JP2020043681A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2020043681A
JP2020043681A JP2018168924A JP2018168924A JP2020043681A JP 2020043681 A JP2020043681 A JP 2020043681A JP 2018168924 A JP2018168924 A JP 2018168924A JP 2018168924 A JP2018168924 A JP 2018168924A JP 2020043681 A JP2020043681 A JP 2020043681A
Authority
JP
Japan
Prior art keywords
temperature
controller
switching element
control
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018168924A
Other languages
English (en)
Other versions
JP7010182B2 (ja
Inventor
賢人 田栗
Kento Taguri
賢人 田栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018168924A priority Critical patent/JP7010182B2/ja
Publication of JP2020043681A publication Critical patent/JP2020043681A/ja
Application granted granted Critical
Publication of JP7010182B2 publication Critical patent/JP7010182B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】本明細書は、スイッチング素子を熱から保護する複数の制御を適切な温度に基づいて実行することのできる電力変換装置を提供する。【解決手段】本明細書が開示する電力変換装置は、電源電力を走行用のモータの駆動電力に変換するデバイスである。その電力変換装置は、電源電力が流れる複数のスイッチング素子と、スイッチング素子を冷却する冷却器と、スイッチング素子と冷却器を制御するコントローラを備えている。コントローラは、スイッチング素子の発熱量に基づいて冷媒の推定温度を算出するとともに、推定温度よりも高い上温度と低い下温度を設定する。コントローラは、スイッチング素子を熱から保護する複数の制御において、推定温度と上温度と下温度を使い分ける。本明細書が開示する電力変換装置は、冷媒温度に関する三種類の温度を設定し、スイッチング素子を熱から保護する複数の制御で三種類の温度を使い分ける。【選択図】図4

Description

本明細書が開示する技術は、電源電力を走行用のモータの駆動電力に変換する電力変換装置に関する。
電気自動車は、電源電力を走行用のモータの駆動電力に変換する電力変換装置を備えている。なお、本明細書における電気自動車には、モータとエンジンの双方を備えるハイブリッド車、電源として燃料電池を備えている燃料電池車が含まれる。電力変換装置の典型は、直流電力を交流電力に変換するインバータである。電力変換装置は、インバータの前段に、直流電力の電圧を昇圧する昇圧コンバータを含む場合がある。
電力変換装置は、電力変換用のスイッチング素子を多く含んでいる。電力変換用のスイッチング素子は、パワースイッチング素子と呼ばれる場合がある。電力変換用のスイッチング素子は、大電力を扱うため、発熱量が大きい。そこで、電力変換装置は、スイッチング素子を冷却する冷却器を伴うことが多い。冷却器の制御には、冷媒の温度を知る必要がある。冷媒の温度を温度センサで直接に計測するかわりに、スイッチング素子の温度、あるいは、スイッチング素子の発熱量から冷媒温度を推定する技術が特許文献1、2に開示されている。
特許文献1の技術では、複数のスイッチング素子が共通の冷却器で冷却される。特許文献1の技術では、複数のスイッチング素子の温度センサの計測値から各スイッチング素子の発熱量を推定し、スイッチング素子の温度から発熱量に相当する温度を減じて冷媒の温度を得る。特許文献2の技術では、オフ状態のスイッチング素子の温度に基づいて冷媒の温度を推定する。
