JP2020043307A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2020043307A
JP2020043307A JP2018171821A JP2018171821A JP2020043307A JP 2020043307 A JP2020043307 A JP 2020043307A JP 2018171821 A JP2018171821 A JP 2018171821A JP 2018171821 A JP2018171821 A JP 2018171821A JP 2020043307 A JP2020043307 A JP 2020043307A
Authority
JP
Japan
Prior art keywords
trench
insulating film
semiconductor substrate
gate insulating
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018171821A
Other languages
Japanese (ja)
Inventor
仁志 藤岡
Hitoshi Fujioka
仁志 藤岡
恵太 片岡
Keita Kataoka
恵太 片岡
泰 浦上
Yasushi Uragami
泰 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018171821A priority Critical patent/JP2020043307A/en
Publication of JP2020043307A publication Critical patent/JP2020043307A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

To suppress a gate leakage current in a semiconductor device in which a trench is bent on the surface of a semiconductor substrate.SOLUTION: A semiconductor device includes a semiconductor substrate, a trench provided on the surface of the semiconductor substrate, a gate insulating film covering an inner surface of the trench, a gate electrode disposed in the trench and insulated from the semiconductor substrate by the gate insulating film. When the surface of the semiconductor substrate is viewed in a plan view, the trench is meandering. When the surface of the semiconductor substrate is viewed in plan view, a radius of curvature of a side surface of the trench is 900 nm or more.SELECTED DRAWING: Figure 2

Description

本明細書に開示の技術は、半導体装置に関する。   The technology disclosed in this specification relates to a semiconductor device.

特許文献1には、トレンチゲート型の半導体装置が開示されている。この半導体装置は、トレンチの内面を覆うゲート絶縁膜と、トレンチ内に配置されているとともにゲート絶縁膜によって半導体基板から絶縁されたゲート電極を有している。半導体基板の表面を平面視したときに、トレンチが、折れ線状に曲がっている。このようにトレンチが曲がっていることで、チャネル密度が高くなる。   Patent Literature 1 discloses a trench gate type semiconductor device. This semiconductor device has a gate insulating film covering the inner surface of the trench, and a gate electrode disposed in the trench and insulated from the semiconductor substrate by the gate insulating film. When the surface of the semiconductor substrate is viewed in a plan view, the trench is bent in a polygonal line shape. Such a bent trench increases the channel density.

特開2007−134500号公報JP 2007-134500 A

特許文献1のようにトレンチが曲がっていると、トレンチの側面に凸状部が形成される。凸状部を有するトレンチの側面にゲート絶縁膜を形成すると、凸状部においてゲート絶縁膜が薄くなる。このため、ゲート絶縁膜が薄い部分でゲートリーク電流が生じ易い。したがって、本明細書では、半導体基板の表面においてトレンチが曲がっていると共に、ゲートリーク電流が生じ難い半導体装置を提案する。   When the trench is bent as in Patent Document 1, a convex portion is formed on the side surface of the trench. When the gate insulating film is formed on the side surface of the trench having the convex portion, the gate insulating film in the convex portion becomes thin. Therefore, a gate leak current is likely to occur in a portion where the gate insulating film is thin. Therefore, this specification proposes a semiconductor device in which a trench is bent on a surface of a semiconductor substrate and a gate leakage current is less likely to occur.

本明細書が開示する半導体装置は、半導体基板と、半導体基板の表面に設けられたトレンチと、前記トレンチの内面を覆うゲート絶縁膜と、前記トレンチ内に配置されているとともに前記ゲート絶縁膜によって前記半導体基板から絶縁されたゲート電極を有している。前記半導体基板の前記表面を平面視したときに、前記トレンチが蛇行している。前記半導体基板の前記表面を平面視したときに、前記トレンチの側面の曲率半径が900nm以上である。   A semiconductor device disclosed in this specification includes a semiconductor substrate, a trench provided on a surface of the semiconductor substrate, a gate insulating film covering an inner surface of the trench, and a gate insulating film disposed in the trench and the gate insulating film. A gate electrode insulated from the semiconductor substrate. When the surface of the semiconductor substrate is viewed in a plan view, the trench is meandering. When the surface of the semiconductor substrate is viewed in a plan view, a radius of curvature of a side surface of the trench is 900 nm or more.

