JP2020058672A - ロボット手術支援装置、ロボット手術支援方法、及びプログラム - Google Patents

ロボット手術支援装置、ロボット手術支援方法、及びプログラム Download PDF

Info

Publication number
JP2020058672A
JP2020058672A JP2018192930A JP2018192930A JP2020058672A JP 2020058672 A JP2020058672 A JP 2020058672A JP 2018192930 A JP2018192930 A JP 2018192930A JP 2018192930 A JP2018192930 A JP 2018192930A JP 2020058672 A JP2020058672 A JP 2020058672A
Authority
JP
Japan
Prior art keywords
port
robot
subject
information
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018192930A
Other languages
English (en)
Other versions
JP7182126B2 (ja
Inventor
城太 井田
Jota Ida
城太 井田
北野 幸彦
Yukihiko Kitano
幸彦 北野
茅野 秀介
Hidesuke Kayano
秀介 茅野
剛 長田
Takeshi Osada
剛 長田
隆 唐沢
Takashi Karasawa
隆 唐沢
信一郎 瀬尾
Shinichiro Seo
信一郎 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziosoft Inc
Medicaroid Corp
Original Assignee
Ziosoft Inc
Medicaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziosoft Inc, Medicaroid Corp filed Critical Ziosoft Inc
Priority to JP2018192930A priority Critical patent/JP7182126B2/ja
Priority to US16/599,310 priority patent/US11779412B2/en
Publication of JP2020058672A publication Critical patent/JP2020058672A/ja
Application granted granted Critical
Publication of JP7182126B2 publication Critical patent/JP7182126B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • A61B90/13Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints guided by light, e.g. laser pointers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2048Tracking techniques using an accelerometer or inertia sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/252User interfaces for surgical systems indicating steps of a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/366Correlation of different images or relation of image positions in respect to the body using projection of images directly onto the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/367Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/371Surgical systems with images on a monitor during operation with simultaneous use of two cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Robotics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)

Abstract

【課題】既孔ポートの位置ずれによるロボット手術への影響を低減できるロボット手術支援装置を提供する。【解決手段】ロボット手術支援装置は、処理部及び表示部を備え、処理部は、被検体の3Dデータを取得し、手術支援ロボットのロボット手術を行うための可動部の動作に関する動作情報を取得し、被検体を手術するための術式の情報を取得し、被検体の体表に穿孔される複数のポートの位置の計画情報を取得し、複数のポートのうち、被検体の体表において穿孔された第1のポートの位置を計測した計測情報を取得し、第1のポートの位置の計測情報と、術式と、手術支援ロボットの動作情報と、3Dデータと、に基づいて、複数のポートのうちの第1のポートを除く残りのポートのうちの少なくとも一つの位置を決定し、決定されたポートの位置を示す情報を表示部に表示させる。【選択図】図10