特開2004−257821号公報 特開2004−219324号公報
推定温度と実際の温度の間には誤差が生じ得る。一方、冷媒の温度は様々な制御に利用される。例えば、冷媒の温度は、スイッチング素子の過熱防止、スイッチング素子の耐圧保護、冷却器のポンプ制御などに用いられる。スイッチング素子をより確実に保護するには、それぞれの制御に応じて、プラス側の誤差(推定温度が実際の温度よりも高い場合)が望ましい場合と、マイナス側の誤差(推定温度が実際の温度よりも低い場合)が望ましい場合がある。すなわち、スイッチング素子を保護するための複数の制御のそれぞれが十分に機能するためには、一つの推定温度では足りない場合がある。複数の推定温度を準備する場合であっても、それぞれの推定温度を速やかに適切な制御に利用できることが望ましい。
本明細書が開示する電力変換装置は、電気自動車用の電力変換装置であり、電源電力を走行用のモータの駆動電力に変換するデバイスである。その電力変換装置は、電源電力が流れる複数のスイッチング素子と、スイッチング素子を冷却する冷却器と、スイッチング素子と冷却器を制御するコントローラを備えている。コントローラは、同一の制御周期において、スイッチング素子の発熱量に基づいて冷却器を流れる冷媒の推定温度を算出するとともに、推定温度よりも高い上温度と推定温度よりも低い下温度を設定する。コントローラは、前記スイッチング素子を熱から保護する複数の制御において、推定温度と上温度と下温度を使い分ける。本明細書が開示する電力変換装置は、同一周期に冷媒温度に関する三種類の温度を設定し、スイッチング素子を熱から保護する複数の制御で三種類の温度を使い分ける。それゆえ、複数の制御のそれぞれに適した温度を使うことができるので、それぞれの制御を有効に利用することができる。三種類の温度を同一の制御周期で設定するので、各温度を状況に応じて速やかに適切な制御に利用することが可能となる。
スイッチング素子を熱から保護する複数の制御の一例は、次の通りである。コントローラは、走行用のモータの回転速度が所定の回転速度閾値以下の場合に、上温度が高くなるにつれてモータの出力トルクの上限値を下げる。上限値を下げることで、スイッチング素子の最大負荷が小さくなる。この制御を以下では耐熱保護制御と称する。走行用モータの回転速度が低いときは、車輪がロックした場合、あるいは、急な坂道を登る場合など、モータに高い負荷が要求される可能性が高く、耐熱保護制御は、そのような場合にスイッチング素子の過熱を防ぐ制御である。耐熱保護制御は、スイッチング素子の過熱を防ぐ制御であるため、冷媒の推定温度よりも高い上温度を用いる方が、スイッチング素子の過熱を効果的に防ぐことができる。
また、コントローラは、下温度が低くなるにつれて出力電圧(電力変換装置の出力電圧)を下げる。出力電圧を下げることでも、スイッチング素子の負荷が下がる。この制御を以下では耐圧保護制御と称する。温度が低いとスイッチング素子の耐圧(ブレークダウン電圧)が低くなる傾向があり、耐圧保護制御は、スイッチング素子の温度が低いときにブレークダウンを回避するための制御である。耐圧保護制御は、スイッチング素子の温度の低さに応じた制御であるので、冷媒の推定温度よりも低い下温度を用いる方が、スイッチング素子のブレークダウンを確実に回避することができる。
一方、コントローラは、推定温度が所定の目標温度に追従するように冷却器を制御する。この制御を以下では、冷却器制御と称する。冷却器制御は冷媒の温度に応じた制御であるので、冷媒の温度に最も近い推定温度を用いることが有効である。
コントローラは、スイッチング温度の発熱量に応じて三種類の温度(推定温度、上温度、下温度)を設定し、スイッチング素子保護のための複数の制御のそれぞれに適した温度で各制御を実行することができる。また、三種類の温度が同一の制御周期で設定されるので、車両の状況に応じて適切な温度を適切な制御ですぐに利用することが可能となる。