この半導体装置では、トレンチが半導体基板の表面において蛇行しているので、チャネル密度が高い。また、この半導体装置では、トレンチの側面が900nm以上の曲率半径で曲がっている。このようにトレンチの側面の曲がりが緩やかだと、トレンチの側面の凸状部でゲート絶縁膜が薄くなり難い。したがって、ゲートリーク電流を抑制することができる。   In this semiconductor device, since the trench is meandering on the surface of the semiconductor substrate, the channel density is high. In this semiconductor device, the side surface of the trench is bent with a radius of curvature of 900 nm or more. If the side surface of the trench has a gentle bend, the gate insulating film is unlikely to be thin at the convex portion on the side surface of the trench. Therefore, gate leak current can be suppressed.

実施形態のMOSFET(metal oxide semiconductor field effect transistor)の断面図。FIG. 1 is a cross-sectional view of a MOSFET (metal oxide semiconductor field effect transistor) according to an embodiment. 半導体基板の上面の平面図。FIG. 3 is a plan view of the upper surface of a semiconductor substrate. ゲート絶縁膜の厚さの説明図。FIG. 4 is an explanatory diagram of a thickness of a gate insulating film. ゲート絶縁膜の厚さの説明図。FIG. 4 is an explanatory diagram of a thickness of a gate insulating film. トレンチの側面の曲率半径とゲート絶縁膜の厚さとの関係を示すグラフ。4 is a graph showing a relationship between a radius of curvature of a side surface of a trench and a thickness of a gate insulating film. トレンチの側面の曲率半径とチャネル密度増加率との関係を示すグラフ。5 is a graph showing a relationship between a radius of curvature of a side surface of a trench and a channel density increase rate.

図1に示す実施形態のMOSFETは、半導体基板12を有している。半導体基板12は、シリコン、SiC等により構成されている。半導体基板12の上面12aには、トレンチ20が設けられている。なお、図示していないが、半導体基板12の上面12aには、複数のトレンチ20が設けられている。各トレンチ20は、図1、2に示す構造を備えている。トレンチ20の内面は、ゲート絶縁膜22によって覆われている。トレンチ20内に、ゲート電極24が配置されている。ゲート電極24は、ゲート絶縁膜22によって半導体基板12から絶縁されている。ゲート電極24の上面は、層間絶縁膜26によって覆われている。半導体基板12の上面12aは、ソース電極30によって覆われている。ゲート電極24は、層間絶縁膜26によってソース電極30から絶縁されている。半導体基板12の下面12bは、ドレイン電極32によって覆われている。   The MOSFET of the embodiment shown in FIG. 1 has a semiconductor substrate 12. The semiconductor substrate 12 is made of silicon, SiC, or the like. On the upper surface 12a of the semiconductor substrate 12, a trench 20 is provided. Although not shown, a plurality of trenches 20 are provided on the upper surface 12a of the semiconductor substrate 12. Each trench 20 has the structure shown in FIGS. The inner surface of trench 20 is covered with gate insulating film 22. A gate electrode 24 is arranged in the trench 20. The gate electrode 24 is insulated from the semiconductor substrate 12 by the gate insulating film 22. The upper surface of the gate electrode 24 is covered with an interlayer insulating film 26. The upper surface 12 a of the semiconductor substrate 12 is covered with the source electrode 30. Gate electrode 24 is insulated from source electrode 30 by interlayer insulating film 26. The lower surface 12b of the semiconductor substrate 12 is covered with the drain electrode 32.

半導体基板12は、ソース領域40、ボディ領域42、ドリフト領域44、ドレイン領域46を有している。ソース領域40は、n型領域であり、ソース電極30にオーミック接触している。ソース領域40は、トレンチ20の上端部において、ゲート絶縁膜22に接している。ボディ領域42は、p型領域である。ボディ領域42は、ソース電極30の下側でゲート絶縁膜22に接している。ボディ領域42は、図示しない位置で、ソース電極30にオーミック接触している。ドリフト領域44は、n型不純物濃度が低いn型領域である。ドリフト領域44は、ボディ領域42によってソース領域40から分離されている。ドリフト領域44は、ボディ領域42の下側でゲート絶縁膜22に接している。ドレイン領域46は、ドリフト領域44よりもn型不純物濃度が高いn型領域である。ドレイン領域46は、ドリフト領域44に対して下側から接している。ドレイン領域46は、ドレイン電極32にオーミック接触している。   The semiconductor substrate 12 has a source region 40, a body region 42, a drift region 44, and a drain region 46. The source region 40 is an n-type region and is in ohmic contact with the source electrode 30. Source region 40 is in contact with gate insulating film 22 at the upper end of trench 20. Body region 42 is a p-type region. The body region 42 is in contact with the gate insulating film 22 below the source electrode 30. Body region 42 is in ohmic contact with source electrode 30 at a position not shown. The drift region 44 is an n-type region having a low n-type impurity concentration. Drift region 44 is separated from source region 40 by body region 42. Drift region 44 is in contact with gate insulating film 22 below body region 42. The drain region 46 is an n-type region having a higher n-type impurity concentration than the drift region 44. The drain region 46 is in contact with the drift region 44 from below. The drain region 46 is in ohmic contact with the drain electrode 32.

