JP2020055261A - High-definition electrostatic printing method - Google Patents

High-definition electrostatic printing method Download PDF

Info

Publication number
JP2020055261A
JP2020055261A JP2018188998A JP2018188998A JP2020055261A JP 2020055261 A JP2020055261 A JP 2020055261A JP 2018188998 A JP2018188998 A JP 2018188998A JP 2018188998 A JP2018188998 A JP 2018188998A JP 2020055261 A JP2020055261 A JP 2020055261A
Authority
JP
Japan
Prior art keywords
electrode
pattern
image receiving
plate
receiving sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018188998A
Other languages
Japanese (ja)
Other versions
JP6592575B1 (en
Inventor
雄二 三谷
Yuji Mitani
雄二 三谷
崇明 小沼
Takaaki Konuma
崇明 小沼
和彦 本庄
Kazuhiko Honjo
和彦 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Touch Panel Laboratories Co Ltd
Original Assignee
Touch Panel Laboratories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Touch Panel Laboratories Co Ltd filed Critical Touch Panel Laboratories Co Ltd
Priority to JP2018188998A priority Critical patent/JP6592575B1/en
Application granted granted Critical
Publication of JP6592575B1 publication Critical patent/JP6592575B1/en
Publication of JP2020055261A publication Critical patent/JP2020055261A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To create a high-definition electrostatic pattern directly on an insulator other than a photoconductor using unprecedented effects and performance enabled by combining high-definition patterns that use electricity and ever-evolving toner.SOLUTION: The original plate has a first electrode having uniform conductivity over the entire surface, and is composed of a plate material having an appropriate uniform thickness, the plate material being in close contact with and integrated with the first electrode. The plate material has a relievo, intaglio, or gravure pattern. An image receiving sheet having a back surface integrated with a conductive layer that is a second electrode is brought into close contact with the original plate, and a proper voltage, which is sufficient to discharge a void layer in a concave portion of the relievo, intaglio, or gravure pattern, is applied between a first electrode and a second electrode of the original plate, thereby forming a high-definition electrostatic pattern corresponding to the relievo, intaglio, or gravure pattern on the image receiving sheet.SELECTED DRAWING: Figure 1(B)

Description

本発明は凸版或いは凹版或いはグラビア版の形状からなる原板を用いて電気絶縁基材上に静電印刷する方法に関するものであり、原理は放電技術に関連し、静電印刷の利用は電子写真に代表される静電プリンター技術に関連する。 The present invention relates to a method of electrostatic printing on an electrically insulating substrate using an original plate having the shape of a letterpress, intaglio or gravure plate. The principle relates to a discharge technique, and the use of electrostatic printing is applied to electrophotography. Related to typical electrostatic printer technology.

静電気を利用して画像を作る実用的な技術を世界で初めて発明したのは米国のチェスター・カールソンである。この発明に関する技術は通称カールソン法或いはゼログラフィー法と呼ばれたが、画像形成技術として学術的に研究が進み、学術名としてはErectrophotographyと称され、日本では電子写真法と名付けられている。その技術を利用して作られた複写機、プリンターは事務作業に無くてはならないものとなっている。 Chester Carlson of the United States invented the world's first practical technology for making images using static electricity. The technology relating to the present invention was generally called the Carlson method or the xerography method, but research has been progressed academically as an image forming technique, and the scientific name has been called Erectrophotography, and in Japan it has been named electrophotography. Copiers and printers made using this technology are indispensable for office work.

その技術は「写真」と名付けられたように光学像を静電気と感光体(光半導体)によって静電気潜像として形成し、トナーと称する帯電した微粒子で現像するものである。ページ毎に変化する画像を即座に紙に印刷して出力するという複写機としてはうってつけの技術として発展した。その発展の中で最も進化を遂げているのは現像剤であるトナーと現像技術と云えるだろう。粉体トナーは6ミクロン程度まで微粒子化すると共に均一粒径・均一帯電を実現化して解像力と転写の安定性を向上させてきている。さらに微粒子化した液体トナーはサブミクロンサイズで、現像液の安定も確保できてきており、解像性では印刷インクを凌ぐものにさえなっている。さらにはカラートナーとしてだけではなく金属を含んだトナー、金属そのもので現像する手法、特許文献2のようなめっきが可能なトナー等々粉体・液体に関わらず機能性トナーや現像法が次々と開発されてきている。 According to this technique, an optical image is formed as an electrostatic latent image by using static electricity and a photoconductor (photosemiconductor), and is developed with charged fine particles called toner, as is called "photography". It has developed as a perfect technology for copiers that immediately prints and outputs images that change from page to page on paper. It can be said that the most advanced of the developments are the toner as the developer and the developing technology. The powder toner has been reduced to fine particles of about 6 μm and has realized uniform particle diameter and uniform charging to improve the resolving power and the stability of transfer. Further, the finely divided liquid toner has a submicron size, and the stability of the developing solution has been secured, and the resolution has surpassed that of the printing ink. In addition to color toners, toners containing metals, techniques for developing with metals themselves, toners that can be plated as in Patent Document 2, and functional toners and developing methods are being developed one after another regardless of powder or liquid. Have been.

しかしこれらの機能性トナーの特徴を十分に発揮させるには電子写真法では限界がある。それは感光体上に静電気パターンを作るという基本的な要素の為である。つまり、感光体上の静電気パターンを現像し、その現像トナーを目的材に転写しなければならない。もちろんその手法によってこそ無版で高精細・高速の印刷が実現しているのであるが、転写すれば必ず解像性は下がるし、導電性のトナーは粘着以外では転写出来ない。さらに云うと現状の感光体はアナログ特性であり、高速で10μmのドットや細線を100μm以上のドットや線と同時に正確に印刷することは困難である。転写性能を持たせるという点でせっかくの機能性トナーも中途半端なものにならざるを得なくなっている。 However, there is a limit in electrophotography to fully exhibit the characteristics of these functional toners. That is because of the basic element of creating an electrostatic pattern on the photoreceptor. That is, it is necessary to develop the electrostatic pattern on the photoreceptor and transfer the developed toner to a target material. Of course, high-definition and high-speed printing without a plate is realized by this method, but the transfer always lowers the resolution, and the conductive toner cannot be transferred except by adhesive. Furthermore, the current photoreceptor has an analog characteristic, and it is difficult to print 10 μm dots or thin lines at a high speed and simultaneously with 100 μm or more dots and lines. In terms of imparting the transfer performance, the functional toner has to be half-finished.

特開平8−19272 号公報JP-A-8-19272 特開2007−134422 号公報JP 2007-134422 A

情野、田中、井上、田嶋:電子写真学会誌 第7巻第3号、p2.Aino, Tanaka, Inoue, Tajima: Journal of the Institute of Electrographic Photography Vol. 7, No. 3, p. 2.