コントローラは、異常の有無によって利用する温度を変えることも好ましい。例えば、コントローラは、電力変換装置が搭載されている電気自動車で異常が検知されていない場合には、次のように温度を用いた制御を実行する。(1A)コントローラは、モータの回転速度が所定の回転速度閾値以下の場合には、推定温度が高くなるにつれてモータの出力トルクの上限値を下げる(耐熱保護制御)。(2A)コントローラは、推定温度が低くなるにつれて出力電圧を下げる(耐圧保護制御)。(3A)コントローラは、推定温度が所定の目標温度に追従するように冷却器を制御する(冷却器制御)。すなわち、異常が検知されていない場合は、耐熱保護制御、耐圧保護制御、冷却器制御にいずれについても、推定温度を利用する。
一方、コントローラは、電力変換器が搭載されている電気自動車で異常が検知された場合に、次のように温度を用いた制御を実行する。(1B)コントローラは、モータの回転速度が回転速度閾値以下の場合には、上温度が高くなるにつれてモータの出力トルクの上限値を下げる(耐熱保護制御)。(2B)コントローラは、下温度が低くなるにつれて電力変換装置の出力電圧を下げる(耐圧保護制御)。(3B)コントローラは、上温度が所定の目標温度に追従するように冷却器を制御する(冷却器制御)。すなわち、コントローラは、異常が検知された場合は、それぞれの制御の効果がより安全側へシフトするように、利用する温度を変更する。そのように制御することで、異常が検知された場合にはスイッチング素子の保護が強く働くようになる。
本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
実施例の電力変換装置を含む電気自動車の電力系のブロック図である。 耐熱保護制御の一例を示すグラフである。 耐圧保護制御の一例を示すグラフである。 スイッチング素子の保護制御のフローチャートである。 変形例の保護制御のフローチャートである。
図面を参照して実施例の電力変換装置2を説明する。電力変換装置2は、電気自動車100に搭載されている。図1に、電力変換装置2を含む電気自動車100の電力系のブロック図を示す。電気自動車100は、車輪を駆動するための2個のモータ22a、22bを有している。
電気自動車100は、2個のモータ22a、22bのほか、直流電源21と、電力変換装置2と、上位コントローラ25を備えている。直流電源21は、リチウムイオンバッテリである。電力変換装置2は、直流電源21の出力電力を、モータ22a、22bの駆動電力に変換する。モータ22a、22bは三相交流モータである。電力変換装置2は、直流電源21の出力電圧を昇圧した後に三相交流に変換する。
電力変換装置2は、電圧コンバータ3、インバータ4、冷却器10、コントローラ7を備えている。電圧コンバータ3は、チョッパ型の双方向DC−DCコンバータであり、直流電源21の電圧を昇圧してインバータ4へ供給する。電圧コンバータ3は、モータ22a、22bが発電した回生電力を(インバータ4が直流電力に変換した後に)、直流電源21の電圧まで降圧することもできる。
チョッパ型の電圧コンバータ3は、複数のスイッチング素子31と、リアクトルとコンデンサを備えている。チョッパ型の双方向DC−DCコンバータの回路構成はよく知られているので、具体的な回路構成は図示を省略した。ただし、スイッチング素子31のみ、模式化して図示した。スイッチング素子31は、電圧コンバータ3に含まれている複数のスイッチング素子を代表している。電圧コンバータ3には、スイッチング素子31の温度を計測する温度センサ32と、スイッチング素子31に流れる電流を計測する電流センサ33を備えている。図中の矢印破線は信号の流れを示している。温度センサ32と電流センサ33の計測データはコントローラ7に送られる。スイッチング素子31は、コントローラ7からの指令により動作する。電圧コンバータ3の出力側には電圧センサ8が備えられている。電圧センサ8は、電圧コンバータ3の出力電圧(昇圧後の電圧)を計測する。電圧センサ8の計測値は、コントローラ7に送られる。
インバータ4は、2セットのインバータ回路を含んでおり、それぞれのインバータ回路が、電圧コンバータ3によって昇圧された直流電力を、モータ22a、22bを駆動する交流電力に変換する。インバータ回路の構成もよく知られているので図1では具体的な回路構成は図示を省略した。ただし、スイッチング素子41のみ、模式化して図示した。スイッチング素子41は、インバータ4に含まれている複数のスイッチング素子を代表している。インバータ4には、スイッチング素子41の温度を計測する温度センサ42が備えられている。温度センサ42の計測データはコントローラ7に送られる。スイッチング素子41は、コントローラ7からの指令により動作する。
