JP2020047686A - Zinc oxide element - Google Patents

Zinc oxide element Download PDF

Info

Publication number
JP2020047686A
JP2020047686A JP2018173219A JP2018173219A JP2020047686A JP 2020047686 A JP2020047686 A JP 2020047686A JP 2018173219 A JP2018173219 A JP 2018173219A JP 2018173219 A JP2018173219 A JP 2018173219A JP 2020047686 A JP2020047686 A JP 2020047686A
Authority
JP
Japan
Prior art keywords
zinc oxide
fired body
oxide
insulating layer
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018173219A
Other languages
Japanese (ja)
Inventor
啓太 石川
Keita Ishikawa
啓太 石川
雅之 高田
Masayuki Takada
雅之 高田
田上 幸雄
Yukio Tagami
幸雄 田上
雄也 小松
Yuya Komatsu
雄也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2018173219A priority Critical patent/JP2020047686A/en
Publication of JP2020047686A publication Critical patent/JP2020047686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

To eliminate the incorporation of air bubbles into a side material of a zinc oxide element during a manufacturing process of the zinc oxide element and the unstable performance of the zinc oxide element due to the uneven thickness of the side material.SOLUTION: In a zinc oxide element 1, an insulating layer 3 is formed on the side surface of a fired body 2. The fired body 2 includes zinc oxide, bismuth oxide(III), antimony oxide (III), cobalt oxide (II), and manganese oxide (IV). The insulating layer 3 includes zinc aluminate. In the fired body 2, the zinc oxide crystal particles have a smaller particle size near the side surface than at the center. In the insulating layer 3, the concentration of the zinc aluminate decreases as approaching the fired body 2.SELECTED DRAWING: Figure 1

Description

本発明は、避雷器に用いられる酸化亜鉛素子に関する。   The present invention relates to a zinc oxide element used for a lightning arrester.

送配電線,変電設備への雷撃サージなどによる過電圧抑制のため、あるいは変圧器など各種電力機器の保護装置として酸化亜鉛形の避雷器が広く用いられている。   2. Description of the Related Art Zinc oxide lightning arresters are widely used to suppress overvoltage due to lightning surges on transmission and distribution lines and substation equipment, and as protection devices for various power devices such as transformers.

電流−電圧非直線特性、寿命特性およびサージエネルギー耐量に優れると共に、高温下での熱安定性を向上させた、過電圧保護装置の小型化に寄与可能な電圧非直線抵抗体に関する技術が開示されている(特許文献1)。前記電圧非直線抵抗体は、ZnO(酸化亜鉛)を主成分とした焼結体からなる。具体的には、主成分にZnOを95mol%以上含んだ前記焼結体は、副成分としてBi、Sb、Co、Mn、Niを、それぞれBi23(酸化ビスマス(III))、Sb23(酸化アンチモン(III))、Co23(酸化コバルト(III))、MnO(酸化マンガン(II))およびNiO(酸化ニッケル(II))に換算して、Bi23を0.3〜1mol%、Sb23を0.5〜2.5mol%、Co23を0.3〜1.5mol%、MnOを0.2〜2mol%、NiOを0.5〜3mol%含んでいる。また、MnOに対するNiOの含有量の比は2.0〜6.0、MnOに対するSb23の含有量の比は1.5〜4.0である。 A technology relating to a voltage non-linear resistor that has excellent current-voltage non-linear characteristics, life characteristics and surge energy resistance, and has improved thermal stability at high temperatures and can contribute to downsizing of an overvoltage protection device has been disclosed. (Patent Document 1). The voltage nonlinear resistor is made of a sintered body containing ZnO (zinc oxide) as a main component. Specifically, the sintered body containing 95 mol% or more of ZnO as a main component contains Bi, Sb, Co, Mn, and Ni as sub-components, respectively, as Bi 2 O 3 (bismuth (III) oxide) and Sb 2. Converting Bi 2 O 3 to O 3 (antimony (III) oxide), Co 2 O 3 (cobalt (III) oxide), MnO (manganese (II) oxide) and NiO (nickel (II) oxide) .3~1mol%, 0.5~2.5mol% of Sb 2 O 3, 0.3~1.5mol% of Co 2 O 3, 0.2~2mol% of MnO, 0.5 to 3 mol of NiO Contains%. Further, the ratio of the content of NiO with respect to MnO 2.0 to 6.0, the ratio of the content of Sb 2 O 3 with respect to MnO is 1.5 to 4.0.

