JP2020041819A - Method for measuring hardness of sintered product, hardness measurement device, and crushability determination method - Google Patents

Method for measuring hardness of sintered product, hardness measurement device, and crushability determination method Download PDF

Info

Publication number
JP2020041819A
JP2020041819A JP2018167193A JP2018167193A JP2020041819A JP 2020041819 A JP2020041819 A JP 2020041819A JP 2018167193 A JP2018167193 A JP 2018167193A JP 2018167193 A JP2018167193 A JP 2018167193A JP 2020041819 A JP2020041819 A JP 2020041819A
Authority
JP
Japan
Prior art keywords
hardness
measured
indenter
measuring device
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018167193A
Other languages
Japanese (ja)
Other versions
JP7256950B2 (en
Inventor
智大 吉田
Tomohiro Yoshida
智大 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018167193A priority Critical patent/JP7256950B2/en
Publication of JP2020041819A publication Critical patent/JP2020041819A/en
Application granted granted Critical
Publication of JP7256950B2 publication Critical patent/JP7256950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method and a determination device for determining whether a sintered product obtained in a firing step is to be subjected to a subsequent crushing step in a short time and briefly.SOLUTION: In a hardness measurement method, a sintered product of powders is taken as a measurement object. An indenter having a straight rod body, in which the distal end constitutes a press unit, is lowered from above the measurement object placed on an upper surface of a stage in which the upper surface is placed in the horizontal plane, toward the surface of the measurement object. After the press unit contacts the surface of the measurement object, the indenter is further lowered until the press unit has broken through the sintered material. The force that the indenter receives from the measurement object is measured by a load measurement device during the lowering operation.SELECTED DRAWING: None

Description

焼成物を解砕する場合に、その硬さにより解砕の可否を判定するための焼成物の硬さ計測方法および計測装置、並びに解砕可否の判定方法に関する。   The present invention relates to a method and an apparatus for measuring the hardness of a fired product for determining whether or not to be crushed based on the hardness when the fired product is to be crushed, and a method for determining whether or not the crushing is possible.

リチウムイオン二次電池正極活物質材料は、原料混合工程で原料となるリチウム化合物と水酸化ニッケル等遷移金属水酸化物を混合して原料混合物を調製し、焼成工程でセラミックス製容器に原料混合物を充填して約800℃〜950℃で焼成して焼成物を得、解砕工程で焼成物を解砕して得られる(特許文献1)。   In the positive electrode active material for a lithium ion secondary battery, a raw material mixture is prepared by mixing a lithium compound as a raw material and a transition metal hydroxide such as nickel hydroxide in a raw material mixing step, and the raw material mixture is placed in a ceramic container in a firing step. It is obtained by filling and firing at about 800 ° C. to 950 ° C. to obtain a fired product, and crushing the fired product in a crushing step (Patent Document 1).

この焼成工程から得られた焼成物は、セラミックスのように固く焼結するが、リチウムイオン二次電池正極活物質材料として使用するためには、粒径約10μm程度の微粉に解砕する必要がある。
そこで、解砕工程での解砕方法は、例えば焼成物をロールクラッシャーで粗解砕し、次いでピンミルで微粉砕するという方法が実施されている。
このロールクラッシャーの投入はホッパーに焼成物を連続的に投入する装置構成の場合であり、解砕対象の焼結物が硬すぎるとロールクラッシャーで粗解砕するために時間を要し、投入ホッパー内の焼成物レベルが基準値を超えてレベル異常が発生する。このときは投入ホッパーへの焼成物の連続投入を停止し、レベル異常が解消してから投入ホッパーへの焼成物の連続投入を再開する。
また粗解砕された焼成物が、ピンミルのピンを破損し、ピンミルが故障するという問題も発生する。さらには、このピンが破損した結果、所望の粒度まで焼成物が解砕されないようになってしまう。
The fired product obtained from this firing step sinters firmly like a ceramic, but in order to use it as a positive electrode active material for a lithium ion secondary battery, it is necessary to disintegrate it into fine powder having a particle size of about 10 μm. is there.
Therefore, as a crushing method in the crushing step, for example, a method of roughly crushing a calcined material with a roll crusher and then finely crushing with a pin mill has been implemented.
The roll crusher is charged when the fired material is continuously charged into the hopper.If the sintered material to be crushed is too hard, it takes time to coarsely crush with the roll crusher. The abnormal level occurs when the level of the fired material in the box exceeds the reference value. At this time, the continuous charging of the burned material to the charging hopper is stopped, and the continuous charging of the fired material to the charging hopper is restarted after the level abnormality is resolved.
In addition, there is also a problem that the roughly crushed fired material breaks the pins of the pin mill and breaks down the pin mill. Furthermore, as a result of the breakage of the pin, the fired product is not crushed to a desired particle size.

このような問題に対し、それらへの対策として、先ず、解砕対象の焼成物の硬度を計測し、予め解砕工程で異常が発生しないような基準値(閾値)を設定し、その基準値よりも硬い焼成物は解砕工程で処理しないように選別、解砕ラインから除外する方法が挙げられる。
そこで、基準値を決めるための焼成物の硬度を知るための硬度計測方法には、ビッカース硬さ(HV)計測法やブリネル硬さ(HBS)計測法などが知られている。例えば特許文献2では、正極活物質粉末をプレスして成形体を得て、得られた成形体を焼結することにより硬度が100〜600HVの焼結体を得る。その焼結体の硬度はビッカース硬さ計を用いて行っている。
As a countermeasure against such problems, first, the hardness of the fired material to be crushed is measured, and a reference value (threshold) is set beforehand so that no abnormality occurs in the crushing process. There is a method in which a calcined product that is harder is selected so as not to be treated in the crushing step and is excluded from the crushing line.
Therefore, as a hardness measurement method for determining the hardness of the fired material for determining the reference value, a Vickers hardness (HV) measurement method, a Brinell hardness (HBS) measurement method, and the like are known. For example, in Patent Literature 2, a molded body is obtained by pressing a positive electrode active material powder, and the obtained molded body is sintered to obtain a sintered body having a hardness of 100 to 600 HV. The hardness of the sintered body is measured using a Vickers hardness meter.

