromagnetic particle-containing CFRP thin plates, the direction of the carbon fibers becomes radial with an interval of 30 ° with respect to the central axis. An annular carbon fiber resin molded product sample E1 having an outer diameter of 25 mm, an inner diameter of 15 mm and a thickness of 5 mm was obtained from the laminate obtained by repeating such lamination a predetermined number of times.

<試料E2>
試料E1と同様に得た強磁性体粒子含有プリプレグを、炭素繊維の方向を同一として4プライ重ね合わせ、円筒状のマンドレルに巻いた状態で加圧しながら熱硬化させて、円形に曲げられた、厚さ約0.4mmの強磁性体粒子含有CFRP薄板とした。このようにして作製された強磁性体粒子含有CFRP薄板の複数を、同一の中心軸に対して同心円状に積層し、各層間には試料E1と同一材料で同一厚さの絶縁層を設けた。このようにして得た積層体から、外径25mm、内径15mm、厚さ5mmの円環状の炭素繊維樹脂成形品の試料E2を得た。
<Sample E2>
Ferromagnetic particle-containing prepreg obtained in the same manner as in Sample E1 was superposed with four plies with the carbon fibers oriented in the same direction, heat-cured while being pressed while being wound on a cylindrical mandrel, and bent into a circle. A CFRP thin plate containing ferromagnetic particles having a thickness of about 0.4 mm was used. A plurality of the ferromagnetic particle-containing CFRP thin plates thus produced were laminated concentrically with respect to the same central axis, and an insulating layer made of the same material as the sample E1 and having the same thickness was provided between the respective layers. . From the thus obtained laminate, an annular carbon fiber resin molded product sample E2 having an outer diameter of 25 mm, an inner diameter of 15 mm and a thickness of 5 mm was obtained.

<試料R>
試料E1,E2と同一素材の炭素繊維を長さ6mmに切断した切断物を、試料E1,E2と同一の熱硬化性樹脂、揮発性有機溶媒、及び、試料E1,E2と同一の強磁性体粒子と混合し、混錬物とした。混錬物を乾燥させ、粉砕した。混錬物の粉砕物における炭素繊維、熱硬化性樹脂、及び強磁性体粒子の質量割合は、試料E1,E2と同一とした。粉砕物を成形型に充填し、加圧しつつ加熱して熱硬化性樹脂を硬化させ、外径25mm、内径15mm、厚さ5mmの円環状の炭素繊維樹脂成形品の試料Rを得た。
<Sample R>
A carbon fiber made of the same material as the samples E1 and E2 was cut to a length of 6 mm to obtain a thermosetting resin, a volatile organic solvent, and the same ferromagnetic material as the samples E1 and E2. It was mixed with particles to obtain a kneaded product. The kneaded material was dried and ground. The mass ratios of the carbon fibers, the thermosetting resin, and the ferromagnetic particles in the pulverized product of the kneaded material were the same as those of the samples E1 and E2. The crushed material was filled in a molding die and heated under pressure to cure the thermosetting resin, thereby obtaining a sample R of an annular carbon fiber resin molded product having an outer diameter of 25 mm, an inner diameter of 15 mm and a thickness of 5 mm.

試料E1,試料E2,試料Rのそれぞれについて、外部磁場をかけたときの磁場の強さを振動試料型磁力計によって測定した。その結果、それぞれの試料の最大磁束密度は次のようであった。
試料E1:0.40テスラ
試料E2:0.32テスラ
試料R :0.20テスラ
With respect to each of Sample E1, Sample E2, and Sample R, the strength of the magnetic field when an external magnetic field was applied was measured by a vibrating sample magnetometer. As a result, the maximum magnetic flux density of each sample was as follows.
Sample E1: 0.40 Tesla Sample E2: 0.32 Tesla Sample R: 0.20 Tesla