また、焼成体の側面には高抵抗層を形成させることにより放電耐量特性の向上が図られている(特許文献2)。先ず、酸化ビスマス(III),酸化アンチモン(III),酸化亜鉛,二酸化ケイ素等の酸化物とエチルセルロース,ブチルカルビトール,酢酸nブチル等の有機結合剤とが配合されたペーストが、30〜300μmの膜厚となるように、焼成体の側面に塗布される。次いで、これを昇降温速度が20〜100℃/hr、最高保持温度が1000〜1300℃好ましくは1050〜1250℃、保持時間が3〜7時間の条件で本焼成する。次いで、ガラス粉末に有機結合剤としてエチルセルロース、ブチルカルビトール、酢酸nブチル等を加えたガラスペーストが前記側面の高抵抗層上に50〜300μmの厚さに塗布される。そして、空気中で昇降温度が50〜200℃/hr、最高保持温度が400〜800℃、保持時間が0.5〜4時間の条件で、熱処理されることにより、前記焼成体の側面にガラス層が形成される。   Further, a high resistance layer is formed on the side surface of the fired body to improve the discharge withstand characteristic (Patent Document 2). First, a paste containing an oxide such as bismuth (III) oxide, antimony (III) oxide, zinc oxide or silicon dioxide and an organic binder such as ethyl cellulose, butyl carbitol, or n-butyl acetate is mixed with a 30 to 300 μm paste. It is applied to the side surface of the fired body so as to have a film thickness. Next, this is fired at a temperature rising / falling rate of 20 to 100 ° C./hr, a maximum holding temperature of 1000 to 1300 ° C., preferably 1,050 to 1,250 ° C., and a holding time of 3 to 7 hours. Next, a glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, or the like as an organic binder to the glass powder is applied to the high resistance layer on the side surface to a thickness of 50 to 300 μm. Then, heat treatment is performed in the air at a temperature of 50 to 200 ° C./hr, a maximum holding temperature of 400 to 800 ° C., and a holding time of 0.5 to 4 hours. A layer is formed.

特開2008−172034号公報JP 2008-172034 A 特開平4−127071号公報JP-A-4-127071

しかしながら、焼成体に側面材を塗布及び焼結させる工程において、側面材に気泡が混入することや側面材の厚みが不均一となることがあり、非直線抵抗体の性能を十分に発揮できないことがある。   However, in the process of applying and sintering the side material to the fired body, bubbles may be mixed into the side material and the thickness of the side material may be uneven, and the performance of the nonlinear resistor cannot be sufficiently exhibited. There is.

本発明は、上記の事情を鑑み、酸化亜鉛素子の製造過程での酸化亜鉛素子の側面への気泡の混入、側面の膜厚の不均一に起因する酸化亜鉛素子の性能不安定を解消することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to eliminate the instability of performance of a zinc oxide element due to mixing of bubbles into the side surface of the zinc oxide element and uneven thickness of the side surface during the manufacturing process of the zinc oxide element. As an issue.

そこで、本発明の一態様は、焼成体の側面に絶縁層が形成された酸化亜鉛素子であって、前記焼成体は、酸化亜鉛、酸化ビスマス(III)、酸化アンチモン(III)、酸化コバルト(II)及び酸化マンガン(IV)を含み、前記絶縁層は、アルミン酸亜鉛を含む。   Therefore, one embodiment of the present invention is a zinc oxide element in which an insulating layer is formed on a side surface of a fired body, wherein the fired body includes zinc oxide, bismuth (III) oxide, antimony (III) oxide, and cobalt oxide ( II) and manganese oxide (IV), and the insulating layer contains zinc aluminate.

本発明の一態様は、前記酸化亜鉛素子において、前記焼成体は、中心部よりも側面部の近傍の方が酸化亜鉛結晶粒子の粒径が小さい。   In one embodiment of the present invention, in the zinc oxide element, in the fired body, the zinc oxide crystal particles have a smaller particle diameter near a side portion than at a center portion.