過去静電気パターンを直接現像する為の試みが種々されてきた。製品化まで到った一つに、非特許文献1に示すように感光体から静電気パターンそのものを転写して直接現像する静電転写システムがある。しかし転写紙が特殊であることと剥離放電作用で静電気パターンが作られるという原理の為感光体上のパターンより解像性は落ちる事で現在では製造されていない。直接静電気パターンを描くデバイスとしてマルチスタイラスやイオンビームを偏向させる方式などが製品化されたが電極の加工精度の限界や放電イオンの広がりによる解像性の低さからインクジェット方式に取って代わられている。
また、静電アクチュエータのための静電気パターン形成法ではあるが、特許文献1では電極の周囲に隔壁を設け、放電範囲を限定することで静電気パターンの電極に対する忠実性を得る提案がなされている。しかし特許文献1の手法では印刷や電子写真のような画像パターンを作ることは出来ない。
静電気を利用した高精細なパターンと進化を続けるトナーとを組み合わせれば従来にない効果と性能を持った印刷の可能性があり、感光体以外の絶縁体に直接高精細な静電気パターンを作る手法が望まれている。
In the past, various attempts have been made to directly develop electrostatic patterns. As one of products which have been commercialized, there is an electrostatic transfer system for transferring an electrostatic pattern itself from a photoconductor and directly developing the same as described in Non-Patent Document 1. However, due to the specialty of the transfer paper and the principle that an electrostatic pattern is formed by the peeling discharge action, the resolution is lower than that of the pattern on the photoreceptor. Multi-stylus and ion beam deflection systems have been commercialized as devices for directly drawing electrostatic patterns, but have been replaced by the inkjet system due to limitations in electrode processing accuracy and low resolution due to spread of discharge ions. I have.
In addition, although this is a method of forming an electrostatic pattern for an electrostatic actuator, Patent Document 1 proposes providing a partition around an electrode and limiting the discharge range to obtain fidelity of the electrostatic pattern to the electrode. However, the method of Patent Document 1 cannot create an image pattern such as printing or electrophotography.
Combining high-definition patterns using static electricity with evolving toner has the potential for printing with unprecedented effects and performance, and a method for creating high-definition electrostatic patterns directly on insulators other than photoconductors Is desired.

本発明では感光体を使わず従来の印刷に匹敵、さらにはそれを凌駕するような静電気を利用して画像を作る実用的な高精細静電印刷方法を提案する。 The present invention proposes a practical high-definition electrostatic printing method for forming an image using static electricity which does not use a photoreceptor and which is comparable to or even exceeds conventional printing.

上述した課題を実現するための本発明の一態様によれば、原版は全面均一な導電性を持った第1電極を持ち、その第1電極の上に密着一体となった適正な均一厚みを持つ版材料で構成されている。そして前記版材料は凸版或いは凹版或いはグラビア版状のパターンが形成されている。前記原版上に、裏面が第2電極である導電層と一体となっている受像シートを密着させ、前記原版の第1電極と前記第2電極との間に前記凸版或いは凹版或いはグラビア版状パターンの凹部の空隙層を放電させるに足る適正な電圧を印加することによって、前記受像シート上に前記凸版或いは凹版或いはグラビア版状パターンに対応した静電気パターンを形成することを特徴とする高精細静電印刷方法が提供される。 According to one aspect of the present invention for achieving the above-described object, the original plate has a first electrode having uniform conductivity over the entire surface, and has an appropriate uniform thickness that is closely adhered and integrated on the first electrode. It is made up of plate materials. The plate material has a relief, intaglio or gravure pattern. An image receiving sheet having a back surface integrated with a conductive layer serving as a second electrode is adhered onto the original, and the relief, intaglio, or gravure plate-like pattern is provided between the first electrode and the second electrode of the original. Forming an electrostatic pattern corresponding to the relief, intaglio or gravure plate pattern on the image receiving sheet by applying an appropriate voltage sufficient to discharge the void layer of the concave portion. A printing method is provided.

前述の構成と静電気パターン形成の過程を理解し易いように図1の基本概念図で説明する。図1(A)は原版10及び受像シート20の構成を示しており、原板10は電極11と凸版或いは凹版或いはグラビア版状の版層12で構成され、静電気パターンが形成される受像シート20は導電層21と受像層22で構成されている。図1(B)は原版10の版層12と受像層20の受像層22を向かい合わせて密着させた構図で、原版10の電極11と受像シート20の導電層21間に直流電圧を印加して版層12の凹部の空隙12a及び空隙12b中の気体を放電させ、受像シート20の受像層22に電離イオンを付着させる工程を示している。図1(C)は原版10から受像シート22を剥離し、受像層22上に版層12の凹部の空隙12a及び空隙12bに応じた静電気パターンが形成されることを示している。 The above-described configuration and the process of forming an electrostatic pattern will be described with reference to the basic conceptual diagram of FIG. FIG. 1A shows the configuration of an original plate 10 and an image receiving sheet 20. The original plate 10 is composed of an electrode 11 and a relief, intaglio or gravure plate layer 12, and the image receiving sheet 20 on which an electrostatic pattern is formed is formed. It comprises a conductive layer 21 and an image receiving layer 22. FIG. 1B shows a composition in which the plate layer 12 of the master 10 and the image receiving layer 22 of the image receiving layer 20 face each other and are brought into close contact with each other. A DC voltage is applied between the electrode 11 of the master 10 and the conductive layer 21 of the image receiving sheet 20. 3 shows a step of discharging the gas in the gaps 12a and 12b of the concave portions of the plate layer 12 to attach ionized ions to the image receiving layer 22 of the image receiving sheet 20. FIG. 1C shows that the image receiving sheet 22 is peeled off from the original plate 10 and an electrostatic pattern is formed on the image receiving layer 22 in accordance with the voids 12a and the voids 12b of the concave portions of the plate layer 12.

本発明の基本は剥離放電を使わず、パターン状に彫り込まれた空隙の密閉され限定された放電イオンだけによって作られる静電気パターンであるため、帯電イオンの広がりの無い高精細な印刷が出来る。また、彫り込みの深さだけを変えることによってパターンの高精細さをそのままに帯電量の異なる静電気パターンを得ることが出来る。そして特許文献2に提案されているようなめっき可能なトナーを使用すれば、高精細な電子回路を製作することも可能となる。 The basis of the present invention is an electrostatic pattern formed only by a limited and limited discharge ion of a gap engraved in a pattern without using a peeling discharge, so that high-definition printing without spread of charged ions can be performed. Further, by changing only the depth of the engraving, it is possible to obtain an electrostatic pattern having a different charge amount while maintaining the high definition of the pattern. If a toner that can be plated as proposed in Patent Document 2 is used, a high-definition electronic circuit can be manufactured.