比較例の試料Rは、炭素繊維を短く切断した切断物を熱硬化性樹脂と混合しているため、強磁性体粒子の配列方向が炭素繊維の方向によって規制されることはない。試料E2では、炭素繊維の方向を同心円状としていることにより、磁気異方性が発揮されないと考えられたが、試料Rより高い値の最大磁束密度を示した。これは、試料E2では、強磁性体粒子含有CFRP薄板の厚さを小さくすると共に、薄板間に絶縁層を設けているために、渦電流損失が低減されているためと考えられた。   In the sample R of the comparative example, the cut product obtained by cutting the carbon fiber into short pieces is mixed with the thermosetting resin, so that the arrangement direction of the ferromagnetic particles is not restricted by the direction of the carbon fiber. In sample E2, it was considered that the magnetic anisotropy was not exhibited due to the concentric circular orientation of the carbon fibers, but the maximum magnetic flux density higher than that of sample R was exhibited. This is considered to be because in sample E2, the thickness of the CFRP thin plate containing ferromagnetic particles was reduced, and the eddy current loss was reduced because the insulating layer was provided between the thin plates.

そして、試料E1は、試料E2より更に高い値の最大磁束密度を示した。これは、試料E2と同様に強磁性体粒子含有CFRP薄板の厚さを小さくすると共に、薄板間に絶縁層を設けていることに加え、炭素繊維の方向を放射状としているために、何れかの角度をとっている炭素繊維の方向が外部磁場の方向と一致しているためと考えられた。   Then, the sample E1 exhibited a higher maximum magnetic flux density than the sample E2. This is because in the same manner as the sample E2, the thickness of the CFRP thin plate containing the ferromagnetic particles is made small, and in addition to providing the insulating layer between the thin plates, the direction of the carbon fiber is made to be radial. It is considered that the direction of the angled carbon fiber coincides with the direction of the external magnetic field.

なお、試料E1,試料E2,試料Rの密度は、それぞれ次のようであり、何れも平均的な電磁鋼板の密度(約7.8g/cm)に比べて、かなり小さい値であった。
試料E1:2.67g/cm
試料E2:2.36g/cm
試料R :2.18g/cm
The densities of Sample E1, Sample E2, and Sample R are as follows, and all of them were considerably smaller than the average density of electromagnetic steel sheets (about 7.8 g / cm 3 ).
Sample E1: 2.67 g / cm 3
Sample E2: 2.36 g / cm 3
Sample R: 2.18 g / cm 3

以上のように、本実施形態の製造方法において得られる強磁性体粒子含有CFRP薄板は、従来の電磁鋼板に代替して使用することにより、モータや発電機のコア材、トランスのコア材としての炭素繊維樹脂成形品を製造することができる。従って、従来の電磁鋼板を使用したコア材の製造に習熟している作業者が、電磁鋼板を用いたコア材より軽量で機械的強度が高いという利点を有するコア材を、従前より慣れている作業と同様の作業によって容易に製造することができる。   As described above, the ferromagnetic particle-containing CFRP thin plate obtained in the manufacturing method of the present embodiment is used as a core material of a motor or a generator, or a core material of a transformer by using it instead of a conventional electromagnetic steel sheet. A carbon fiber resin molded product can be manufactured. Therefore, an operator who is proficient in manufacturing a core material using a conventional electromagnetic steel sheet is more accustomed to a core material having the advantages of lighter weight and higher mechanical strength than a core material using an electromagnetic steel sheet. It can be easily manufactured by the same operation as the operation.

また、本実施形態の製造方法において得られる強磁性体粒子含有CFRP薄板は、炭素繊維の方向に磁場をかけると高い透磁率を示す磁気異方性を示すため、従来の方向性電磁鋼板に代替して使用することが可能であり、例えば、トランスのコア材を製造することができる。   Further, the ferromagnetic particle-containing CFRP thin plate obtained by the manufacturing method of the present embodiment exhibits magnetic anisotropy exhibiting a high magnetic permeability when a magnetic field is applied in the direction of the carbon fibers, and thus is replaced with a conventional grain-oriented electrical steel sheet. It is possible to manufacture the core material of a transformer, for example.