この特許文献2に提案された硬度計測方法を、焼成工程で得られた焼成物の計測に適用した場合、匣鉢から焼成物の計測試料を切り出し、形を整え、硬度計で計測する工程が必要で、合計で1匣鉢あたり3時間程度の計測時間を要していた。しかしながら、焼成工程で連続炉を用いて原料混合物を処理する場合は、焼成物の硬さの計測時間は数分程度で実施する必要があり、このため、焼成物の硬さが不明なまま焼成物を解砕工程に投入せざるを得ず、上記のようにロールクラッシャーのレベル異常やピンミルの破損の発生や焼成物が所望の粒度まで解砕されないという事態が発生することがあった。
このように、焼成物の硬さを短時間で計測し、後工程の解砕工程への投入可否を判定する簡便な方法がないため、工程管理が進まないという問題があった。
When the hardness measurement method proposed in Patent Document 2 is applied to measurement of a fired product obtained in a firing process, a process of cutting out a measurement sample of the fired product from a sagger, adjusting the shape, and measuring with a hardness meter is included. This required a total of about 3 hours of measurement time per box. However, when processing a raw material mixture using a continuous furnace in the firing step, it is necessary to measure the hardness of the fired product in a few minutes, and therefore, firing without knowing the hardness of the fired product is required. The material has to be put into the crushing step, and as described above, the level of the roll crusher may be abnormal, the pin mill may be damaged, or the fired product may not be crushed to a desired particle size.
As described above, there is no simple method for measuring the hardness of the fired product in a short time and determining whether or not the fired product can be put into a subsequent crushing process.

特開2017−16753号公報JP-A-2017-16753 特開2010−123396号公報JP 2010-123396 A

上記課題に鑑み、焼成工程で得られた焼成物を、次工程の解砕工程に供するための可否を、短時間、且つ簡潔に判定する方法およびその判定を行なうための焼成物の硬さを測定する計測装置と計測法を提供する。   In view of the above problems, a method for simply and simply determining whether or not the fired product obtained in the firing step is to be subjected to the subsequent crushing step and the hardness of the fired material for performing the determination are as follows. Provide a measuring device and a measuring method for measuring.

本発明の第1の発明は、粉体の焼成物を被計測物とする硬さ計測方法であって、上面が水平面になるように設置されたステージ部上面に載置された被計測物の上方から、前記被計測物表面方向に向かって、先端が押し圧部を形成している真直な棒体の圧子を下降させていき、前記被計測物の表面への前記押し圧部の接触後、さらに前記圧子を、前記押し圧部が前記焼成物を突き抜ける直後まで下降させる動作を行ない、前記動作中に前記圧子が前記被計測物から受ける力を、荷重計測器により計測することを特徴とする硬さ計測法である。   A first invention of the present invention is a hardness measurement method using a fired powder as an object to be measured, and the method for measuring the hardness of an object placed on an upper surface of a stage portion installed such that the upper surface is a horizontal surface. From above, the indenter of a straight rod body whose tip forms a pressing portion is lowered toward the surface of the measured object, and after the pressing portion contacts the surface of the measured object. Further, performing an operation of lowering the indenter until immediately after the pressing part penetrates the fired material, and measuring a force received by the indenter from the object to be measured during the operation by a load measuring device. Hardness measurement method.

本発明の第2の発明は、第1の発明における被計測物が、上方が開放された匣鉢に収容されていることを特徴とする硬さ計測法である。   A second invention of the present invention is a hardness measuring method, wherein the object to be measured according to the first invention is housed in a sagger having an open top.

本発明の第3の発明は、第1及び第2の発明における荷重計測器が、前記圧子と、荷重計測部から構成されることを特徴とする硬さ計測法である。   A third invention of the present invention is a hardness measuring method, wherein the load measuring device in the first and second inventions comprises the indenter and a load measuring unit.

本発明の第4の発明は、第3の発明における荷重計測器が、フォースゲージであることを特徴とする硬さ計測法である。   A fourth aspect of the present invention is a hardness measuring method, wherein the load measuring device according to the third aspect is a force gauge.

本発明の第5の発明は、第3の発明における荷重計測器が、前記圧子と荷重計測部のロードセルから構成され、前記圧子が前記ロードセルに取付けられていることを特徴とする硬さ計測法である。   According to a fifth aspect of the present invention, there is provided a hardness measuring method according to the third aspect, wherein the load measuring device comprises the indenter and a load cell of a load measuring section, and the indenter is attached to the load cell. It is.

本発明の第6の発明は、第1の発明における圧子が、前記押し圧部に加わる力の大きさを、電流、電圧、抵抗の少なくとも1種に変換する「力−電気」変換器の荷重計測部に接続されていることを特徴とする硬さ計測法である。   In a sixth aspect of the present invention, a load of the "force-electric" converter in which the indenter according to the first aspect converts a magnitude of a force applied to the pressing portion into at least one of a current, a voltage, and a resistance. This is a hardness measuring method characterized by being connected to a measuring unit.

本発明の第7の発明は、焼成物を被計測物とする硬さ計測器(計測装置)であって、前記被計測物を配置するステージ部と、前記ステージ部の上方に、前記ステージ部の上面方向に移動可能なヘッド部を有し、前記ヘッド部で支持固定された荷重計測部と、前記荷重計測部と連結した先端に押し圧部を持つ圧子からなる荷重計測器を有することを特徴とする硬さ計測装置である。   A seventh invention of the present invention is a hardness measuring instrument (measuring device) using a fired object as an object to be measured, wherein a stage section for arranging the object to be measured and the stage section above the stage section A load measuring unit having a head part movable in the upper surface direction of the head, a load measuring unit supported and fixed by the head part, and a load measuring device including an indenter having a pressing part at a tip connected to the load measuring part. This is a characteristic hardness measurement device.

本発明の第8の発明は、第7の発明における荷重計測器が、フォースゲージであることを特徴とする硬さ計測装置である。   An eighth invention of the present invention is the hardness measuring device, wherein the load measuring device in the seventh invention is a force gauge.