本発明基本構成Basic configuration of the present invention 原版と受像シート密着電圧印加工程Original and image receiving sheet adhesion voltage application process 原版と受像シート剥離工程Original plate and image receiving sheet peeling process 原版電極被膜処理Original electrode coating treatment 原版全体被膜処理Original coating process パッシェン曲線Paschen curve 連続印刷法Continuous printing method

本発明における基本的な構成と静電気パターン形成の基本的行程は図1に示す通りである。
原版10の電極11及び受像シート20の導電層21は電界を供給する役割だけを果たせば良いため、材料は金属やカーボン、グラファイトなどの非金属でも良く、また導電塗料等導電性であればどのような材料で構成されていても良い。また、受像シート20の電極21と受像層22は必ずしも一体となっていなくても良い。原版10の版層12の材料は導電性、半導電性、絶縁性何れの場合でも成立する。受像層22は静電気を保持する必要があるため少なくとも表面は電気絶縁性が高い必要がある。一般的にはポリイミドやポリカーボネイト、PETその他の樹脂シートが使われるが、静電転写システムや静電プリンターに使われた転写紙のように裏面に導電層を設け表面に静電気受像層をコーティングした構成でも良い。
The basic configuration and the basic process of forming an electrostatic pattern in the present invention are as shown in FIG.
Since the electrode 11 of the master 10 and the conductive layer 21 of the image receiving sheet 20 only need to play the role of supplying an electric field, the material may be a non-metal such as metal, carbon, graphite, or any conductive material such as conductive paint. Such a material may be used. Further, the electrodes 21 of the image receiving sheet 20 and the image receiving layer 22 do not necessarily have to be integrated. The material of the plate layer 12 of the original plate 10 is established regardless of whether it is conductive, semiconductive, or insulating. Since the image receiving layer 22 needs to hold static electricity, at least the surface needs to have high electrical insulation. In general, polyimide, polycarbonate, PET and other resin sheets are used, but a structure in which a conductive layer is provided on the back side and an electrostatic image receiving layer is coated on the front side like transfer paper used in electrostatic transfer systems and printers But it is good.

静電気パターンは原版10と受像シート20の空隙の放電電荷によって形成する為版の凹部を目的パターンとして構成するのが基本となるが、静電気を顕在化するためには最終的にトナーと称する帯電した粒体で現像するため、電子写真技術のいわゆるネガ-ポジ現像を行う事が出来、版の凸部に相当する部分にトナー付着させることが出来るため凸部を目的パターンとしても対応出来る。また空隙の放電量は同じ印加電圧に対して空隙の厚み方向の深さで決定され、浅いほど放電量が少なくなり、結果トナー付着量も少なく制限されるため、従来印刷のグラビア印刷と同じような効果を持った印刷が可能である。 The electrostatic pattern is basically formed by forming a concave portion of the plate as a target pattern because the electrostatic pattern is formed by a discharge charge in a gap between the original plate 10 and the image receiving sheet 20. Since the development is performed with the granular material, so-called negative-positive development of electrophotography can be performed, and the toner can be attached to a portion corresponding to the convex portion of the plate, so that the convex portion can be used as a target pattern. In addition, the discharge amount of the gap is determined by the depth in the thickness direction of the gap with respect to the same applied voltage. Printing with a special effect is possible.

空隙が放電する状況はパッシェンの法則から概略計算ができる。大気圧の空気のパッシェンカーブを横軸:空隙距離、縦軸:空隙放電開始電圧として描いた図を図3に示す。カーブの最小値は空隙約5μm前後であり、8μm以上の空隙に対する放電開始電圧は直線カーブで表せるとされており、空隙長:d(μm)、空隙放電開始電圧:Vb(V)として式
Vb=312+6.2d (1)
で近似される。空隙長が20μmとすれば放電開始電圧は436Vということになる。つまり、空隙に436V以上の電圧がかかるような外部電圧が加われば放電が生じイオンが発生する。発生したイオンは電界に従ってプラスイオンはマイナス電極に向かって移動し、マイナスイオンはプラス電極に向かって移動する。イオンによって受像層22は帯電し、空隙の電界を弱める方向に働く。そして空隙に加わる電圧が放電開始電圧436Vに達した時点で放電は終了する。
The situation in which the gap discharges can be roughly calculated from Paschen's law. FIG. 3 shows a diagram in which the Paschen curve of air at atmospheric pressure is plotted as the horizontal axis: gap distance and the vertical axis: gap discharge starting voltage. The minimum value of the curve is about 5 μm in the gap, and the discharge starting voltage for the gap of 8 μm or more can be represented by a linear curve. The formula is expressed as the gap length: d (μm) and the gap discharge starting voltage: Vb (V).
Vb = 312 + 6.2d (1)
Is approximated by If the gap length is 20 μm, the firing voltage will be 436V. That is, when an external voltage such that a voltage of 436 V or more is applied to the gap, discharge occurs and ions are generated. In the generated ions, the positive ions move toward the negative electrode according to the electric field, and the negative ions move toward the positive electrode. The image receiving layer 22 is charged by the ions, and acts in a direction to weaken the electric field in the gap. Then, the discharge ends when the voltage applied to the gap reaches the discharge start voltage 436V.

(凹版の例)
図1(B)にて受像層22を25μmのPETとし、原版10は凹版であって版層12の厚み及び凹部の空隙12aの深さを20μmとして、原版10の電極11を接地電位、受像シート20の電極21にプラス1000Vが加わるような電圧を与えた場合を想定する。該PETの誘電率は約3.3として空気厚みに換算すると約7.6μmに相当するため空隙20μmに加わる電圧は1000×20÷(20+7.6)V=725Vとなる。式(1)から得られる20μm空隙の放電開始電圧436Vより大きいため空隙内で放電イオンが生じ、マイナスイオンが電極21に向かって移動して受像層22に帯電し、プラスイオンは電極11に流れる。受像層22が−(725−436)=-289Vまで帯電すると空隙に加わる電界は放電開始電圧436Vに達するため放電は止まる。その後印加電源をOFFして受像シート20の電極21を0Vにしてから受像シート20を剥離すると凹版の空隙に相当する部分が−289Vに帯電した静電気パターンが出来ることになる。次の工程で電子写真技術で使われるプラスのトナーで現像すればポジの可視画像が得られる。剥離前に該電極21を0Vにするのは全面いずれの部分も剥離放電しない条件を与えるためである。
(Example of intaglio)
In FIG. 1B, the image receiving layer 22 is made of PET having a thickness of 25 μm, the original 10 is an intaglio plate, the thickness of the plate layer 12 and the depth of the cavity 12a of the concave portion are set to 20 μm, It is assumed that a voltage is applied to the electrode 21 of the sheet 20 so that a voltage of +1000 V is applied. The dielectric constant of the PET is about 3.3, which is equivalent to about 7.6 μm in terms of the air thickness. Therefore, the voltage applied to the gap 20 μm is 1000 × 20 ÷ (20 + 7.6) V = 725V. Since the discharge start voltage of the 20 μm gap obtained from the equation (1) is higher than 436 V, discharge ions are generated in the gap, negative ions move toward the electrode 21 and charge the image receiving layer 22, and positive ions flow to the electrode 11. . When the image receiving layer 22 is charged to − (725-436) = − 289 V, the electric field applied to the gap reaches the discharge starting voltage of 436 V, and the discharge stops. Then, when the applied power is turned off to set the electrodes 21 of the image receiving sheet 20 to 0 V and then the image receiving sheet 20 is peeled off, an electrostatic pattern in which a portion corresponding to the void of the intaglio is charged to -289 V is formed. In the next step, a positive visible image can be obtained by developing with a positive toner used in electrophotography. The reason why the voltage of the electrode 21 is set to 0 V before the peeling is to provide a condition in which any part of the entire surface is not peeled and discharged.