Description

本開示は、手術支援ロボットによるロボット手術を支援するロボット手術支援装置、ロボット手術支援方法、及びプログラムに関する。
従来、手術支援ロボットにより低侵襲なロボット手術が行われる際には、手術される患者の体内に鉗子類を挿入するためのポートが穿孔される。ポートの位置は、術式に応じて概ね定められているが、最適な箇所は未だに確立されていない。特許文献1では、ポート位置の配置の計画(Port Placement Planning)について考察されている。具体的には、特許文献1の外科用ポート配置システムは、複数の過去の外科手術手順に関連する複数のパラメータセットに基づいて、手術ポート配置モデルを生成し、患者の身体的特徴を含む所与の外科的処置のための所与のパラメータセットを受信し、所定のパラメータセット及び手術ポート配置モデルに基づいて、所与の外科的処置のための所与の患者のための少なくとも1つのポート位置を計画する。
米国特許出願公開第2014/0148816号明細書
本開示は、既孔ポート(既に穿孔されたポート)の位置ずれによるロボット手術への影響を低減できるロボット手術支援装置、ロボット手術支援方法、及びプログラムを提供する。
本開示の一態様は、手術器具を保持したロボットアームを有する手術支援ロボットによるロボット手術を支援するロボット手術支援装置であって、処理部及び表示部を備え、前記処理部は、被検体の3Dデータを取得し、前記手術支援ロボットの前記ロボット手術を行うための可動部の動作に関する動作情報を取得し、前記被検体を手術するための術式の情報を取得し、前記被検体の体表に穿孔される複数のポートの位置の計画情報を取得し、前記複数のポートのうち、前記被検体の体表において穿孔された第1のポートの位置を計測した計測情報を取得し、前記第1のポートの位置の計測情報と、前記術式と、前記手術支援ロボットの前記動作情報と、前記3Dデータと、に基づいて、前記複数のポートのうちの前記第1のポートを除く残りのポートのうちの少なくとも一つの位置を決定し、前記決定されたポートの位置を示す情報を前記表示部に表示させる、ロボット手術支援装置である。
本開示の一態様は、手術器具を保持したロボットアームを有する手術支援ロボットによるロボット手術を支援するロボット手術支援装置におけるロボット手術支援方法であって、被検体の3Dデータを取得し、前記手術支援ロボットの前記ロボット手術を行うための可動部の動作に関する動作情報を取得し、前記被検体を手術するための術式の情報を取得し、前記被検体の体表に穿孔される複数のポートの位置の計画情報を取得し、前記複数のポートのうち、前記被検体の体表において穿孔された第1のポートの位置を計測した計測情報を取得し、前記第1のポートの位置の計測情報と、前記術式と、前記手術支援ロボットの前記動作情報と、前記3Dデータと、に基づいて、前記複数のポートのうちの前記第1のポートを除く残りのポートのうちの少なくとも一つの位置を決定し、前記決定されたポートの位置を示す情報を表示部に表示させる、ロボット手術支援方法である。
本開示の一態様は、上記ロボット手術支援方法をコンピュータに実行させるためのプログラムである。
本開示によれば、手術支援ロボットによるロボット手術の作業性の低下を抑制できる。
第1の実施形態におけるロボット手術支援装置のハードウェア構成例を示すブロック図 ロボット手術支援装置の機能構成例を示すブロック図 気腹シミュレーションの実施前後における腹部のMPR断面の画像例を示す図 既孔ポートのポート位置の計測例を説明するための図 被検体の体表に設置されるポート位置の第1配置計画例を示す図 被検体の体表に設置されるポート位置の第2配置計画例を示す図 被検体の体表に設置されるポート位置の第3配置計画例を示す図 ロボット手術時の被検体、ポート、トロッカー、及びロボットアームの位置関係の一例を示す図 ロボット手術支援装置によるポート位置シミュレーションの手順の一例を示すフローチャート ロボット手術支援装置によるポート位置スコアを算出する場合の動作例を示すフローチャート ポート位置を基に定められるワーキングエリアの一例を示す図 ロボット手術支援装置による既孔ポートを用いたポート位置調整手順の一例を示すフローチャート ポートの穿孔前のガイド表示を含む画像表示例を示す図 ポートの穿孔後のガイド表示を含む画像表示例を示す図 比較例のポート位置の指定を説明するための図 第1の実施形態のポート位置の指定例を説明するための図 穿孔位置の二次元平面での指定と3次元空間での位置ずれを示す図
以下、本開示の実施形態について、図面を用いて説明する。
(本開示の一形態を得るに至った経緯)
術前計画に従ってポートを設けるように、例えば助手がポートを穿孔する。しかし、計画されたポート位置に正確にポートを穿孔することは困難である。例えば、臍からの距離L1の位置にポートを設ける等、穿孔対象のポート位置が2次元平面において術前計画された場合、図14に示すように、2次元平面では同じ距離でも、被検体の側部に向かうに従って被検体の前後方向において位置が大きく変化する(範囲α参照)。そのため、ポート穿孔時に正確に計測し穿孔対象のポート位置を一意に定めることが困難である。
また、ロボット手術では、多くの場合に気腹が行われる。気腹では、腹腔内に炭酸ガス(例えば二酸化炭素)が注入されて腹腔内に作業スペースが確保される。気腹の状態により、腹腔内の膨らみ具合が異なるので、患者の体表において計画された3次元位置も異なり得る。
そのため、計画されたポート位置で正確に穿孔されず、計画されたポート位置からずれた位置で穿孔されることがある。ポート位置の計画では、複数のポート位置の組み合わせで計画されるが、複数のポート位置のうち1つのポート位置がずれると、このポート位置を含むポートセットを用いたロボット手術時に、手術支援ロボットによる作業性が低下し得る。例えば、穿孔されたポート位置(既孔ポート)が、計画されたポート位置からずれることで、患者の体内において鉗子類が到達不能な領域が出現したり、手術支援ロボットが備える鉗子類が装着されるロボットアーム同士が接触して、ロボットアームの可動範囲が制限されたりすることが考えられる。また、手術支援ロボットにおける低侵襲手術においては、人による低侵襲手術と比較して、ポートに応力を加えることが制限されている。
以下の実施形態では、既孔ポートの位置ずれによるロボット手術への影響を低減できるロボット手術支援装置、ロボット手術支援方法、及びプログラムについて説明する。
(第1の実施形態)
図1は、第1の実施形態におけるロボット手術支援装置100の構成例を示すブロック図である。ロボット手術支援装置100は、手術支援ロボット300によるロボット手術を支援し、例えば術前シミュレーション、術中シミュレーション、及び術中ナビゲーションを実施してよい。
手術支援ロボット300は、ロボット操作端末、ロボット本体、及び画像表示端末を備える。
ロボット操作端末は、術者による操作されるハンドコントローラやフットスイッチを備える。ロボット操作端末は、術者によるハンドコントローラやフットスイッチの操作に応じて、ロボット本体に設けられた複数のロボットアームARを動作させる。また、ロボット操作端末は、ビューワを備える。ビューワは、ステレオビューワでよく、内視鏡により取込まれた画像を融合させて3次元画像を表示してよい。なお、ロボット操作端末が複数存在し、複数のロボット操作端末を複数の術者が操作するによりロボット手術が行われてもよい。
ロボット本体は、ロボット手術を行うための複数のロボットアームAR及びロボットアームARに装着される手術器具としてのエンドエフェクタEF(鉗子類、インストゥルメント)を備える。
手術支援ロボット300のロボット本体は4つのロボットアームARを備えており、内視鏡カメラが装着されるカメラアームと、ロボット操作端末の右手用ハンドコントローラで操作されるエンドエフェクタEFが装着される第1エンドエフェクタアームと、ロボット操作端末の左手用ハンドコントローラで操作されるエンドエフェクタEFが装着される第2エンドエフェクタアームと、交換用のエンドエフェクタEFが装着される第3エンドエフェクタアームと、を含む。各ロボットアームARは、複数の関節を有しており、各関節に対応してモータとエンコーダを備えている。各ロボットアームARは、少なくとも6自由度、好ましくは7又は8自由度を有しており、3次元空間内において動作し、3次元空間内の各方向に可動自在でよい。エンドエフェクタEFには、ロボット手術において被検体PS内の処置対象に実際に接する器具であり、様々な処置(例えば、把持、切除、剥離、縫合)を可能とする。
エンドエフェクタEFは、例えば、把持鉗子、剥離鉗子、電気メス、等を含んでよい。エンドエフェクタEFは、役割毎に異なる別個のエンドエフェクタEFが複数用意されてよい。例えば、ロボット手術では、2つのエンドエフェクタEFによって組織を抑えたり引っ張ったりして、1つのエンドエフェクタEFで組織を切る処置が行われてよい。ロボットアームAR及びエンドエフェクタEFは、ロボット操作端末からの指示を基に、動作してよい。
画像表示端末は、モニタ、内視鏡のカメラによって撮像された画像を処理し、ビューワやモニタに表示させるためのコントローラ、等を有する。モニタは、例えばロボット手術の助手や看護師により確認される。
手術支援ロボット300は、術者によるロボット操作端末のハンドコントローラやフットスイッチの操作を受け、ロボット本体のロボットアームARやエンドエフェクタEFの動作を制御し、被検体PSに対して各種処置を行うロボット手術を行う。ロボット手術では、被検体PS内で腹腔鏡手術が行われてよい。
ロボット手術では、被検体PSの体表にポートPTが穿孔され、ポートPTを介して気腹されてよい。気腹(preumoperitoneum)では、二酸化炭素が送り込まれて被検体PSの腹腔を膨らませられてよい。ポートPTには、トロッカー(trocar)TCが設置されてよい。トロッカーTCは弁を有し、被検体PS内を気密に維持する。また、気密状態を維持するために、被検体PS内に空気(例えば二酸化炭素)が継続的に導入される。
トロッカーTCにはエンドエフェクタEF(エンドエフェクタEFのシャフト)が挿通される。エンドエフェクタEFの挿通時にトロッカーTCの弁が開き、エンドエフェクタEFの脱離時にはトロッカーTCの弁が閉じる。トロッカーTCを経由してポートPTからエンドエフェクタEFが挿入され、術式に応じて様々な処置が行われる。ロボット手術は、腹部を手術対象とした腹腔鏡手術以外に、手術対象に腹部以外を含めた鏡視下手術に適用されてもよい。
図1に示すように、ロボット手術支援装置100は、通信部110、ユーザインタフェース(UI:User Interface)120、ディスプレイ130、プロセッサ140、及びメモリ150を備える。なお、UI120、ディスプレイ130、及びメモリ150は、ロボット手術支援装置100に含まれても、ロボット手術支援装置100とは別体として設けられてもよい。
ロボット手術支援装置100には、通信部110を介して、CT(Computed Tomography)装置200が接続される。ロボット手術支援装置100は、CT装置200からボリュームデータを取得し、取得されたボリュームデータに対して処理を行う。ロボット手術支援装置100は、PC(Personal Computer)とPCに搭載されたソフトウェアにより構成されてもよい。ロボット手術支援装置100は、手術支援ロボット300の一部として構成されてもよい。
ロボット手術支援装置100には、通信部110を介して、手術支援ロボット300が接続される。ロボット手術支援装置100は、例えば、手術支援ロボット300から各種データや情報や画像を提供し、ロボット手術を支援してよい。ロボット手術支援装置100は、例えば、手術支援ロボット300から手術支援ロボット300の機構や動作に関する情報、ロボット手術前、手術中、又は手術後に得られたデータを取得し、取得された情報やデータを基に各種分析や解析を行ってよい。分析結果や解析結果は、可視化されてよい。
ロボット手術支援装置100には、通信部110を介して、計測器400が接続されてよい。計測器400は、手術支援ロボット300により手術される被検体PS(例えば患者)に関する情報(例えば被検体PSの体表位置)を計測してよい。計測器400は、被検体PSの体表に設けられるポートPTの位置を計測してよい。計測器400は、例えば深度センサ410でよい。深度センサ410は、手術支援ロボット300(例えばロボット本体)に含まれていてもよいし、ロボット手術が行われる手術室の天井等に設置されてもよい。また、計測器400は、計測器400の操作部が手動計測の結果の入力を受け付けてよい。手動計測では、例えば、患者に関する情報や体表におけるポート位置が定規や巻尺により計測されてよい。
また、ロボット手術支援装置100には、CT装置200が接続されるとともに、又はCT装置200が接続される代わりに、各種画像を撮像可能な装置が接続されてよい。この装置は、血管造影装置(Angiography装置)や超音波装置等でよい。この装置は、ロボット手術前、及びロボット手術中に被検体PSの内部の様子を確認するときに使用されてよい。
CT装置200は、生体へX線を照射し、体内の組織によるX線の吸収の違いを利用して、画像(CT画像)を撮像する。被検体PSは、例えば人体でよく、生体でよい。なお、被検体PSは、人体でなくてもよく、生体でなくてもよい。例えば動物でよく、手術訓練用ファントムでもよい。
CT画像は、時系列に複数撮像されてもよい。CT装置200は、生体内部の任意の箇所の情報を含むボリュームデータを生成する。生体内部の任意の箇所は、各種臓器(例えば脳、心臓、腎臓、大腸、小腸、肺、胸部、乳腺、前立腺、肺)を含んでもよい。CT画像が撮像されることにより、CT画像における各画素(ボクセル)の画素値(CT値、ボクセル値)が得られる。CT装置200は、CT画像としてのボリュームデータをロボット手術支援装置100へ、有線回線又は無線回線を介して送信する。
具体的に、CT装置200は、ガントリ(図示せず)及びコンソール(図示せず)を備える。ガントリは、X線発生器(図示せず)やX線検出器(図示せず)を含み、コンソールにより指示された所定のタイミングで撮像することで、被検体PSを透過したX線を検出し、X線検出データを得る。X線発生器は、X線管(図示せず)を含む。コンソールは、ロボット手術支援装置100に接続される。コンソールは、ガントリからX線検出データを複数取得し、X線検出データに基づいてボリュームデータを生成する。コンソールは、生成されたボリュームデータを、ロボット手術支援装置100へ送信する。コンソールは、患者情報、CT撮像に関する撮像条件、造影剤の投与に関する造影条件、その他の情報を入力するための操作部(図示せず)を備えてよい。この操作部は、キーボードやマウスなどの入力デバイスを含んでよい。
CT装置200は、連続的に撮像することで3次元のボリュームデータを複数取得し、動画を生成することも可能である。複数の3次元のボリュームデータによる動画のデータは、4D(4次元)データとも称される。
CT装置200は、複数のタイミングの各々でCT画像を撮像してよい。CT装置200は、被検体PSが造影された状態で、CT画像を撮像してよい。CT装置200は、被検体PSが造影されていない状態で、CT画像を撮像してよい。
ロボット手術支援装置100では、通信部110は、他の装置との間で各種データや情報を通信する。通信部110は、CT装置200、手術支援ロボット300、計測器400、との間で各種データを通信してよい。通信部110は、有線通信や無線通信を行う。通信部110と、CT装置200、手術支援ロボット300、及び計測器400との間は、有線又は無線により接続されてよい。
通信部110は、手術支援ロボット300からロボット手術のための各種情報を取得してよい。この各種情報は、例えば、手術支援ロボット300のキネマティクスの情報を含んでよい。通信部110は、手術支援ロボット300へロボット手術のための各種情報を送信してよい。この各種情報は、例えば、処理部160により生成された情報(例えば画像やデータ)を含んでよい。
通信部110は、計測器400からロボット手術のための各種情報を取得してよい。例えば、計測器400で計測された被検体PSの体表の位置情報や被検体PSの体表に穿孔されたポート位置の情報を含んでよい。
通信部110は、CT装置200からボリュームデータを取得してよい。取得されたボリュームデータは、直ぐにプロセッサ140に送られて各種処理されてもよいし、メモリ150において保管された後、必要時にプロセッサ140へ送られて各種処理されてもよい。また、ボリュームデータは、記録媒体や記録メディアを介して取得されてもよい。
CT装置200により撮像されたボリュームデータは、CT装置200から画像データサーバ(PACS:Picture Archiving and Communication Systems)(不図示)に送られ、保存されてよい。通信部110は、CT装置200から取得する代わりに、この画像データサーバからボリュームデータを取得してよい。このように、通信部110は、ボリュームデータ等の各種データを取得する取得部として機能する。
UI120は、タッチパネル、ポインティングデバイス、キーボード、又はマイクロホンを含んでよい。UI120は、ロボット手術支援装置100のユーザから、任意の入力操作を受け付ける。ユーザは、医師、放射線技師、又はその他医療従事者(Paramedic Staff)を含んでよい。医師は、ロボット操作端末を操作してロボット手術を手動して行う術者や、被検体PSの近傍でロボット手術を補助する助手を含んでよい。
UI120は、ボリュームデータにおける関心領域(ROI:Region of Interest)の指定や輝度条件の設定等の操作を受け付ける。関心領域は、各種組織(例えば、血管、気管支、臓器、骨、脳、心臓、足、首、血流)の領域を含んでよい。組織は、病変組織、正常組織、臓器、器官、など被検体PSの組織を広く含んでよい。また、UI120は、ボリュームデータやボリュームデータに基づく画像(例えば後述する3次元画像、2次元画像)における関心領域の指定や輝度条件の設定等の操作を受け付けてもよい。
ディスプレイ130は、LCD(Liquid Crystal Display)を含んでもよく、各種情報を表示する。各種情報は、ボリュームデータから得られる3次元画像や2次元画像を含んでよい。3次元画像は、ボリュームレンダリング画像、サーフェスレンダリング画像、仮想内視鏡画像(VE画像)、仮想超音波画像、CPR(Curved Planar Reconstruction)画像、等を含んでもよい。ボリュームレンダリング画像は、レイサム(RaySum)画像(単に「SUM画像」とも称する)、MIP(Maximum Intensity Projection)画像、MinIP(Minimum Intensity Projection)画像、平均値(Average)画像、又はレイキャスト(Raycast)画像を含んでもよい。2次元画像は、アキシャル(Axial)画像、サジタル(Sagittal)画像、コロナル(Coronal)画像、MPR(Multi Planer Reconstruction)画像、等を含んでよい。3次元画像及び2次元画像は、カラーフュージョン画像を含んでよい。