インバータ4がモータ22a(22b)に供給する交流は、電流センサ5a(5b)によって計測される。電流センサ5a、5bの計測値もコントローラ7へ送られる。モータ22a、22bのそれぞれには回転速度センサ23a、23bが備えられている。回転速度センサ23a、23bの計測値もコントローラ7へ送られる。
コントローラ7は、上位コントローラ25から、モータ22a、22bの目標出力指令を受ける。コントローラ7は、受信した目標出力指令が実現されるように、各種センサの計測値に基づいて、スイッチング素子31、41をフィードバック制御する。上位コントローラ25は、アクセル開度、車速、直流電源21の残量などから、モータ22a、22bの目標出力を決定し、その指令(目標出力指令)をコントローラ7へ送信する。
電力変換装置2は、スイッチング素子31、41、その他、電圧コンバータ3のリアクトルなどを冷却する冷却器10も備えている。冷却器10は、冷媒が流れる循環路12と、ラジエータ14と、ポンプ13を備えている。循環路12は、電圧コンバータ3、インバータ4、ラジエータ14を通っている。ポンプ13は、冷媒をラジエータ14から電圧コンバータ3へ向けて圧送する。冷媒は水あるいは不凍液である。ポンプ13は、コントローラ7によって制御される。コントローラ7は、ポンプ13を適切に制御し(即ち、冷媒の流量を制御し)、スイッチング素子31、41の過熱を防止する。
車輪を駆動するモータ22a、22bの最高出力は数十キロワットに達する。スイッチング素子31、41には、数十キロワットの電力が流れ得るため、発熱量が大きい。コントローラ7は、スイッチング素子31、41を熱から保護すべく、いくつかの保護制御を実行する。その一つが、冷却器10のポンプ13の制御(冷却器制御)である。コントローラ7は、冷媒温度が所定の目標温度に追従するように、ポンプ13の出力を調整する。
そのほかの保護制御として、コントローラ7は、耐熱保護制御と、耐圧保護制御を実行する。耐熱保護制御は、スイッチング素子31、41の温度が耐熱上限温度を超えないように、モータ22a、22bの出力を制限する制御である。より具体的には、コントローラ7は、モータ22a、22bの回転速度が所定の回転速度閾値以下の場合、冷媒温度が高くなるにつれてモータ22a、22bの出力トルクの上限値が下がるように、スイッチング素子31、41を制御する。回転速度閾値は、例えば、100[rpm]に設定されている。そのような低い回転速度が実現されているときは、車輪が障害物に乗り上げてロックしている状態であったり、急勾配の登り坂を登坂中の場合がある。そのような場合には、比較的に長時間にわたってモータ22a、22bに高負荷が要求される場合がある。耐熱保護制御は、そのような場合にスイッチング素子31、41の最大負荷を下げる制御である。
図2に、耐熱保護制御の一例を示す。冷媒温度がT1、T2、T3と上がるにつれて、トルク上限値(モータの出力トルクの上限値)が下がっている。
耐圧保護制御は、スイッチング素子のブレークダウンを回避する制御である。スイッチング素子のブレークダウン電圧は、スイッチング素子の温度が下がるほど低くなる特性を有している。従って、コントローラ7は、スイッチング素子の温度(冷媒温度)が低くなるにつれて、電力変換装置2の出力電圧が下がるように、スイッチング素子31を制御する。なお、電力変換装置2の出力電圧は、電圧コンバータ3の出力電圧で定まる。電圧コンバータ3の出力電圧は、電圧センサ8によって計測される。コントローラ7は、電圧センサ8の計測値をモニタしつつ、電圧コンバータ3の出力電圧が、所定の電圧目標値となるように、スイッチング素子31を制御する。
図3に、耐圧保護制御の一例を示す。図3の例では、冷媒温度が温度T3を下回ると、昇圧目標電圧は電圧V3から電圧V2に下がる。冷媒温度がT1を下回ると、昇圧目標電圧は電圧V2から電圧V1に下がる。なお、昇圧目標電圧が電圧V1から電圧V2に上昇するのは、冷媒温度が温度T1ではなく温度T2を超えたときである。昇圧目標電圧が電圧V2から電圧V3に上昇するのは、冷媒温度が温度T3ではなく温度T4を超えたときである。このように冷媒温度が低い側から高い側へ移るときの閾値温度が、冷媒温度が高い側から低い側へ移るときの閾値温度よりも高いのは、ハンチング防止のためのヒステリシスを設けているためである。