ゲート電極24に閾値以上の電位を印加すると、ゲート絶縁膜22近傍のボディ領域42にチャネルが形成され、MOSFETがオンする。すなわち、ゲート絶縁膜22とボディ領域42の境界部が、チャネルとなる領域である。   When a potential equal to or higher than the threshold is applied to the gate electrode 24, a channel is formed in the body region 42 near the gate insulating film 22, and the MOSFET is turned on. That is, the boundary between the gate insulating film 22 and the body region 42 is a region to be a channel.

図2に示すように半導体基板12の上面12aを平面視したときに、トレンチ20は、蛇行している。上述したように、ゲート絶縁膜22とボディ領域42の境界部はチャネルとなる領域である。図2のようにトレンチ20が蛇行することで、トレンチ20が直線である場合に比べて、ゲート絶縁膜22とボディ領域42の境界部が長くなる。したがって、トレンチ20を蛇行させることで、チャネル密度を高くすることができ、MOSFETのオン抵抗を低減することができる。本実施形態では、半導体基板12の上面12aを平面視したときにトレンチ20の各側面20aの曲率半径が900nm以上となるように、トレンチ20が蛇行している。すなわち、各側面20aの曲率半径がいずれの位置でも900nm以上となるようにトレンチ20が蛇行している。トレンチ20が蛇行しているので、トレンチ20の側面20aには凸状部21が存在する。   As shown in FIG. 2, when the upper surface 12a of the semiconductor substrate 12 is viewed in plan, the trench 20 is meandering. As described above, the boundary between the gate insulating film 22 and the body region 42 is a region serving as a channel. By meandering the trench 20 as shown in FIG. 2, the boundary between the gate insulating film 22 and the body region 42 becomes longer than when the trench 20 is straight. Therefore, by meandering the trench 20, the channel density can be increased, and the on-resistance of the MOSFET can be reduced. In the present embodiment, the trench 20 meanders so that the curvature radius of each side surface 20a of the trench 20 when viewed from above the top surface 12a of the semiconductor substrate 12 is 900 nm or more. That is, the trenches 20 meander so that the radius of curvature of each side surface 20a is 900 nm or more at any position. Since the trench 20 is meandering, a convex portion 21 exists on the side surface 20 a of the trench 20.