本発明の第9の発明は、第7の発明における荷重計測器が、前記圧子と荷重計測部のロードセルから構成され、前記圧子が前記ロードセルに取付けられていることを特徴とする硬さ計測装置である。   A ninth invention of the present invention is the hardness measuring device, wherein the load measuring device according to the seventh invention comprises the indenter and a load cell of a load measuring unit, and the indenter is attached to the load cell. It is.

本発明の第10の発明は、第7の発明において、予め定められている基準値と、第1から第6の発明のいずれかに記載の硬さ計測法により計測された硬さ計測値との差fを算出し、「前記基準値−前記計測値=f>0」の関係にある場合に、前記被計測物の硬さを合格とし、前記被計測物を解砕工程に供する命令を発する合否判定機能を備えることを特徴とする硬さ計測装置である。   According to a tenth aspect of the present invention, in the seventh aspect, a predetermined reference value and a hardness measured value measured by the hardness measuring method according to any one of the first to sixth aspects. Is calculated, and when there is a relationship of “the reference value−the measurement value = f> 0”, a command to pass the hardness of the measurement object and to provide the measurement object to the crushing process is given. A hardness measuring device having a pass / fail determination function to emit.

本発明の第11の発明は、焼成物の解砕可否の判定方法であって、前記焼成物を被計測物とし、予め定められている基準値と、請求項1〜6のいずれかに記載の硬さ計測法により計測された前記被計測物の硬さ計測値との差fを算出し、「前記基準値−前記計測値=f>0」の関係にある場合に、前記被計測物の硬さを合格とし、前記被計測物を解砕工程に供するものとする合否判定を下すことを特徴とする解砕可否の判定方法である。   An eleventh invention of the present invention is a method for determining whether or not a fired material can be disintegrated, wherein the fired material is an object to be measured, and a predetermined reference value and any one of claims 1 to 6. The difference f from the hardness measurement value of the object measured by the hardness measurement method is calculated, and when there is a relationship of “the reference value−the measurement value = f> 0”, the object And a determination as to whether or not the object to be measured is to be subjected to a crushing step.

本発明によれば、焼成物の硬さ計測の時間を大幅に短縮することができ、全量検査を可能としたことで、解砕工程で異常を発生させる程度に硬い焼成物を予め判別でき、解砕工程に投入しないで済むようになり、解砕工程での異常発生頻度を低減し、生産性を向上させる。
又、簡易な方法で焼成物の硬さ計測を可能とし、解砕工程への投入可否を判定できるようになったため、硬い焼成物を発生させないような焼成条件の選択を可能とする。
更に、本発明に係る合否判定装置により、簡単に合否判定ができ、また製造ラインに判定装置を組み込んで自動的に合格品のみ解砕工程に投入可能となり、工業上顕著な効果を奏する。
According to the present invention, it is possible to significantly reduce the time required for measuring the hardness of the fired product, and by enabling the total inspection, it is possible to previously determine a fired product that is hard enough to cause an abnormality in the crushing process, This eliminates the necessity of feeding into the crushing step, thereby reducing the frequency of occurrence of abnormalities in the crushing step and improving the productivity.
Further, since the hardness of the fired material can be measured by a simple method, and it is possible to determine whether or not it can be put into the crushing step, it is possible to select firing conditions that do not generate a hard fired material.
Furthermore, the pass / fail judgment device according to the present invention can easily make a pass / fail judgment, and the judgment device can be incorporated into a production line to automatically input only acceptable products into the crushing process, which has a remarkable industrial effect.

合否判定のフロー図である。It is a flowchart of a pass / fail judgment. 本発明に係る硬さ合否判定装置の一例を示す概略説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic explanatory drawing which shows an example of the hardness pass / fail determination apparatus concerning this invention. 実施例で用いた硬さ計測装置Aの概略説明図で、(a)は概略外観図、(b)から(d)は硬さ計測の経過状態を示す図で、(b)は被計測物と圧子の接触時、(c)は被計測物内部進行時、(d)は匣鉢表面に到達時を示すもので、(e)は圧子先端の押し圧部の形状の一例(先端:両刃状)を示す三面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explanatory drawing of the hardness measuring apparatus A used in the Example, (a) is a schematic external view, (b)-(d) is a figure which shows the progress state of hardness measurement, (b) is a measured object. (C) shows the time when the object is in contact with the indenter, (d) shows the time when it reaches the surface of the sagger, and (e) shows an example of the shape of the pressing portion at the tip of the indenter (tip: double-edged). FIG. 実施例における硬さ計測箇所を示す図である。It is a figure showing a hardness measurement place in an example.

本発明は、焼成工程で得られた焼成物を、次工程の解砕工程に供するための可否を、短時間、且つ簡潔に判定するための発明で、粉体の焼成物を被計測物とする硬さ計測方法でステージ部上面に載置された被計測物の上方から、先端が押し圧部を形成している真直な棒体の圧子を下降させ、被計測物の表面への押し圧部の接触後、さらに圧子を、押し圧部が焼成物を突き抜ける直後まで下降させる動作を行ない、その動作中に圧子が被計測物から受ける力を、荷重計測器により計測する硬さ計測法と、その硬さ計測方法を用いる硬さ計測装置、並びに焼成物の解砕可否の判定方法に関する発明である。   The present invention is an invention for determining whether or not the fired product obtained in the firing step can be subjected to the subsequent crushing step in a short time and simply, and the fired material of the powder is regarded as an object to be measured. The indenter of a straight rod whose tip forms a pressing part is lowered from above the object to be measured placed on the upper surface of the stage by the hardness measurement method, and the pressing force on the surface of the object to be measured is reduced. After the contact of the part, the indenter performs an operation of lowering the indenter until immediately after the pressing part penetrates the fired material, and a hardness measurement method in which the force received by the indenter from the object to be measured during the operation is measured by a load measuring device. The present invention relates to a hardness measuring device using the hardness measuring method, and a method for determining whether or not a fired product can be disintegrated.