実際に原版としてITO膜をスパッタリングした2mmのフロートガラス板に20μmのドライフィルムレジストを貼り、各種幅のラインや文字パターンのマスクを重ねて紫外線露光を行い、現像し、フォトレジストによる凹版を作成した。受像シートとしては25μmのPETの裏に10の3乗Ωcm程度の導電塗料を塗布し、さらに100μmのPETを裏打ち接着した。原版と受像シート何れの電極も0Vで上記原版と受像シートを合わせ、吸引密着装置で密着し、原版と受像シートの電極間に前述と同じ1000Vを印加した後0Vに戻して剥離した。そして受像シートに出来た静電気潜像をエレファックス現像液(岩崎通信機株式会社製)にて現像したところ、3ポイント文字、7μmライン〜100μmライン、10μmドット等共に正確な画像再現が得られた。
また、電鋳で作られた、全ニッケル製の原版で前記と同様の画像出力実験をしたところ凹部の画像は正確に現像され、凹部画像以外の部分の模様つまりかぶりの痕跡は全く見られず金属が受像シートに密着している部分の帯電は無い事が確かめられた。
A 20 μm dry film resist was applied to a 2 mm float glass plate on which an ITO film was sputtered as an original plate, and a line or character pattern mask of various widths was superposed and exposed to ultraviolet light, developed, and an intaglio made of photoresist was created. . As the image receiving sheet, a conductive paint of about 10 3 Ωcm was applied to the back of a PET of 25 μm, and a PET of 100 μm was further adhered to the back. Both the original plate and the image-receiving sheet were brought together at 0 V, the original plate and the image-receiving sheet were brought together, brought into close contact with a suction contact device, applied with the same 1000 V between the electrodes of the original plate and the image-receiving sheet and then returned to 0 V and peeled off. Then, when the electrostatic latent image formed on the image receiving sheet was developed using Elefax developer (Iwasaki Communication Equipment Co., Ltd.), accurate image reproduction was obtained for 3-point characters, 7 μm line to 100 μm line, 10 μm dot, etc. .
In addition, when an image output experiment similar to the above was performed on an all-nickel original plate made by electroforming, the image of the concave portion was accurately developed, and the pattern other than the concave portion image, that is, no trace of fogging was seen at all. It was confirmed that there was no electrification in the portion where the metal was in close contact with the image receiving sheet.

(凸版の例)
前述の凹版の例と同じ条件を与え同じ工程を経ると凸版の空隙に相当する部分が−289Vに帯電した静電気パターンが出来ることになる。次の行程で電子写真技術で使われるプラスのトナーで現像するとネガの可視画像が得られることになる。凸部に相当する部分をポジ画像として現像したい場合にはマイナストナーを使用して現像時に−250V程度のバイアス電圧を加えて現像すれば0Vに近い凸部が相対的にプラス電位となり凸部に相当する部分が現像される。もし凹版時と同じプラスのトナーを使用したい場合は、受像シート20の電極21に印加する電圧を逆極性の−1000Vにすれば受像層22には+289Vの帯電が得られので、+250V程度の現像バイアスで現像すれば同様の凸部に相当するポジ現像が得られる。これは静電気でしか出来ない特徴的な操作といえる。
(Example of letterpress)
If the same conditions as those of the intaglio plate described above are applied and the same process is performed, an electrostatic pattern in which a portion corresponding to the void of the relief plate is charged to -289 V is formed. In the next step, a negative visible image can be obtained by developing with a positive toner used in electrophotography. To develop a portion corresponding to the convex portion as a positive image, if a negative toner is used and a bias voltage of about -250 V is applied during development to develop, the convex portion close to 0 V becomes a relatively positive potential and becomes a positive portion. The corresponding part is developed. If it is desired to use the same positive toner as in the intaglio printing, if the voltage applied to the electrodes 21 of the image receiving sheet 20 is -1000 V having the opposite polarity, the image receiving layer 22 can be charged at +289 V. If development is performed with a bias, positive development corresponding to the same convex portion can be obtained. This can be said to be a characteristic operation that can only be performed by static electricity.

(グラビア版の例)
前述の凹版の例と同じく版全体の厚み及び空隙12aの深さは同じく20μmとし、画像で言えばハーフトーンに相当する彫り込みの浅い部分の空隙12bの深さを10μmとした場合、版層の材料が導電体或いは半導体であれば前述の凹版の場合と同じ計算方法で空隙を10μmとして計算し、放電開始電圧は374V、空隙に加わる電圧は568Vとなり、受像層22には−194Vの静電パターンができることとなる。このように同一版上に彫り込みの深さの違いを作ることによって中間調の表現が可能となる。
(Example of gravure version)
As in the case of the intaglio plate described above, the thickness of the entire plate and the depth of the voids 12a are also 20 μm, and the depth of the voids 12b in the shallow engraved portion corresponding to the halftone in the image is 10 μm. If the material is a conductor or a semiconductor, the gap is set to 10 μm by the same calculation method as in the case of the intaglio described above, the discharge start voltage is 374 V, the voltage applied to the gap is 568 V, and the image receiving layer 22 has an electrostatic charge of −194 V. A pattern can be created. By making the engraving depth different on the same plate, it is possible to express halftones.