メモリ150は、各種ROM(Read Only Memory)やRAM(Random Access Memory)の一次記憶装置を含む。メモリ150は、HDD(Hard Disk Drive)やSSD(Solid State Drive)の二次記憶装置を含んでもよい。メモリ150は、USBメモリやSDカードの三次記憶装置を含んでもよい。メモリ150は、各種情報を記憶する。各種情報は、通信部110を介して取得された情報、プロセッサ140により生成された情報や画像、プロセッサ140により設定された設定情報、各種プログラムを含んでよい。通信部110を介して取得された情報は、例えば、CT装置200からの情報(例えばボリュームデータ)、手術支援ロボット300からの情報、計測器400からの情報、外部サーバからの情報、を含んでよい。メモリ150は、プログラムが記録される非一過性の記録媒体の一例である。
投射部170は、被検体に向けて可視光(例えばレーザー光)を投射する。投射部170は、可視光の投射により、被検体PSの体表(例えば腹部の体表部)に、各種情報(例えばポート位置の情報)を表示させる。可視光、つまり被検体PSの体表に表示された情報は、ユーザ(例えば助手)に確認される。
プロセッサ140は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、又はGPU(Graphics Processing Unit)を含んでよい。プロセッサ140は、メモリ150に記憶されたプログラムを実行することにより、各種処理や制御を行う処理部160として機能する。
図2は、処理部160の機能構成例を示すブロック図である。
処理部160は、領域抽出部161、画像生成部162、変形シミュレーション部163、ポート位置処理部164、表示制御部166、及び投射制御部167を備える。
処理部160は、ロボット手術支援装置100の各部を統括する。なお、処理部160に含まれる各部は、1つのハードウェアにより異なる機能として実現されてもよいし、複数のハードウェアにより異なる機能として実現されてもよい。また、処理部160に含まれる各部は、専用のハードウェア部品により実現されてもよい。
領域抽出部161は、ボリュームデータにおいて、セグメンテーション処理を行ってよい。この場合、UI120がユーザからの指示を受け付け、指示の情報が領域抽出部161に送られる。領域抽出部161は、指示の情報に基づいて、公知の方法により、ボリュームデータから、セグメンテーション処理を行い、関心領域を抽出(segment)してよい。また、ユーザからの詳細な指示により、手動で関心領域を設定(set)してよい。また、観察対象が予め定められている場合、領域抽出部161は、ユーザ指示なしでボリュームデータから、セグメンテーション処理を行い、観察対象を含む関心領域を抽出してもよい。抽出される領域には、各種組織(例えば、血管、気管支、臓器、骨、脳、心臓、足、首、血流、乳腺、胸部、腫瘍)の領域を含んでよい。観察対象は、ロボット手術による処置が行われる対象でよい。
画像生成部162は、通信部110により取得されたボリュームデータに基づいて、3次元画像や2次元画像を生成してよい。画像生成部162は、通信部110により取得されたボリュームデータから、指定された領域や領域抽出部161により抽出された領域に基づいて、3次元画像や2次元画像を生成してよい。
変形シミュレーション部163は、手術対象の被検体PSにおける変形に関する処理を行う。例えば、変形シミュレーション部163は、仮想的に被検体PSに対して気腹する気腹シミュレーションを行ってよい。気腹シミュレーションの具体的な方法は、公知の方法であってよく、例えば参考非特許文献1に記載された方法でよい。つまり、変形シミュレーション部163は、通信部110又は領域抽出部161から取得されたボリュームデータ(気腹前(非気腹状態)のボリュームデータ)を基に、気腹シミュレーションを行い、気腹後のボリュームデータ(気腹状態のボリュームデータ)を生成してよい。気腹シミュレーションにより、ユーザは、被検体PSに対して実際に気腹しなくても、被検体PSが気腹された状態を仮定し、仮想的に気腹された状態を観察できる。なお、気腹状態のうち、気腹シミュレーションにより推定される気腹の状態を仮想気腹状態と称し、実際の気腹された状態を実気腹状態と称してよい。
(参考非特許文献1)Takayuki Kitasaka, Kensaku Mori, Yuichiro Hayashi, Yasuhito Suenaga, Makoto Hashizume, and Jun-ichiro Toriwaki, “Virtual Pneumoperitoneum for Generating Virtual Laparoscopic Views Based on Volumetric Deformation”, MICCAI (Medical Image Computing and Computer-Assisted Intervention),2004, P559-P567
図3は、気腹シミュレーションの実施前後における腹部のMPR断面の画像例を示す図である。画像G11は、気腹シミュレーションの実施前の様子を示しており、被検体PSの腹部が膨らんでいない状態(非気腹状態)である。画像G12は、気腹シミュレーションの実施後の様子を示しており、被検体PSの腹部が膨らんでいる状態(仮想気腹状態)であり、気腹空間KSを有する。ロボット手術では、被検体PSが気腹状態で手術されるので、非気腹状態で撮像されて得られるボリュームデータに対しては、変形シミュレーション部163により気腹シミュレーションが実施され、仮想気腹状態のボリュームデータが導出される。
変形シミュレーション部163は、被検体PS内の臓器や病変等の観察対象を仮想的に変形させてよい。観察対象は、術者によって手術される手術対象であってよい。変形シミュレーション部163は、例えば、臓器がエンドエフェクタEFにより引っ張られたり押されたり、切断される様子をシミュレートしてよい。また、変形シミュレーション部163は、例えば、***変換による臓器の移動をシミュレートしてよい。
ポート位置処理部164は、被検体PSの体表上に設けられる複数のポートPTの情報を取得する。ポートPTの情報は、ポートPTの識別情報、ポートPTが穿孔される被検体PSの体表上の位置(ポート位置)の情報、ポートPTのサイズの情報、等を含んでよい。複数のポートの情報は、テンプレートとしてメモリ150や外部サーバに保持されていてよい。複数のポートの情報は、術式によって定められていてよい。複数のポートの情報は術前計画に用いることを目的としてよい。
ポート位置処理部164は、メモリ150から複数のポート位置の情報を取得してよい。ポート位置処理部164は、通信部110を介して、外部サーバから複数のポート位置の情報を取得してよい。ポート位置処理部164は、UI120を介して、複数のポートPTのポート位置の指定を受け付けて、複数のポート位置の情報を取得してよい。複数のポート位置の情報は、複数のポート位置の組み合わせの情報でよい。
ポート位置処理部164は、手術支援ロボット300のキネマティクスの情報を取得する。キネマティクスの情報は、メモリ150に保持されていてよい。ポート位置処理部164は、メモリ150からキネマティクスの情報を取得してよい。ポート位置処理部164は、通信部110を介して、手術支援ロボット300や外部サーバからキネマティクスの情報を取得してよい。キネマティクスの情報は、手術支援ロボット300毎に異なってよい。
キネマティクスの情報は、例えば、手術支援ロボット300が備えるロボット手術を行うための器具(例えばロボットアームAR、エンドエフェクタEF)の形状に関する形状情報や動作に関する動作情報を含んでよい。この形状情報は、ロボットアームARやエンドエフェクタEFの各部位の長さ、重さ、基準方向(例えば水平面)に対するロボットアームARの角度、ロボットアームARに対するエンドエフェクタEFの取付角度、等の少なくとも一部の情報を含んでよい。この動作情報は、例えばロボットアームARやエンドエフェクタEFの3次元空間における可動範囲、ロボットアームARを動作する際のロボットアームARの位置、速度、加速度、エンドエフェクタEFを動作する際のロボットアームARに対する位置、速度、加速度、等の少なくとも一部の情報を含んでよい。
なお、キネマティクスでは、自ロボットアームによる可動範囲とともに他ロボットアームの可動範囲が規定される。したがって、手術支援ロボット300は、手術支援ロボット300の各ロボットアームARがキネマティクスに基づいて動作することで、手術中に複数のロボットアームARが干渉することを回避できる。
ポート位置処理部164は、術式の情報を取得する。術式は、被検体PSに対する外科手術の方式を示す。術式は、UI120を介して指定されてよい。術式により、ロボット手術における各処置が定まってよい。処置に応じて、処置に必要なエンドエフェクタEFが定まってよい。よって、術式に応じて、ロボットアームARに装着されるエンドエフェクタEFが定まってよく、どのロボットアームARにどの種類のエンドエフェクタEFが装着されるかが定まってよい。また、処置に応じて、処置に最低限必要な最小領域や処置のために確保されることが推奨される推奨領域が定まってよい。
ポート位置処理部164は、ターゲット領域の情報を取得する。ターゲット領域は、ロボット手術による処置が行われる対象(例えば組織(例えば血管、気管支、臓器、骨、脳、心臓、足、首))を含む領域でよい。組織は、病変組織、正常組織、臓器、器官、など被検体PSの組織を広く含んでよい。
ポート位置処理部164は、メモリ150からターゲット領域の位置の情報を取得してよい。ポート位置処理部164は、通信部110を介して、外部サーバからターゲット領域の位置の情報を取得してよい。ポート位置処理部164は、UI120を介して、ターゲット領域の位置の指定を受け付けて、ターゲット領域の位置の情報を取得してよい。
ポート位置処理部164は、ポート位置シミュレーションを実行してよい。ポート位置シミュレーションは、ユーザがUI120を操作することで、被検体PSにおける所望のロボット手術が可能か否かを判定するためのシミュレーションでよい。ポート位置シミュレーションでは、ユーザが手術を想定しながら、仮想空間において、各ポート位置から挿入されたエンドエフェクタEFを動作させ、手術対象となるターゲット領域へアクセス可能か否かを判定してよい。つまり、ポート位置シミュレーションでは、ユーザによる手術支援ロボット300に対する手動の操作を受けながら、手術支援ロボット300のロボット手術に係る可動部(例えばロボットアームARやエンドエフェクタEF)が、手術対象となるターゲット領域へ問題なくアクセス可能か否かが判定されてよい。ポート位置処理部164は、ポート位置シミュレーションによりポート位置の計画情報を得てよい。
ポート位置シミュレーションでは、被検体PSのボリュームデータ、取得された複数のポート位置の組み合わせ、手術支援ロボット300のキネマティクス、術式、仮想気腹状態のボリュームデータ、等に基づいて上記のアクセスが可能か否かが判定されてよい。ポート位置処理部164は、被検体PSの体表における複数のポート位置を変えながら、各ポート位置においてターゲット領域にアクセス可能か否かを判定してよく、順次ポート位置シミュレーションを行ってよい。ポート位置処理部164は、最終的に好ましい(例えば最適な)ポート位置の組み合わせの情報を、UI120を介してユーザ入力に応じて指定してよい。これにより、ポート位置処理部164が、穿孔対象の複数のポート位置を計画してよい。ポート位置シミュレーションの詳細については後述する。
ポート位置処理部164は、被検体PSの体表上に設けられる複数のポート位置を用いてロボット手術する場合の適切度を示すポート位置スコアを導出(例えば算出)してよい。つまり、複数のポート位置の組み合わせに基づくポート位置スコアは、ロボット手術を行うための複数のポート位置の組み合わせの価値を示している。ポート位置スコアは、複数のポート位置の組み合わせ、手術支援ロボット300のキネマティクス、術式、仮想気腹状態のボリュームデータ、等に基づいて算出されてよい。ポート位置スコアは、ポート位置毎に導出される。ポート位置スコアの詳細については後述する。
ポート位置処理部164は、ポート位置スコアに基づいて、ポート位置を調整してよい。この場合、ポート位置処理部164は、ポート位置の移動に伴うポート位置スコアの変動量に基づいて、ポート位置を調整してよい。ポート位置調整の詳細については後述する。
このように、ポート位置処理部164は、ポート位置シミュレーションに従って、穿孔対象の複数のポート位置を導出してよい。また、ポート位置処理部164は、ポート位置スコアに基づいて、穿孔対象の複数のポート位置を導出してよい。
表示制御部166は、各種データ、情報、画像をディスプレイ130に表示させる。表示制御部166は、画像生成部162により生成された3次元画像又は2次元画像を表示させてよい。表示制御部166は、画像生成部162により生成された複数のポートPTの情報(例えばポート位置の情報)を示す画像を表示させてよい。
表示制御部166は、画像生成部162により生成された、複数のポートPTのうち、既に穿孔されたポートPTである既孔ポートPT1を除く残りのポートの情報(例えばポート位置の情報)を示す画像を表示させてよい。この場合、表示制御部166は、3次元画像又は2次元画像に重畳させて、複数のポート位置を示す画像や残りのポート位置を示す画像を表示させてよい。残りのポートは、未だ穿孔されていないポート(未孔ポート)である。
投射制御部167は、投射部170による可視光の投射を制御する。投射制御部167は、例えば、可視光の周波数、光量、可視光を投射する位置、可視光を投射する時刻(タイミング)を制御してよい。
投射制御部167は、被検体PSに向かって可視光を投射部170に投射させ、被検体PSの体表(例えば腹部の体表部)に、各種情報を表示させる。投射制御部167は、被検体PSの体表に向かってレーザ光を投射し、体表上の特定位置にマーキングを行ってよい。この特定位置は、例えば、穿孔対象のポート位置、体表面のこの特定位置から法線方向に向かうとボリュームデータ上で観察対象(例えば患部)が存在する位置、でよい。つまり、投射制御部167は、ポート位置を示すレーザポインタであってよい。
また、投射制御部167は、被検体PSの体表面に可視光を投射部170に投射させ、被検体PSの体表に、ロボット手術を支援する情報(例えばポート位置に関する情報)を重畳させて表示させてよい。重畳される情報は、文字情報、図形情報、等であってよい。つまり、投射制御部167は、ロボット手術において拡張現実(AR:Augmented Reality)技術を用いてユーザを支援してよい。
図4は、既孔ポートPT1のポート位置の計測例を説明するための図である。ポート位置の計測は、3次元計測でよい。図4では、ベッドBDに被検体PS(例えば患者)が横になって載置されている。
深度センサ410は、赤外線を発光する発光部と、赤外線を受光する受光部と、画像を撮像するカメラと、を含んでよい。深度センサ410は、発光部により被検体PSへ発光された赤外線と、被検体PSで反射され受光された反射光と、に基づいて、深度センサ410から被検体PSまでの距離を検出してよい。深度センサ410は、カメラにより撮像された撮像画像により、被写体の上下左右を検出してよい。これにより、深度センサ410は、被検体PSの体表における各位置(例えば既孔ポートPT1のポート位置)の3次元位置(3次元座標)の情報を取得してよい。
深度センサ410は、プロセッサ及び内部メモリを有してよい。内部メモリは、トロッカーTCの形状の情報を保持しておいてよい。深度センサ410は、内部メモリに保持されたトロッカーTCの形状情報を参照し、被検体PSの体表面に穿孔されたポートPTに設置されたトロッカーTCを検出(認識)し、トロッカーTCの3次元位置を検出(計測)してよい。
また、トロッカーTCの表面に所定のマークが付されていてよい。深度センサ410は、トロッカーTCにおける所定のマークを特徴点として撮像することで、画像認識によりトロッカーTCを検出(認識)してよい。これにより、深度センサ410は、トロッカーTCの認識精度を向上でき、トロッカーTCの3次元位置の計測精度を向上できる。
また、深度センサ410は、赤外線センサ(発光部及び受光部)を備えず、ステレオカメラを備え、画像処理によりトロッカーTCの3次元位置を計測してよい。この場合、深度センサ410は、ステレオカメラにより撮像された撮像画像において物体認識によりトロッカーTCを認識し、被検体における体表上のトロッカーTCの位置を検出(認識)し、トロッカーTCまでの距離を算出することで、トロッカーTCの3次元位置を計測してよい。
深度センサ410は、赤外線センサから発光された赤外線が到達可能な範囲やカメラにより撮像可能な範囲(図4の範囲A1参照)で、被検体PSの体表上の各位置やトロッカーTCの位置を計測してよい。
なお、ロボット手術支援装置100の変形シミュレーション部163は、深度センサ410から、被検体PSの実気腹状態での体表上の各位置の情報、つまり被検体PSの実気腹状態での体表の形状の情報を取得してよい。また、変形シミュレーション部163は、被検体PSの非気腹状態でのボリュームデータを基に、被検体PSの輪郭(体表に相当)を抽出して、被検体PSの非気腹状態での体表上の各位置の情報、つまり被検体PSの非気腹状態での体表の形状の情報を取得してよい。
変形シミュレーション部163は、被検体PSの実気腹状態での体表上の各位置と被検体PSの非気腹状態での体表上の各位置との差分、つまり被検体PSの実気腹状態での体表の形状と被検体PSの非気腹状態での体表の形状との差分を算出してよい。これにより、変形シミュレーション部163は、被検体PSの実気腹状態とするための気腹量を認識できる。
また、変形シミュレーション部163は、実気腹状態と気腹シミュレーションによる仮想気腹状態との差分を基に、気腹シミュレーションのシミュレーション方法やシミュレーション結果を補正してよい。つまり、変形シミュレーション部163は、実際の気腹量を基に、気腹シミュレーションのシミュレーション方法やシミュレーション結果を補正してよい。変形シミュレーション部163は、この補正情報を、メモリ150に保持しておいてよい。また、変形シミュレーション部163は、通信部110を介して気腹装置より掃気量を受け取って、気腹シミュレーションのシミュレーション方法やシミュレーション結果を補正してよい。これにより、ロボット手術支援装置100は、気腹シミュレーションの精度を向上できる。
次に、ポート位置の表示例について説明する。
