JP2020043262A - 半導体装置の製造方法、基板処理装置、およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置、およびプログラム Download PDF

Info

Publication number
JP2020043262A
JP2020043262A JP2018170681A JP2018170681A JP2020043262A JP 2020043262 A JP2020043262 A JP 2020043262A JP 2018170681 A JP2018170681 A JP 2018170681A JP 2018170681 A JP2018170681 A JP 2018170681A JP 2020043262 A JP2020043262 A JP 2020043262A
Authority
JP
Japan
Prior art keywords
gas
seed layer
film
processing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018170681A
Other languages
English (en)
Other versions
JP7058575B2 (ja
Inventor
匡史 北村
Tadashi Kitamura
匡史 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP2018170681A priority Critical patent/JP7058575B2/ja
Priority to CN201910695517.XA priority patent/CN110896052B/zh
Priority to SG10201907969QA priority patent/SG10201907969QA/en
Priority to US16/555,178 priority patent/US11075114B2/en
Priority to KR1020190107242A priority patent/KR102401389B1/ko
Publication of JP2020043262A publication Critical patent/JP2020043262A/ja
Application granted granted Critical
Publication of JP7058575B2 publication Critical patent/JP7058575B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】基板処理装置において、基板上に形成される膜の品質を調整する。【解決手段】基板に対して第1温度下で第1処理ガスを供給し、基板上にシード層を形成する工程と、基板に対して第2温度下で第2処理ガスを供給し、シード層の上に膜を形成する工程と、シード層および膜を第3温度下でアニールする工程と、を有する。シード層形成工程において形成するシード層の厚さを制御することにより、アニール工程においてアニールが施された後の膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整する。【選択図】図4