また、図3において、冷媒温度が温度T6を上回ると昇圧目標電圧は電圧V3から電圧V1に下がる。これは、電圧コンバータ3の他の部品(リアクトルやコンデンサ)を過熱から保護するためである。昇圧目標電圧が電圧V1から電圧V3に高くなるのが温度T6ではなくそれよりも低い温度T5であるのも、ハンチング防止のためのヒステリシスを設けているためである。温度T5、T6における昇圧目標電圧の変更は、スイッチング素子31の耐熱保護制御でなはなく、他の部品の耐熱保護制御であることに留意されたい。スイッチング素子31の耐熱保護制御では、冷媒温度が下がるにつれて電力変換装置2の出力電圧が下がる。
上記のとおり、コントローラ7は、スイッチング素子31、41を熱から保護するため、冷却器制御、耐熱保護制御、耐圧保護制御を実施する。上記の説明では、いずれの制御も、冷媒温度に基づいて制御対象(ポンプあるいはスイッチング素子)を制御するとした。図1を参照して説明したように、本実施例の電力変換装置2は、冷媒の温度を計測する温度センサを備えていない。コントローラ7は、スイッチング素子の温度を計測する温度センサ32、42や、インバータ4の出力電流を計測する電流センサ5a、5bなどのセンサデータから、冷媒温度を推定する。
冷媒の実際の温度と推定温度との間には誤差が生じ得る。推定温度は、実際の冷媒温度よりも低くなったり、高くなったりする。一方、スイッチング素子の発熱を抑制する耐熱保護制御では、制御に用いる推定温度が実際の冷媒温度よりも低いと制御の効果が低下する。他方、低温時のブレークダウンを防止する耐圧保護制御では、制御に用いる推定温度が実際の冷媒温度よりも高いと制御の効果が低下する。そこで、コントローラ7は、冷媒の推定温度を算出した後、耐熱保護制御用に、推定温度よりも高い温度(その温度を上温度と称する)を設定するとともに、耐圧保護制御用に、推定温度よりも低い温度(その温度を下温度と称する)を設定する。このように、それぞれの保護制御の特性に応じた温度を設定することで、それぞれの保護制御を有効に機能させることができる。
コントローラ7が実施する保護制御のフローチャートを図4に示す。図4の処理は、所定の制御周期毎に実行される。コントローラ7は、まず、電流センサ5a、5b、33、温度センサ32、42などの各種センサの情報を取得する(ステップS2)。次にコントローラ7は、各種センサの計測値に基づいてスイッチング素子31、41の発熱量dTを特定する(ステップS3)。各種センサの計測値と発熱量の関係は、算出式あるいはマップの形式で予めコントローラ7に格納されている。コントローラ7は、格納されている算出式あるいはマップを使って、各種センサの計測値からスイッチング素子31、41の発熱量dTを特定する。発熱量dTは、温度の単位で表される。
次にコントローラ7は、上発熱量dTmaxと下発熱量dTminを特定する(ステップS4)。後のステップS5で説明するが、スイッチング素子の温度から発熱量dTを減じた値が冷媒の推定温度Ttypとなる。上発熱量dTmax(下発熱量dTmin)は、上温度Tmax(下温度Tmin)を特定するために導入する変数である。上発熱量dTmaxは、上温度Tmaxが推定温度Ttypに対して、ある程度高くなるように、発熱量dTに対して1より小さい係数(上発熱量係数)を乗じて求められる。ここで、上発熱量係数は、典型的には、スイッチング素子の損失のばらつきの係数の最小値と、冷却系のばらつきの係数の最小値と、センサの計測値のばらつきの係数の最小値を乗じた値で定まる。
下発熱量dTminは、下温度Tminが推定温度Ttypに対して、ある程度低くなるように、発熱量dTに対して1より大きい係数(下発熱量係数)を乗じて求められる。ここで、下発熱量係数は、典型的には、スイッチング素子の損失のばらつきの係数の最大値と、冷却系のばらつきの係数の最大値と、センサの計測値のばらつきの係数の最大値を乗じた値で定まる。
次いで、コントローラ7は、温度センサ32、42から得られるスイッチング素子の温度から発熱量dTを減じて冷媒の推定温度Ttypを求める。スイッチング素子の温度は、例えば、温度センサ32、42の平均値で求められる。同時に、コントローラ7は、スイッチング素子の温度から上発熱量dTmaxを減じて上温度Tmaxを求め、スイッチング素子の温度から下発熱量dTminを減じて下温度Tminを求める(ステップS5)。