本発明の一態様は、前記酸化亜鉛素子において、前記絶縁層は、前記焼成体に近づくにつれて前記アルミン酸亜鉛の濃度が低くなる。   In one embodiment of the present invention, in the zinc oxide element, the concentration of the zinc aluminate decreases as the insulating layer approaches the fired body.

以上の本発明によれば、酸化亜鉛素子の製造過程での酸化亜鉛素子の側面への気泡の混入、当該側面の膜厚の不均一に起因する酸化亜鉛素子の性能不安定を解消できる。   According to the present invention described above, it is possible to eliminate the incorporation of air bubbles into the side surfaces of the zinc oxide element during the manufacturing process of the zinc oxide element and the unstable performance of the zinc oxide element due to the uneven thickness of the side surface.

本発明の酸化亜鉛素子の外観を示した斜視図。FIG. 1 is a perspective view showing the appearance of a zinc oxide element of the present invention. 酸化亜鉛結晶粒子の大きさの分布を模式的に示した本発明の酸化亜鉛素子の横断面図。FIG. 2 is a cross-sectional view of the zinc oxide element of the present invention schematically showing the size distribution of zinc oxide crystal particles.

以下に図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[酸化亜鉛素子1の態様例]
本発明の一実施形態である酸化亜鉛素子1は、図1に例示されたように、円柱状の焼成体2の側面に絶縁層3が形成された状態となっている。
[Example of Embodiment of Zinc Oxide Element 1]
As illustrated in FIG. 1, a zinc oxide element 1 according to an embodiment of the present invention has a state in which an insulating layer 3 is formed on a side surface of a cylindrical fired body 2.

焼成体2は、酸化亜鉛、酸化ビスマス(III)、酸化アンチモン(III)、酸化コバルト(II)(CoO)及び酸化マンガン(IV)を含んでなる。具体的には、焼成体2は、酸化亜鉛、酸化ビスマス(III)、酸化アンチモン(III)、酸化コバルト(II)及び酸化マンガン(IV)の粉末が混合され、さらに、PVA(ポリビニールアルコール)等の有機バインダが添加され、円柱状等に加圧成型される。そして、この成型体を1000℃以上の高温で焼成することにより、焼成体2が得られる。   The fired body 2 includes zinc oxide, bismuth (III) oxide, antimony (III) oxide, cobalt (II) (CoO), and manganese (IV). Specifically, the fired body 2 is made by mixing powders of zinc oxide, bismuth (III) oxide, antimony (III) oxide, cobalt (II) and manganese (IV), and further, PVA (polyvinyl alcohol). And an organic binder is added and molded into a columnar shape or the like under pressure. Then, the molded body is fired at a high temperature of 1000 ° C. or more to obtain a fired body 2.

絶縁層3は、焼成体2の側面に形成されており、アルミン酸化合物としてアルミン酸亜鉛(ZnAl24)を主体とする絶縁成分が高濃度で分散している。 The insulating layer 3 is formed on the side surface of the fired body 2, and an insulating component mainly composed of zinc aluminate (ZnAl 2 O 4 ) as an aluminate compound is dispersed at a high concentration.

絶縁層3は、酸化亜鉛、酸化アルミニウム、酸化アンチモン(III)、酸化ビスマス(III)を含むスラリーを焼成体2に塗布した後、焼結し、焼成体2の側面に残存したスラリー成分を除去することにより、形成される。つまり、絶縁層3と焼成体2は実質的に一体構造となっている。尚、スラリー成分は焼成体2との線膨張率の差により、焼結後、容易に除去できる。   The insulating layer 3 is formed by applying a slurry containing zinc oxide, aluminum oxide, antimony (III) oxide, and bismuth (III) oxide to the fired body 2 and then sintering to remove a slurry component remaining on the side surface of the fired body 2. It is formed by doing. That is, the insulating layer 3 and the fired body 2 have a substantially integrated structure. The slurry component can be easily removed after sintering due to the difference in the coefficient of linear expansion from the fired body 2.