Description

本発明は、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
半導体装置の製造工程の一工程として、基板上に膜を形成する処理が行われることがある(例えば特許文献1〜4参照)。
国際公開第2012/029661号パンフレット 特開2013−197307号公報 特開2014−067796号公報 特開2014−060227号公報
本発明の目的は、基板上に形成される膜の品質を調整することが可能な技術を提供することにある。
本発明の一態様によれば、
(a)基板に対して第1温度下で第1処理ガスを供給し、前記基板上にシード層を形成する工程と、
(b)前記基板に対して第2温度下で第2処理ガスを供給し、前記シード層の上に膜を形成する工程と、
(c)前記シード層および前記膜を第3温度下でアニールする工程と、
を有し、
(a)において形成する前記シード層の厚さを制御することにより、(c)において前記アニールが施された後の前記膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整する技術が提供される。
本発明によれば、基板上に形成される膜の品質を調整することが可能となる。
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の一部の概略構成図であり、処理炉の一部を図1のA−A線断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の一実施形態の成膜シーケンスを示す図である。 (a)、(b)は、それぞれ、縦型処理炉の変形例を示す横断面図であり、反応管、バッファ室およびノズル等を部分的に抜き出して示す図である。 アニールが施されたシリコン膜の結晶粒径および表面ラフネスの測定結果を示す図である。
<本発明の一実施形態>
以下、本発明の一実施形態について図1〜図4を参照しながら説明する。
(1)基板処理装置の構成
図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
処理室201内には、第1〜第3供給部としてのノズル249a〜249cが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a〜249cを第1〜第3ノズルとも称する。ノズル249a〜249cは、例えば石英またはSiC等の耐熱性材料により構成されている。ノズル249a〜249cには、ガス供給管232a〜232cがそれぞれ接続されている。ノズル249a〜249cはそれぞれ異なるノズルであり、ノズル249a,249cのそれぞれは、ノズル249bに隣接して設けられている。
ガス供給管232a〜232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a〜241cおよび開閉弁であるバルブ243a〜243cがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、ガス供給管232d,232eがそれぞれ接続されている。ガス供給管232cのバルブ243cよりも下流側には、ガス供給管232f,232gがそれぞれ接続されている。ガス供給管232d〜232gには、ガス流の上流側から順に、MFC241d〜241gおよびバルブ243d〜243gがそれぞれ設けられている。ガス供給管232a〜232gは、例えば、SUS等の金属材料により構成されている。
図2に示すように、ノズル249a〜249cは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a〜249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。平面視において、ノズル249bは、処理室201内に搬入されるウエハ200の中心を挟んで後述する排気口231aと一直線上に対向するように配置されている。ノズル249a,249cは、ノズル249bと排気口231aの中心とを通る直線Lを、反応管203の内壁(ウエハ200の外周部)に沿って両側から挟み込むように配置されている。直線Lは、ノズル249bとウエハ200の中心とを通る直線でもある。すなわち、ノズル249cは、直線Lを挟んでノズル249aと反対側に設けられているということもできる。ノズル249a,249cは、直線Lを対称軸として線対称に配置されている。ノズル249a〜249cの側面には、ガスを供給するガス供給孔250a〜250cがそれぞれ設けられている。ガス供給孔250a〜250cは、それぞれが、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a〜250cは、反応管203の下部から上部にわたって複数設けられている。
ガス供給管232aからは、処理ガス(第1処理ガス)として、例えば、ウエハ200上に形成される後述するシリコンシード層を構成する主元素としてのシリコン(Si)を含むシラン系ガス(第1シラン系ガス)が、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。第1シラン系ガスとしては、ハロゲン元素非含有の水素化ケイ素ガス(第1水素化ケイ素ガス)を用いることができ、例えば、ジシラン(Si、略称:DS)ガスを用いることができる。
ガス供給管232bからは、処理ガス(ハロゲン含有ガス)として、例えば、Siとハロゲン元素とを含むガス、すなわち、ハロシランガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。ハロゲン元素には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等が含まれる。ハロシランガスとしては、例えば、SiおよびClを含むクロロシランガスを用いることができ、例えば、ジクロロシラン(SiHCl、略称:DCS)ガスを用いることができる。
ガス供給管232cからは、処理ガス(第2処理ガス)として、例えば、ウエハ200上に形成される膜を構成する主元素としてのSiを含むシラン系ガス(第2シラン系ガス)が、MFC241c、バルブ243c、ノズル249cを介して処理室201内へ供給される。第2シラン系ガスとしては、ハロゲン元素非含有の水素化ケイ素ガス(第2水素化ケイ素ガス)を用いることができ、例えば、モノシラン(SiH、略称:MS)ガスを用いることができる。
ガス供給管232d〜232fからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241d〜241f、バルブ243d〜243f、ガス供給管232a〜232c、ノズル249a〜249cを介して処理室201内へ供給される。Nガスは、パージガス、キャリアガス、希釈ガス等として作用する。
ガス供給管232gからは、ドーパントガスとして、例えば、不純物(ドーパント)を含むガスが、MFC241g、バルブ243g、ガス供給管232c、ノズル249cを介して処理室201内へ供給される。ドーパントガスとしては、III族元素(第13族元素)およびV族元素(第15族元素)のうちいずれかの元素であって、例えば、V族元素を含むガスであるホスフィン(PH、略称:PH)ガスを用いることができる。
主に、ガス供給管232a、MFC241a、バルブ243aにより、第1処理ガス供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、ハロゲン含有ガス供給系が構成される。主に、ガス供給管232c、MFC241c、バルブ243cにより、第2処理ガス供給系が構成される。主に、ガス供給管232g、MFC241g、バルブ243gにより、ドーパントガス供給系が構成される。ドーパントガス供給系を第2処理ガス供給系に含めて考えてもよい。主に、ガス供給管232d〜232f、MFC241d〜241f、バルブ243d〜243fにより、不活性ガス供給系が構成される。
上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a〜243gやMFC241a〜241g等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a〜232gのそれぞれに対して接続され、ガス供給管232a〜232g内への各種ガスの供給動作、すなわち、バルブ243a〜243gの開閉動作やMFC241a〜241gによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a〜232g等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。図2に示すように、排気口231aは、平面視において、ウエハ200を挟んでノズル249a〜249c(ガス供給孔250a〜250c)と対向(対面)する位置に設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
基板支持具としてのボート217は、複数枚、例えば25〜200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のMFC241a〜241g、バルブ243a〜243g、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a〜241gによる各種ガスの流量調整動作、バルブ243a〜243gの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。
コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上に膜を形成し、その後、この膜をアニールする基板処理シーケンス例について、主に図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
本実施形態の基板処理シーケンスでは、
ウエハ200に対して第1温度下で第1処理ガスとしてDSガスを供給し、ウエハ200上にシリコンシード層(以下、Siシード層)を形成するステップ(シード層形成ステップ)と、
ウエハ200に対して第2温度下で第2処理ガスとしてMSガスを供給し、Siシード層の上にシリコン膜(以下、Si膜)を形成するステップ(Si膜形成ステップ)と、
Siシード層およびSi膜を第3温度下でアニールするステップ(アニールステップ)と、