上発熱量dTmaxは発熱量dTのばらつきの最小値に相当し、下発熱量dTminは発熱量dTのばらつきの最大値に相当する。それゆえ、上温度Tmaxと下温度Tminは、冷媒の推定温度Ttypのばらつきの範囲の最大値と最小値に対応する。
コントローラ7は、推定温度Ttypに替えて上温度Tmaxを用いて耐熱保護制御を実施し、推定温度Ttypに替えて下温度Tminを用いて耐圧保護制御を実行する。また、コントローラ7は、推定温度Ttypを用いて冷却器制御を実行する(ステップS6)。
先に述べたように、スイッチング素子の発熱を抑制する耐熱保護制御では、制御に用いる推定温度が実際の冷媒温度よりも低いと制御の効果が低下する。そこで、実施例の電力変換装置2では、推定温度Ttypのばらつきの範囲の最大値に相当する上温度Tmaxを用いて耐熱保護制御を実施する。冷媒の実際の温度は上温度Tmaxを超える可能性は極めて小さい。それゆえ、耐熱保護制御に上温度Tmaxを利用することで、耐熱保護制御はスイッチング素子の保護を強化する方向で実施される。
同様に、低温度によるブレークダウンを防止する耐圧保護制御では、制御に用いる推定温度が実際の冷媒温度よりも高いと制御の効果が低下する。電力変換装置2では、推定温度Ttypのばらつきの範囲の最小値に相当する下温度Tminを用いて耐圧保護制御を実施する。冷媒の実際の温度は下温度Tminを下回る可能性は極めて小さい。それゆえ、耐圧保護制御に下温度Tminを利用することで、耐圧保護制御も、スイッチング素子の保護を強化する方向で実施される。
冷却器制御では、利用する推定温度は実際の温度よりも高い場合であっても低い場合であっても、実際の温度に近い方がよい。そこで、コントローラ7は、冷却器制御では、上温度Tmaxや下温度Tminではなく、推定温度Ttypが目標温度に追従するように、ポンプ13を制御する。
以上のとおり、実施例の電力変換装置2では、スイッチング素子を熱から保護する複数の制御を実行するにあたって、それぞれの制御に適するように冷媒の推定温度を調整する。そうすることで、推定温度が冷媒の実際の温度と相違したとしても、スイッチング素子の保護が不十分とならないようにすることができる。
三種類の温度(推定温度Ttyp、上温度Tmax、下温度Tminは、同一の制御周期に設定される。三種類の温度が同一の制御周期で設定されるので、車両の状況に応じて適切な温度を適切な制御ですぐに利用することが可能となる。
(変形例)コントローラ7が実行する保護制御の変形例を説明する。変形例の保護制御のフローチャートを図5示す。変形例の保護制御では、図4のフローチャートのステップS1からS5までは同一であり、図4のステップS6に替えてステップS7が実行される点が相違する。ステップS7では、コントローラ7は、電気自動車100で何等かの異常が検知された場合とそうでない場合で、各保護制御で採用する温度を変える。
コントローラ7は、電力変換装置2が搭載されている電気自動車100で何の異常も検知されていない場合には、次のように温度を用いた制御を実行する。(1A)コントローラ7は、モータ22a、22bの回転速度が所定の回転速度閾値以下の場合には、推定温度Ttypが高くなるにつれてモータ22a、22bの出力トルクの上限値を下げる(耐熱保護制御)。(2A)コントローラ7は、推定温度Ttypが低くなるにつれて出力電圧を下げる(耐圧保護制御)。(3A)コントローラ7は、推定温度Ttypが所定の目標温度に追従するように冷却器10のポンプ13を制御する(冷却器制御)。すなわち、異常が検知されていない場合は、コントローラ7は、耐熱保護制御、耐圧保護制御、冷却器制御にいずれについても、推定温度Ttypを利用する。
一方、コントローラ7は、電力変換装置2が搭載されている電気自動車100で何らかの異常が検知された場合に、次のように温度を用いた制御を実行する。(1B)コントローラ7は、モータ22a、22bの回転速度が回転速度閾値以下の場合には、上温度Tmaxが高くなるにつれてモータ22a、22bの出力トルクの上限値を下げる(耐熱保護制御)。(2B)コントローラ7は、下温度Tminが低くなるにつれて電力変換装置2の出力電圧を下げる(耐圧保護制御)。(3B)コントローラ7は、上温度Tmaxが所定の目標温度に追従するように冷却器を制御する(冷却器制御)。すなわち、コントローラ7は、異常が検知された場合は、それぞれの制御の効果がより安全側へシフトするように、利用する温度を変更する。そのように制御することで、異常が検知された場合にはスイッチング素子の保護が強く働くようになる。