変形シミュレーション部163は、非気腹状態(例えば術前CT撮像)で得られたボリュームデータに気腹シミュレーションを行い、仮想気腹状態のボリュームデータを生成する。画像生成部162は、仮想気腹状態のボリュームデータをボリュームレンダリングして、ボリュームレンダリング画像を生成してよい。画像生成部162は、気腹状態のボリュームデータをサーフィスレンダリングして、サーフィスレンダリング画像を生成してよい。
変形シミュレーション部163は、非気腹状態(例えば術前CT撮像)で得られたボリュームデータに気腹シミュレーションを行い、非気腹状態から仮想気腹状態への変形情報を生成してよい。画像生成部162は、非気腹状態(例えば術前CT撮像)で得られたボリュームデータからサーフィスを生成してサーフィスレンダリング画像を生成してよい。画像生成部162は、非気腹状態(例えば術前CT撮像)で得られたボリュームデータからサーフィスを生成したものに変形情報を適用して、仮想気腹状態のサーフィスレンダリング画像を生成してよい。
表示制御部166は、仮想気腹状態のボリュームレンダリング画像又はサーフィスレンダリング画像に、ポート位置処理部164により導出されたポート位置を重畳して、ディスプレイ130に表示させてよい。
投射制御部167は、被検体PS(例えば患者)の体表におけるポート位置処理部164により導出されたポート位置に可視光を投射させ、可視光によりポート位置を指し示し、ポート位置を可視化してよい。これにより、ユーザは、被検体PSの体表におけるポート位置を確認しながら、ポート位置に対する穿孔等の処置を実施できる。
また、投射制御部167は、被検体PSに可視光を投射させ、被検体PS(例えば患者)の体表におけるポート位置処理部164により導出されたポート位置を示す情報を表示させてよい。この場合、投射制御部167は、AR技術を用いて、被検体PSに、ポート位置を示す情報(例えばポートの識別情報、ポート位置を示す矢印)を重畳して表示させてよい。これにより、ユーザは、可視光によるガイド情報を参照することで、被検体PSの体表におけるポート位置に関する情報を確認しながら、ポート位置に対する穿孔等の処置を実施できる。
ここで変形情報について詳述する。
変形シミュレーション部163は、気腹前後に得られる複数のボリュームデータ(CT画像)を基に、ボリュームデータに含まれる各部の動き(変形)を検出し、変形情報を生成する。この場合、変形シミュレーション部163は、複数の気腹量のボリュームデータを基に、複数のボリュームデータの変形に対して動き解析(変形解析)を行い、ボリュームデータにおける変形情報を取得する。変形解析の具体的手法は、例えば参考特許文献1、参考特許文献2に記載されている。これらは、非剛体レジストレーションの例になるが、剛体レジストレーションであってもよい。
(参考特許文献1:米国特許第8311300号明細書)
(参考特許文献2:日本国特許第5408493号公報)
変形シミュレーション部163は、変形情報として、ボリュームデータの任意の点の移動量に係る情報や速度に係る情報を取得してよい。変形シミュレーション部163は、参考特許文献1の手法を適用すると、ボリュームデータを2次元格子node(k,l)に区切り、2次元格子のフェーズtの格子node(k,l,t)における2次元座標を(x,y)とした場合、フェーズtの値を変更して得られる複数のnode(k,l,t)の差分を基に、node(k,l)の格子点に係る移動量の情報を算出してよい。また、変形シミュレーション部163は、移動量の情報を時間微分することで、速度の情報を算出してよい。移動量や速度の情報は、ベクトルで示されてよい。
変形シミュレーション部163がこの2次元格子の変形情報をボリュームデータ全体の各点に対して補間すると、ボリュームデータの各点の変形情報が得られる。この所定の点の変形情報を、観察部位を含む領域の各点に対して適用すると、観察部位を含む領域の各点の変形情報が得られる。
また、変形シミュレーション部163は、参考特許文献2の手法を適用すると、時系列に並ぶ(気腹前後の)ボリュームデータのうち、ボリュームデータtk−1及びその時刻情報tk−1、並びにボリュームデータtk及びその時刻情報tkを基に、変形情報を生成してよい。変形情報は、複数のボリュームデータ上の対応する位置もしくは対応する物体の対応関係の情報、位置及び物体が移動変化する過程の情報を指してよい。各ボリュームデータの画素が、時刻k−1と時刻kとの間の任意の時刻での位置を示す指標となる。
なお、変形シミュレーション部163は、参考特許文献1の手法に限られず、その他の公知のレジストレーション手法を用いて変形解析を行ってもよい。ロボット手術支援装置100は、変形情報を用いた各点や観察部位の変形解析により、被検体内の任意の位置が気腹前後でどの位置に移動したかを把握可能である。
次に、標準的なポート位置の具体例について説明する。
図5Aは、被検体PSの体表に設置されるポート位置の第1配置計画例を示す図である。図5Bは、被検体PSの体表に設置されるポート位置の第2配置計画例を示す図である。図5Cは、被検体PSの体表に設置されるポート位置の第3配置計画例を示す図である。複数のポート位置の配置は、例えば術式に応じて計画されてよい。図5A〜図5Cでは、被検体PSの体格や観察対象の病変等の位置や大きさは考慮されていない。
なお、図5A〜図5Cにおいて示された複数のポート位置は、穿孔予定のポート位置である。穿孔予定のポート位置と実際に穿孔されたポート位置とでは多少の誤差が生じることがあり、例えば25mm程度の誤差が生じることがある。
被検体PSの体表に設けられるポートPTには、カメラCAが挿入されるカメラポートPTC、エンドエフェクタEFが挿入されるエンドエフェクタポートPTE、助手が把持する鉗子類が挿入される補助ポートPTA、が含まれてよい。各ポートPTは種類毎(例えばカメラポートPTC、エンドエフェクタポートPTE、補助ポートPTA毎)に複数存在してよく、各ポートPTの大きさは種類毎に同じでも異なってもよい。例えば、臓器を抑えるためのエンドエフェクタEFや被検体PS内での動きが複雑なエンドエフェクタEFが挿入されるエンドエフェクタポートPTEは、電気メスとしてのエンドエフェクタEFが挿入されるエンドエフェクタポートPTEよりも大きくてよい。補助ポートPTAは、比較的自由に配置位置が計画されてよい。
図5Aでは、カメラポートPTCのポート位置を基準(頂点)として、被検体PSの右方向及び被検体PSの左方向において、多くのエンドエフェクタポートPTE及び補助ポートPTAが直線状に配列されている。
図5Bでは、臍hsの位置を挟んで、多くのエンドエフェクタポートPTE及び補助ポートPTAが直線状に配列されている。また、カメラポートPTCも臍hsの近傍に配置されている。
図5Cでは、多くのエンドエフェクタポートPTE及び補助ポートPTAが直線状に配列されている。臍hsの位置は、この直線上の位置から、ややずれている。また、カメラポートPTCも臍hsの近傍に配置されている。
既存の計画では、直線的に多くのポートPTが並んで配置されることが多いのは、ユーザがポート位置を位置決めしやすいことと安心感があるためと考えられる。なお、複数のポートPTのうち、カメラポートPTCが被検体PSの体表面の中央部に配置されなくてもよい。
図6は、ロボット手術時の被検体PS、ポートPT、トロッカーTC、及びロボットアームARの位置関係の一例を示す図である。
被検体PSには、1つ以上のポートPTが設けられる。ポートPTのそれぞれには、トロッカーTCが配置される。トロッカーTCにはエンドエフェクタEFが接続(例えば挿通)され、被検体内でのエンドエフェクタEFによる作業(処置)が可能となる。ポート位置は、固定して配置され、術中に移動しない。したがって、ポート位置に配置されるトロッカーTCの位置も移動しない。一方、術中の処置に応じて、ロボット操作端末の操作を基にロボットアームAR及びエンドエフェクタが制御され、ロボットアームARは移動する。よって、ロボットアームARとトロッカーTCの位置関係が変化し、被検体の体表面に対するトロッカーTCの角度やトロッカーTCに取り付けられたエンドエフェクタEFの角度が変化する。なお、図6では、助手が把持する監視類もエンドエフェクタとして示されている。
次に、ロボット手術支援装置100の動作について説明する。
まず、ポート位置シミュレーションの手順について説明する。図7は、ポート位置シミュレーションの手順の一例を示すフローチャートである。
まず、ポート位置処理部164は、例えば通信部110を介して、被検体PSを含むボリュームデータを取得する(S11)。ポート位置処理部164は、例えば通信部110を介して、手術支援ロボット300のキネマティクスの情報を取得する(S12)。変形シミュレーション部163は、気腹シミュレーションを実行し(S13)、被検体PSの仮想気腹状態のボリュームデータを生成する。
ポート位置処理部164は、術式の情報を取得する(S14)。ポート位置処理部164は、取得された術式に応じた複数のポートPTの位置(初期位置)を取得し、設定する(S14)。この場合、ポート位置処理部164は、3次元座標で複数のポートPTの位置を設定してよい。
ポート位置処理部164は、ターゲット領域の位置の情報を取得する(S15)。
ポート位置処理部164は、S14で取得された複数のポートの位置とターゲット領域の位置とに基づいて、各ポートPTから挿入された各エンドエフェクタEFがターゲット領域にアクセス可能か否かを判定する(S16)各エンドエフェクタEFがターゲット領域にアクセス可能か否かは、ターゲット領域における全ての位置に、各エンドエフェクタEFが到達可能であるか否かに相当してよい。つまり、エンドエフェクタEF(必要に応じて複数のエンドエフェクタEF)によって、取得された術式に従ったロボット手術が可能であるか否かを示しており、アクセス可能な場合には、ロボット手術が可能であることを示している。
各エンドエフェクタEFの少なくも1つがターゲット領域の少なくとも一部にアクセス不可能である場合、ポート位置処理部164は、穿孔対象の複数のポートPTに含まれる少なくとも1つのポートPTのポート位置を、被検体PSの体表に沿って、移動する(S17)。この場合、ポート位置処理部164は、UI120を介したユーザ入力を基に、ポート位置を移動してよい。移動させるポートPTは、少なくとも、ターゲット領域の少なくとも一部にアクセス不能であったエンドエフェクタEFが挿入されたポートPTを含む。
各エンドエフェクタEFがターゲット領域にアクセス可能である場合、処理部160は、図7のポート位置シミュレーションの処理を終了する。
このように、ロボット手術支援装置100は、ポート位置シミュレーションを実施することで、取得された複数のポート位置を用いてターゲット領域にアクセス可能であるか否か、よって取得された複数のポート位置を用いた手術支援ロボット300によるロボット手術が可能であるか否かを判定できる。複数のポート位置を用いてターゲット領域にアクセス不能である場合、UI120介してポート位置の少なくとも一部を変更して、変更された複数のポート位置を用いてターゲット領域にアクセス可能であるか否かを再度判定してよい。ロボット手術支援装置100は、ターゲット領域にアクセス可能である複数のポート位置の組み合わせを、穿孔対象の複数のポート位置に計画できる。このように、ロボット手術支援装置100は、ユーザ手動でポート位置を調整し、ポート位置を計画できる。
次に、ポート位置スコアの算出例について説明する。
複数のポート位置は、例えば術式に従って定められ、被検体PSの体表上の任意の位置にそれぞれ配置されることが仮定されてよい。よって、複数のポート位置の組み合わせも、様々なポート位置の組み合わせが仮定されてよい。1つのポートPTから、ロボットアームARに装着された1つのエンドエフェクタEFが被検体PS内に挿入可能である。よって、複数のポートPTから、複数のロボットアームARに装着された複数のエンドエフェクタEFが被検体PS内に挿入可能である。
1つのエンドエフェクタEFがポートPTを介して被検体PS内において到達可能な範囲が、1つのエンドエフェクタEFによって作業(ロボット手術における処置)が可能なワーキングエリア(個別ワーキングエリアWA1)となる。よって、複数のエンドエフェクタEFによる個別ワーキングエリアWA1が重複するエリアが、複数のエンドエフェクタEFが複数のポートPTを介して被検体PS内において同時に到達可能なワーキングエリア(全体ワーキングエリアWA2)となる。術式に従った処置では、所定数(例えば3つ)のエンドエフェクタEFが同時動作することが必要であるので、所定数のエンドエフェクタEFが同時に到達可能な全体ワーキングエリアWA2が考慮される。
また、手術支援ロボット300のキネマティクスによってエンドエフェクタEFが到達可能な被検体PSにおける位置が異なるので、エンドエフェクタEFが被検体PS内に挿入される位置であるポート位置の導出に加味される。また、術式によって確保すべき全体ワーキングエリアWA2の被検体PS内における位置が異なるので、全体ワーキングエリアWA2の位置に対応するポート位置の導出に加味される。
ポート位置処理部164は、取得された(仮定された)複数のポート位置の組み合わせ毎に、ポート位置スコアを算出してよい。ポート位置処理部164は、仮定された複数のポート位置の組み合わせのうち、所定条件を満たすポート位置スコア(例えば最大となるポートスコア)となるポート位置の組み合わせを計画してよい。つまり、計画されたポート位置の組み合わせに含まれる複数のポート位置を、穿孔対象の複数のポート位置に計画してよい。
なお、ポート位置と手術支援ロボット300の可動部の動作との関係性は、例えば参考非特許文献2,3に記載された関係性を満たしてよい。
(参考非特許文献2):Mitsuhiro Hayashibe, Naoki Suzuki, Makoto Hashizume, Kozo Konishi, Asaki Hattori, “Robotic surgery setup simulation with the integration of inverse-kinematics computation and medical imaging”, computer methods and programs in biomedicine, 2006, P63-P72
(参考非特許文献3)Pal Johan From, “On the Kinematics of Robotic-assisted Minimally Invasive Surgery”, Modeling Identication and Control, Vol.34, No.2, 2013, P69-P82
図8は、ロボット手術支援装置100によるポート位置スコアを算出する場合の動作例を示すフローチャートである。
図8の処理前には、図8に示したポート位置シミュレーションのS11〜S14と同様に、被検体PSのボリュームデータの取得、手術支援ロボット300のキネマティクスの情報の取得、気腹シミュレーションの実行、及び術式の情報の取得が事前に行われる。また、キネマティクスの情報は、術式に応じて各ロボットアームARに装着された各エンドエフェクタEFの情報が含まれてよい。なお、ポート位置スコアの初期値は値0である。ポート位置スコアは、ポート位置の組み合わせの価値を示す評価関数(評価値)である。なお、変数iは、作業の識別情報の一例であり、変数jは、ポートの識別情報の一例である。
ポート位置処理部164は、術式に応じて、各エンドエフェクタEFを用いた作業work_iのリストである作業リストworksを生成する(S21)。作業work_iには、術式に従った手術手順で各エンドエフェクタEFが作業するための情報が含まれる。作業work_iには、例えば把持、切除、縫合等が含まれてよい。なお、作業には、単一のエンドエフェクタEFによる単独作業、複数のエンドエフェクタEFによる協調作業、が含まれてよい。
ポート位置処理部164は、術式及び仮想気腹状態のボリュームデータに基づいて、作業リストworksに含まれる作業work_iを行うために最低限必要な領域である最小領域least_region_iを計画する(S22)。最小領域は、被検体PSにおける3次元領域で定められてよい。ポート位置処理部164は、最小領域least_region_iのリストである最小領域リストLeast_regionsを生成する(S22)。
ポート位置処理部164は、術式、手術支援ロボット300のキネマティクス、及び仮想気腹状態のボリュームデータに基づいて、作業リストworksに含まれる作業work_iを行うために推奨される領域である推奨領域effective_region_iを計画する(S23)。ポート位置処理部164は、推奨領域effective_region_iのリストである推奨領域リストeffective_regionsを生成する(S23)。推奨領域には、作業を行うための最低限の空間(最小領域)とともに、例えばエンドエフェクタEFが動作するために推奨される空間が含まれてよい。
ポート位置処理部164は、複数のポート位置port_jのリストであるポート位置リストportsの情報を取得する(S24)。ポート位置は、3次元座標(x,y,z)で定められてよい。ポート位置処理部164は、例えば、UI120を介してユーザ入力を受け付け、ユーザにより指定された1つ以上のポート位置を含むポート位置リストportsを取得してよい。ポート位置処理部164は、メモリ150にテンプレートとして保持されたポート位置リストportsを取得してもよい。
ポート位置処理部164は、術式、手術支援ロボット300のキネマティクス、仮想気腹状態のボリュームデータ、及び取得された複数のポート位置に基づいて、各作業work_iについて、各ポート位置port_jを介して各エンドエフェクタEFが作業可能な領域であるポート作業領域region_iを計画する(S25)。ポート作業領域は、3次元領域で定められてよい。ポート位置処理部164は、ポート作業領域region_iのリストであるポート作業領域リストregionsを生成する(S25)。
ポート位置処理部164は、作業work_i毎に、最小領域least_region_iからポート作業領域region_iから引いて、減算領域(減算値)を算出する(S26)。ポート位置処理部164は、減算領域が空領域(減算値が負の値)でないか否かを判定する(S26)減算領域が空領域でないか否かは、最小領域least_region_i内の少なくとも一部に、ポート作業領域region_iに覆われていない領域(ポートPTを介してエンドエフェクタEFが到達しない領域)が存在する否かを示している。
減算領域が空領域である場合、ポート位置処理部164は、推奨領域effective_region_iとポート作業領域region_iとの積である体積値Volume_iを算出する(S27)。そして、ポート位置処理部164は、作業work_i毎に算出された体積値Volume_iを合計し、合計値Volume_sumを算出する。ポート位置処理部164は、合計値Volume_sumをポート位置スコアに設定する(S27)。