[焼成物の硬さ計測]
1.焼成物の硬さ
先ず、硬さを計測する対象の焼成物は、匣鉢内で、その厚みは、約10cm以下とする。
匣鉢にセットされている焼成物に対して、その上方から金属棒を差し込むと、徐々に硬さがまし、焼成物の厚さの半分以上差し込んだところで急に硬くなって金属棒が差し込めなくなる。さらに力を入れて金属棒を差し込むと硬い焼成物が割れて金属棒が匣鉢まで到達する。
焼成物の硬さは、焼成物の底面から焼成物の厚さの約1/3までの下層が特に硬く、上記の問題点を引き起こす。
焼成物下層が特に硬くなる理由は明確ではないが、原料混合物中のLi化合物が焼成工程で融解して、一部の未反応のLi化合物が焼成物下層に沈降し、冷却後Li化合物が濃縮した下層が硬くなるものと推量している。なお、上記硬さに厚み方向において、ばらつきのある焼成物は、粉砕しながら混合することで正極活物質の性能への問題は生じていない。
[Measurement of hardness of fired product]
1. Hardness of fired material First, the thickness of the fired material whose hardness is to be measured is about 10 cm or less in a sagger.
When a metal rod is inserted into the fired product set in the sagger from above, the hardness gradually increases, and when it is inserted more than half the thickness of the fired product, it suddenly becomes hard and the metal rod can not be inserted . When the metal rod is inserted with further force, the hard fired material breaks and the metal rod reaches the sagger.
Regarding the hardness of the fired material, the lower layer from the bottom surface of the fired material to about 1/3 of the thickness of the fired material is particularly hard, causing the above-described problem.
The reason why the lower layer of the fired material is particularly hard is not clear, but the Li compound in the raw material mixture is melted in the firing step, some unreacted Li compound is precipitated in the lower layer of the fired material, and after cooling, the Li compound is concentrated. It is speculated that the lower layer becomes harder. In addition, there is no problem in the performance of the positive electrode active material by mixing the baked product having the above-mentioned hardness variation in the thickness direction while pulverizing.

2.計測方法
2−1.従来
一般的な硬さ計測方法は、下記2つの方法に大別され、被計測物の種類(金属、セラミックス、樹脂)により硬さ計測方法が適宜選択される。
(従来1)圧子(先端が鋭角の金属棒または鋼球)を被計測物に一定の荷重をかけて押し当て、被計測物にできた痕跡の面積や深さから、被計測物の硬さを計測する。
(従来2)圧子(鋼球)を被計測物の上方の決まった高さから落下させたときの圧子(鋼球)の跳ね返り高さから、被計測物の硬さを計測する。
一般的な計測方法では、上記従来技術に記載したように、被計測物の切り出し寸法を調節、場合によっては研磨してから硬さを計測しなければならない。したがって製造現場に適用することは難しいものといえる。
2. Measurement method 2-1. Conventionally, a general hardness measurement method is roughly classified into the following two methods, and a hardness measurement method is appropriately selected depending on a type of an object to be measured (metal, ceramic, resin).
(Conventional 1) An indenter (a metal rod or a steel ball with a sharp tip) is pressed against an object under a constant load, and the hardness of the object is determined based on the area and depth of the trace formed on the object. Is measured.
(Conventional 2) The hardness of the object to be measured is measured from the rebound height of the indenter (steel ball) when the indenter (steel ball) is dropped from a predetermined height above the object.
In a general measuring method, as described in the above-mentioned conventional technology, the cutout size of the object to be measured must be adjusted, and in some cases, the hardness must be measured after polishing. Therefore, it can be said that application to a manufacturing site is difficult.

2−2.本発明計測方法
そこで、本発明では、棒状の圧子を被計測物(焼成物)に押し当て、圧子先端で被計測物(焼成物)を局所的に破砕しながら差し込んでいき、差し込む際の荷重を計測する。このとき計測された荷重を被計測物の硬さとする。
2-2. Therefore, in the present invention, the rod-shaped indenter is pressed against the object to be measured (fired material), and the object to be measured (fired material) is locally crushed at the tip of the indenter and inserted. Is measured. The load measured at this time is defined as the hardness of the measured object.

圧子を被計測物に差し込む際の荷重を計測する荷重計測器には、フォースゲージ(プッシュプルゲージともいう)が適している。
このフォースゲージは、引張力・圧縮力・剥離力などの力を計測する機器であり、弾性体(ゴム等)の硬さの計測にも用いられる。
フォースゲージの計測範囲は、ロールクラッシャーやピンミルなどの解砕工程で用いる解砕装置の、被解砕物の硬さに関する仕様や、これら機械の使用実績から導かれる硬さの上限値が計測できるよう選定する。
A force gauge (also referred to as a push-pull gauge) is suitable for a load measuring device that measures a load when an indenter is inserted into an object to be measured.
The force gauge is a device for measuring a force such as a tensile force, a compressive force, and a peeling force, and is also used for measuring the hardness of an elastic body (rubber or the like).
The measurement range of the force gauge is designed to measure the specifications of the hardness of the material to be crushed in the crushing device used in the crushing process such as a roll crusher and pin mill, and the upper limit value of the hardness derived from the actual use of these machines. Select.

フォースゲージには、棒状の圧子(以下「圧子」と表記)を装着する。圧子は金属製の棒で焼成物の厚さより長いものである。さらに圧子は、細いと焼成物に差し込んでいる最中に折れる場合があるので、フォースゲージの計測範囲において折れない強度を有するのが望ましい。
その圧子の先端部には、押し圧部が備えられている。
圧子の先端の押し圧部は、両刃状、平面状、半球面状、錐状などの形状が採用できるが、焼成物の状態によって適宜選択が可能である。その際には、硬さの合否判定に用いる「基準値」は同じ押し圧部形状の圧子を用いた硬さ計測により得られたデータから決められたものを用いる。
A rod-shaped indenter (hereinafter referred to as “indenter”) is attached to the force gauge. The indenter is a metal bar longer than the thickness of the fired product. Further, if the indenter is thin, it may break while being inserted into the fired product. Therefore, it is desirable that the indenter has a strength that does not break within the measurement range of the force gauge.
The tip of the indenter is provided with a pressing portion.
The pressing portion at the tip of the indenter can have a shape such as a double edged shape, a flat shape, a hemispherical shape, or a conical shape, but can be appropriately selected depending on the state of the fired product. In this case, the "reference value" used for the determination of the pass / fail of the hardness uses a value determined from data obtained by hardness measurement using an indenter having the same pressing portion shape.