版層の材質が絶縁体である場合には凹部の彫り込まれた底の面が帯電するために受像層22に帯電する量は異なる。空隙層12bの厚みは同じなので、放電開始電圧は同じく374Vであるが空隙12bに加わる電圧は版層の空隙下部の10μmが加わるために、版層の比誘電率も同じ3.3とした場合1000×10/(10+10.6)=485Vとなる。−(485−374)=−111Vに相当する電圧が空隙12bに加わることによって放電が止まることになる。放電により発生するプラスとマイナスのイオン量はおなじであり、マイナスのイオンは受像層22に帯電し、プラスのイオンは版層の凹部の彫り込まれた底の面に帯電するので、発生する電圧は各絶縁体のキャパシタンスの比(つまり空気換算の厚みの比)となり、受像層22には−80V、空隙層12bの下部の版層12には+30V帯電することになる。版層12の帯電は次の印刷の前にACコロナ放電器等で除電すれば良い。受像層の帯電量によってトナーの付着量は変わるため、上記のようにグラビア版の版層の材料違いにより同じ彫り込み深さであっても量的な変化量は異なるが、従来印刷と同じようなグラビア版印刷効果が得られることは同じである。 When the material of the plate layer is an insulator, the amount of charge on the image receiving layer 22 differs because the bottom surface engraved with the concave portion is charged. Since the thickness of the gap layer 12b is the same, the discharge starting voltage is also 374 V, but the voltage applied to the gap 12b is 10 μm below the gap of the plate layer, so that the relative dielectric constant of the plate layer is also 3.3. 1000 × 10 / (10 + 10.6) = 485V. The discharge stops when a voltage corresponding to − (485-374) = − 111 V is applied to the gap 12 b. The amount of the positive and negative ions generated by the discharge is the same, the negative ions are charged on the image receiving layer 22, and the positive ions are charged on the bottom surface engraved with the concave portion of the plate layer. The ratio of the capacitance of each insulator (that is, the ratio of the thickness in air) is obtained, and the image receiving layer 22 is charged by -80 V, and the plate layer 12 below the gap layer 12b is charged by +30 V. The charge of the plate layer 12 may be removed by an AC corona discharger or the like before the next printing. Since the amount of toner attached varies depending on the charge amount of the image receiving layer, the amount of change in the quantity differs even at the same engraving depth due to the difference in the material of the gravure plate layer as described above, but is the same as in conventional printing. The gravure printing effect is the same.

前述したように従来電子写真技術で、静電転写法による複写機が開発されたことがあるが、これは剥離放電を前提とした技術であり、受像シートが原板よりも離れた位置で放電し画像転写が行われるため、転写画像が原板よりも必ず太る傾向があり高解像は望めない原理を持っていた。当時の複写技術は原稿の光反射と感光体の特性の組み合わせで帯電量の違いを含んだアナログ的表現がなされていたこともあり、解像度は十分とされてきた。しかし、デジタル時代となり電子写真はレーザー露光を使用した高解像力と高速出力性能のプリンターが開発され発展することになった。画像は一定光量のレーザーのオン・オフで描かれるため、中間調表現は従来のオフセット印刷に於ける面積階調手法が導入されている。そのためドットの大きさの正確性は重要となり、従来の静電転写技法は適用出来なくなっている。また電子写真法は解像度が高いといっても感光体のアナログ特性と無版という特徴を生かすがために印刷法に匹敵する画像には至っていない。そしてこれまで静電気を使った手法で印刷法に迫る技術が出現した例は無い。 As described above, in the past electrophotographic technology, copying machines based on the electrostatic transfer method have been developed, but this technology is based on the premise of peeling discharge, and the image receiving sheet discharges at a position distant from the original plate. Since image transfer is performed, the transferred image tends to be thicker than the original plate, and has a principle that high resolution cannot be expected. At that time, in the copying technology at the time, an analog expression including a difference in the amount of charge was made by a combination of the light reflection of the document and the characteristics of the photoreceptor. However, in the digital age, electrophotography has developed and developed printers that use laser exposure and have high resolution and high-speed output performance. Since an image is drawn by turning on and off a laser with a constant light amount, an area gradation method in conventional offset printing has been introduced for halftone expression. Therefore, the accuracy of the dot size becomes important, and the conventional electrostatic transfer technique cannot be applied. Further, although the electrophotographic method has a high resolution, it does not produce an image comparable to the printing method because it takes advantage of the analog characteristics of the photoreceptor and the features of no plate. Until now, there has been no example of a technique approaching the printing method using a method using static electricity.

本発明は従来印刷と同じような版を使用して静電気パターンを作る方法を提案している。静電気パターンが作られるメカニズムは上述したように版に彫り込まれた空隙内だけで放電するため、イオンが拡散することは無く、版の精度が正確に写される。版製作の精度は従来印刷技術で確立されており、その静電気パターンを現像する技術は電子写真技術によって確立されている。また現像に使用されるトナーは進化しており、導電トナー、メッキ可能トナー等機能性トナーが開発されており産業機器としての展開も実現できる。また、静電気パターンを現像するのでは無く、静電モータの例のように静電気パターンそのものを利用する場合にも利用出来る。 The present invention proposes a method for forming an electrostatic pattern using a plate similar to that used in conventional printing. As described above, the mechanism for forming the electrostatic pattern discharges only in the gap engraved in the plate, so that ions are not diffused and the precision of the plate is accurately captured. The precision of plate production has been established by conventional printing technology, and the technology of developing the electrostatic pattern has been established by electrophotographic technology. Further, the toner used for development has evolved, and functional toners such as conductive toners and plating-able toners have been developed, and can be developed as industrial equipment. Also, the present invention can be used not when developing the electrostatic pattern but also when using the electrostatic pattern itself as in an example of an electrostatic motor.

(材料、構成等)
原版10の電極11は版の空隙の放電に必要な導電性を持っていれば良く、システムのプロセススピードにもよるが、体積抵抗で10の6乗Ωcm以下であれば問題なく、さらには10の4乗Ωcm以下であればより良い。一般的には金属を用いるが、ガラスやプラスチックの表面に金属膜をスパッタリングしたものも考えられるし、導電塗料をコーティングしたものでも良い。また、それら導電材の表面に酸化防止等のためのコーティングやその上に構成する版層12との接着性を向上させるためのコーティングや処理を設けても機能的に問題はない。
(Material, composition, etc.)
The electrode 11 of the original plate 10 only needs to have the conductivity necessary for discharging the voids in the plate, and depending on the process speed of the system, there is no problem if the volume resistance is 10 6 Ωcm or less. It is better if it is not more than the fourth power Ωcm. In general, a metal is used, but a metal or a film obtained by sputtering a metal film on the surface of glass or plastic may be used, or a material coated with a conductive paint may be used. Also, there is no functional problem even if a coating for preventing oxidation or the like or a coating or treatment for improving adhesion to the plate layer 12 formed thereon is provided on the surface of the conductive material.