つまり、減算領域が空領域である場合、最小領域内にポート作業領域に覆われていない領域が存在せず、このポート位置リストports(ポート位置port_jの組み合わせ)が選択されることが好ましいので、このポート位置リストが選択され易くように、ポート位置スコアに作業work_i毎の値が加算される。また、体積Volume_iを基準にポート位置スコアが計画されることで、最小領域やポート作業領域が大きい程、ポート位置スコアが大きくなり、このポート位置リストportsが選択され易くなる。よって、ポート位置処理部164は、最小領域やポート作業領域が大きく、手術における各処置が容易になるポート位置の組み合わせを選択し易くできる。
一方、減算領域が空領域でない場合、ポート位置処理部164は、ポート位置リストportsについてのポート位置スコアを、値0に設定する(S28)。つまり、最小領域内の少なくとも一部にポート作業領域に覆われていない領域が存在し、対象の作業work_iの作業を完結できない可能性があるので、このポート位置リストPostsが選択されることが好ましくない。そのため、ポート位置処理部164は、このポート位置リストPostsが選択されにくくなるように、ポート位置スコアを値0とし、選択候補から除外する。この場合、ポート位置処理部164は、同じポート位置リストportsを用いて他の作業work_iを行う場合に空領域となっても、全体でのポート位置スコアを値0設定する。
なお、ポート位置処理部164は、全ての作業work_iについて図8の各ステップを繰り返し、全作業work_iを加味したポート位置スコアを算出してよい。
このように、ロボット手術支援装置100は、ポート位置スコアを導出することで、被検体PSの体表上に設けられる複数のポート位置を用いてロボット手術する場合に、穿孔候補のポート位置の組み合わせが、どの程度適切であるかを把握できる。個別ワーキングエリアWA1や全体ワーキングエリアWA2は、穿孔対象となる複数のポートの配置位置によって左右される。この場合でも、手術支援ロボット300は、複数のポート位置の組み合わせ毎のスコア(ポート位置スコア)を加味することで、例えばポート位置スコアが閾値th1以上(例えば最大)となる複数のポート位置の組み合わせを導出でき、ロボット手術を実施し易いポート位置を設定できる。
また、ポート位置スコアに基づいてワーキングエリアが適切に確保されることで、ユーザは、ロボット手術において直接目視できない被検体内での視野を広く確保でき、ポート作業領域を広く確保でき、不測の事態に対処し易くなる。
また、ロボット手術では、穿孔されたポート位置は不変であるが、ポート位置に挿入されるエンドエフェクタが装着されるロボットアームARは所定範囲で移動可能である。そのため、ロボット手術では、計画されるポート位置によっては、ロボットアームARが相互に干渉し得るので、ポート位置の計画は重要である。また、手術支援ロボット300と被検体PSとの位置関係を術中に変更することは原則的に行われないので、ポート位置の計画は重要である。
図9は、ポート位置を基に定められるワーキングエリアの一例を示す図である。個別ワーキングエリアWA1は、各ポート位置port_jに対応する個別のワーキングエリアである。個別ワーキングエリアWA1は、個別のエンドエフェクタが到達可能な被検体PS内の領域でよい。各個別ワーキングエリアWA1が重複するエリアが、全体ワーキングエリアWA2である。全体ワーキングエリアWA2は、ポート作業領域region_iに相当してよい。ロボット手術支援装置100は、ポート位置スコアを用いることで、各ポート位置を最適化でき、好適な個別ワーキングエリアWA1及び全体ワーキングエリアWA2を導出できる。
次に、ポート位置調整の詳細について説明する。
ポート位置処理部164は、例えばメモリ150に保持されたテンプレートやUI120を介したユーザ指示を基に、複数のポート位置(候補位置)の情報を取得する。ポート位置処理部164は、取得された複数のポート位置の組み合わせに基づいて、この複数のポート位置を用いた場合のポート位置スコアを算出する。
ポート位置処理部164は、ポート位置スコアに基づいて、ポートPTの位置を調整してよい。この場合、ポート位置処理部164は、取得された複数のポート位置の場合のポート位置スコアと、この複数のポート位置のうちの少なくとも1つのポート位置を変更した場合のポート位置スコアと、に基づいて、ポートPTの位置を調整してよい。この場合、ポート位置処理部164は、3次元空間での各方向(x方向、y方向、z方向)に沿ったポート位置の微小移動や微分を加味してよい。
なお、x方向は、被検体PSを基準とした左右方向に沿ってよい。y方向は、被検体PSを基準とした前後方向(被検体PSの厚み方向)でよい。z方向は、被検体PSを基準とした上下方向(被検体PSの体軸方向)でよい。x方向、y方向、z方向は、DICOM(Digital Imaging and COmmunications in Medicine)で規定された3方向でよい。x方向、y方向、z方向は、これ以外の方向でもよく、被検体PSを基準にしない方向でもよい。
例えば、ポート位置処理部164は、(式1)に従って、複数のポート位置に対して、ポート位置スコアF(ports)を算出し、Fの微分値F’を算出してよい。
F(port_j(x+Δx, y, z)) - F(port_j(x, y, z))
F(port_j(x, y+Δy, z)) - F(port_j(x, y, z)) ・・・(式1)
F(port_j(x, y, z+Δz)) - F(port_j(x, y, z))
つまり、ポート位置処理部164は、ポート位置F(port_j(x+Δx, y, z))の場合のポート位置スコアFを算出し、ポート位置F(port_j(x, y, z))の場合のポート位置スコアFを算出し、その差分を算出する。この差分値は、ポート位置F(port_j(x, y, z))におけるx方向の微小変化に対するポート位置スコアFの変化を示し、つまり、x方向のFの微分値F’を示す。
また、ポート位置処理部164は、ポート位置F(port_j(x, y+Δy, z))の場合のポート位置スコアFを算出し、ポート位置F(port_j(x, y, z))の場合のポート位置スコアFを算出し、その差分を算出する。この差分値は、ポート位置F(port_j(x, y, z))におけるy方向の微小変化に対するポート位置スコアFの変化を示し、つまり、y方向のFの微分値F’を示す。
また、ポート位置処理部164は、ポート位置F(port_j(x, y, z+Δz))の場合のポート位置スコアFを算出し、ポート位置F(port_j(x, y, z))の場合のポート位置スコアFを算出し、その差分を算出する。この差分値は、ポート位置F(port_j(x, y, z))におけるz方向の微小変化に対するポート位置スコアFの変化を示し、つまり、z方向のFの微分値F’を示す。
ポート位置処理部164は、各方向の微分値F’に基づいて、ポート位置スコアの最大値を算出する。この場合、ポート位置処理部164は、微分値F’に基づいて、再急降下法に従ってポート位置スコアが最大となるポート位置を算出してよい。ポート位置処理部164は、算出されたポート位置を穿孔対象の位置とするように、ポート位置を調整し、ポート位置を最適化してよい。なお、ポート位置スコアが最大となるポート位置でなくても、例えばポート位置スコアが閾値th1以上となる位置でもよく、ポート位置スコアが改善されれば(高くなれば)よい。
ポート位置処理部164は、このようなポート位置の調整を、複数のポート位置の組み合わせに含まれる他のポート位置の調整に適用したり、複数のポート位置の他の組み合わせにおけるポート位置の調整に適用したりしてよい。これにより、ポート位置処理部164は、各ポート位置が調整された(例えば最適化された)複数のポートPTを、穿孔対象のポート位置に計画できる。
なお、複数のポート位置(ポート位置の座標)は、穿孔予定位置と実際の穿孔位置とで所定長(例えば25mm)程度の誤差が生じ得、またポート位置の計画精度は精々3mmあれば十分であると考えられる。そのため、ポート位置処理部164は、被検体PSの体表において所定長毎に、ポート位置の組み合わせに含まれる複数のポート位置を総当たりで穿孔予定位置とし、この複数のポート位置についてのポート位置スコアをそれぞれ算出してよい。つまり、被検体PSの体表における所定長(例えば3mm)の格子状(グリッド)に、穿孔予定位置が配置されてよい。また、体表上に仮定されるポート数(例えば格子状の交点の数)がn個であり、ポート位置の組み合わせに含まれるポート数がm個である場合、ポート位置処理部164は、n個のポート位置からm個のポート位置を順番に選択して組み合わせ、それぞれの組み合わせでのポート位置スコアを算出してよい。このように、3mm間隔の格子状のようにグリッドが過度に細かくない場合には、ポート位置処理部164の計算負荷が過大となることを抑制でき、全組み合わせのポート位置スコアを算出可能である。
なお、ポート位置処理部164は、公知の方法に従って、複数のポート位置の調整を行ってよい。ポート位置処理部164は、穿孔対象のポート位置を、調整後のポート位置の組み合わせに含まれる複数のポート位置に計画してよい。ポート位置調整の公知の方法は、以下の参考非特許文献4,5及び参考特許文献3に記載された技術を含んでよい。
(参考非特許文献4)Shaun Selha、Pierre Dupont, Robert Howe, David Torchiana, “Dexterity optimization by port placement in robot-assisted minimally invasive surgery”, SPIE International Symposium on Intelligent Systems and Advanced Manufacturing, Newton, MA, 28-31, 2001
(参考非特許文献5)Zhi Li, Dejan Milutinovic, Jacob Rosen, “Design of a Multi-Arm Surgical Robotic System for Dexterous Manipulation”, Journal of Mechanisms and Robotics, 2016
(参考特許文献3)米国特許出願公開第2007/0249911明細書
次に、既孔ポートを用いたポート位置調整について説明する。
ポート位置処理部164は、複数のポートを穿孔する場合に、既に穿孔された(例えば1番目に穿孔された)既孔ポートPT1のポート位置の情報(計測情報)を取得してよい。ポート位置処理部164は、既孔ポートPT1のポート位置を基に、その後に穿孔される(例えば2番目に穿孔される)ポートのポート位置を計画してよい。これにより、ロボット手術支援装置100は、予定されていたポートPTの位置と実際に穿孔された既孔ポートPT1の位置とにずれがあっても、その後に穿孔されるポートのポート位置を修正可能である。
図10は、ロボット手術支援装置100による既孔ポートPT1を用いたポート位置調整手順の一例を示すフローチャートである。なお、図10においても、図8と同様に、被検体PSのボリュームデータの取得、手術支援ロボット300のキネマティクスの情報の取得、気腹シミュレーションの実行、及び術式の情報の取得が事前に行われる。
ポート位置処理部164は、複数のポート位置(穿孔候補の位置)の情報を取得する(S31)。ポート位置処理部164は、取得された複数のポート位置に基づいて、ポート位置シミュレーションを行い、ポート位置スコアを算出する(S32)。この場合、ポート位置処理部164は、術式、手術支援ロボット300のキネマティクス、仮想気腹状態のボリュームデータ、及び取得された複数のポート位置に基づいて、ポート位置スコアを算出してよい。
ポート位置処理部164は、各ポート位置を仮に移動させた場合のポート位置スコアに対する影響度を算出する(S33)。この場合、ポート位置処理部164は、ポート位置を所定距離(例えば微小距離)移動させた場合のポート位置スコアの変化量(例えば減少量)を、影響度として算出してよい。ポート位置を所定距離移動させた場合のポート位置スコアの変化量は、先述した(式1)に従って算出され、つまりポート位置スコアFの微分値F’に相当してよい。
ポート位置処理部164は、影響度が大きいポートPTから順に穿孔するように、ポートPTの穿孔順序を計画する。表示制御部166又は投射制御部167は、各ポートPTの位置及び穿孔順序の情報を表示させてよい(S34)。これにより、ユーザ(例えば術者、助手)は、計画されたポート位置を容易に認識でき、影響度を加味した穿孔順序も容易に認識できる。
なお、一例として穿孔順序が影響度の降順に一致することを例示したが、穿孔順序が影響度の昇順に一致してもよい。
なお、上記の影響度は、ポート位置を移動させた場合のポート位置スコアの変化量に相当するので、穿孔精度の必要度とも言える。つまり、影響度が大きいポートPTは、穿孔精度の必要度が高いポートPTであると言え、影響度が小さいポートPTは、穿孔精度の必要度が低いポートPTであると言える。よって、影響度の降順である穿孔順序の表示は、穿孔精度の必要度が高いポートから順に穿孔するためのユーザに対する指示とも言える。また、影響度の昇順である穿孔順序の表示は、穿孔精度の必要度が低いポートから順に穿孔するためのユーザに対する指示とも言える。
ユーザは、計画されたポート位置に、該当するポートを穿孔する。ユーザは、穿孔されたポートPT(既孔ポートPT1)に、トロッカーTCを設置する。計測器400は、既孔ポートPT1のポート位置を計測する。既孔ポートPT1のポート位置は、トロッカーTC等を用いて自動計測されて、ロボット手術支援装置100に送られてもよいし、手動計測されてUI120を介して計測結果が入力されてもよい。ポート位置処理部164は、通信部110やUI120を介して、既孔ポートPT1のポート位置の計測情報を取得してよい(S35)。また、ポート位置処理部164は、UI120を介して、既孔ポートPT1を識別するための識別情報を取得してよい。これにより、ロボット手術支援装置100は、取得された複数のポートの位置のうち、どのポートが穿孔されたかを識別できる。
ポート位置処理部164は、S31で取得された複数のポート位置のうち、既孔ポートPT1に対応する穿孔候補のポート位置を、既孔ポートPT1のポート位置に置換する。ポート位置処理部164は、置換して得られた複数のポート位置に基づいて、置換して得られた複数のポート位置の組み合わせの場合のポート位置スコア(既孔ポートPT1を加味したポート位置スコア)を算出する(S36)。この場合、ポート位置処理部164は、術式、手術支援ロボット300のキネマティクス、仮想気腹状態のボリュームデータ、及び置換して得られた複数のポート位置に基づいて、ポート位置スコアを算出してよい。
ポート位置処理部164は、既孔ポートPT1を加味したポート位置スコアを基に、残りのポート位置を調整し、残りのポート位置を計画する(S37)。ポート位置処理部164は、残りのポート位置の調整を、前述したポート位置調整の手法に従って実施してよい。
なお、既に穿孔された既孔ポートPT1のポート位置は、固定位置となり、未だ穿孔されていない残りのポート位置は、可変位置となる。そのため、ポート位置処理部164は、S37の後にS31に進み、既孔ポートPT1を含む複数のポート位置のうち、残りのポート位置を任意に変更して、複数のポート位置の組み合わせを変更してよい。そして、変更された複数のポート位置の組み合わせについて、図10の処理を繰り返してよい。ポート位置処理部164は、例えばポート位置スコアが閾値th1以上(例えば最大)となるポート位置の組み合わせとなるように、残りのポート位置を計画してよい。これにより、既孔ポートPT1を加味して、残りのポート位置の適切度を向上(例えば最適化)できる。
なお、ポート位置処理部164は、図10の繰り返し処理において、S34において穿孔順序を導出する際、既孔ポートPT1については既に穿孔されているため、穿孔順序が固定である。したがって、ここでは、ポート位置処理部164は、残りのポートの穿孔順序を導出する。
既孔ポートPT1を用いたポート位置調整手順によれば、ロボット手術支援装置100は、穿孔予定の位置から位置ずれしてポートPTが穿孔された場合でも、既孔ポートPT1のポート位置を加味して残りのポート位置を調整できる。よって、既孔ポートPT1の穿孔位置野の誤差によって、導出されていた複数のポート位置の組み合わせではロボット手術の手術効率や安全性が低下するような場合でも、既孔ポートPT1を加味して残りのポート位置を再配置することで、手術効率や安全性の低下を抑制できる。
図11Aは、ポートの穿孔前のガイド表示を含む画像表示例を示す図である。図11Bは、ポートの穿孔後のガイド表示を含む画像表示例を示す図である。この画像は、ディスプレイ130に表示される例であるが、ポートPTを穿孔するためのガイド情報は、投射部170により被検体PSの体表に向けて可視光が投射され、可視光によりガイド情報が表示されてよい。
図11Aでは、ボリュームレンダリング画像が表示されるとともに、ボリュームレンダリング画像に重畳してガイド情報が表示されている。ガイド情報では、大きな矢印(大矢印)の先端側にポートPT(ポートA)が存在することを示し、大矢印の末端側(根本側)にポートPTの識別情報(例えば「A」)を示している。また、ガイド情報では、小さな矢印(小矢印)は、両方向矢印の両先端位置の間の距離を示している。図11Aでは、距離をmm単位で示している。また、臍hsの位置も矢印で示されている。
図11Bでは、ボリュームレンダリング画像が表示されるとともに、ボリュームレンダリング画像に重畳してガイド情報が表示されている。ガイド情報では、大きな矢印(大矢印)の先端側にポートPT(ポートA)が存在することを示し、大矢印の末端側(根本側)にポートの識別情報(例えば「A」)を示している。また、「opened」を付記することで、ポートPTが既孔ポートPT1であることを示している。例えば、「opened A」は、ポートAが既孔ポートであることを示す。また、ガイド情報では、小さな矢印(小矢印)は、両方向矢印の両先端位置の間の距離を示している。図11Bでは、距離をmm単位で示している。また、臍hsの位置も矢印で示されている。
次に、比較例及び本実施形態のポート位置の指定例について説明する。
図12は、比較例のポート位置の指定を説明するための図である。図12に示すように、穿孔される全てのポート位置は、術前(最初のポートが穿孔される前)に定められていた。図12では、A,B,C,D,Eはポートの識別情報の一例であり、図示された長さの単位はmmである。なお、図12で示す各値は一例であり、他の値でもよい。