フォースゲージに圧子を装着し、焼成物の硬さを計測する箇所の上方で、圧子先端(以下、押し圧部を意味する)を垂直に下方に向け、フォースゲージを垂直に下げていく。
圧子先端が焼成物に接したところで、圧子をさらに垂直に焼成物に差し込んでいくと、フォースゲージで荷重が計測され始める。圧子が焼成物の下方に差し込まれる過程で、焼成物の硬さに応じて荷重計測値は変動し、焼成物の硬さが最も硬い部分に到達すると、フォースゲージで計測する荷重は最大値を示す。圧子の先端が匣鉢に到達するまで圧子を焼成物に差し込む。圧子の先端が匣鉢に到達した時点を、その計測点の計測終了時点とする。
The indenter is mounted on the force gauge, and the tip of the indenter (hereinafter, referred to as a pressing portion) is directed vertically downward above the location where the hardness of the fired product is measured, and the force gauge is lowered vertically.
When the tip of the indenter comes into contact with the fired material, the load is started to be measured by a force gauge when the indenter is further vertically inserted into the fired material. In the process of inserting the indenter below the fired material, the load measurement value varies according to the hardness of the fired material, and when the hardness of the fired material reaches the hardest part, the load measured by the force gauge reaches the maximum value. Show. Insert the indenter into the fired material until the tip of the indenter reaches the sagger. The point in time when the tip of the indenter reaches the sagger is defined as the end point of the measurement at the measurement point.

計測点における焼成物の硬さは、その計測点をフォースゲージで計測した荷重の最大値を採用する。
焼成物の硬さは、深さ方向だけでなく、水平方向=計測点毎に異なった値を示す。そのため匣鉢内の焼成物の硬さは、複数個所で計測するのが望ましい。例えば、匣鉢の大きさが幅300mm×奥行300mm×高さ110mm程度ある場合、幅方向および奥行方向におのおの2分割して、4区画に分け、各区画の中心付近の焼成物の硬さを計測し、各計測点の硬さの最大値の平均値を算出する。
As the hardness of the fired material at the measurement point, the maximum value of the load measured at the measurement point with a force gauge is used.
The hardness of the fired product shows different values not only in the depth direction but also in the horizontal direction = each measurement point. Therefore, it is desirable to measure the hardness of the fired material in the sagger at a plurality of locations. For example, when the size of the sagger is about 300 mm wide x 300 mm deep x 110 mm high, each is divided into two in the width direction and the depth direction, divided into four sections, and the hardness of the fired material near the center of each section is determined. It measures and calculates the average value of the maximum value of the hardness of each measurement point.

3.合否判定方法
次に合否(解砕可否)判定方法について説明する。
(1)基準値の設定
予め、上記計測方法で計測した焼成物の硬さの計測値と、解砕工程での異常発生との関係から、「焼成物の硬さ」と「異常発生の有無」との閾値を判定基準値として定める。
その際に、硬さの計測値として用いるデータは、その計測値を得た試料の代表値となるもので、(a)1試料における計測値の最大値、(b)1試料における計測値の平均値などを用いる。
3. Pass / Fail Judgment Method Next, a pass / fail (disruptability) judgment method will be described.
(1) Setting of the reference value From the relationship between the measured value of the hardness of the fired material measured by the above-described measuring method and the occurrence of an abnormality in the crushing process, “the hardness of the fired material” and “the presence or absence of the occurrence of the abnormality” Is determined as a determination reference value.
At this time, the data used as the hardness measurement value is a representative value of the sample from which the measurement value was obtained, and (a) the maximum value of the measurement value in one sample and (b) the maximum value of the measurement value in one sample. The average value is used.

(2)被計測物の硬さの計測
上記計測方法を用い、その硬さの計測値を求める。その計測値、又は、その計測値を元に平均値などを算出して基準値と比べる。
基準値と比べる値は、通常、計測値の平均値を充てるが、被計測対象物の材質や用途などの諸要因によっては、計測値、そのものや最大値、最小値を採用して用いる場合もある。
(2) Measurement of hardness of object to be measured A measurement value of the hardness is obtained by using the above-described measurement method. The measured value, or an average value or the like based on the measured value is calculated and compared with a reference value.
Normally, the average value of the measured values is used as the value to be compared with the reference value.However, depending on various factors such as the material and application of the measured object, the measured value itself, the maximum value, and the minimum value may be used. is there.

(3)判定
焼成物の硬さを計測した計測値や平均値等を算出して基準値と比較して、基準値未満の硬さを有する焼結体を合格品として後段の解砕工程に投入し、基準値以上の硬さを有する焼成物は不合格品として後段の解砕工程で処理をしないことにする。
(3) Judgment The measured value or average value of the hardness of the fired product is calculated and compared with the reference value, and a sintered body having a hardness less than the reference value is regarded as an acceptable product and used in the subsequent crushing step. The fired product that has been put in and has a hardness equal to or higher than the reference value will not be treated in the subsequent crushing step as a rejected product.

4.硬さ合否判定装置(合否(解砕可否)判定装置)
硬さ合否判定装置は、被計測物(焼成物)の硬さを計測して「計測値」を求める「硬さ計測装置」と、予め定めた硬さの基準値(閾値)と、先に求めた計測値を比較し、「f=基準値−計測値」により、その大小により被計測物の硬さを合否判定する「合否判定装置」とから構成されている。
硬さ合否判定装置における合否判定は、図1の工程で合否判定をする。
4. Hardness Pass / Fail Judgment Device (Pass / Fail (Crushability) Judgment Device)
The hardness acceptance / rejection determination device measures a hardness of an object to be measured (a fired product) to obtain a “measurement value”, a “hardness measurement device”, a predetermined hardness reference value (threshold), The apparatus is composed of a “pass / fail determination device” that compares the obtained measured values and determines whether the hardness of the measured object is acceptable or not according to the magnitude of “f = reference value−measured value”.
In the pass / fail judgment of the hardness pass / fail judgment device, the pass / fail judgment is performed in the process of FIG.