加えて、強磁性体粒子含有CFRP薄板が磁気異方性を示すことを利用し、最終的に製造される炭素繊維強化樹脂成形品における炭素繊維の方向によって、その磁気特性を制御することができる。例えば、炭素繊維の方向が放射状となるように、或いは、炭素繊維の方向が回転に対する周方向となるように(回転中心に対して同心円状となるように)強磁性体粒子含有CFRP薄板を積層することにより、磁場の方向が変化するモータや発電機のコア材としての用途に適した、最大磁束密度の高い炭素繊維強化樹脂成形品を製造することができる。   In addition, by utilizing that the CFRP thin plate containing ferromagnetic particles exhibits magnetic anisotropy, its magnetic characteristics can be controlled by the direction of the carbon fiber in the finally manufactured carbon fiber reinforced resin molded product. . For example, the CFRP thin plates containing ferromagnetic particles are laminated so that the direction of the carbon fibers is radial or the direction of the carbon fibers is the circumferential direction with respect to the rotation (so that they are concentric with respect to the center of rotation). By doing so, it is possible to manufacture a carbon fiber reinforced resin molded product having a high maximum magnetic flux density, which is suitable for use as a core material of a motor or a generator whose magnetic field direction changes.

なお、本実施形態の製造方法において得られる強磁性体粒子含有CFRP薄板を、従来の電磁鋼板に代替して使用することができ、電磁鋼板を積層した従来のコア材に関して鉄損を低減させるために採用されていた手段を応用できることは、これまで当業者が考えてもみなかったことであり、本発明者の検討によって初めて得られた有用な知見である。   It should be noted that the ferromagnetic particle-containing CFRP thin plate obtained in the manufacturing method of the present embodiment can be used in place of the conventional electromagnetic steel sheet, and in order to reduce iron loss in the conventional core material in which the electromagnetic steel sheets are laminated, The fact that the means adopted in (1) can be applied is something that those skilled in the art have never considered, and is a useful finding obtained for the first time by the study of the present inventor.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   Although the present invention has been described above with reference to the preferred embodiments, the present invention is not limited to the above-described embodiments, and various improvements are made as shown below without departing from the gist of the present invention. And the design can be changed.

例えば、実施例の試料E1では、炭素繊維の方向を30°間隔として放射状とする場合を例示したが、15°間隔や10°間隔など、より小さい角度間隔で放射状とすることもできる。   For example, in the sample E1 of the example, the case where the direction of the carbon fibers is set to be radial at 30 ° intervals is illustrated, but it may be set to be radial at smaller angular intervals such as 15 ° intervals and 10 ° intervals.

また、上記の実施例では、強磁性体粒子の混合割合を、質量比で、(炭素繊維とフェノール樹脂の和):強磁性体=1.7:1.2とした場合を例示したが、炭素繊維強化樹脂成形品における強磁性体粒子の割合は、コア材とする場合の形状や、製品に求められる磁化の大きさに応じて、変更することができる。   Further, in the above embodiment, the case where the mixing ratio of the ferromagnetic particles was (mass ratio) (sum of carbon fiber and phenol resin): ferromagnetic material = 1.7: 1.2 was illustrated. The ratio of the ferromagnetic particles in the carbon fiber reinforced resin molded product can be changed depending on the shape of the core material and the magnitude of magnetization required for the product.

Claims (5)