を行い、
シード層形成ステップにおいて形成するSiシード層の厚さを制御することにより、アニールステップにおいてアニールが施された後のSi膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整する。なお、図4は、シード層形成ステップからSi膜形成ステップに至る一連のステップを抜き出して示したものである。
なお、図4に示すシード層形成ステップでは、ウエハ200に対してハロゲン含有ガスとしてDCSガスを供給するステップ1と、ウエハ200に対してDSガスを供給するステップ2と、を非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うことで、Siシード層を形成する。
また、図4に示すSi膜形成ステップでは、ウエハ200に対してMSガスと一緒にドーパントガスとしてPHガスを供給し、ウエハ200上に形成するSi膜を、Pが添加(ドープ)されたSi膜、すなわち、PドープSi膜とする。本明細書では、PドープSi膜を、単にSi膜とも称する。
本明細書では、上述の基板処理シーケンスを、便宜上、以下のように示すこともある。以下の変形例等の説明においても、同様の表記を用いる。
(DCS→DS)×n→MS+PH→ANL ⇒ PドープSi/Siシード
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力調整および温度調整)
処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の処理温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(シード層形成ステップ)
その後、次のステップ1,2を順次実行する。
[ステップ1]
このステップでは、処理室201内のウエハ200に対してDCSガスを供給する。
具体的には、バルブ243bを開き、ガス供給管232b内へDCSガスを流す。DCSガスは、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してDCSガスが供給される(DCSガス供給ステップ)。また、このとき、バルブ243d,243fを開き、ノズル249a,249cのそれぞれを介して処理室201内へNガスを供給する。
後述する処理条件下でウエハ200に対してDCSガスを供給することにより、DCSガスの持つトリートメント作用(エッチング作用)により、ウエハ200の表面から自然酸化膜や不純物等を除去することができ、この面を清浄化させることが可能となる。これにより、ウエハ200の表面を、後述するステップ2において、Siの吸着、すなわち、Siシード層の形成が進行しやすい面とすることができる。
ウエハ200の表面が清浄化された後、バルブ243bを閉じ、処理室201内へのDCSガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。このとき、バルブ243d〜243fを開き、ノズル249a〜249cを介して処理室201内へNガスを供給する。ノズル249a〜249cより供給されるNガスは、パージガスとして作用し、これにより、処理室201内がパージされる(パージステップ)。
[ステップ2]
ステップ1が終了した後、処理室201内のウエハ200、すなわち、清浄化されたウエハ200の表面に対してDSガスを供給する。
具体的には、バルブ243aを開き、ガス供給管232a内へDSガスを流す。DSガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してDSガスが供給される(DSガス供給ステップ)。また、このとき、バルブ243e,243fを開き、ノズル249b,249cのそれぞれを介して処理室201内へNガスを供給する。
後述する処理条件下でウエハ200に対してDSガスを供給することにより、DSガスを気相中で分解させて、ステップ1で清浄化されたウエハ200の表面に、DSに含まれるSiを吸着させ、シード(核)を形成することが可能となる。後述する処理条件下では、ウエハ200の表面に形成される核の結晶構造は、アモルファス(非晶質)となる。
ウエハ200の表面に核が形成された後、バルブ243aを閉じ、処理室201内へのDSガスの供給を停止する。そして、ステップ1におけるパージステップと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する。
[所定回数実施]
上述したステップ1,2を交互に、すなわち、同期させることなく非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に、上述の核が高密度に形成されてなるシード層、すなわち、Siシード層を形成することができる。ウエハ200上に形成されるSiシード層の結晶構造は、アモルファスとなる。
シード層形成ステップでは、以下に示す処理温度および処理時間(DCSガス供給時間、DSガス供給時間)のうち少なくともいずれかを制御することで、ウエハ200上に形成されるSiシード層の厚さを制御することが可能である。また、シード層形成ステップでは、上述のサイクルの実施回数(サイクル数)を制御することで、ウエハ200上に形成されるSiシード層の厚さを制御することも可能である。例えばサイクル数を1〜100回、好ましくは3〜15回の間で変化させることで、Siシード層の厚さを、0.1〜10nm、好ましくは0.4〜3nmの間で制御することができる。
ステップ1における処理条件としては、
DCSガス供給流量:10〜1000sccm
DCSガス供給時間:0.5〜10分
ガス供給流量(ガス供給管毎):10〜10000sccm
処理温度(第1温度):350〜440℃
処理圧力:100〜1000Pa
が例示される。
ステップ2における処理条件としては、
DSガス供給流量:10〜1000sccm
DSガス供給時間:0.5〜10分
が例示される。他の処理条件は、ステップ1における処理条件と同様な処理条件とする。
なお、本明細書における「350〜440℃」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「350〜440℃」とは「350℃以上440℃以下」を意味する。他の数値範囲についても同様である。
ステップ1では、ハロゲン含有ガスとして、DCSガスの他、モノクロロシラン(SiHCl、略称:MCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシラン系ガスを用いることができる。また、ハロゲン含有ガスとして、テトラフルオロシラン(SiF)ガス、テトラブロモシラン(SiBr)ガス、テトラヨードシラン(SiI)ガス等を用いることができる。すなわち、ハロゲン含有ガスとして、クロロシラン系ガスの他、フルオロシラン系ガス、ブロモシラン系ガス、ヨードシラン系ガス等のハロシランガスを用いることができる。また、ハロゲン含有ガスとして、塩化水素(HCl)ガス、塩素(Cl)ガス、トリクロロボラン(BCl)ガス、フッ化塩素(ClF)ガス等のSi非含有のハロゲン系ガスを用いることができる。
ステップ2では、第1処理ガスとして、DSガスの他、トリシラン(Si)ガス、テトラシラン(Si10)ガス、ペンタシラン(Si12)ガス、ヘキサシラン(Si14)ガス等の水素化ケイ素ガスを用いることができる。なお、第1処理ガスとしては、後述するSi膜形成ステップで用いる第2処理ガスよりも、高次の水素化ケイ素ガスを用いるのが好ましい。
不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。この点は、後述する昇温ステップ、Si膜形成ステップ、アニールステップ等においても同様である。
(昇温ステップ)
ウエハ200上にSiシード層が形成された後、処理室201内の温度、すなわち、ウエハ200の温度を、上述の第1温度よりも高い第2温度へ変更させるように、ヒータ207の出力を調整する。本ステップを行う際、バルブ243d〜243fを開き、ノズル249a〜249cを介して処理室201内へNガスを供給し、排気口231aより排気して、処理室201内をパージする。ウエハ200の温度が第2温度に到達して安定した後、後述するSi膜形成ステップを開始する。
本ステップを行うことにより、すなわち、ウエハ200の温度を第1温度よりも高い第2温度へと昇温させ、かつ、ウエハ200の温度が安定するまで待機することにより、ウエハ200上に形成されたSiシード層のポリ化(多結晶化)を開始させることが可能となる。なお、このときの処理条件(第2温度、待機時間)によっては、Siシード層をアモルファス状態に維持することも可能である。
(Si膜形成ステップ)
このステップでは、処理室201内のウエハ200、すなわち、ウエハ200上に形成されたSiシード層の表面に対してMSガスおよびPHガスを供給する。
具体的には、バルブ243cを開き、ガス供給管232c内へMSガスを流す。MSガスは、MFC241cにより流量調整され、ノズル249cを介して処理室201内へ供給され、排気口231aより排気される。また、このとき、バルブ243gを開き、ガス供給管232g内へPHガスを流す。PHガスは、MFC241gにより流量調整され、ガス供給管232c、ノズル249cを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してMSガスとPHガスとが一緒かつ同時に供給される(MSガス+PHガス供給ステップ)。また、このとき、バルブ243d,243eを開き、ノズル249a,249bのそれぞれを介して処理室201内へNガスを供給する。このとき、図4に例示するように、ノズル249aより供給するNガスの流量と、ノズル249bより供給するNガスの流量と、のバランスを制御するようにしてもよい。
後述する処理条件下でウエハ200に対してMSガス、PHガスを供給することにより、少なくともMSガスを気相中で分解させて、ウエハ200の表面上、すなわち、ウエハ200上に形成されたSiシード層上にSiを吸着(堆積)させ、PドープSi膜を形成することが可能となる。後述する処理条件下では、ウエハ200上に形成されるSi膜の結晶構造は、アモルファスとなる。