ゲート絶縁膜22は、トレンチ20の側面20aを酸化させることで形成される。本願発明者らの実験により、上面12aを平面視したときのトレンチ20の側面20aの曲率半径に応じて、ゲート絶縁膜22の厚さが変化することが分かった。図3に示すように、側面20aの曲率半径が小さいと、凸状部21においてゲート絶縁膜22の厚さT1が薄くなる。これに対し、図4に示すように、側面20aの曲率半径が大きいと、側面20a全体に均一な厚さでゲート絶縁膜22が形成される。このため、図4では、図3よりも、凸状部21におけるゲート絶縁膜22の厚さT1が厚くなる。図5は、側面20aの曲率半径とゲート絶縁膜22の厚さとの関係を示している。なお、図5の実験では、トレンチ20がストレートである(蛇行していない)ときに厚さT2のゲート絶縁膜22が形成される条件において、曲率半径がそれぞれ異なるトレンチ20に対してゲート絶縁膜22を形成した。縦軸は、凸状部21におけるゲート絶縁膜22の厚さT1を、設計上のゲート絶縁膜22の厚さT2で除算した値を示している。図5から明らかなように、曲率半径が900nm未満の場合には、曲率半径が小さいほど、凸状部21におけるゲート絶縁膜22の厚さT1が薄くなり、値T1/T2が小さくなる。他方、曲率半径が900nm以上の場合には、値T1/T2がほぼ100%となる。すなわち、曲率半径が900nm以上の場合には、凸状部21において、トレンチ20がストレートである場合と同等の厚さのゲート絶縁膜22が得られる。図5から明らかなように、トレンチ20の側面20aの曲率半径を900nm以上とすることで、凸状部21に十分な厚さのゲート絶縁膜22を形成することができる。したがって、側面20aの曲率半径を900nm以上とすることで、凸状部21においてゲートリーク電流が生じることを抑制することができる。   The gate insulating film 22 is formed by oxidizing the side surface 20a of the trench 20. The experiments by the inventors of the present application have revealed that the thickness of the gate insulating film 22 changes according to the radius of curvature of the side surface 20a of the trench 20 when the upper surface 12a is viewed in plan. As shown in FIG. 3, when the radius of curvature of the side surface 20 a is small, the thickness T <b> 1 of the gate insulating film 22 in the convex portion 21 decreases. On the other hand, as shown in FIG. 4, when the radius of curvature of the side surface 20a is large, the gate insulating film 22 is formed with a uniform thickness on the entire side surface 20a. For this reason, in FIG. 4, the thickness T1 of the gate insulating film 22 in the convex portion 21 is larger than in FIG. FIG. 5 shows the relationship between the radius of curvature of the side surface 20a and the thickness of the gate insulating film 22. In the experiment of FIG. 5, under the condition that the gate insulating film 22 having the thickness T2 is formed when the trench 20 is straight (not meandering), the gate insulating film is different for the trenches 20 having different curvature radii. No. 22 was formed. The vertical axis indicates a value obtained by dividing the thickness T1 of the gate insulating film 22 in the convex portion 21 by the designed thickness T2 of the gate insulating film 22. As is clear from FIG. 5, when the radius of curvature is less than 900 nm, the smaller the radius of curvature, the smaller the thickness T1 of the gate insulating film 22 in the convex portion 21 and the smaller the value T1 / T2. On the other hand, when the radius of curvature is 900 nm or more, the value T1 / T2 is almost 100%. That is, when the radius of curvature is 900 nm or more, a gate insulating film 22 having the same thickness as that in the case where the trench 20 is straight is obtained in the convex portion 21. As is clear from FIG. 5, by setting the radius of curvature of the side surface 20 a of the trench 20 to 900 nm or more, the gate insulating film 22 having a sufficient thickness can be formed on the convex portion 21. Therefore, by setting the radius of curvature of the side surface 20a to 900 nm or more, it is possible to suppress the occurrence of a gate leak current in the convex portion 21.

また、図6は、トレンチ20の側面20aの曲率半径とチャネル密度増加率との関係を示している。なお、チャネル密度増加率は、トレンチ20がストレートである場合のチャネル密度に対して、トレンチ20を蛇行させた場合のチャネル密度がどの程度上昇するかを示す。図6から明らかなように、側面20aの曲率半径が2500nm以下であれば、側面20aの曲率半径が小さいほど、チャネル密度増加率が大きくなる。側面20aの曲率半径を2500nm以下とすることで、チャネル密度を1〜40%増加させることができる。   FIG. 6 shows the relationship between the radius of curvature of the side surface 20a of the trench 20 and the channel density increase rate. Note that the channel density increase rate indicates how much the channel density when the trench 20 is meandered increases with respect to the channel density when the trench 20 is straight. As is clear from FIG. 6, when the radius of curvature of the side surface 20a is 2500 nm or less, the smaller the radius of curvature of the side surface 20a, the larger the channel density increase rate. By setting the radius of curvature of the side surface 20a to 2500 nm or less, the channel density can be increased by 1 to 40%.

以上に説明したように、トレンチ20の側面20aの曲率半径を900nm以上とすることで、ゲートリーク電流を抑制することができる。また、側面20aの曲率半径を2500nm以下とすることで、効果的にチャネル密度を増加させることができる。このように側面20aの曲率半径を設定することで、ゲートリーク電流が生じ難く、チャネル密度が高いMOSFETを実現することができる。   As described above, the gate leakage current can be suppressed by setting the radius of curvature of the side surface 20a of the trench 20 to 900 nm or more. By setting the radius of curvature of the side surface 20a to 2500 nm or less, the channel density can be effectively increased. By setting the radius of curvature of the side surface 20a in this manner, it is possible to realize a MOSFET in which a gate leakage current hardly occurs and a channel density is high.