図2は、酸化亜鉛素子1の酸化亜鉛結晶粒子の大きさの分布を模式的に示した酸化亜鉛素子1の横断面図である。図示されたように、絶縁層3は、焼成体2の側面部に略均一の膜厚で形成される。特に、絶縁層3は、焼成体2の側面部にのみ存在しており、焼成体2の中心部には存在しない。そして、絶縁層3においては、焼成体2に近づくにつれてアルミン酸亜鉛の濃度が低くなる濃度勾配が形成されている。   FIG. 2 is a cross-sectional view of the zinc oxide element 1 schematically showing the size distribution of the zinc oxide crystal particles of the zinc oxide element 1. As shown, the insulating layer 3 is formed on the side surface of the fired body 2 with a substantially uniform thickness. In particular, the insulating layer 3 exists only on the side surface of the fired body 2 and does not exist at the center of the fired body 2. Then, in the insulating layer 3, a concentration gradient is formed in which the concentration of zinc aluminate decreases as approaching the fired body 2.

また、焼成体2は酸化亜鉛結晶粒子の集合体であり、図2には示していないが、酸化亜鉛結晶粒子間に絶縁成分が遍在する。絶縁成分は、ビスマス、アンチモンを含む酸化化合物である。   Further, the fired body 2 is an aggregate of zinc oxide crystal particles, and although not shown in FIG. 2, an insulating component is ubiquitous between the zinc oxide crystal particles. The insulating component is an oxide compound containing bismuth and antimony.

特に、酸化亜鉛結晶粒子は焼成体2の中心部から絶縁層3に近づくにつれて粒径が小さくなる。具体的には、同図に示されたように、焼成体2の側面部寄りに分布する酸化亜鉛結晶粒子22の粒子径は焼成体2の中心部に分布する酸化亜鉛結晶粒子21の粒子径よりも小さくなっている。絶縁層3の近傍に分布する酸化亜鉛結晶粒子23の粒子径は酸化亜鉛結晶粒子22の粒子径よりも小さくなっている。   In particular, the zinc oxide crystal particles have a smaller particle size as they approach the insulating layer 3 from the center of the fired body 2. Specifically, as shown in the figure, the particle diameter of zinc oxide crystal particles 22 distributed near the side of fired body 2 is the particle diameter of zinc oxide crystal particles 21 distributed in the center of fired body 2. Is smaller than. The particle size of zinc oxide crystal particles 23 distributed in the vicinity of insulating layer 3 is smaller than the particle size of zinc oxide crystal particles 22.

[酸化亜鉛素子1の作用効果]
絶縁層3の成分を含むスラリーを仮焼体に塗布した後に焼成することにより絶縁層3が焼成体2をコーティングする構造となる。絶縁層3の成分に酸化アルミニウムを含有させることにより、焼成時にアルミニウム成分が焼成体2に拡散し、アルミン酸亜鉛となることにより、酸化亜鉛結晶粒子の成長を阻害する。この焼成時の作用によって、図2に示されたようない特徴的な酸化亜鉛結晶粒子の分布が形成される。そして、この分布の形成により酸化亜鉛素子の電気特性が向上する。
[Function and effect of zinc oxide element 1]
By applying the slurry containing the component of the insulating layer 3 to the calcined body and then firing, the insulating layer 3 has a structure in which the fired body 2 is coated. When aluminum oxide is contained in the component of the insulating layer 3, the aluminum component diffuses into the fired body 2 during firing and becomes zinc aluminate, thereby inhibiting the growth of zinc oxide crystal particles. Due to the action at the time of firing, a characteristic distribution of zinc oxide crystal particles not shown in FIG. 2 is formed. The formation of this distribution improves the electrical characteristics of the zinc oxide element.