なお、後述する条件下、すなわち、第1温度よりも高い第2温度下で本ステップを行うことにより、昇温ステップでSiシード層のポリ化を開始させた場合は、そのポリ化をさらに進行させることが可能となる。また、昇温ステップでSiシード層をアモルファス状態に維持した場合は、本ステップにおいて、Siシード層のポリ化を開始させることが可能となる。いずれの場合も、Siシード層の少なくとも一部をポリ化させることができ、Siシード層を、アモルファスとポリとの混晶状態、もしくは、ポリ状態に変化させることが可能となる。なお、昇温ステップでSiシード層をアモルファス状態に維持した場合、本ステップにおける処理条件(第2温度、ガス供給時間)によっては、Siシード層をアモルファス状態に維持することも可能である。ただし、本ステップが完了した時点においてアモルファス状態を維持したSiシード層は、その上に形成されたアモルファス状態のSi膜よりもポリ化しやすい状態となる。
ウエハ200上のSiシード層上へのアモルファス状態のSi膜の形成が完了した後、バルブ243c,243gを閉じ、処理室201内へのMSガス、PHガスの供給をそれぞれ停止する。そして、上述のステップ1におけるパージステップと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する。
Si膜形成ステップにおける処理条件としては、
MSガス供給流量:10〜5000sccm
PHガス供給流量:0.1〜500sccm
MSガスおよびPHガス供給時間:1〜300分
ガス供給流量(ガス供給管毎):10〜20000sccm
処理温度(第2温度):450〜650℃
処理圧力:30〜400Pa
が例示される。
第2処理ガスとしては、MSガスの他、上述の各種水素化ケイ素ガスを用いることかできる。なお、Si膜形成ステップの終了時におけるSi膜の結晶状態を確実にアモルファスとするには、第2処理ガスとして、シード層形成ステップで用いる第1処理ガスよりも低次の水素化ケイ素ガスを用いるのが好ましい。本実施形態では、第1処理ガスとしてDSガスを用いることから、第2処理ガスとしてMSガスを用いるのが好ましい。
ドーパントガスとしては、PHガスの他、アルシン(AsH)ガス等のV族元素であってそれ単独で固体となる元素(P,砒素(As)等)を含むガスを用いることができる。また、ドーパントガスとしては、V族元素を含むガスの他、ジボラン(B)ガス、トリクロロボラン(BCl)ガス等のIII族元素であってそれ単独で固体となる元素(硼素(B)等)を含むガス等を用いることもできる。
(アニールステップ)
ウエハ200上のSiシード層上へのSi膜の形成が完了した後、処理室201内の温度、すなわち、ウエハ200の温度を、上述の第2温度よりも高い第3温度へ変更させるように、ヒータ207の出力を調整し、Siシード層およびSi膜をそれぞれ熱処理(アニール処理)する。このステップは、バルブ243d〜243fを開き、処理室201内へNガスを供給しながら行ってもよく、また、バルブ243d〜243fを閉じ、処理室201内へのNガスの供給を停止した状態で行ってもよい。
後述する処理条件下でアニール処理を行うことにより、Siシード層およびSi膜をポリ化させた状態とすることができる。なお、アニール処理前においては、Siシード層がアモルファスとポリとの混晶状態である場合と、ポリ状態である場合と、アモルファス状態である場合と、があるが、いずれの場合も、先行してSiシード層をポリ化させ、Siシード層をポリ化させた後に、Si膜をポリ化させることができる。これにより、先行してポリ化させたSiシード層の結晶粒(グレイン)を核として、Si膜をポリ化させることができる。この際、先行してポリ化させたSiシード層の結晶構造に基づき、Si膜をポリ化させることができる。アニール処理を行うことでポリ化させたSi膜に含まれる結晶粒の粒径(グレインサイズ)は、先行してポリ化させたSiシード層に含まれる結晶粒の粒径によって影響を受ける。例えば、先行してポリ化させたSiシード層に含まれる結晶粒の粒径が大きいと、アニール処理を行うことでポリ化させたSi膜に含まれる結晶粒の粒径が大きくなる傾向がある。また例えば、先行してポリ化させたSiシード層に含まれる結晶粒の粒径が小さいと、アニール処理を行うことでポリ化させたSi膜に含まれる結晶粒の粒径が小さくなる傾向がある。
本ステップにおける処理条件としては、
ガス供給流量(各ガス供給管):0〜20000sccm
処理温度(第3温度):700〜1000℃
処理圧力:0.1〜100000Pa
処理時間:1〜300分
が例示される。
(アフターパージおよび大気圧復帰)
ウエハ200上に形成されたSi膜のポリ化が完了した後、ノズル249a〜249cのそれぞれからパージガスとしてのNガスを処理室201内へ供給し、排気口231aより排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態による効果
本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)シード層形成ステップで形成するSiシード層の厚さを制御することにより、アニールステップにおいてアニールが施された後のSi膜の結晶粒径および表面ラフネスのうち少なくともいずれかを、間接的に調整することができる。
上述の通り、シード層形成ステップでは、アモルファス状態のSiシード層を形成する。その後、Si膜形成ステップでは、アモルファス状態のSi膜を形成する。その後、アニールステップを行うことでSi膜をポリ化させる。その過程において、Siシード層を先行してポリ化させ、その後、Si膜をポリ化させる。Si膜は、アニールステップにおいて、下地の結晶構造、すなわち、先行してポリ化させたSiシード層の結晶構造に基づき、ポリ化する。
ここで、上述のように、シード層形成ステップで形成するSiシード層の厚さを増加させることにより、先行してポリ化させたSiシード層に含まれる結晶粒の粒径を大きくする方向に調整することが可能となる。その結果、アニールステップを行うことでポリ化させたSi膜に含まれる結晶粒の粒径を、先行してポリ化させたSiシード層の結晶粒の粒径に基づき、大きくする方向に調整することが可能となる。また、シード層形成ステップで形成するSiシード層の厚さを増加させることにより、アニールステップを行うことでポリ化させたSi膜の表面ラフネス(RMS)を小さくする方向に調整することが可能となる。これは、ポリ化させたSi膜に含まれる結晶粒の粒径が大きくなることで、ポリ化させたSi膜の表面の単位面積あたりに存在する結晶粒界(グレインバウンダリ)の密度が低下することが一要因として影響しているものと考えられる。なお、「表面ラフネス」とは、表面の粗さの度合いを意味している。「表面ラフネスが小さい」とは、表面が平滑であることを意味している。
また、上述のように、シード層形成ステップで形成するSiシード層の厚さを減少させることにより、先行してポリ化させたSiシード層に含まれる結晶粒の粒径を小さくする方向に調整することが可能となる。その結果、アニールステップを行うことでポリ化させたSi膜に含まれる結晶粒の粒径を、先行してポリ化させたSiシード層の結晶粒の粒径に基づき、小さくする方向に調整することが可能となる。また、シード層形成ステップで形成するSiシード層の厚さを減少させることにより、アニールステップを行うことでポリ化させたSi膜の表面ラフネスを大きくする方向に調整することが可能となる。これは、ポリ化させたSi膜に含まれる結晶粒の粒径が小さくなり、ポリ化させたSi膜の表面の単位面積あたりに存在する結晶粒界の密度が増加したことが一要因として影響しているものと考えられる。
(b)シード層形成ステップで形成するSiシード層の厚さを制御することにより、アニールステップにおいてアニールが施された後のSi膜の電気特性を、間接的に調整することができる。
上述のように、シード層形成ステップで形成するSiシード層の厚さを増加させることにより、アニールが施された後のSi膜に含まれる結晶粒の粒径を大きくし、Si膜の表面の単位面積あたりに存在する結晶粒界の密度を低下させる方向に調整することが可能となる。また、シード層形成ステップで形成するSiシード層の厚さを増加させることにより、アニールが施された後のSi膜の表面ラフネスを小さくする方向に調整することも可能となる。これらの結果、アニールが施された後のSi膜のウエハ200面内方向、すなわち、沿面方向における電気抵抗を低減させる方向に調整することが可能となる。
また、上述のように、シード層形成ステップで形成するSiシード層の厚さを減少させることにより、アニールが施された後のSi膜に含まれる結晶粒の粒径を小さくし、Si膜の表面の単位面積あたりに存在する結晶粒界の密度を増加させる方向に調整することが可能となる。また、シード層形成ステップで形成するSiシード層の厚さを減少させることにより、アニールが施された後のSi膜の表面ラフネスを大きくする方向に調整することも可能となる。これらの結果、アニールが施された後のSi膜の沿面方向における電気抵抗を増加させる方向に調整することが可能となる。
(c)本実施形態によれば、シード層形成ステップで形成するSiシード層の厚さを制御することにより、最終的に形成されるSi膜の厚さによらず、この膜の結晶粒径、表面ラフネスおよび電気特性を、自由に調整することが可能となる。これに対し、本実施形態の手法を用いない場合、ウエハ200上に形成されるSi膜の結晶粒、表面ラフネスおよび電気特性を、この膜の厚さによらずに自由に調整することは困難となる。例えば、本実施形態の手法を用いない場合、Si膜の結晶粒径を大きくしたり、表面ラフネスを小さくしたり、沿面方向における電気抵抗を低減したりするには、ウエハ200上に形成されるSi膜そのものの厚さを大きくする必要がある。
(d)本実施形態では、Siシード層を先行してポリ化させ、その後、Si膜をポリ化させることで、すなわち、Siシード層およびSi膜のそれぞれのポリ化のタイミングに、所定の時間差を生じさせることで、上述した種々の効果が得られるようになる。