なお、上述した実施形態ではMOSFETについて説明したが、IGBT(insulated gate bipolar transistor)等の他のトレンチゲート型スイッチング素子に本明細書に開示の技術を適用してもよい。   Although the MOSFET has been described in the above embodiment, the technology disclosed in this specification may be applied to another trench gate type switching element such as an IGBT (insulated gate bipolar transistor).

以上、実施形態について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独あるいは各種の組み合わせによって技術有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術有用性を持つものである。   The embodiments have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and alterations of the specific examples illustrated above. The technical elements described in the present specification or the drawings exhibit technical usefulness singly or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Further, the technology exemplified in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

12 :半導体基板
20 :トレンチ
20a :側面
21 :凸状部
22 :ゲート絶縁膜
24 :ゲート電極
26 :層間絶縁膜
30 :ソース電極
32 :ドレイン電極
40 :ソース領域
42 :ボディ領域
44 :ドリフト領域
46 :ドレイン領域
12: semiconductor substrate 20: trench 20a: side surface 21: convex portion 22: gate insulating film 24: gate electrode 26: interlayer insulating film 30: source electrode 32: drain electrode 40: source region 42: body region 44: drift region 46 : Drain region

Claims (1)

半導体装置であって、
半導体基板と、
前記半導体基板の表面に設けられたトレンチと、
前記トレンチの内面を覆うゲート絶縁膜と、
前記トレンチ内に配置されており、前記ゲート絶縁膜によって前記半導体基板から絶縁されたゲート電極、
を有しており、
前記半導体基板の前記表面を平面視したときに、前記トレンチが蛇行しており
前記半導体基板の前記表面を平面視したときに、前記トレンチの側面の曲率半径が900nm以上である、
半導体装置。
A semiconductor device,
A semiconductor substrate;
A trench provided on the surface of the semiconductor substrate,
A gate insulating film covering an inner surface of the trench;
A gate electrode disposed in the trench and insulated from the semiconductor substrate by the gate insulating film;
Has,
When the surface of the semiconductor substrate is viewed in plan, the trench is meandering, and when the surface of the semiconductor substrate is viewed in plan, a radius of curvature of a side surface of the trench is 900 nm or more.
Semiconductor device.
JP2018171821A 2018-09-13 2018-09-13 Semiconductor device Pending JP2020043307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171821A JP2020043307A (en) 2018-09-13 2018-09-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171821A JP2020043307A (en) 2018-09-13 2018-09-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2020043307A true JP2020043307A (en) 2020-03-19

Family

ID=69798682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171821A Pending JP2020043307A (en) 2018-09-13 2018-09-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2020043307A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217419A (en) * 2000-02-03 2001-08-10 Denso Corp Semiconductor device
JP2003197910A (en) * 2001-12-26 2003-07-11 Toshiba Corp Semiconductor device
JP2009088198A (en) * 2007-09-28 2009-04-23 Rohm Co Ltd Semiconductor device
JP2017135245A (en) * 2016-01-27 2017-08-03 株式会社東芝 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217419A (en) * 2000-02-03 2001-08-10 Denso Corp Semiconductor device
JP2003197910A (en) * 2001-12-26 2003-07-11 Toshiba Corp Semiconductor device
JP2009088198A (en) * 2007-09-28 2009-04-23 Rohm Co Ltd Semiconductor device
JP2017135245A (en) * 2016-01-27 2017-08-03 株式会社東芝 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5915076B2 (en) Super junction semiconductor device
JP6139356B2 (en) Semiconductor device
JP2022136098A (en) Electric field shielding in silicon carbide metal-oxide-semiconductor (mos) device cells using body region extensions
JP2018049951A (en) Semiconductor device
US9735149B2 (en) Schottky barrier diode
JP2015165541A (en) semiconductor device
JP6606007B2 (en) Switching element
US10355078B2 (en) Semiconductor device
US9236500B2 (en) Schottky barrier diode and method for manufacturing schottky barrier diode
JP2018060984A (en) Semiconductor device
JP2014216572A (en) Semiconductor device
JP2016174030A (en) Semiconductor device
JP6363540B2 (en) Semiconductor device
JP2017139293A (en) diode
US8796694B2 (en) Semiconductor device
JP2017201683A (en) Semiconductor element
JP2018060943A (en) Switching element
JP2017139289A (en) diode
US10374081B2 (en) Semiconductor switching element
JP2017055026A (en) Semiconductor device
JP2020043307A (en) Semiconductor device
JP7147510B2 (en) switching element
JP2011134951A (en) Semiconductor device
JP6560142B2 (en) Switching element
KR101886105B1 (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221129