[酸化亜鉛素子1の実施例]
表1に本発明の酸化亜鉛素子1の実施例とその比較例の評価結果を示す。同表においては、電気特性(動作開始電圧、非直線係数、ワットロス、制限電圧比、サージ耐量試験限界値)の評価結果が開示されている。実施例1の電気特性の評価値を100とした場合の比較例1、実施例2及び実施例3の電気特性の相対値が開示されている。動作開始電圧は、電圧グレードを決定するための指標である。また、非直線係数及びサージ耐量試験限界値は高い方が良く、ワットロス及び制限電圧比は低い方が良い。
[Example of zinc oxide element 1]
Table 1 shows the evaluation results of Examples of the zinc oxide element 1 of the present invention and Comparative Examples thereof. The table discloses the evaluation results of the electrical characteristics (operation start voltage, nonlinear coefficient, watt loss, voltage limit ratio, surge withstand test limit). The relative values of the electrical characteristics of Comparative Example 1, Example 2, and Example 3 when the evaluation value of the electrical characteristics of Example 1 is 100 are disclosed. The operation start voltage is an index for determining a voltage grade. Also, the higher the nonlinear coefficient and the surge withstand test limit, the better, and the lower the watt loss and the limit voltage ratio.

(実施例1)
酸化亜鉛、酸化ビスマス(III)、酸化アンチモン(III)、酸化コバルト(II)及び酸化マンガン(IV)の粉末を混合し、さらに、有機バインダとしてPVAを添加し、円柱状に加圧成型して成型体を得た。次いで、この成型体を脱脂及び収縮のため900℃で仮焼成することにより仮焼体を得た。そして、特許文献2の高抵抗層の形成法に基づき、前記仮焼体の側面に絶縁層3の成分(酸化亜鉛、酸化アルミニウム、酸化アンチモン(III)、酸化ビスマス(III))を含むスラリーを塗布し、1000℃以上の高温で焼結した。以上の焼成体2の側面に絶縁層3が形成された実施例1の酸化亜鉛素子1を前記電気特性の試験に供した。
(Example 1)
Mix powders of zinc oxide, bismuth (III) oxide, antimony (III) oxide, cobalt (II) and manganese (IV) oxides, add PVA as an organic binder, and press-mold into a columnar shape. A molded body was obtained. Next, the molded body was calcined at 900 ° C. for degreasing and shrinking to obtain a calcined body. Then, based on the method for forming a high-resistance layer of Patent Document 2, a slurry containing the components of the insulating layer 3 (zinc oxide, aluminum oxide, antimony (III) oxide, bismuth (III) oxide) is applied to the side surface of the calcined body. It was applied and sintered at a high temperature of 1000 ° C. or more. The zinc oxide element 1 of Example 1 in which the insulating layer 3 was formed on the side surface of the fired body 2 was subjected to the test of the electrical characteristics.

(実施例2)
実施例2の酸化亜鉛素子1は、絶縁層3の形成に供されるスラリーに含まれる酸化アルミニウムを実施例1の当該スラリーに含まれる酸化アルミニウムの1.6倍の重量比で添加したこと以外は、実施例1と同じ製法により、作製された。以上の焼成体2の側面に絶縁層3が形成された実施例2の酸化亜鉛素子1を前記電気特性の試験に供した。
(Example 2)
The zinc oxide element 1 of the second embodiment is different from that of the first embodiment in that aluminum oxide contained in the slurry used for forming the insulating layer 3 is added in a weight ratio 1.6 times that of the aluminum oxide contained in the slurry of the first embodiment. Was manufactured by the same manufacturing method as in Example 1. The zinc oxide element 1 of Example 2 in which the insulating layer 3 was formed on the side surface of the fired body 2 was subjected to the test of the electrical characteristics.

(実施例3)
実施例3の酸化亜鉛素子1は、絶縁層3の形成に供されるスラリーに含まれる酸化アルミニウムを実施例1の当該スラリーに含まれる酸化アルミニウムの3倍の重量比で添加したこと以外は、実施例1と同じ製法により、作製された。以上の焼成体2の側面に絶縁層3が形成された実施例3の酸化亜鉛素子1を前記電気特性の試験に供した。
(Example 3)
The zinc oxide device 1 of the third embodiment is different from the first embodiment in that the weight ratio of the aluminum oxide contained in the slurry used for forming the insulating layer 3 is three times that of the aluminum oxide contained in the slurry of the first embodiment. It was manufactured by the same manufacturing method as in Example 1. The zinc oxide element 1 of Example 3 in which the insulating layer 3 was formed on the side surface of the above-described fired body 2 was subjected to the test of the electrical characteristics.