図1から、「硬さ計測」により得られた計測値は、「合否判定」セクションに入力され、基準値設定セクションからの「基準値」からの差分「基準値−計測値」を計算し、その値fが、f>0の場合、即ち計測値が基準値未満であるときが「合格」とし、f≦0、即ち計測値が基準値以上であるときは「不合格」とし、「合格」の時には、次工程の「解砕工程」へ、被計測物の焼成物が送られて解砕される。一方、「不合格」の時には、製造ラインから除外され、別途再処理される。   From FIG. 1, the measurement value obtained by “hardness measurement” is input to the “pass / fail judgment” section, and the difference “reference value−measurement value” from “reference value” from the reference value setting section is calculated, When the value f is f> 0, that is, when the measured value is less than the reference value, it is determined as “pass”, and when f ≦ 0, that is, when the measured value is greater than or equal to the reference value, it is determined as “fail”. ", The fired material of the object to be measured is sent to the next" crushing step "to be broken up. On the other hand, in the case of "fail", it is excluded from the production line and reprocessed separately.

次に、硬さの計測を行い、合否判定を行なう「硬さ合否判定装置」について説明する。図2は本発明に係る硬さ合否判定装置の一例を示す概略説明図で、物の硬さを計測する「硬さ計測装置A」と、その合否判定を行なう「合否判定装置B」から構成されている。
図2に示す硬さ計測装置Aを例にすると、ヘッド部10には荷重計測器のフォースゲージ20またはフォースゲージのセンサー部にあたる荷重計測部のロードセル22、或いは「力−電気」」変換器(図示せず)を備える。
フォースゲージ20またはフォースゲージのセンサー部22には、先端に押し圧部21a(形状などは図3(e)参照)を持つ圧子21が装着され、この圧子21を被計測物1に差し込む際の力がヘッド部10(フォースゲージまたはフォースゲージセンサー部)に伝達される。
Next, a “hardness acceptance / rejection determination device” that measures hardness and determines acceptance / rejection will be described. FIG. 2 is a schematic explanatory view showing an example of a hardness pass / fail determination device according to the present invention, which comprises a "hardness measurement device A" for measuring the hardness of an object and a "pass / fail determination device B" for performing the pass / fail determination. Have been.
Taking the hardness measuring device A shown in FIG. 2 as an example, the head unit 10 has a force gauge 20 of a load measuring device or a load cell 22 of a load measuring unit corresponding to a sensor unit of a force gauge, or a “force-electric” converter ( (Not shown).
An indenter 21 having a pressing portion 21a (see FIG. 3 (e) for the shape and the like) is attached to the tip of the force gauge 20 or the sensor portion 22 of the force gauge 20. When the indenter 21 is inserted into the object 1 to be measured. The force is transmitted to the head unit 10 (force gauge or force gauge sensor unit).

このヘッド部10は、計測スタンド12の一部を構成している支柱部12aに、上下動可能なように接続され、このヘッド部10の上下の運動は、電動で等速に移動することが望ましい。この場合、設定した速度でヘッド部10が上下できれば、なお望ましい。   The head section 10 is connected to a support section 12a constituting a part of the measurement stand 12 so as to be able to move up and down, and the up and down movement of the head section 10 can be moved at a constant speed by electric motor. desirable. In this case, it is more desirable that the head unit 10 can be moved up and down at the set speed.

ステージ部11には焼成後の焼成物1が入った匣鉢2を配置する。
ヘッド部10が下降を開始し、圧子21の先端の押し圧部21aが焼結体1に接触し始めたときから、硬さの計測が始まり、硬さの電気信号を合否判定装置Bに出力する。
なお、図2では、ヘッド部10にフォースゲージ20またはフォースゲージセンサー部22を配置してヘッド部10が上下移動することで被計測物1の決まった点の硬さを計測可能な装置としているが、そのフォースゲージ20やフォースゲージセンサー部22が単一であっても、図のように複数設置してあっても良い。さらに、ヘッド部10がXYZ自在に運動することができる機構を硬さ計測装置が備えている場合、被計測物ごとに任意の点の硬さを計測可能であるし、ヘッド部がXYZ自在に運動可能な装置で決まった点の硬さを計測しても良い。
The sagger 2 containing the fired material 1 after firing is placed on the stage section 11.
From the time when the head section 10 starts descending and the pressing section 21a at the tip of the indenter 21 starts to contact the sintered body 1, the measurement of hardness starts, and an electric signal of the hardness is output to the pass / fail determination device B. I do.
In FIG. 2, the force gauge 20 or the force gauge sensor unit 22 is disposed on the head unit 10 and the head unit 10 moves up and down to measure the hardness of a predetermined point of the DUT 1. However, the force gauge 20 and the force gauge sensor unit 22 may be single or a plurality of force gauges may be installed as shown in the figure. Furthermore, when the hardness measurement device is provided with a mechanism that allows the head unit 10 to move freely in XYZ, the hardness of any point can be measured for each object to be measured, and the head unit can be moved in XYZ freely. The hardness of a fixed point may be measured by a movable device.

合否判定装置Bは、上記のとおり被計測物1について予め定めた硬さの基準値と、硬さ計測装置Aで計測した被計測物1の硬さの計測値とを比較し、被計測物1が基準値よりも硬さが小さい場合に「合格」、基準値以上の場合に「不合格」と判定する。
合否判定装置Bには、例えばコンピュータの一種で、CPU(Central Processing Unit)と記憶装置を有する。記憶装置としては、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、NVRAM(Non−Volatile RAM)、HDD(Hard Disk Drive)等が挙げられる。
The pass / fail determination device B compares the hardness reference value predetermined for the measurement target 1 as described above with the hardness measurement value of the measurement target 1 measured by the hardness measurement device A, and 1 is judged as “pass” when the hardness is smaller than the reference value, and as “fail” when the hardness is equal to or more than the reference value.
The pass / fail determination device B is, for example, a type of computer and includes a CPU (Central Processing Unit) and a storage device. Examples of the storage device include a random access memory (RAM), a read only memory (ROM), a non-volatile RAM (NVRAM), and a hard disk drive (HDD).