ここで、本実施形態のように、MSガスよりも高次の水素化ケイ素ガスであるDSガスを用いて形成されたアモルファス状態のSiシード層を、第2温度で加熱することで、少なくとも一部をポリ化させるか、ポリ化させないまでもポリ化させやすい状態にすることができる。これに対し、DSガスよりも低次の水素化ケイ素ガスであるMSガスを用いて形成されたSi膜は、第2温度下ではアモルファス状態となり、その後、第2温度よりも高い第3温度に加熱されることで、すなわち、アニールステップを行うことで初めてポリ化する。このように、DSガスを用いて形成した膜(または層)と、MSガスを用いて形成した膜(または層)とでは、ポリ化(多結晶化)する温度が異なる。そのため、本実施形態のように、シード層形成ステップで用いる処理ガス(第1水素化ケイ素ガス)が、Si膜形成ステップで用いる処理ガス(第2水素化ケイ素ガス)よりも高次の水素化ケイ素ガスとなるように、各ステップで用いる処理ガスの種類を適正に選択することで、上述の時間差を確実に生じさせ、上述した種々の効果が確実に得られるようになる。
また、本実施形態のように、Si膜を形成するステップを開始する前の昇温ステップや、Si膜形成ステップにおいて、ウエハ200上に形成されたSiシード層のポリ化を先行して開始させるようにすることで、上述の時間差を確実に生じさせ、上述した種々の効果が確実に得られるようになる。なお、Si膜形成ステップを開始する前の昇温ステップにおいて、処理室201内の温度が第2温度に到達して安定するまで所定時間待機するようにすれば、Siシード層のポリ化をより確実に進行させ、上述の時間差をより確実に生じさせ、上述した種々の効果がより確実に得られるようになる。
(e)ウエハ200を準備した後、Si膜形成ステップを行う前に、シード層形成ステップを行うことにより、ウエハ200上に形成されるSi膜のインキュベーションタイム(成長遅れ)を短縮させることができ、成膜処理の生産性を向上させることが可能となる。
(f)シード層形成ステップでは、DCSガスの供給とDSガスの供給とを交互に行うことにより、Siシード層の形成効率を高め、また、Siシード層を緻密化させることが可能となる。これにより、成膜処理の生産性を高め、また、ウエハ200上に形成されるSi膜を緻密化させることが可能となる。また、ガスの供給を交互に行うことにより、処理室201内における過剰な気相反応を抑制し、成膜処理の品質を向上させることが可能となる。
(g)Si膜形成ステップにおいて、ノズル249aより供給するNガスの流量と、ノズル249bより供給するNガスの流量と、のバランスを制御することで、ウエハ200上に形成されるSi膜のウエハ面内膜厚分布を調整することが可能となる。例えば、図4に示すように、ノズル249aより供給するNガスの流量を、ノズル249bより供給するNガスの流量よりも多くすることで、ウエハ200の表面の中央部で最も薄く、外周部に近づくにつれて徐々に厚くなる傾向にある上述の膜厚分布(中央凹分布)を、ウエハ200の表面の中央部と外周部とで厚さが同等となる分布(フラット分布)としたり、ウエハ200の表面の中央部で最も厚く、外周部に近づくにつれて徐々に薄くなる分布(中央凸分布)としたりするように制御することが可能となる。
(h)上述の効果は、DSガス以外の第1処理ガスを用いる場合や、DCSガス以外のハロゲン含有ガスを用いる場合や、MSガス以外の第2処理ガスを用いる場合や、PHガス以外のドーパントガスを用いる場合や、Nガス以外の不活性ガスを用いる場合にも、同様に得ることができる。
(4)変形例
本実施形態における成膜ステップは、図4に示す態様に限定されず、以下に示す変形例のように変更することができる。これらの変形例は任意に組み合わせることができる。特に説明がない限り、各変形例の各ステップにおける処理手順、処理条件は、上述の基板処理シーケンスの各ステップにおける処理手順、処理条件と同様とすることができる。
(変形例1)
以下に示す基板処理シーケンスのように、シード層形成ステップでは、ウエハ200に対して、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)ガス、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス、ジイソプロピルアミノシラン(SiHN[CH(CH、略称:DIPAS)ガス等のアミノシラン系ガスを所定回数(n回、nは1以上の整数)供給することでSiシード層を形成するようにしてもよい。本変形例においても、上述の実施形態と同様の効果が得られる。
DIPAS×n→MS+PH→ANL ⇒ PドープSi/Siシード
(変形例2)
以下に示す基板処理シーケンスのように、シード層形成ステップでは、ウエハ200に対して、HCDSガス等のハロシランガスを所定回数(n回、nは1以上の整数)供給することでSiシード層を形成するようにしてもよい。本変形例においても、上述の実施形態と同様の効果が得られる。
HCDS×n→MS+PH→ANL ⇒ PドープSi/Siシード
(変形例3)
以下に示す基板処理シーケンスのように、シード層形成ステップでは、ウエハ200に対して、DSガス等の水素化ケイ素ガスを所定回数(n回、nは1以上の整数)供給することでSiシード層を形成するようにしてもよい。本変形例においても、上述の実施形態と同様の効果が得られる。
DS×n→MS+PH→ANL ⇒ PドープSi/Siシード
(変形例4)
以下に示す基板処理シーケンスのように、シード層形成ステップでは、ウエハ200に対して、HClガスやClガス等のSi非含有のハロゲン系ガスと、DSガス等の水素化ケイ素ガスと、を交互に所定回数(n回、nは1以上の整数)供給することでSiシード層を形成するようにしてもよい。本変形例においても、上述の実施形態と同様の効果が得られる。
(HCl→DS)×n→MS+PH→ANL ⇒ PドープSi/Siシード
(Cl→DS)×n→MS+PH→ANL ⇒ PドープSi/Siシード
<他の実施形態>
以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
上述の実施形態では、シード層形成ステップからアニールステップに至る一連のステップを、同一の処理室201内で(in−situで)行う例について説明した。しかしながら、本発明はこのような態様に限定されない。例えば、シード層形成ステップからSi膜形成ステップに至る一連のステップをin−situで行い、その後、アニールステップを他の処理室内で(ex−situで)行うようにしてもよい。この場合においても上述の実施形態における効果と同様の効果が得られる。
また例えば、Si膜形成ステップとアニールステップとの間に、Si膜以外の膜(シリコン酸化膜やシリコン窒化膜等)を形成する他の成膜ステップを行うようにしてもよい。この場合、シード層形成ステップからアニールステップに至る一連のステップ、すなわち、他の成膜ステップを含む一連のステップを、同一の処理室(第1処理室)内で行うようにしてもよい。また、シード層形成ステップからSi膜形成ステップに至る一連のステップを同一の処理室(第1処理室)内で行い、他の成膜ステップからアニールステップに至る一連のステップを他の処理室(第2処理室)内で行うようにしてもよい。また、シード層形成ステップからSi膜形成ステップに至る一連のステップを同一の処理室(第1処理室)内で行い、他の成膜ステップを他の処理室(第2処理室)内で行い、アニールステップをさらに他の処理室(第3処理室)内または第1処理室内で行うようにしてもよい。これらの場合においても上述の実施形態における効果と同様の効果が得られる。
上述の種々の場合において、一連のステップをin−situで行えば、途中、ウエハ200が大気曝露されることはなく、ウエハ200を真空下に置いたまま一貫して処理を行うことができ、安定した基板処理を行うことができる。また、一部のステップをex−situで行えば、それぞれの処理室内の温度を例えば各ステップでの処理温度又はそれに近い温度に予め設定しておくことができ、温度調整に要する時間を短縮させ、生産効率を高めることができる。
上述の実施形態では、ノズル249a〜249cが隣接(近接)して設けられている例について説明したが、本発明はこのような態様に限定されない。例えば、ノズル249a,249cは、反応管203の内壁とウエハ200との間における平面視において円環状の空間のうち、ノズル249bから離れた位置に設けられていてもよい。この場合においても上述の実施形態における効果と同様の効果が得られる。
上述の実施形態では、第1〜第3供給部がノズル249a〜249cにより構成され、処理室201内に3本のノズルが設けられる例について説明したが、本発明はこのような態様に限定されない。例えば、第1〜第3供給部のうち少なくともいずれかの供給部が2本以上のノズルにより構成されていてもよい。また、処理室201内に第1〜第3供給部以外のノズルを新たに設け、このノズルを用いてNガスや各種処理ガスをさらに供給するようにしてもよい。処理室201内にノズル249a〜249c以外のノズルを設ける場合、この新たに設けるノズルは、平面視において排気口231aと対向する位置に設けてもよく、対向しない位置に設けてもよい。すなわち、新たに設けるノズルは、ノズル249a〜249cから離れた位置であって、例えば、反応管203の内壁とウエハ200との間における平面視において円環状の空間のうち、ウエハ200の外周に沿ってノズル249a〜249cと排気口231aとの間の中間位置、或いは、その中間位置の近傍の位置に設けてもよい。これらの場合においても上述の実施形態における効果と同様の効果が得られる。
上述の実施形態では、Siシード層上にPドープSi膜を形成する例について説明したが、本発明はこのような態様に限定されない。例えば、以下に示す基板処理シーケンスにより、Siシード層上に、P等のドーパントがドープされていないSi膜、すなわち、ノンドープSi膜を形成するようにしてもよい。この場合においても上述の実施形態における効果と同様の効果が得られる。
(DCS→DS)×n→MS→ANL ⇒ Si/Siシード
上述の実施形態では、基板上に主元素としてSiを含む膜を形成する例について説明したが、本発明はこのような態様に限定されない。すなわち、本発明は、Siの他、ゲルマニウム(Ge)等の半金属元素を主元素として含む膜を基板上に形成する場合にも、好適に適用することができる。例えば、Geを含む膜として、Ge膜やSiGe膜を形成するようにしてもよい。これらの場合、Siシード層の代わりにGeシード層やSiGeシード層を形成するようにしてもよい。Ge膜やSiGe膜を形成する場合は、例えば、モノゲルマン(GeH、略称:MG)ガスやMSガスを用いることができる。Geシード層やSiGe層を形成する場合は、例えば、ジゲルマン(Ge、略称:DG)ガスやDSガスを用いることができる。これらの膜は、例えば、以下に示す基板処理シーケンスにより形成することができ、そのときの処理条件は、上述の実施形態における処理条件と同様とすることができる。これらの場合においても上述の実施形態における効果と同様の効果が得られる。