図12では、臍hsから頭部側に体軸方向に沿って移動させた位置に、臍hsとポートCとの距離が20mmとなるように、ポートCのポート位置が計画(指定)されている。また、ポートA〜Eが体軸方向と垂直な方向に直線状に配置されるように、各ポートA,B,C,D,Eが計画されている。つまり、ポートA及びポートBの間の距離が50mm、ポートB及びポートCの間の距離が50mm、ポートC及びポートDの間の距離が60mm、ポートD及びポートEの間の距離が40mm、となるように計画されている。
図13は、本実施形態のポート位置の指定例を説明するための図である。図13では、「PT1」は既に穿孔された既孔ポートを示し、「PT2」は未だ穿孔されていない未孔ポートを示す。
図13では、まず、1回目のポート位置シミュレーションやポート位置調整により、例えば術前にポートA〜Eの位置が計画される。この位置は、比較例で計画されたポート位置と同じである。つまり、臍hsから頭部側に体軸方向に沿って移動させた位置に、臍hsとポートCとの距離が20mmとなるように、ポートCのポート位置が計画されている。また、臍hsから体軸方向に垂直な方向に、ポートB及びポートCの間の距離が50mmとなるように、ポートBのポート位置が計画される。例えば、ポートC、ポートBの順に、計画されたポート位置を目標に穿孔される。
計測器400が実際に穿孔されたポートB,Cの位置を計測すると、ポートCの穿孔位置は、計画されたポート位置と同じ位置であった。一方、ポートBの穿孔位置は、計画されたポート位置とは異なり、臍hsから体軸方向に垂直な方向に、ポートB及びポートCの間の距離が60mmとなる位置に、ポートBが穿孔されていた。
これに対し、ポート位置処理部164は、ポート位置シミュレーションやポート位置調整を再度行う。ここでのポート位置調整は、既孔ポートPT1を用いたポート位置調整となる。この場合、既孔ポートPT1であるポートC、ポートBの位置を固定して(固定値として)、他のポートA,D,Eの位置を可変して(可変値として)、各ポート位置を調整して計画する。このポート位置シミュレーションの結果、図13では、残りのポートとしてのポートAの位置が、当初の穿孔予定の位置(1回目のポート位置シミュレーションやポート位置調整により計画された位置)から変更され、ポート位置が調整されている。つまり、ポートBのポート位置から体軸方向と垂直な方向(図13では左方向に)に45mm離れ、ポートBのポート位置から体軸方向に沿う方向に(図13では上方向に)に10mm離れた位置に、ポートAのポート位置が計画される。つまり、ポート位置処理部164は、ポートA及びポートBの間の距離(体軸方向と垂直な方向の距離)を45mmとし、体軸方向に10mmオフセットさせた位置に、ポートAのポート位置を調整して計画している。
次に、既孔ポートPT1を用いたポート位置調整のバリエーションについて説明する。
ポート位置処理部164は、被検体PSの体表において穿孔が困難な領域である使用困難領域として設定してよい。使用困難領域は、例えば、既往歴があり癒着などによりポートを設けることが困難な領域を含んでよい。ポート位置処理部164は、UI120を介したユーザ入力を受け、使用困難領域を指定してよい。使用困難領域の設定情報は、メモリ150に保持され、適宜参照されてよい。使用困難領域に含まれるポートPTは、ポートPTの穿孔に不適な不適ポートとなる。なお、この不適ポートは、穿孔前のポートも穿孔後のポートもあり得る。ポート位置処理部164は、使用困難領域に穿孔対象のポートPTを設けることを禁止しても許可してもよい。
また、ポート位置処理部164は、実際に穿孔して既孔ポートPT1を設け、この既孔ポートPT1が使用困難な場合に、この既孔ポートPT1を含む所定範囲を使用困難領域に設定してよい。ポート位置処理部164は、UI120を介したユーザ入力を受け、既孔ポートPT1が使用困難であることを示す情報を取得してよい。この場合、既孔ポートPT1は、ポートPTの穿孔に不適な不適ポートである。
ポート位置処理部164は、使用困難領域に存在するポートPTの穿孔の優先度を低くして、優先度の高い順に穿孔順序を計画してよい。これにより、ロボット手術支援装置100は、癒着等の使用困難領域をなるべく穿孔しないので、使用できない可能性の高い使用困難領域に対応する被検体PSの体表を、なるべく傷付けないように配慮できる。
逆に、ポート位置処理部164は、使用困難領域に存在するポートPTの穿孔の優先度を高くして、優先度の高い順に穿孔順序を計画してよい。これにより、ロボット手術支援装置100は、癒着等の使用困難領域をなるべく早期に穿孔しようとするので、使用困難領域の状態を早期に確認でき、後のポートの穿孔計画を立て易くなる。
取得された又は計画された複数のポートPTのうち、不適ポートは、不適ポート以外のポート(適切ポート)から閾値th2以上の距離が離れていてよい。これにより、ロボット手術支援装置100は、適切ポートを穿孔する際に、例えば不適ポート周辺の穿孔が困難な要因(例えば癒着)による影響を低減可能である。
表示制御部166又は投射制御部167は、使用困難領域や不適ポートを可視化してよい。つまり、表示制御部166は、ボリュームデータに基づくレンダリング画像における使用困難領域や不適ポートに相当する箇所に、使用困難領域や不適ポートであることを示す不適マークを表示させてよい。投射制御部167は、被検体PSの体表における使用困難領域に可視光を投射し、使用困難領域であることを示す不適マークを表示させてよい。表示制御部166又は投射制御部167は、不適マークとして、例えば、ポートの表示に「!」マークを表示してもよいし、「癒着可能性」と使用困難領域と判断した理由を具体的に表示しても良い。
ポート位置処理部164は、所定のポート自身の移動に対する影響度を加味して穿孔順序を導出することを例示したが、この所定のポート以外の他のポートに対する影響度(他影響度)を加味して、穿孔順序を導出(例えば算出)してもよい。ポート位置処理部164は、所定のポートの位置を調整することで他のポートとの距離が所定距離以下となる場合に、他影響度が高いとして、優先度を高く又は低くし、穿孔順序を導出してよい。また、ポート位置処理部164は、所定のポートの位置を調整することで、他のポートの位置の調整が必要となり、ワーキングエリアも変化する場合に、他影響度が高いとして、優先度を高く又は低くし、穿孔順序を導出してよい。これにより、ロボット手術支援装置100は、他影響度を考慮することで、例えば他のポートを用いたワーキングエリアの変化を抑制でき、つまり他のポートを用いたロボット手術の作業性の低下を抑制して、所定のポートを用いたロボット手術の作業性を改善できる。
ポート位置処理部164は、ポートPTの穿孔困難度に基づいて、穿孔順序を計画してよい。穿孔困難度は、穿孔対象のポートPTを穿孔することの難しさを示す。例えば、基準位置(例えば臍hs、他のポート)からの距離が長い程、穿孔困難度が高くてよい。つまり、基準位置から穿孔対象のポートPTまでの距離が長い場合、この距離の計測時に、所望の距離からずれやすいため、穿孔対象のポートPTを穿孔することが困難と言える。また、被検体PSの脇に空けられるポートは、穿孔困難度が高くてよい。ポート位置処理部164は、メモリ150に保持された穿孔困難度の情報を取得してよい。
ポート位置処理部164は、穿孔困難度が高いポートPTから順に穿孔するように、ポートPTの穿孔順序を計画してよい。表示制御部166又は投射制御部167は、各ポートPTの位置及び穿孔困難度を加味した穿孔順序の情報を表示させてよい。これにより、ユーザ(例えば術者、助手)は、計画されたポート位置を容易に認識でき、穿孔困難度を加味した穿孔順序も容易に認識できる。
ポート位置処理部164は、複数のポートPTが穿孔された後に、複数のポートPTを既孔ポートPT1として、穿孔対象の残りのポート位置を調整してよい。この場合、ポート位置処理部164は、複数の既孔ポートPT1のポート位置を固定位置として、複数の既孔ポートPT1以外の残りのポート位置を可変位置として、ポート位置シミュレーションやポート位置調整を実施し、残りのポート位置を調整してよい。これにより、ロボット手術支援装置100は、例えば複数人が同時にポートPTを穿孔する場合でも、穿孔された複数のポートPTを既孔ポートPT1として、穿孔結果を加味して残りのポート位置を調整できる。
変形シミュレーション部163は、既孔ポートPT1が穿孔された際に、計測器400から、通信部110を介して、実気腹状態の被検体PSの体表の位置の情報を取得してよい。変形シミュレーション部163は、非気腹状態の被検体PSのボリュームデータに対する気腹シミュレーションにより得られる、仮想気腹状態の被検体PSの体表の位置の情報を取得してよい。変形シミュレーション部163は、実気腹状態の被検体PSの体表の位置と仮想気腹状態の被検体PSの体表の位置との差分に基づいて、気腹シミュレーションの結果を補正し、この補正にする補正情報を生成してよい。
ポート位置処理部164は、補正情報を参照し、補正された気腹シミュレーションが実施された仮想気腹状態のボリュームデータに基づいて、ポート位置シミュレーションやポート位置調整を行ってよい。これにより、ロボット手術支援装置100は、既孔ポートPT1を用いたポート位置調整の調整精度を向上できる。
以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
第1の実施形態では、撮像されたCT画像としてのボリュームデータは、CT装置200からロボット手術支援装置100へ送信されることを例示した。この代わりに、ボリュームデータが一旦蓄積されるように、ネットワーク上のサーバ等へ送信され、サーバ等に保管されてもよい。この場合、必要時にロボット手術支援装置100の通信部110が、ボリュームデータを、有線回線又は無線回線を介してサーバ等から取得してもよいし、任意の記憶媒体(不図示)を介して取得してもよい。
第1の実施形態では、撮像されたCT画像としてのボリュームデータは、CT装置200からロボット手術支援装置100へ通信部110を経由して送信されることを例示した。これは、実質的にCT装置200とロボット手術支援装置100とを併せて一製品として成立している場合も含まれるものとする。また、ロボット手術支援装置100がCT装置200のコンソールとして扱われている場合も含む。
第1の実施形態では、CT装置200により画像を撮像し、生体内部の情報を含むボリュームデータを生成することを例示したが、他の装置により画像を撮像し、ボリュームデータを生成してもよい。他の装置は、MRI(Magnetic Resonance Imaging)装置、PET(Positron Emission Tomography)装置、血管造影装置(Angiography装置)、又はその他のモダリティ装置を含む。また、PET装置は、他のモダリティ装置と組み合わせて用いられてもよい。
第1の実施形態では、ロボット手術支援装置100に、手術支援ロボット300が接続されているが、接続されていなくてもよい。手術支援ロボット300のキネマティクスの情報があらかじめ取得されていれば十分だからである。また、ポートの穿孔を終了してから手術支援ロボット300を接続してもよい。また、手術支援ロボット300を構成する装置のうち一部の装置にのみ接続してもよい。また、ロボット手術支援装置100自体が、手術支援ロボット300の一部であってもよい。
第1の実施形態では、手術支援ロボット300は、低侵襲手術を目的とする手術支援ロボットであったが、低侵襲手術を目的とする手術支援ロボット300は、腹腔鏡手術を支援する手術支援ロボットであってよい。また、手術支援ロボット300は、内視鏡手術を支援する手術支援ロボットであってよい。
第1の実施形態では、ロボット手術支援装置100が被検体の仮想気腹状態のボリュームデータを基にポート位置を計画することを例示したが、これに限られない。例えば観察対象が呼吸器や頸部では気腹されずにロボット手術されることがあるためである。つまり、ロボット手術支援装置100は、非気腹状態のボリュームデータを基にポート位置を計画してもよい。
第1の実施形態では、被検体PSとして人体を例示したが、動物の体でもよい。
本開示は、第1の実施形態のロボット手術支援装置の機能を実現するプログラムを、ネットワーク又は各種記憶媒体を介してロボット手術支援装置に供給し、ロボット手術支援装置内のコンピュータが読み出して実行するプログラムも適用範囲である。
以上のように、上記実施形態のロボット手術支援装置100は、手術支援ロボット300による低侵襲なロボット手術を支援する。処理部160は、被検体PSの3Dデータ(例えば非気腹状態のボリュームデータや仮想気腹状態のボリュームデータ)を取得してよい。処理部160は、手術支援ロボットのロボット手術を行うための可動部(例えばロボットアームAR、エンドエフェクタEF)の動作に関する動作情報(例えばキネマティクスの情報)を取得してよい。処理部160は、被検体PSを手術するための術式の情報を取得してよい。処理部160は、被検体PSの体表に穿孔される複数のポートPTの位置の計画情報を取得してよい。処理部160は、複数のポートPTのうち、被検体PSの体表において穿孔された第1のポート(例えば既孔ポートPT1)の位置を計測した計測情報を取得してよい。処理部160は、第1のポートの位置の計測情報と、術式と、手術支援ロボットの動作情報と、3Dデータに基づいて、複数のポートPTのうちの第1のポートを除く残りのポートのうちの少なくとも1つの位置を決定してよい。処理部160は、決定されたポートの位置を示す情報を表示部(例えばディスプレイ130)に表示させてよい。
これにより、ロボット手術支援装置100は、複数のポートPTの穿孔中においてポート位置を調整しながら、ポートPTを穿孔することができる。例えば、ポートPTの穿孔が困難な位置であることで、当初想定された位置にポートを穿孔することが困難であり、予定と異なる位置にポートが穿孔されることがある。この場合でも、ロボット手術支援装置100は、実際に穿孔されたポートPT(既孔ポート)の穿孔位置を加味して、残りのポート位置(未定孔ポート)を計画することで、複数のポートPTの全体で当初想定されたポートの配置のバランスを確保し易くなる。したがって、ロボット手術支援装置100は、第1のポートの穿孔予定位置からの位置ずれによるロボット手術への影響を低減できる。
また、処理部160は、取得された複数のポートPTの位置と、術式と、手術支援ロボット300の動作情報と、3Dデータと、に基づいて、第1のポート及び残りのポートを含む複数のポートPTの位置を調整してよい。処理部160は、穿孔された第1のポートの位置と、術式と、手術支援ロボットの動作情報と、3Dデータと、に基づいて、複数のポートPTのうちの調整された残りのポートのうちの少なくとも1つの位置を再調整してよい。
これにより、ロボット手術支援装置100は、まずは複数のポート全体の配置を調整(例えば最適化)し、複数のポート全体にふさわしい配置を計画できる。また、ロボット手術支援装置100は、その後に実際に穿孔された第1のポートの穿孔位置を加味して、残りのポートの配置を再調整して、残りのポート全体にふさわしい配置を計画できる。よって、ロボット手術支援装置100は、例えば穿孔の度に各ポート位置を調整して、各穿孔タイミングで未孔ポートの位置を最適化できる。
また、処理部160は、被検体PSの体表において残りのポートを穿孔する優先度(例えば、影響度、他影響度、穿孔困難度)を導出してよい。処理部160は、優先度に基づいて、残りのポートを穿孔するための穿孔順序の計画(優先度の計画の一例)を行ってよい。処理部160は、穿孔順序を示す情報を表示させてよい。
これにより、ユーザは、未孔ポートを穿孔するための望ましい穿孔順序を確認できる。例えば、ロボット手術支援装置100は、穿孔位置の位置ずれ(誤差)がポート位置スコアに与える影響が大きいポートの優先度を高くし、ポート位置スコアに与える影響が大きいポートから順に穿孔するよう促すことができる。
また、処理部160は、UI120を介して、複数のポートPTに含まれ、穿孔することが不適である不適ポートを指定してよい。不適ポートと、複数のポートPTのうち不適ポートとして指定されなかったポート(適切ポート)と、の距離は、閾値th2以上でよい。
これにより、ユーザは、穿孔対象とすることに不向きな不適ポートを確認できる。また、不適ポートと不適以外の適切ポートとの距離が一定距離離間されることで、適切ポートを穿孔する際に、例えば不適ポート周辺の癒着による影響が低減可能である。
また、処理部160は、3Dデータをレンダリングしてレンダリング画像を生成してよい。処理部160は、レンダリング画像に残りのポートの情報(例えば残りのポートの識別情報、残りのポートのポート位置の情報)を重畳して、表示部(例えばディスプレイ130)に表示させてよい。
これにより、ユーザは、表示部上で、レンダリング画像で被検体PSにおける残りのポートの位置を確認できる。また、ロボット手術支援装置100がレンダリング画像を用いることで、ユーザは、残りのポートの穿孔による被検体PSの内部への影響も推測できる。
また、処理部160は、被検体PSの体表に対して、残りのポートの情報を示す可視光を、投射部170に投射させてよい。
これにより、ロボット手術支援装置100は、ロボット手術が行われる被検体PSに直接、残りのポートの情報を投射できる。そのため、ユーザは、穿孔される被検体PS上に映し出された残りのポートの情報(例えばポートの位置情報、ポートの識別情報、ポートの穿孔順序の情報)を確認できる。よって、ユーザは、被検体PS上の可視光を目印に穿孔できる。したがって、ロボット手術支援装置100は、計画された残りのポートのポート位置に対して、実際の穿孔位置がずれることを抑制できる。
また、処理部160は、被検体PSのボリュームデータに気腹シミュレーションを行い、仮想気腹状態の3Dデータを生成してよい。
これにより、ロボット手術支援装置100は、例えば実際の気腹状態が気腹シミュレーションの状態と異なり、予定と異なる位置にポートが穿孔されても、実際に穿孔されたポートPT(既孔ポート)の穿孔位置を加味して、残りのポート位置(未孔ポート)を計画することで、複数のポートPTの全体で当初想定されたポートの配置のバランスを確保し易くなる。したがって、被検体に対する気腹の状況を加味して、第1のポートの穿孔予定位置からの位置ずれによるロボット手術への影響を低減できる。
本開示は、既孔ポートの位置ずれによるロボット手術への影響を低減できるロボット手術支援装置、ロボット手術支援方法、及びプログラム等に有用である。
100 ロボット手術支援装置
110 通信部
120 ユーザインタフェース(UI)
130 ディスプレイ
140 プロセッサ
150 メモリ
160 処理部
161 領域抽出部
162 画像生成部
163 変形シミュレーション部
164 ポート位置処理部
166 表示制御部
167 投射制御部
170 投射部
200 CT装置
300 手術支援ロボット
400 計測器
EF エンドエフェクタ
hs 臍
PS 被検体
PT ポート
PTA 補助ポート
PTC カメラポート
PTE エンドエフェクタポート
TC トロッカー
WA1 個別ワーキングエリア
WA2 全体ワーキングエリア