合否判定装置Bは、被計測物1の硬さ計測装置Aでの計測結果について、硬さ計測装置Aとデータのやり取りができるように、ケーブルCで接続されている。その接続は合否判定装置Bの入力インターフェース(In−Int)を介して行なわれる。
硬さ計測装置Aでの被計測物1の硬さ計測結果と、記憶装置Mに予め記憶されていた被計測物の硬さの基準値とをCPUで比較し、合否判定を行い、その合否判定は出力インターフェース(Out−Int)を介して表示装置(Display)に表示・出力する。
また、合否判定を出力インターフェース(Out−Int)を介して、他の装置たとえば被測定物の入った匣鉢2の搬送装置に出力して、合格品は次工程の解砕工程に、不合格品は不合格処理工程に搬送することもできる。
The pass / fail determination device B is connected by a cable C so that data can be exchanged with the hardness measurement device A for the measurement result of the measurement object 1 with the hardness measurement device A. The connection is made via the input interface (In-Int) of the pass / fail determination device B.
The CPU compares the hardness measurement result of the test object 1 with the hardness measuring device A with a reference value of the hardness of the test object stored in the storage device M in advance, and makes a pass / fail judgment. The determination is displayed and output on a display device (Display) via an output interface (Out-Int).
The pass / fail judgment is output via an output interface (Out-Int) to another device, for example, a transfer device of the sagger 2 containing the object to be measured, and a pass product is rejected in the next crushing step. The goods can also be transported to a reject processing step.

以下、本発明を、実施例を用いて詳述する。   Hereinafter, the present invention will be described in detail with reference to examples.

ニッケル水酸化物、コバルト水酸化物、マンガン水酸化物からなる遷移金属複合水酸化物を、公知の方法(特許文献1)により合成して得た。
この遷移金属複合酸化物と水酸化リチウムをVブレンダに投入し、混合して原料混合物を作製し、得られた原料混合物を、焼成工程に供して匣鉢内寸法が幅300mm×奥行300mm×高さ110mmの匣鉢に6.0kgを充填し、原料混合物が充填された匣鉢を電気炉に装入し、空気気流下950℃で4時間焼成した。4時間経過して焼成後、作製した焼成物を室温まで冷却し、電気炉から焼成物を匣鉢ごと取り出し、焼成物の硬さ計測に供した。
A transition metal composite hydroxide composed of a nickel hydroxide, a cobalt hydroxide, and a manganese hydroxide was synthesized by a known method (Patent Document 1).
This transition metal composite oxide and lithium hydroxide are charged into a V blender and mixed to form a raw material mixture, and the obtained raw material mixture is subjected to a firing step, and the dimensions in the sagger are 300 mm wide × 300 mm deep × high. A 110 mm long sagger was charged with 6.0 kg, and the sagger filled with the raw material mixture was charged into an electric furnace and fired at 950 ° C. for 4 hours under an air stream. After firing for 4 hours, the manufactured fired product was cooled to room temperature, the fired product was taken out of the electric furnace together with the sagger, and subjected to hardness measurement of the fired product.

次に硬さの計測は、図3(a)に概略外観図を示す硬さ計測装置Aを用いた。図3(a)の硬さ計測装置は、計測部にフォースゲージ20(株式会社シロ産業製「M123GJN−50N」)を使用し、その先端に押し圧部(両刃状、図3(e)、符号21a参照)を持つ、長さが150mmの圧子21を計測部22に装着し、匣鉢2内の焼成物1の硬さを計測した。
計測点は、図4の丸数字で示す位置の8点で行った。
Next, the hardness was measured using a hardness measuring device A whose outline is shown in FIG. The hardness measuring device of FIG. 3A uses a force gauge 20 (“M123GJN-50N” manufactured by Shiro Sangyo Co., Ltd.) as a measuring unit, and a pressing portion (both blades, FIG. The indenter 21 having a length of 150 mm and having a length of 150 mm was attached to the measuring unit 22, and the hardness of the fired product 1 in the sagger 2 was measured.
The measurement was performed at eight points indicated by circles in FIG.

硬さ計測の経過は、図3(b)、(c)、(d)が示す図3(a)の「a−a’」断面における圧子の位置が示すように、先ず、圧子21が被計測物の焼成物1に接触状態(図3(b)の状態)になり、計測部22で、本発明おいて「硬さ」の定義している「荷重」を計測し始めたときからが狭義の「硬さの計測」が開始される。接触後、さらに焼成物2内部へ、圧子21を突き進めていく(図3(c)の状態)。焼成物2を貫通して匣鉢2の表面に到達した時点(図3(d)の状態)で圧子の動作は終了する。
荷重の観測は、圧子が動作している間、目視観測で行なう場合には、計測値の最大値を基準値と比較するデータとし、計測中は計測部22が示す極値に注意して極値が基準値を超えないかどうかを観測する、通常は計測部22から計測している荷重に相当する電気信号を取り出し、合否判定装置へと出力し、入力インターフェース(IN−Int)を介して合否判定装置に入力された計測値は、記憶装置への記憶や演算装置(CPU)において計測値の最大値、及び平均値を求め、基準値と比較して「f=基準値−計測値」を求めて、被計測物である焼成物の硬さの合否判定を実施し、その合否判定信号を出力インターフェース(Out−Int))を介して製造工程の制御系に送り出し、その後の解砕工程の実施、不実施を決定する。
The progress of the hardness measurement is as follows, as shown by the position of the indenter in the “aa ′” section of FIG. 3A shown in FIGS. 3B, 3C, and 3D, the indenter 21 is first covered. 3 (b), and the measuring unit 22 starts measuring "load" defined as "hardness" in the present invention. "Measurement of hardness" in a narrow sense is started. After the contact, the indenter 21 is further pushed into the fired product 2 (the state shown in FIG. 3C). The operation of the indenter is completed at the point when it reaches the surface of the sagger 2 through the fired material 2 (the state of FIG. 3D).
When the load is observed by visual observation during the operation of the indenter, the maximum value of the measured value is used as data to be compared with the reference value. Observe whether the value does not exceed the reference value, usually take out an electric signal corresponding to the measured load from the measuring unit 22, output it to the pass / fail judgment device, and through the input interface (IN-Int) The maximum value and the average value of the measured values are obtained from the measured value input to the pass / fail determination device in a storage device or an arithmetic unit (CPU), and compared with the reference value, and “f = reference value−measured value” Is determined, and the pass / fail judgment of the hardness of the fired product as the object to be measured is sent to the control system of the manufacturing process via the output interface (Out-Int). Implementation and non-implementation.