版層12の材料は前述したように導電体、半導電体、絶縁体いずれでも良い。グラビア版で金属銅をレーザー加工するような場合や電鋳製造法などの場合は電極11と版層12が一体になる場合があるが問題ない。版層12が絶縁体の場合、一般的には基材(ここでは電極11)の表面にフォトレジスト液をコーティング或いはフォトレジストシートを貼り、パターンマスクを介し、紫外線で硬化或いは分解して現像液にて不要の部分を取り除くことで残ったレジスト材を版とすることが出来る。またはさらに導電体或いは半導体基材を腐食液で彫り込んでそれを版としても良い。従来印刷で版の耐久性を上げるためにハードコートすることは一般的であるが、ここでもそれを採用することはより良い。 As described above, the material of the plate layer 12 may be any of a conductor, a semiconductor, and an insulator. In the case of laser machining of metal copper with a gravure plate or in the case of an electroforming method, the electrode 11 and the plate layer 12 may be integrated, but this is not a problem. When the plate layer 12 is an insulator, generally, the surface of a base material (here, the electrode 11) is coated with a photoresist solution or a photoresist sheet is applied, and is cured or decomposed with ultraviolet light through a pattern mask to form a developer By removing unnecessary portions, the remaining resist material can be used as a plate. Alternatively, a conductor or a semiconductor substrate may be engraved with a corrosive liquid and used as a plate. Conventionally, hard coating is generally performed in order to increase the durability of the plate in printing, but it is better to employ it here as well.

版層12の彫り込みの幅と深さに関しては版層の材料とその加工手法によって限界がある。最小深さに関しては空隙の放電イオン発生量から限定がくる。3μm程度が現状トナーの現像能力からして限度と思われるが、将来少ない電荷量でも十分現像できるトナーが開発されればその限りではない。
受像シート20は種々な構成があり得る。基本的には電極21と受像層22で構成される。電極21は原版10の電極11と同様に導電性を持っていれば良く、システムのプロセススピードにもよるが、体積抵抗で10の6乗Ωcm以下であれば問題なく、さらには10の4乗Ωcm以下であればより良い。また、電極21と受像層22は必ずしも一体となっている必要は無い。
The width and depth of the engraving of the plate layer 12 are limited by the material of the plate layer and the processing method. The minimum depth is limited by the amount of discharge ions generated in the gap. Although about 3 μm seems to be the limit from the current developing ability of the toner, it is not limited if a toner capable of sufficiently developing even a small amount of charge is developed in the future.
The image receiving sheet 20 can have various configurations. Basically, it is composed of an electrode 21 and an image receiving layer 22. The electrode 21 only needs to have conductivity like the electrode 11 of the original plate 10. Depending on the process speed of the system, there is no problem if the volume resistance is 10 6 Ωcm or less, and 10 4 power. Better than Ωcm. Further, the electrode 21 and the image receiving layer 22 do not necessarily have to be integrated.

受像層22は静電荷を保持する必要があるため絶縁性の高い材料が必要である。フレキシブルを求めるならばポリエステル、ポリイミド、ポリアミド、ポリカーボネイト、フッ素樹脂等のシートがあり、フレキシブルである必要が無い場合はより多種な樹脂が適応可能である。ただし、静電気パターンの使用目的によって層の厚みや絶縁体の比誘電率及びパターン形成時の印加電圧を考慮する必要がある。例えば一般的な電子写真に使用されているトナーを現像に使用する場合を例に挙げると、受像層に相当するOPC感光体の厚みは約20μm、比誘電率は約4と云われており、ドライトナーの場合は帯電電位は500Vから600V、リキッドトナーの場合は200Vから300V程度に設定される。前述の説明に挙げた条件例では、リキッドトナーで現像するに十分な条件であるが、ドライトナーで現像する場合はパターン形成時の印加電圧を1800V程度にすれば良いことになる。要は最終的にトナーの特性等に必要な電圧と電荷量を考慮して条件を決める事になる。 Since the image receiving layer 22 needs to hold an electrostatic charge, a material having a high insulating property is required. If flexibility is required, there are sheets of polyester, polyimide, polyamide, polycarbonate, fluororesin, etc., and if it is not necessary to be flexible, a wider variety of resins can be applied. However, it is necessary to consider the thickness of the layer, the relative dielectric constant of the insulator, and the applied voltage at the time of pattern formation depending on the purpose of use of the electrostatic pattern. For example, taking the case of using toner used in general electrophotography for development as an example, it is said that the thickness of the OPC photoconductor corresponding to the image receiving layer is about 20 μm, and the relative dielectric constant is about 4, In the case of dry toner, the charging potential is set to about 500 V to 600 V, and in the case of liquid toner, it is set to about 200 V to 300 V. In the condition examples described above, the conditions are sufficient for developing with liquid toner. However, when developing with dry toner, the applied voltage at the time of pattern formation may be about 1800 V. The point is that the conditions are finally determined in consideration of the voltage and charge amount necessary for the characteristics of the toner.

(受像層の予備帯電)
原版との密着前に受像層に予備帯電を行うことができ、2つの効果が得られる。
一つ目は均一な密着性が得られ背後からの機械的な圧着力をなくすことが出来る可能性がある。但し帯電値は受像シートを原版に近づけて密着するまでの間に空隙が放電を起こさない値でなければならない。例えば前述の原版凹版厚み20μmで受像層25μmのPETの場合を例に挙げると20μm空気層の放電開始電圧436Vより小さければ良いと云うことになる。そしてこの値は受像シートを吸着させるには十分である。
二つ目は、現像する段階での電界が大きくなり、現像効率が良くなることである。予備帯電の吸着効果は極性に関わらず同じであるので、静電気パターン形成時に受像シートの電極21に印加する極性と同極性帯電をする事が肝要である。前述の凹版の例の場合を想定すると受像シートの電極21には+1000Vを印加するのでPETへの予備帯電は放電をしない余裕を持って+350V程度を帯電させることになる。そして形成される静電気パターンは予備帯電とは関わりなく同じ−289Vの帯電を持つので結果的に639Vの信号を現像することになり倍以上の現像効果が得られることになる。この効果は大きいので、放電開始電圧との関係で予備帯電値が低く吸着効果が少ない場合でも行う価値がある。
(Preliminary charging of image receiving layer)
The pre-charging can be performed on the image receiving layer before the contact with the original plate, and two effects can be obtained.
The first is that there is a possibility that uniform adhesion can be obtained and mechanical pressing force from behind can be eliminated. However, the charge value must be a value that does not cause a discharge in the gap until the image receiving sheet is brought close to and close to the original. For example, in the case of PET having an original plate intaglio thickness of 20 μm and an image receiving layer of 25 μm as an example, it means that it is only necessary to be smaller than the discharge starting voltage 436 V of the 20 μm air layer. This value is sufficient to attract the image receiving sheet.
Second, the electric field at the stage of development is increased, and the development efficiency is improved. Since the adsorption effect of the pre-charging is the same regardless of the polarity, it is important to charge the same polarity as the polarity applied to the electrode 21 of the image receiving sheet at the time of forming the electrostatic pattern. Assuming the case of the above-described intaglio plate, +1000 V is applied to the electrode 21 of the image receiving sheet, so that preliminary charging to PET charges about +350 V with a margin for not discharging. Since the formed electrostatic pattern has the same charge of -289 V irrespective of the preliminary charge, the signal of 639 V is developed as a result, and the development effect more than doubled is obtained. Since this effect is large, it is worth performing even when the preliminary charging value is low and the adsorption effect is small in relation to the discharge starting voltage.