(DCS→DS)×n→MG→ANL ⇒ Ge/Siシード
(DCS→DG)×n→MG→ANL ⇒ Ge/Geシード
(DCS→DS→DG)×n→MG→ANL ⇒ Ge/SiGeシード
(DCS→DS)×n→MS+MG→ANL ⇒ SiGe/Siシード
(DCS→DG)×n→MS+MG→ANL ⇒ SiGe/Geシード
(DCS→DS→DG)×n→MS+MG→ANL ⇒ SiGe/SiGeシード
(DCS→DS)×n→MG+PH→ANL ⇒ PドープGe/Siシード
(DCS→DG)×n→MG+PH→ANL ⇒ PドープGe/Geシード
(DCS→DS→DG)×n→MG+PH→ANL ⇒ PドープGe/SiGeシード
(DCS→DS)×n→MS+MG+PH→ANL ⇒ PドープSiGe/Siシード
(DCS→DG)×n→MS+MG+PH→ANL ⇒ PドープSiGe/Geシード
(DCS→DS→DG)×n→MS+MG+PH→ANL ⇒ PドープSiGe/SiGeシード
基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、基板処理の内容に応じて、適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
上述の実施形態では、第1〜第3供給部が反応管の内壁に沿うように処理室内に設けられている例について説明した。しかしながら、本発明は上述の実施形態に限定されない。例えば図5(a)に縦型処理炉の断面構造を示すように、反応管の側壁にバッファ室を設け、このバッファ室内に、上述の実施形態と同様の構成の第1〜第3供給部を、上述の実施形態と同様の配置で設けるようにしてもよい。図5(a)では、反応管の側壁に供給用のバッファ室と排気用のバッファ室とを設け、それぞれを、ウエハを挟んで対向する位置に配置した例を示している。なお、供給用のバッファ室と排気用のバッファ室のそれぞれは、反応管の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられている。また、図5(a)では、供給用のバッファ室を複数(3つ)の空間に仕切り、それぞれの空間に各供給部を配置した例を示している。バッファ室の3つの空間の配置は、第1〜第3供給部の配置と同様となる。また例えば、図5(b)に縦型処理炉の断面構造を示すように、図5(a)と同様の配置でバッファ室を設け、バッファ室内に第2供給部を設け、このバッファ室の処理室との連通部を両側から挟むとともに反応管の内壁に沿うように第1、第3供給部を設けるようにしてもよい。なお、図5(a)、図5(b)で説明したバッファ室や反応管以外の構成は、図1に示す処理炉の各部の構成と同様である。これらの処理炉を用いた場合であっても、上述の実施形態と同様の効果が得られる。
上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様なシーケンス、処理条件にて成膜を行うことができ、これらと同様の効果が得られる。
また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の実施形態の処理手順、処理条件と同様とすることができる。
図1に示す基板処理装置を用い、図4に示す成膜シーケンスにより、ウエハ上にSiシード層、Si膜をこの順に形成し、その後、上述のアニールステップを行うことでSi膜をポリ化させた。上述の実施形態と同様に、本実施例では、Siシード層を先行してポリ化させ、その後、Si膜をポリ化させた。各ステップにおける処理条件は、上述の実施形態に記載の処理条件範囲内の所定の条件とした。Siシード層の厚さは、6.5Å、8Å、12.2Å、13Åとした。
そして、ポリ化させた後のSi膜の結晶粒径および表面ラフネスをそれぞれ測定した。図6に、ポリ化させた後のSi膜の結晶粒径(Grain−Size)および表面ラフネス(RMS)の測定結果をそれぞれ示す。図6の横軸はSiシード層の厚さ(Å)を、左側の縦軸はSi膜を構成する結晶粒のGrain−Size(μm)を、右側の縦軸はAFM(原子間力顕微鏡)で測定したSi膜の表面のRMS(nm)をそれぞれ示している。図中、●印はGrain−Sizeを、■印はRMSをそれぞれ示している。図6によれば、Siシード層の厚さを増加させることにより、Si膜のGrain−Sizeを大きくさせ、また、RMSを小さくさせる方向に調整することが可能であることが分かる。一方、Siシード層の厚さを減少させることにより、Si膜のGrain−Sizeを小さくさせ、また、RMSを大きくさせる方向に調整することが可能であることが分かる。
<本発明の好ましい態様>
以下、好ましい態様について付記する。
(付記1)
本発明の一態様によれば、
(a)基板に対して第1温度下で第1処理ガスを供給し、前記基板上にシード層を形成する工程と、
(b)前記基板に対して第2温度下で第2処理ガスを供給し、前記シード層の上に膜を形成する工程と、
(c)前記シード層および前記膜を第3温度下でアニールする工程と、
を有し、
(a)において形成する前記シード層の厚さを制御することにより、(c)において前記アニールが施された後の前記膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整する半導体装置の製造方法、または、基板処理方法が提供される。
(付記2)
付記1に記載の方法であって、好ましくは、
(a)では、アモルファス状態の前記シード層を形成し、
(b)では、アモルファス状態の前記膜を形成する。
(付記3)
付記2に記載の方法であって、好ましくは、
(b)では、前記膜の下地である前記シード層をアモルファス状態に維持するか、前記シード層の少なくとも一部をポリ化させる。
(付記4)
付記2または3に記載の方法であって、好ましくは、
(b)では、前記膜の下地である前記シード層をアモルファス状態に維持するか、前記シード層をアモルファスとポリとの混晶状態、もしくは、ポリ状態に変化させる。
(付記5)
付記2〜4のいずれか1項に記載の方法であって、好ましくは、
(b)または(c)では、前記シード層を先行してポリ化させ、その後、(c)において、前記膜をポリ化させる。
(付記6)
付記5に記載の方法であって、好ましくは、
(c)では、先行してポリ化させた前記シード層の結晶構造に基づき、前記膜をポリ化させる。
(付記7)
付記5または6に記載の方法であって、好ましくは、
(c)では、先行してポリ化させた前記シード層の結晶粒を核として、前記膜をポリ化させる。
(付記8)
付記1〜7のいずれか1項に記載の方法であって、好ましくは、
前記シード層はシリコンシード層を含み、前記膜はシリコン膜を含み、
前記第1処理ガスは第1水素化ケイ素を含み、前記第2処理ガスは第2水素化ケイ素を含み、前記第1水素化ケイ素は、前記第2水素化ケイ素よりも高次の水素化ケイ素である。
(付記9)
付記8に記載の方法であって、好ましくは、
前記第1処理ガスはジシランを含み、前記第2処理ガスはモノシランを含む。
(付記10)
付記1〜9のいずれか1項に記載の方法であって、好ましくは、
前記第2温度は前記第1温度よりも高く、前記第3温度は前記第2温度よりも高い。
(付記11)
付記1〜10のいずれか1項に記載の方法であって、好ましくは、
(a)では、処理温度および処理時間のうち少なくともいずれかを制御することで前記シード層の厚さを制御する。
(付記12)
付記1〜11のいずれか1項に記載の方法であって、好ましくは、
(a)では、前記基板に対してハロゲン含有ガスを供給する工程と、前記基板に対して前記第1処理ガスを供給する工程と、を非同時に行うサイクルを所定回数行うことで、前記シード層を形成し、前記サイクル数を制御することで前記シード層の厚さを制御する。
(付記13)
付記1〜12のいずれか1項に記載の方法であって、好ましくは、
(a)では、前記基板に対してハロゲン含有ガスを供給する工程と、前記基板に対して前記第1処理ガスを供給する工程と、を非同時に行うサイクルを所定回数行うことで、前記シード層を形成する。前記ハロゲン含有ガスはハロシランガスを含む。前記ハロシランガスはクロロシランガスを含む。
(付記14)
付記1〜13のいずれか1項に記載の方法であって、好ましくは、
前記シード層はシリコンシード層を含み、
前記第1処理ガスは、ハロシランガス、アミノシランガス、またはジシランガスを含む。前記ハロゲン含有ガスはハロシランガスを含む。前記ハロシランガスはクロロシランガスを含む。
(付記15)
付記1〜14のいずれか1項に記載の方法であって、好ましくは、
(a)、(b)、および(c)を、同一の処理室内で(in−situにて)行う。
(付記16)
付記1〜14のいずれか1項に記載の方法であって、好ましくは、
(a)と(b)とを同一の処理室内で(in−situにて)行い、
(b)と(c)とを異なる処理室内で(ex−situにて)行う。
(付記17)
付記16に記載の方法であって、好ましくは、
前記膜はシリコン膜であり、
(b)と(c)との間に、前記シリコン膜以外の膜を前記シリコン膜上に形成する工程を更に有する。
(付記18)
付記17に記載の方法であって、好ましくは、
前記膜以外の膜は、シリコン酸化膜を含む。
(付記19)
本発明の他の態様によれば、
基板が処理される処理室と、
前記処理室内の基板に対して第1処理ガスを供給する第1処理ガス供給系と、
前記処理室内の基板に対して第2処理ガスを供給する第2処理ガス供給系と、
前記処理室内の基板の温度を調整する温度調整部と、
前記処理室内において、付記1の各処理(各工程)を行わせるように、前記第1処理ガス供給系、前記第2処理ガス供給系、および前記温度調整部を制御するよう構成される制御部と、
を有する基板処理装置が提供される。
(付記20)
本発明のさらに他の態様によれば、
基板処理装置の処理室内において、
付記1における各手順(各工程)をコンピュータによって前記基板処理装置に実行させるプログラム、または、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
200 ウエハ(基板)
249a ノズル(第1供給部)
249b ノズル(第2供給部)
249c ノズル(第3供給部)