Claims (9)

  1. 手術器具を保持したロボットアームを有する手術支援ロボットによる低侵襲なロボット手術を支援するロボット手術支援装置であって、
    処理部及び表示部を備え、
    前記処理部は、
    被検体の3Dデータを取得し、
    前記手術支援ロボットの前記ロボットアームの動作に関する動作情報を取得し、
    前記被検体を手術するための術式の情報を取得し、
    前記被検体の体表に穿孔される複数のポートの位置の計画情報を取得し、
    前記複数のポートのうち、前記被検体の体表において穿孔された第1のポートの位置を計測した計測情報を取得し、
    前記第1のポートの位置の計測情報と、前記術式と、前記手術支援ロボットの前記動作情報と、前記3Dデータと、に基づいて、前記複数のポートのうちの前記第1のポートを除く残りのポートのうちの少なくとも一つの位置を決定し、
    前記決定されたポートの位置を示す情報を前記表示部に表示させる、
    ロボット手術支援装置。
  2. 前記処理部は、
    取得された前記複数のポートの位置と、前記術式と、前記手術支援ロボットの前記動作情報と、前記3Dデータと、に基づいて、前記第1のポート及び前記残りのポートを含む前記複数のポートの位置を調整し、
    穿孔された前記第1のポートの位置と、前記術式と、前記手術支援ロボットの動作情報と、前記3Dデータと、に基づいて、前記複数のポートのうちの調整された前記残りのポートのうちの少なくとも一つの位置を再調整する、
    請求項1に記載のロボット手術支援装置。
  3. 前記処理部は、
    前記被検体の体表において前記残りのポートを穿孔する優先度を導出し、
    前記優先度を示す情報を前記表示部に表示させる、
    請求項1に記載のロボット手術支援装置。
  4. 操作部、を更に備え、
    前記処理部は、前記操作部を介して、前記複数のポートに含まれ、穿孔することが不適である不適ポートを指定し、
    前記不適ポートと、前記複数のポートのうち前記不適ポートとして指定されなかったポートと、の距離は、閾値以上である、
    請求項1〜3のいずれか1項に記載のロボット手術支援装置。
  5. 前記処理部は、
    前記3Dデータをレンダリングしてレンダリング画像を生成し、
    前記レンダリング画像に前記残りのポートの情報を重畳して、前記表示部に表示させる、
    請求項1〜4のいずれか1項に記載のロボット手術支援装置。
  6. 前記処理部は、前記被検体の体表に対して、前記残りのポートの情報を示す可視光を、投射部に投射させる、
    請求項1〜4のいずれか1項に記載のロボット手術支援装置。
  7. 前記処理部は、前記被検体のボリュームデータに気腹シミュレーションを行い、仮想気腹状態の前記3Dデータを生成する、
    請求項1〜6のいずれか1項に記載のロボット手術支援装置。
  8. 手術器具を保持したロボットアームを有する手術支援ロボットによるロボット手術を支援するロボット手術支援装置におけるロボット手術支援方法であって、
    被検体の3Dデータを取得し、
    前記手術支援ロボットの前記ロボット手術を行うための可動部の動作に関する動作情報を取得し、
    前記被検体を手術するための術式の情報を取得し、
    前記被検体の体表に穿孔される複数のポートの位置の計画情報を取得し、
    前記複数のポートのうち、前記被検体の体表において穿孔された第1のポートの位置を計測した計測情報を取得し、
    前記第1のポートの位置の計測情報と、前記術式と、前記手術支援ロボットの前記動作情報と、前記3Dデータと、に基づいて、前記複数のポートのうちの前記第1のポートを除く残りのポートのうちの少なくとも一つの位置を決定し、
    前記決定されたポートの位置を示す情報を表示部に表示させる、
    ロボット手術支援方法。
  9. 請求項8に記載のロボット手術支援方法をコンピュータに実行させるためのプログラム。
JP2018192930A 2018-10-11 2018-10-11 ロボット手術支援装置、ロボット手術支援方法、及びプログラム Active JP7182126B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018192930A JP7182126B2 (ja) 2018-10-11 2018-10-11 ロボット手術支援装置、ロボット手術支援方法、及びプログラム
US16/599,310 US11779412B2 (en) 2018-10-11 2019-10-11 Robotically-assisted surgical device, robotically-assisted surgery method, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192930A JP7182126B2 (ja) 2018-10-11 2018-10-11 ロボット手術支援装置、ロボット手術支援方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2020058672A true JP2020058672A (ja) 2020-04-16
JP7182126B2 JP7182126B2 (ja) 2022-12-02