(比較例1)
比較例1の酸化亜鉛素子1は、絶縁層3の形成に供されるスラリーに酸化アルミニウムが含まれていないこと以外は、実施例1と同じ製法により、作製された。以上の焼成体2の側面に絶縁層3が形成された比較例1の酸化亜鉛素子1を前記電気特性の試験に供した。
(Comparative Example 1)
The zinc oxide element 1 of Comparative Example 1 was manufactured by the same manufacturing method as in Example 1 except that the slurry used for forming the insulating layer 3 did not contain aluminum oxide. The zinc oxide element 1 of Comparative Example 1 in which the insulating layer 3 was formed on the side surface of the fired body 2 was subjected to the test of the electrical characteristics.

Figure 2020047686
Figure 2020047686

実施例1〜3の酸化亜鉛素子1は、絶縁層3の成分に酸化アルミニウムを含まない比較例1の酸化亜鉛素子1と比べて、酸化亜鉛素子としての性能が優れたものとなっている。特に、絶縁層3の形成に供されるスラリーの酸化アルミニウムの濃度に依存して電気特性が向上する傾向となった。この結果は、焼成時にアルミニウム成分が焼成体2に拡散してアルミン酸亜鉛となり酸化亜鉛結晶粒子の成長を阻害し、図2の酸化亜鉛結晶粒子の分布を形成し、さらに、焼成体2の側面にアルミン酸亜鉛を含んだ絶縁層3を形成させたことを示唆するものである。   The zinc oxide elements 1 of Examples 1 to 3 have better performance as zinc oxide elements than the zinc oxide element 1 of Comparative Example 1 in which the component of the insulating layer 3 does not contain aluminum oxide. In particular, the electrical characteristics tended to improve depending on the concentration of aluminum oxide in the slurry used for forming the insulating layer 3. This result indicates that the aluminum component diffuses into the fired body 2 during firing and becomes zinc aluminate, inhibiting the growth of zinc oxide crystal particles, forming the distribution of zinc oxide crystal particles in FIG. This suggests that an insulating layer 3 containing zinc aluminate was formed.

以上の本発明の実施形態の粒子構造及びアルミン酸亜鉛の分布により、焼成体の性能に悪影響を及ぼすことなく、酸化亜鉛素子としての性能の向上を図ることができる。特に、焼成体と絶縁層が一体となった酸化亜鉛素子を提供することで、酸化亜鉛素子の側面における気泡の混入、厚み不均一に由来する性能不安定を解消することが可能となる。   By the particle structure and the distribution of zinc aluminate of the embodiment of the present invention described above, it is possible to improve the performance as a zinc oxide element without adversely affecting the performance of the fired body. In particular, by providing a zinc oxide element in which the fired body and the insulating layer are integrated, it becomes possible to eliminate the instability of performance due to the incorporation of bubbles and uneven thickness at the side surface of the zinc oxide element.

1…酸化亜鉛素子
2…焼成体、21〜23…酸化亜鉛結晶粒子
3…絶縁層
DESCRIPTION OF SYMBOLS 1 ... Zinc oxide element 2 ... Fired body, 21-23 ... Zinc oxide crystal particle 3 ... Insulating layer

Claims (3)

焼成体の側面に絶縁層が形成された酸化亜鉛素子であって、
前記焼成体は、酸化亜鉛、酸化ビスマス(III)、酸化アンチモン(III)、酸化コバルト(II)及び酸化マンガン(IV)を含み、
前記絶縁層は、アルミン酸亜鉛を含むこと
を特徴とする酸化亜鉛素子。
A zinc oxide element having an insulating layer formed on a side surface of the fired body,
The fired body contains zinc oxide, bismuth (III) oxide, antimony (III) oxide, cobalt (II) oxide and manganese oxide (IV),
The zinc oxide element, wherein the insulating layer contains zinc aluminate.
前記焼成体は、中心部よりも側面部の近傍の方が酸化亜鉛結晶粒子の粒径が小さいこと
を特徴とする請求項1に記載の酸化亜鉛素子。
2. The zinc oxide element according to claim 1, wherein, in the fired body, the zinc oxide crystal particles have a smaller particle diameter near a side portion than at a center portion. 3.
前記絶縁層は、前記焼成体に近づくにつれて前記アルミン酸亜鉛の濃度が低くなること
を特徴とする請求項1または2に記載の酸化亜鉛素子。
3. The zinc oxide element according to claim 1, wherein the concentration of the zinc aluminate decreases as the insulating layer approaches the fired body. 4.
JP2018173219A 2018-09-18 2018-09-18 Zinc oxide element Pending JP2020047686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173219A JP2020047686A (en) 2018-09-18 2018-09-18 Zinc oxide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173219A JP2020047686A (en) 2018-09-18 2018-09-18 Zinc oxide element