実施例で説明した技術に関する留意点を述べる。スイッチング素子や他の電気部品を熱から保護する制御には、耐熱保護制御、耐圧保護制御、冷却器制御のほか、キャリア周波数を変更する制御がある。キャリア周波数が低いほど、リプル電流が大きくなり、コンデンサの負荷が大きくなる。そこで、冷媒の温度が高くなるほど、キャリア周波数を高くする制御が考えられる。そのようなキャリア周波数を変更する保護制御においても、推定温度Ttyp、上温度Tmax、下温度Tminの中から適切な温度を選択して用いればよい。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:電力変換装置
3:電圧コンバータ
4:インバータ
5a、5b、33:電流センサ
7:コントローラ
8:電圧センサ
10:冷却器
12:循環路
13:ポンプ
14:ラジエータ
21:直流電源
22a、22b:モータ
23a、23b:回転速度センサ
25:上位コントローラ
31、41:スイッチング素子
32、42:温度センサ
100:電気自動車

Claims (3)

  1. 電源電力を走行用のモータの駆動電力に変換する電力変換装置であり、
    前記電源電力が流れる複数のスイッチング素子と、
    前記スイッチング素子を冷却する冷却器と、
    前記スイッチング素子と前記冷却器を制御するコントローラと、
    を備えており、
    前記コントローラは、
    同一の制御周期において、前記前記スイッチング素子の発熱量に基づいて前記冷却器を流れる冷媒の推定温度を算出するとともに、前記推定温度よりも高い上温度と前記推定温度よりも低い下温度を設定し、
    前記スイッチング素子を熱から保護する複数の制御において、前記推定温度と前記上温度と前記下温度を使い分ける、電気自動車用の電力変換装置。
  2. 前記コントローラは、
    前記モータの回転速度が所定の回転速度閾値以下の場合に、前記上温度が高くなるにつれて前記モータの出力トルクの上限値を下げ、
    前記下温度が低くなるにつれて前記電力変換装置の出力電圧を下げ、
    前記推定温度が所定の目標温度に追従するように前記冷却器を制御する、
    請求項1に記載の電力変換装置。
  3. 前記コントローラは、
    前記電気自動車で異常が検知された場合に、
    前記モータの回転速度が所定の回転速度閾値以下の場合に、前記上温度が高くなるにつれて前記モータの出力トルクの上限値を下げ、
    前記下温度が低くなるにつれて前記電力変換装置の出力電圧を下げ、
    前記上温度が所定の目標温度に追従するように前記冷却器を制御し、
    前記電気自動車で異常が検知されていない場合は、
    前記回転速度が前記回転速度閾値以下の場合に、前記推定温度が高くなるにつれて前記出力トルクの上限値を下げ、
    前記推定温度が低くなるにつれて前記出力電圧を下げ、
    前記推定温度が所定の目標温度に追従するように前記冷却器を制御する、
    請求項1に記載の電力変換装置。
JP2018168924A 2018-09-10 2018-09-10 電力変換装置 Active JP7010182B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168924A JP7010182B2 (ja) 2018-09-10 2018-09-10 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168924A JP7010182B2 (ja) 2018-09-10 2018-09-10 電力変換装置

Publications (2)

Publication Number Publication Date
JP2020043681A true JP2020043681A (ja) 2020-03-19
JP7010182B2 JP7010182B2 (ja) 2022-01-26

Family

ID=69798963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168924A Active JP7010182B2 (ja) 2018-09-10 2018-09-10 電力変換装置