強磁性体粒子を含有する熱硬化性樹脂を、炭素繊維を一方向に引き揃えたUD材に含浸させた強磁性体粒子含有プリプレグの一以上から、前記熱硬化性樹脂が硬化している状態の炭素繊維強化樹脂薄板を製造し、
該炭素繊維強化樹脂薄板の複数を、間に電気絶縁性の層を介在させて積層する
ことを特徴とする炭素繊維強化樹脂成形品の製造方法。
A state in which the thermosetting resin is cured from one or more prepregs containing ferromagnetic particles, in which a UD material in which carbon fibers are aligned in one direction is impregnated with a thermosetting resin containing ferromagnetic particles. Manufacture carbon fiber reinforced resin thin plate of
A method for producing a carbon fiber reinforced resin molded article, comprising laminating a plurality of the carbon fiber reinforced resin thin plates with an electrically insulating layer interposed therebetween.
前記強磁性体粒子含有プリプレグは、強磁性体粒子を含有する熱硬化性樹脂フィルムを前記UD材に重ね合わせた状態で、前記熱硬化性樹脂が完全硬化しない温度で加熱しつつ加圧することにより製造する
ことを特徴とする請求項1に記載の炭素繊維強化樹脂成形品の製造方法。
The ferromagnetic particle-containing prepreg is obtained by applying pressure while heating the thermosetting resin film containing the ferromagnetic particles on the UD material while heating at a temperature at which the thermosetting resin is not completely cured. It manufactures, The manufacturing method of the carbon fiber reinforced resin molded product of Claim 1 characterized by the above-mentioned.
炭素繊維を一方向に引き揃えたUD材の炭素繊維と強磁性体粒子とが、硬化している状態の熱硬化性樹脂に保持されている炭素繊維強化樹脂薄板であり、
炭素繊維の方向に磁場をかけたとき、炭素繊維の方向に直交する方向に磁場をかけたときに比べて透磁率が高い磁気異方性を示す
ことを特徴とする炭素繊維強化樹脂成形品。
A carbon fiber reinforced resin thin plate in which carbon fibers of UD material in which carbon fibers are aligned in one direction and ferromagnetic particles are held by a thermosetting resin in a cured state,
A carbon fiber reinforced resin molded product, which exhibits magnetic anisotropy with a higher magnetic permeability when a magnetic field is applied in the direction of the carbon fibers than when a magnetic field is applied in a direction orthogonal to the direction of the carbon fibers.
前記炭素繊維強化樹脂薄板の複数が、間に電気絶縁性の層を介在させて積層された積層体であり、
該積層体では、炭素繊維の方向が単一方向である
ことを特徴とする請求項3に記載の炭素繊維強化樹脂成形品。
A plurality of the carbon fiber reinforced resin thin plates is a laminated body laminated with an electrically insulating layer interposed therebetween,
The carbon fiber-reinforced resin molded article according to claim 3, wherein the carbon fibers in the laminate have a single direction.
前記炭素繊維強化樹脂薄板の複数が、間に電気絶縁性の層を介在させて積層された積層体であり、
該積層体では、炭素繊維の方向が放射状をなしている
ことを特徴とする請求項3に記載の炭素繊維強化樹脂成形品。
A plurality of the carbon fiber reinforced resin thin plates is a laminated body laminated with an electrically insulating layer interposed therebetween,
The carbon fiber reinforced resin molded article according to claim 3, wherein the carbon fibers in the laminate have radial directions.
JP2018194585A 2018-10-15 2018-10-15 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product Active JP7149577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018194585A JP7149577B2 (en) 2018-10-15 2018-10-15 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194585A JP7149577B2 (en) 2018-10-15 2018-10-15 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2020062768A true JP2020062768A (en) 2020-04-23
JP7149577B2 JP7149577B2 (en) 2022-10-07

Family

ID=70386589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194585A Active JP7149577B2 (en) 2018-10-15 2018-10-15 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP7149577B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111038A (en) * 1986-10-29 1988-05-16 Agency Of Ind Science & Technol Three-dimensional reinforced laminate and its manufacture
JPS63290736A (en) * 1987-05-22 1988-11-28 Matsushita Electric Works Ltd Laminated sheet
JP2004276478A (en) * 2003-03-17 2004-10-07 Polymatech Co Ltd Composite polymer material molding and its production method
JP2004360160A (en) * 2003-05-09 2004-12-24 Showa Denko Kk Linear fine carbon fiber and resin composite material given by using the same
JP2010519074A (en) * 2007-02-24 2010-06-03 エボニック デグサ ゲーエムベーハー Induction auxiliary manufacturing method
JP2011012093A (en) * 2009-06-30 2011-01-20 Mitsubishi Plastics Inc Composite resin material and beam structure member using the same
JP2015051550A (en) * 2013-09-06 2015-03-19 東レ株式会社 Member made of fiber-reinforced plastic
US20150231805A1 (en) * 2014-02-18 2015-08-20 Airbus Operation (S.A.S.) Process and device for the consolidation and induction forming of a preform made of a composite material
JP2016108398A (en) * 2014-12-03 2016-06-20 三菱重工業株式会社 Component
WO2018175134A1 (en) * 2017-03-23 2018-09-27 Boston Materials Llc Fiber-reinforced composites, methods therefor, and articles comprising the same
JP2019006960A (en) * 2017-06-28 2019-01-17 有限会社ヒロセ金型 Carbon fiber reinforced resin molded article and manufacturing method therefor
JP2020063334A (en) * 2018-10-15 2020-04-23 有限会社ヒロセ金型 Production method of carbon fiber prepreg, production method of carbon fiber-reinforced resin formed part, and carbon fiber-reinforced formed part