Publications (1)

Publication Number Publication Date
JP2020047686A true JP2020047686A (en) 2020-03-26

Family

ID=69901637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173219A Pending JP2020047686A (en) 2018-09-18 2018-09-18 Zinc oxide element

Country Status (1)

Country Link
JP (1) JP2020047686A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308503A (en) * 1989-05-24 1990-12-21 Hitachi Ltd Ceramic resistor
JP2002373801A (en) * 2001-06-13 2002-12-26 Zuinkutopia:Kk Zinc oxide-based sintered body, manufacturing method thereof and zinc oxide varistor
KR20030062022A (en) * 2002-01-15 2003-07-23 (주) 래트론 ZnO varistor and the fabricating method of the same
JP2008270391A (en) * 2007-04-18 2008-11-06 Matsushita Electric Ind Co Ltd Multilayer chip varistor and its manufacturing method
JP2010238882A (en) * 2009-03-31 2010-10-21 Tdk Corp Varistor material, varistor element body, and composite laminated electronic component
JP2015156406A (en) * 2012-05-25 2015-08-27 パナソニック株式会社 Variable resister and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308503A (en) * 1989-05-24 1990-12-21 Hitachi Ltd Ceramic resistor
JP2002373801A (en) * 2001-06-13 2002-12-26 Zuinkutopia:Kk Zinc oxide-based sintered body, manufacturing method thereof and zinc oxide varistor
KR20030062022A (en) * 2002-01-15 2003-07-23 (주) 래트론 ZnO varistor and the fabricating method of the same
JP2008270391A (en) * 2007-04-18 2008-11-06 Matsushita Electric Ind Co Ltd Multilayer chip varistor and its manufacturing method
JP2010238882A (en) * 2009-03-31 2010-10-21 Tdk Corp Varistor material, varistor element body, and composite laminated electronic component
JP2015156406A (en) * 2012-05-25 2015-08-27 パナソニック株式会社 Variable resister and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW535173B (en) Current-voltage nonlinear resistor
JPH11340009A (en) Nonlinear resistor
KR100812425B1 (en) Current-voltage nonlinear resistor
JP2004026562A (en) Non-linear voltage resistor porcelain composition and electronic component
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP2004146675A (en) Non-linear voltage resistor porcelain composition, electronic component, and laminated chip varistor
JP4184172B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
JP2020047686A (en) Zinc oxide element
JP2933881B2 (en) Voltage nonlinear resistor, method of manufacturing the same, and lightning arrester mounted with the voltage nonlinear resistor
JP2020047685A (en) Zinc oxide element
JP2008172034A (en) Current/voltage nonlinear resistor
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
JP3853748B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
KR101690735B1 (en) Zinc oxide baristor for overvoltage protection and manufacturing method the same
JP2006245111A (en) Bismuth-based zinc oxide varistor
JP2002217006A (en) Nonlinear resistor
KR102615494B1 (en) ZnO-BASED VARISTOR COMPOSITION AND VARISTOR INCLUDING THE SAME AND MANUFACTURING METHOD THEREOF
JP3930843B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
JPH0734403B2 (en) Voltage nonlinear resistor
WO2023176608A1 (en) Antimony oxide substitute zinc oxide element
JP2001326108A (en) Voltage nonlinear resistor and its manufacturing method
JP2011210878A (en) Voltage nonlinear resistor and method for manufacturing the same
WO2019146065A1 (en) Material for current-voltage non-linear resistors, and current-voltage non-linear resistor and method for manufacturing same
JP2707707B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220927