Country Status (1)

Country Link
JP (1) JP7010182B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116605A (ja) * 1994-10-18 1996-05-07 Mazda Motor Corp 電気自動車の冷却装置
JP2004257821A (ja) * 2003-02-25 2004-09-16 Toyota Motor Corp 電気回路の監視装置および監視方法
JP2009118641A (ja) * 2007-11-06 2009-05-28 Denso Corp 冷却流体の温度情報取得装置
JP2018042368A (ja) * 2016-09-07 2018-03-15 本田技研工業株式会社 電力変換装置の故障検知装置及び車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116605A (ja) * 1994-10-18 1996-05-07 Mazda Motor Corp 電気自動車の冷却装置
JP2004257821A (ja) * 2003-02-25 2004-09-16 Toyota Motor Corp 電気回路の監視装置および監視方法
JP2009118641A (ja) * 2007-11-06 2009-05-28 Denso Corp 冷却流体の温度情報取得装置
JP2018042368A (ja) * 2016-09-07 2018-03-15 本田技研工業株式会社 電力変換装置の故障検知装置及び車両

Also Published As

Publication number Publication date
JP7010182B2 (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
KR100973763B1 (ko) 모터구동장치 및 이를 구비한 차량
JP5633631B2 (ja) インバータの過熱保護制御装置およびインバータの過熱保護制御方法
US8581533B2 (en) Motor driver and method of controlling the same
US9994109B2 (en) Power supply system applied to electrically powered vehicle
US8649931B2 (en) Cooling system for vehicle
US9647547B2 (en) Voltage conversion device for stepping up voltage
JP6135563B2 (ja) 電圧コンバータ
WO2009011461A1 (ja) インバータ制御装置および車両
US10910981B2 (en) Electric power conversion system and control method of electric power conversion system
JP6248976B2 (ja) 電動車両
JP2014023263A (ja) 電気自動車
JP7010182B2 (ja) 電力変換装置
JP2006067668A (ja) 電動機制御装置
JP2011250511A (ja) 負荷駆動装置およびそれを備える車両ならびに負荷駆動装置の制御方法
JP2017050924A (ja) 電動車両
JP2011087406A (ja) 電動車両
JP2019146374A (ja) 電力変換装置
US20190100113A1 (en) Electric vehicle
JP5971183B2 (ja) 昇圧装置の制御装置
JP7159811B2 (ja) コンバータ
JP5332393B2 (ja) 車両駆動用モータ制御装置
JP7472651B2 (ja) 電源機器の冷却制御装置
US20220297572A1 (en) Power supply system
JP2022038267A (ja) 電気自動車
JP2020120564A (ja) 電力変換器の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227