Family

ID=70161996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192930A Active JP7182126B2 (ja) 2018-10-11 2018-10-11 ロボット手術支援装置、ロボット手術支援方法、及びプログラム

Country Status (2)

Country Link
US (1) US11779412B2 (ja)
JP (1) JP7182126B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113149A (zh) * 2021-04-01 2021-07-13 上海复拓知达医疗科技有限公司 一种增强现实手术导航***的提示信息显示装置和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102667464B1 (ko) * 2021-07-21 2024-05-20 (주)휴톰 환자의 3차원 가상 기복 모델 상에 트로카의 삽입 위치를 결정하는 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109780A1 (en) * 2001-06-07 2003-06-12 Inria Roquencourt Methods and apparatus for surgical planning
JP2011131020A (ja) * 2009-12-25 2011-07-07 Mitsubishi Precision Co Ltd トロカーポート位置決定シミュレーション方法及びその装置
US20140148816A1 (en) * 2012-11-26 2014-05-29 Michael W. McDONALD Surgery port placement system and related methods
WO2019203860A1 (en) * 2018-04-20 2019-10-24 Verb Surgical Inc. Robotic port placement guide and method of use

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311300A (en) 1964-07-22 1967-03-28 Ncr Co Calculating machines
JPS548493A (en) 1977-06-22 1979-01-22 Toshiba Corp Scanning conversion system
FR2855292B1 (fr) 2003-05-22 2005-12-09 Inst Nat Rech Inf Automat Dispositif et procede de recalage en temps reel de motifs sur des images, notamment pour le guidage par localisation
US7763015B2 (en) 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US7837674B2 (en) 2005-01-24 2010-11-23 Intuitive Surgical Operations, Inc. Compact counter balance for robotic surgical systems
US20070167784A1 (en) 2005-12-13 2007-07-19 Raj Shekhar Real-time Elastic Registration to Determine Temporal Evolution of Internal Tissues for Image-Guided Interventions
US8112292B2 (en) * 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US7623679B2 (en) 2006-12-13 2009-11-24 Accuray Incorporated Temporal smoothing of a deformation model
US9707043B2 (en) 2011-09-02 2017-07-18 Stryker Corporation Surgical instrument including housing, a cutting accessory that extends from the housing and actuators that establish the position of the cutting accessory relative to the housing
US20140100620A1 (en) 2012-10-02 2014-04-10 Vector Sight Inc. Laser Projected Display for Implant Orientation and Placement
WO2017056775A1 (ja) * 2015-09-28 2017-04-06 富士フイルム株式会社 プロジェクションマッピング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109780A1 (en) * 2001-06-07 2003-06-12 Inria Roquencourt Methods and apparatus for surgical planning
JP2011131020A (ja) * 2009-12-25 2011-07-07 Mitsubishi Precision Co Ltd トロカーポート位置決定シミュレーション方法及びその装置
US20140148816A1 (en) * 2012-11-26 2014-05-29 Michael W. McDONALD Surgery port placement system and related methods
WO2019203860A1 (en) * 2018-04-20 2019-10-24 Verb Surgical Inc. Robotic port placement guide and method of use
JP2021528114A (ja) * 2018-04-20 2021-10-21 バーブ サージカル インコーポレイテッドVerb Surgical Inc. ロボットポート配置ガイド及び使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113149A (zh) * 2021-04-01 2021-07-13 上海复拓知达医疗科技有限公司 一种增强现实手术导航***的提示信息显示装置和方法

Also Published As

Publication number Publication date
JP7182126B2 (ja) 2022-12-02
US20200113635A1 (en) 2020-04-16
US11779412B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
JP7188970B2 (ja) ロボット手術支援装置、ロボット手術支援装置の作動方法、及びプログラム
JP7469120B2 (ja) ロボット手術支援システム、ロボット手術支援システムの作動方法、及びプログラム
EP3289964A1 (en) Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
JP2020522827A (ja) 外科ナビゲーションにおける拡張現実の使用
CN111867438A (zh) 手术辅助设备、手术方法、非暂时性计算机可读介质和手术辅助***
US11625825B2 (en) Method for displaying tumor location within endoscopic images
EP3398552A1 (en) Medical image viewer control from surgeon's camera
KR20190080706A (ko) 수술보조 영상 표시방법, 프로그램 및 수술보조 영상 표시장치
JP7182126B2 (ja) ロボット手術支援装置、ロボット手術支援方法、及びプログラム
US11771508B2 (en) Robotically-assisted surgical device, robotically-assisted surgery method, and system
US20210298848A1 (en) Robotically-assisted surgical device, surgical robot, robotically-assisted surgical method, and system
KR101864411B1 (ko) 수술보조 영상 표시방법 및 프로그램
JP7182127B2 (ja) ロボット手術支援装置、情報出力方法、及びプログラム
JP2011131020A (ja) トロカーポート位置決定シミュレーション方法及びその装置
JP7495216B2 (ja) 鏡視下手術支援装置、鏡視下手術支援方法、及びプログラム
US20210298854A1 (en) Robotically-assisted surgical device, robotically-assisted surgical method, and system
JP2020162700A (ja) 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム
JP7355514B2 (ja) 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム
US11657547B2 (en) Endoscopic surgery support apparatus, endoscopic surgery support method, and endoscopic surgery support system
WO2023162657A1 (ja) 医療支援装置、医療支援装置の作動方法及び作動プログラム
WO2023129934A1 (en) Systems and methods for integrating intra-operative image data with minimally invasive medical techniques
WO2023018685A1 (en) Systems and methods for a differentiated interaction environment
KR101529659B1 (ko) 수술전 호흡 레벨과 수술장 호흡 레벨을 비교하는 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7182126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150