タッチパネルのように受像シートが透明である必要がある場合は、受像層22の裏面に電極21としてITO膜をスパッタリングしたり透明導電塗料をコートする構成が考えられる。この場合、目的によって受像層22の厚みを大きくとれない場合があり、取り扱い上の問題から電極21の上にさらに剛性を与えるための透明材料を接着する3層以上の構成もあり得る。 When the image receiving sheet needs to be transparent like a touch panel, a configuration in which an ITO film is sputtered as the electrode 21 on the back surface of the image receiving layer 22 or a transparent conductive paint is coated can be considered. In this case, the thickness of the image receiving layer 22 may not be made large depending on the purpose, and there may be a configuration of three or more layers in which a transparent material for giving further rigidity is adhered on the electrode 21 due to a handling problem.

(機能向上と応用展開)
原版の使用耐久性を上げる為に図2(A)のように電極11の表面に被膜13をもうけたり、図2(B)のように原版全体に被膜14をもうけることは効果があり、静電気特性上は問題がない。
原版と受像シートは密着する必要があり、基本的には全面圧着させる機構で良いが、そのような機構ではバッチ生産となる。より精細な結果が必要な場合や小画面や小ロット生産の場合には適正であるが、連続・高速生産には適さない。
連続生産の手法としては図4のようにすれば実現できる。原版自体をベルト状或いはドラム状或いは印刷のようにドラム状基材30にシート状の原版10を巻き付け、ドラム状基材30の周長が原版の有効長よりも長く設定し、少なくとも原版有効長の外側で受像シート20を押さえる2本のローラ40を設ける。そして2本のローラ40の間に原版10と受像シート20を押さえつける数本のローラ50を設けベルト状であれドラム状であれ、原版と受像シートは2本のローラ40間では密着させ同速で回転する。原版に受像シートを吸着させる為に受像シート20が原版10に密着する前に予備帯電コロナ放電器を設けることも出来る。この場合は押さえローラ50を省くことが出来る可能性がある。予備帯電は密着前に空隙が放電するような大きな帯電をしてはならないのは当然である。原版空隙の放電の為の高電圧印加は原版有効部が2本のローラ40の間に入った瞬間に高圧パルス電源80にてパルス的に与えれば良い。放電イオンの発生と移動は極瞬間で終了するので、プロセスを止めることなく高速・連続で静電パターンを製作することが出来る。
(Function improvement and application development)
It is effective to form a coating 13 on the surface of the electrode 11 as shown in FIG. 2 (A) or a coating 14 on the entire master as shown in FIG. 2 (B) in order to increase the durability of use of the master. There is no problem in characteristics.
The original plate and the image receiving sheet need to be in close contact with each other, and a mechanism for completely pressing the entire surface may be used, but such a mechanism results in batch production. It is appropriate when more detailed results are required or when producing small screens or small lots, but not suitable for continuous high-speed production.
The method of continuous production can be realized as shown in FIG. The original plate itself is wound on a drum-shaped substrate 30 like a belt-shaped or drum-shaped or printed substrate, and the circumference of the drum-shaped substrate 30 is set to be longer than the effective length of the original. And two rollers 40 for holding the image receiving sheet 20 outside the sheet. Then, several rollers 50 for pressing the original plate 10 and the image receiving sheet 20 are provided between the two rollers 40, and the original plate and the image receiving sheet are brought into close contact with each other at the same speed between the two rollers 40, whether in the form of a belt or a drum. Rotate. A pre-charge corona discharger may be provided before the image receiving sheet 20 comes into close contact with the original 10 in order to attract the image receiving sheet to the original. In this case, there is a possibility that the pressing roller 50 can be omitted. It is natural that the pre-charging should not be so large as to discharge the gap before the contact. The application of a high voltage for discharging the air gap of the original plate may be performed in a pulsed manner by the high-voltage pulse power supply 80 at the moment when the effective portion of the original plate enters between the two rollers 40. Since the generation and movement of the discharge ions are completed at an extreme moment, an electrostatic pattern can be manufactured at high speed and continuously without stopping the process.

10 原版
11 原版の電極
12 版層
12a 空隙
12b 空隙
13 電極11の被膜
14 原版10全体の被膜
20 受像シート
21 受像シートの電極
22 受像層
30 ドラム状基材
40 搬送ローラ
50 押さえローラ
60 予備帯電コロナ放電器
70 現像器
80 高圧パルス電源
10 original version
11 Original electrode
Reference Signs List 12 plate layer 12a gap 12b gap 13 coating of electrode 11 coating 14 of original plate 20 coating 20 of image receiving sheet 21 electrode of image receiving sheet 22 image receiving layer 30 drum base material 40 transport roller 50 holding roller 60 pre-charge corona discharger 70 developer 80 High voltage pulse power supply

Claims (7)