Claims (6)

  1. (a)基板に対して第1温度下で第1処理ガスを供給し、前記基板上にシード層を形成する工程と、
    (b)前記基板に対して第2温度下で第2処理ガスを供給し、前記シード層の上に膜を形成する工程と、
    (c)前記シード層および前記膜を第3温度下でアニールする工程と、
    を有し、
    (a)において形成する前記シード層の厚さを制御することにより、(c)において前記アニールが施された後の前記膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整する半導体装置の製造方法。
  2. (a)では、アモルファス状態の前記シード層を形成し、
    (b)では、アモルファス状態の前記膜を形成する請求項1に記載の半導体装置の製造方法。
  3. (b)では、前記膜の下地である前記シード層の少なくとも一部をポリ化させる請求項2に記載の半導体装置の製造方法。
  4. (b)または(c)では、前記シード層を先行してポリ化させ、その後、(c)において、前記膜をポリ化させる請求項2または3に記載の半導体装置の製造方法。
  5. 基板が処理される処理室と、
    前記処理室内の基板に対して第1処理ガスを供給する第1処理ガス供給系と、
    前記処理室内の基板に対して第2処理ガスを供給する第2処理ガス供給系と、
    前記処理室内の基板の温度を調整する温度調整部と、
    前記処理室内において、(a)基板に対して第1温度下で前記第1処理ガスを供給し、前記基板上にシード層を形成する処理と、(b)前記基板に対して第2温度下で前記第2処理ガスを供給し、前記シード層の上に膜を形成する処理と、(c)前記シード層および前記膜を第3温度下でアニールする処理と、を行わせ、(a)において形成する前記シード層の厚さを制御することにより、(c)において前記アニールが施された後の前記膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整するように、前記第1処理ガス供給系、前記第2処理ガス供給系、および前記温度調整部を制御するよう構成される制御部と、
    を有する基板処理装置。
  6. 基板処理装置の処理室内において、
    (a)基板に対して第1温度下で第1処理ガスを供給し、前記基板上にシード層を形成する手順と、
    (b)前記基板に対して第2温度下で第2処理ガスを供給し、前記シード層の上に膜を形成する手順と、
    (c)前記シード層および前記膜を第3温度下でアニールする手順と、
    (a)において形成する前記シード層の厚さを制御することにより、(c)において前記アニールが施された後の前記膜の結晶粒径および表面ラフネスのうち少なくともいずれかを調整する手順と、
    をコンピュータによって前記基板処理装置に実行させるプログラム。
JP2018170681A 2018-09-12 2018-09-12 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム Active JP7058575B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018170681A JP7058575B2 (ja) 2018-09-12 2018-09-12 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
CN201910695517.XA CN110896052B (zh) 2018-09-12 2019-07-30 半导体器件的制造方法、衬底处理装置及记录介质
SG10201907969QA SG10201907969QA (en) 2018-09-12 2019-08-29 Method of manufacturing semiconductor device, substrate processing apparatus, and program
US16/555,178 US11075114B2 (en) 2018-09-12 2019-08-29 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR1020190107242A KR102401389B1 (ko) 2018-09-12 2019-08-30 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018170681A JP7058575B2 (ja) 2018-09-12 2018-09-12 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Publications (2)