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111038A (en) * 1986-10-29 1988-05-16 Agency Of Ind Science & Technol Three-dimensional reinforced laminate and its manufacture
JPS63290736A (en) * 1987-05-22 1988-11-28 Matsushita Electric Works Ltd Laminated sheet
JP2004276478A (en) * 2003-03-17 2004-10-07 Polymatech Co Ltd Composite polymer material molding and its production method
JP2004360160A (en) * 2003-05-09 2004-12-24 Showa Denko Kk Linear fine carbon fiber and resin composite material given by using the same
JP2010519074A (en) * 2007-02-24 2010-06-03 エボニック デグサ ゲーエムベーハー Induction auxiliary manufacturing method
JP2011012093A (en) * 2009-06-30 2011-01-20 Mitsubishi Plastics Inc Composite resin material and beam structure member using the same
JP2015051550A (en) * 2013-09-06 2015-03-19 東レ株式会社 Member made of fiber-reinforced plastic
US20150231805A1 (en) * 2014-02-18 2015-08-20 Airbus Operation (S.A.S.) Process and device for the consolidation and induction forming of a preform made of a composite material
JP2016108398A (en) * 2014-12-03 2016-06-20 三菱重工業株式会社 Component
WO2018175134A1 (en) * 2017-03-23 2018-09-27 Boston Materials Llc Fiber-reinforced composites, methods therefor, and articles comprising the same
JP2019006960A (en) * 2017-06-28 2019-01-17 有限会社ヒロセ金型 Carbon fiber reinforced resin molded article and manufacturing method therefor
JP2020063334A (en) * 2018-10-15 2020-04-23 有限会社ヒロセ金型 Production method of carbon fiber prepreg, production method of carbon fiber-reinforced resin formed part, and carbon fiber-reinforced formed part

Also Published As

Publication number Publication date
JP7149577B2 (en) 2022-10-07

Similar Documents

Publication Publication Date Title
TWI343872B (en)
CN102686383B (en) Fiber reinforced polymeric composites with tailorable electrical resistivities and process for preparing the same
EP2720843B1 (en) Method of making a magnetically loaded pre-impregnated tape
US20170187258A1 (en) Permanent magnet, permanent magnet manufacturing method, rotating electric machine, and rotating electric machine manufacturing method
US20170200549A1 (en) Metal-polymer complex film for inductor and method for manufacturing the same
JP5294609B2 (en) Gas-barrier carbon fiber reinforced prepreg, carbon fiber reinforced plastic, and production method thereof
US20150174860A1 (en) Conductive composite structure or laminate
CN102627833A (en) Environment-friendly fire-resistant insulating material and manufacturing method thereof
US20150328847A1 (en) Polymeric composite repair via radiofrequency heating of magnetic particles
WO2019112002A1 (en) Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component
TW201639784A (en) Graphene powder coating material, method of manufacturing the same and method of coating the same
WO2016194671A1 (en) Resin composite material, curing method thereof, and resin molded product
KR101578474B1 (en) Method of manufacturing customized radar absorbing structure having variable electromagnetic characteristics using single composite and Radar absorbing structure thereby
US10647892B2 (en) Adhesive and structure, and adhesion method
US20160318246A1 (en) Electromagnetic blunting of defects within fused deposition modeling (fdm)components
JP2010502808A5 (en)
JP7149577B2 (en) Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product
JP2016204606A (en) Resin composition, resin sheet, resin cured article, and resin substrate
WO1999003306A1 (en) Method for locally heating a work piece using platens containing rf susceptors
JP2019006960A (en) Carbon fiber reinforced resin molded article and manufacturing method therefor
WO2016175296A1 (en) Resin composition, resin sheet, resin cured product and resin substrate
JP2020063334A (en) Production method of carbon fiber prepreg, production method of carbon fiber-reinforced resin formed part, and carbon fiber-reinforced formed part
CN102952386A (en) Gradient magnetostriction material and preparation method thereof
JP6403444B2 (en) Mica tape and stator coil
Erkmen et al. Improvement in mechanical, electrical, and shape memory properties of the polystyrene‐based carbon fiber‐reinforced polymer composites containing carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220916

R150 Certificate of patent or registration of utility model

Ref document number: 7149577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150