全面均一な導電性を持った第1電極と、前記第1電極の上に密着一体となった適正な均一厚みを持った電気絶縁性或いは導電性或いは半導電性を持った材料で構成され、前記絶縁性或いは導電性或いは半導電性を持った材料に凸版或いは凹版或いはグラビア版状パターンが形成されている原版に、裏面が第2電極である導電層と一体となっている受像シートを密着させ、前記原版の第1電極と前記第2電極との間に前記凸版或いは凹版或いはグラビア版状パターンの空隙層を放電させるに足る適正な電圧を印加することによって、前記受像シート上に前記凸版或いは凹版或いはグラビア版状パターンに対応した静電気パターンを形成することを特徴とする高精細静電印刷方法。 A first electrode having uniform conductivity over the entire surface, and an electrically insulating or conductive or semiconductive material having an appropriate uniform thickness which is closely adhered and integrated on the first electrode; An image receiving sheet having a back surface integrated with a conductive layer serving as a second electrode is closely attached to an original plate having a relief, intaglio, or gravure plate pattern formed on the insulating, conductive, or semiconductive material. And applying an appropriate voltage between the first electrode and the second electrode of the original plate to discharge the gap layer of the relief or intaglio or gravure plate-like pattern, thereby forming the relief on the image receiving sheet. Alternatively, a high-definition electrostatic printing method characterized by forming an electrostatic pattern corresponding to an intaglio or gravure plate-like pattern. 全面均一な導電性を持った第1電極と、前記第1電極の上に密着一体となった適正な均一厚みを持った電気絶縁性或いは導電性或いは半導電性を持った材料で構成され、前記絶縁性或いは導電性或いは半導電性を持った材料に凸版或いは凹版或いはグラビア版状パターンが形成されている原版に、受像シートを裏面から導電性を持った第2電極で圧着し、前記原版の第1電極と前記第2電極との間に前記凸版或いは凹版或いはグラビア版状パターンの空隙層を放電させるに足る適正な電圧を印加することによって、前記受像シート上に前記凸版或いは凹版或いはグラビア版状パターンに対応した静電気パターンを形成することを特徴とする高精細静電印刷方法。 A first electrode having uniform conductivity over the entire surface, and an electrically insulating or conductive or semiconductive material having an appropriate uniform thickness which is closely adhered and integrated on the first electrode; An image receiving sheet is pressure-bonded from the back surface with a conductive second electrode to an original plate in which a letterpress, intaglio or gravure plate-like pattern is formed on the insulating, conductive or semiconductive material. By applying an appropriate voltage between the first electrode and the second electrode sufficient to discharge the gap layer of the relief, intaglio, or gravure plate-like pattern, the relief, intaglio, or gravure is applied to the image receiving sheet. A high-definition electrostatic printing method characterized by forming an electrostatic pattern corresponding to a plate-like pattern. 全面均一な導電性を持った第1電極と、前記第1電極の上に密着一体となった適正な均一厚みを持った電気絶縁性或いは導電性或いは半導電性を持った材料で構成され、前記絶縁性或いは導電性或いは半導電性を持った材料に凸版或いは凹版或いはグラビア版状パターンが形成されている原版に、受像シートを密着させ、該受像シートの裏面からコロナ放電器により前記凸版或いは凹版或いはグラビア版状パターンの空隙層を放電させるに足る適正な帯電電荷を付与することによって、前記受像シート上に前記凸版或いは凹版或いはグラビア版状パターンに対応した静電気パターンを形成することを特徴とする高精細静電印刷方法。 A first electrode having uniform conductivity over the entire surface, and an electrically insulating or conductive or semiconductive material having an appropriate uniform thickness which is closely adhered and integrated on the first electrode; An image receiving sheet is brought into close contact with an original on which a letterpress, intaglio, or gravure plate-like pattern is formed on the insulating, conductive, or semiconductive material, and the letterpress, An electrostatic pattern corresponding to the relief, intaglio, or gravure plate-like pattern is formed on the image receiving sheet by applying an appropriate charge to discharge the void layer of the intaglio or gravure-plate-like pattern. High-definition electrostatic printing method. 前記請求項1乃至請求項3のいずれかに記載の高精細静電印刷方法に於いて前記原版に前記受像シートを密着する前に前記受像シートに予備帯電することを特徴とする高精細静電印刷方法。 4. The high definition electrostatic printing method according to claim 1, wherein the image receiving sheet is precharged before the image receiving sheet is brought into close contact with the original. Printing method. 前記請求項1乃至請求項4のいずれかに記載の高精細静電印刷方法に於いて前記受像シート上に形成された静電気パターンを電子写真技術におけるドライ現像法或いは湿式現像法を利用し、帯電粒子で現像する事を特徴とする高精細静電印刷方法。 5. The method according to claim 1, wherein the electrostatic pattern formed on the image receiving sheet is charged by using a dry developing method or a wet developing method in electrophotography. A high-definition electrostatic printing method characterized by developing with particles. 前記請求項5に記載の帯電粒子がめっき可能な粒子であることを特徴とする高精細静電印刷方法。 A high-definition electrostatic printing method, wherein the charged particles according to claim 5 are particles that can be plated. 前記静電気パターンがタッチパネルの電極パターンを製作するためのものであることを特徴とする前記請求項1乃至請求項6に記載の高精細静電印刷方法。

The high-definition electrostatic printing method according to claim 1, wherein the electrostatic pattern is for manufacturing an electrode pattern of a touch panel.

JP2018188998A 2018-10-04 2018-10-04 High-definition electrostatic printing method Active JP6592575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188998A JP6592575B1 (en) 2018-10-04 2018-10-04 High-definition electrostatic printing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188998A JP6592575B1 (en) 2018-10-04 2018-10-04 High-definition electrostatic printing method

Publications (2)

Publication Number Publication Date
JP6592575B1 JP6592575B1 (en) 2019-10-16
JP2020055261A true JP2020055261A (en) 2020-04-09

Family

ID=68234881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188998A Active JP6592575B1 (en) 2018-10-04 2018-10-04 High-definition electrostatic printing method

Country Status (1)

Country Link
JP (1) JP6592575B1 (en)

Also Published As

Publication number Publication date
JP6592575B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
Schein Electrophotography and development physics
EP0010375B1 (en) Electrostatographic processing system
JP2007017892A (en) Image forming apparatus
US4515106A (en) Developing apparatus
JP4610432B2 (en) Image forming apparatus
US5011758A (en) Use of a liquid electrophotographic toner with an overcoated permanent master in electrostatic transfer
US5473416A (en) Developing apparatus
US4137537A (en) Electrostatic transfer process and apparatus for carrying out the same
US3398336A (en) Electrical charging utilizing a twophase liquid medium
JP6592575B1 (en) High-definition electrostatic printing method
US7756430B1 (en) Apparatus and method for charging an imaging member
JP2023038727A (en) Both-side electrostatic printing method
JP2023027632A (en) High-definition electrostatic printing method
US3326709A (en) Electrostatic printing
JP3681863B2 (en) Image forming apparatus
JPH04506712A (en) Electrostatic image gravure printing device
US20230059189A1 (en) Electrostatic Printing Method
US5826149A (en) Developing device employing a liquid developer and picture forming device having such developing device
JP4819423B2 (en) Image forming apparatus
JP3517090B2 (en) Image forming device
JP2023027634A (en) Electrostatic printing method
JP2011070122A (en) Apparatus and method for forming image, and liquid toner
US4334002A (en) Image development method
JP2005031427A (en) Fine particle conveying device and image forming apparatus
US20120069122A1 (en) Electrostatic imaging member and methods for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R150 Certificate of patent or registration of utility model

Ref document number: 6592575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350