Publication Number Publication Date
JP2020043262A true JP2020043262A (ja) 2020-03-19
JP7058575B2 JP7058575B2 (ja) 2022-04-22

Family

ID=69718901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018170681A Active JP7058575B2 (ja) 2018-09-12 2018-09-12 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Country Status (5)

Country Link
US (1) US11075114B2 (ja)
JP (1) JP7058575B2 (ja)
KR (1) KR102401389B1 (ja)
CN (1) CN110896052B (ja)
SG (1) SG10201907969QA (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176155A1 (ja) * 2021-02-19 2022-08-25 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391064B2 (ja) * 2021-03-22 2023-12-04 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204137A (ja) * 1992-10-19 1994-07-22 Samsung Electron Co Ltd 多結晶シリコン薄膜の製造方法
JP2007013194A (ja) * 2006-08-07 2007-01-18 Junichi Hanna 半導体基材及びその製造方法
US20100112792A1 (en) * 2008-11-03 2010-05-06 International Business Machines Corporation Thick epitaxial silicon by grain reorientation annealing and applications thereof
CN103515200A (zh) * 2012-06-15 2014-01-15 无锡华润上华半导体有限公司 一种厚多晶硅的制备方法
JP2016105457A (ja) * 2014-11-19 2016-06-09 株式会社日立国際電気 三次元フラッシュメモリ、ダイナミックランダムアクセスメモリ、半導体装置、半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム
JP2016184754A (ja) * 2016-06-03 2016-10-20 東京エレクトロン株式会社 シード層の形成方法、シリコン膜の成膜方法および成膜装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156878B2 (ja) 1992-04-30 2001-04-16 株式会社東芝 半導体装置およびその製造方法
JP2004289168A (ja) 1992-04-30 2004-10-14 Toshiba Corp 半導体装置およびその製造方法
JP3965215B2 (ja) * 1995-03-25 2007-08-29 純一 半那 半導体基材の製造方法
US20040067631A1 (en) 2002-10-03 2004-04-08 Haowen Bu Reduction of seed layer roughness for use in forming SiGe gate electrode
JP4982355B2 (ja) 2004-02-27 2012-07-25 エーエスエム アメリカ インコーポレイテッド ゲルマニウム膜の形成方法
JP5495847B2 (ja) 2010-02-24 2014-05-21 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および基板処理方法
JP5393895B2 (ja) 2010-09-01 2014-01-22 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP5864360B2 (ja) * 2011-06-30 2016-02-17 東京エレクトロン株式会社 シリコン膜の形成方法およびその形成装置
JP5741382B2 (ja) 2011-09-30 2015-07-01 東京エレクトロン株式会社 薄膜の形成方法及び成膜装置
JP5815443B2 (ja) 2012-03-19 2015-11-17 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP6022272B2 (ja) 2012-09-14 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP5902073B2 (ja) 2012-09-25 2016-04-13 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
JP6068130B2 (ja) * 2012-12-25 2017-01-25 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP5947710B2 (ja) 2012-12-27 2016-07-06 東京エレクトロン株式会社 シード層の形成方法、シリコン膜の成膜方法および成膜装置
WO2015053121A1 (ja) * 2013-10-10 2015-04-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体
JP6594768B2 (ja) * 2015-12-25 2019-10-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP6560991B2 (ja) 2016-01-29 2019-08-14 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US11326253B2 (en) 2016-04-27 2022-05-10 Applied Materials, Inc. Atomic layer deposition of protective coatings for semiconductor process chamber components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204137A (ja) * 1992-10-19 1994-07-22 Samsung Electron Co Ltd 多結晶シリコン薄膜の製造方法
JP2007013194A (ja) * 2006-08-07 2007-01-18 Junichi Hanna 半導体基材及びその製造方法
US20100112792A1 (en) * 2008-11-03 2010-05-06 International Business Machines Corporation Thick epitaxial silicon by grain reorientation annealing and applications thereof
CN103515200A (zh) * 2012-06-15 2014-01-15 无锡华润上华半导体有限公司 一种厚多晶硅的制备方法
JP2016105457A (ja) * 2014-11-19 2016-06-09 株式会社日立国際電気 三次元フラッシュメモリ、ダイナミックランダムアクセスメモリ、半導体装置、半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム
JP2016184754A (ja) * 2016-06-03 2016-10-20 東京エレクトロン株式会社 シード層の形成方法、シリコン膜の成膜方法および成膜装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176155A1 (ja) * 2021-02-19 2022-08-25 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Also Published As

Publication number Publication date
KR20200030451A (ko) 2020-03-20
CN110896052B (zh) 2024-03-22
SG10201907969QA (en) 2020-04-29
US11075114B2 (en) 2021-07-27
US20200083097A1 (en) 2020-03-12
CN110896052A (zh) 2020-03-20
JP7058575B2 (ja) 2022-04-22
KR102401389B1 (ko) 2022-05-24

Similar Documents

Publication Publication Date Title
JP2017224693A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US11047048B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN107680898B (zh) 半导体装置的制造方法、基板处理装置和存储介质
KR102154412B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2017162974A (ja) 半導体装置の製造方法、基板処理装置、ガス供給系およびプログラム
KR20230006435A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
KR102401389B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP7361911B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP6827573B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2022176155A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6778139B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
CN118263093A (en) Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP2023137735A (ja) 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220412

R150 Certificate of patent or registration of utility model

Ref document number: 7058575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150