解砕工程の実施の有無に対する合否指標は、焼成物の「硬さ計測後」、匣鉢から取り出した焼成物を、ロールクラッシャーで粗解砕し、焼成物が硬い場合、ロールクラッシャーで粗解砕しているとき粉砕速度が遅くなるという、「投入ホッパーのレベル異常」が発生するが、その「レベル異常」発生の有無を、焼成物の硬さの合否指標とした。
計測箇所8点の硬さ計測に要した時間は、合計で4分であった。
硬さ計測結果および異常発生の有無を表1に示す。
The pass / fail index for the presence or absence of the crushing process is as follows. When the crushing is performed, the crushing speed becomes slower, ie, “level abnormality of the input hopper” occurs. The occurrence of the “level abnormality” was used as a pass / fail index of the hardness of the fired product.
The time required for measuring the hardness at eight measurement points was 4 minutes in total.
Table 1 shows the hardness measurement results and the occurrence of abnormalities.

実施例1とは、匣鉢への原料混合物充填量が6.5kgであること以外は同様の条件、方法により、硬さ計測および異常発生の有無を確認した。
計測箇所8点の硬さ計測に要した時間は、合計で4分であった。
硬さ計測結果および異常発生の有無を表1に示す。
With respect to Example 1, the hardness measurement and the occurrence of abnormality were confirmed by the same conditions and method except that the amount of the raw material mixture charged into the sagger was 6.5 kg.
The time required for measuring the hardness at eight measurement points was 4 minutes in total.
Table 1 shows the hardness measurement results and the occurrence of abnormalities.

(従来例)
ビッカース硬さ計を用い、実施例と同様に計測しようとしたが、焼成物の冷却に時間がかかったり、試料調製に時間がかかり、計測には3時間を要した。
(Conventional example)
Using a Vickers hardness tester, an attempt was made to measure in the same manner as in the example, but it took a long time to cool the fired product or a time to prepare a sample, and the measurement required 3 hours.

A 硬さ計測装置
B 合否判定装置
C 接続ケーブル
M 記憶装置
CPU 演算装置
IN−Int 入力インターフェース
OUT−Int 出力インターフェース
Display 表示装置
1 被計測物(焼成物)
2 匣鉢
3 計測点
10 ヘッド部
11 ステージ部
12 計測スタンド
12a 支柱部
20 フォースゲージ
21 圧子
21a 押し圧部(先端:両刃状)
22 計測部(ロードセル:フォースゲージセンサー部)
A hardness measuring device B pass / fail determination device C connection cable M storage device CPU arithmetic device IN-Int input interface OUT-Int output interface Display display device 1 object to be measured (fired material)
2 Sagger 3 Measurement point 10 Head 11 Stage 12 Measurement stand 12a Column 20 Force gauge 21 Indenter 21a Pressing part (tip: double blade)
22 Measurement part (load cell: force gauge sensor part)

Claims (11)

粉体の焼成物を被計測物とする硬さ計測方法であって、
上面が水平面になるように設置されたステージ部上面に載置された被計測物の上方から、前記被計測物の表面方向に向かって、先端が押し圧部を形成している真直な棒体の圧子を下降させていき、前記被計測物の表面への前記押し圧部の接触後、さらに前記圧子を、前記押し圧部が前記焼成物を突き抜けた直後まで下降させる動作を行ない、前記動作中に前記圧子が前記被計測物から受ける力を、荷重計測器により計測することを特徴とする硬さ計測法。
A hardness measurement method using a fired powder as an object to be measured,
A straight bar having a pressing portion formed from above the object placed on the upper surface of the stage section installed so that the upper surface is horizontal, toward the surface of the object. After the contact of the pressing portion with the surface of the workpiece, the indenter is further lowered until immediately after the pressing portion has penetrated the fired material. A hardness measuring method, wherein a force which the indenter receives from the object to be measured is measured by a load measuring device.
前記被計測物が、上方が開放された匣鉢に収容されていることを特徴とする請求項1に記載の硬さ計測法。   The hardness measurement method according to claim 1, wherein the object to be measured is housed in a sagger having an open top. 前記荷重計測器が、前記圧子と、荷重計測部から構成されることを特徴とする請求項1又は2に記載の硬さ計測法。   The hardness measuring method according to claim 1, wherein the load measuring device includes the indenter and a load measuring unit. 前記荷重計測器が、フォースゲージであることを特徴とする請求項3に記載の硬さ計測法。   The method according to claim 3, wherein the load measuring device is a force gauge. 前記荷重計測器が、前記圧子と荷重計測部のロードセルから構成され、前記圧子が前記ロードセルに取付けられていることを特徴とする請求項3記載の硬さ計測法。   The hardness measuring method according to claim 3, wherein the load measuring device includes the indenter and a load cell of a load measuring unit, and the indenter is attached to the load cell. 前記圧子が、前記押し圧部に加わる力の大きさを、電流、電圧、抵抗の少なくとも1種に変換する「力−電気」変換器の荷重計測部に接続されていることを特徴とする請求項1記載の硬さ計測法。   The indenter is connected to a load measuring unit of a “force-electricity” converter that converts a magnitude of a force applied to the pressing unit into at least one of a current, a voltage, and a resistance. Item 6. The hardness measuring method according to Item 1. 焼成物を被計測物とする硬さ計測器(計測装置)であって、
前記被計測物を配置するステージ部と、
前記ステージ部の上方に、前記ステージ部の上面方向に移動可能なヘッド部を有し、
前記ヘッド部で支持固定された荷重計測部と、前記荷重計測部と連結した先端に押し圧部を持つ圧子からなる荷重計測器を有することを特徴とする硬さ計測装置。
A hardness measuring instrument (measuring device) in which a fired material is an object to be measured,
A stage section for arranging the object to be measured,
A head portion movable above the stage portion in an upper surface direction of the stage portion,
A hardness measuring device, comprising: a load measuring unit supported and fixed by the head unit; and a load measuring device including an indenter having a pressing portion at a distal end connected to the load measuring unit.
前記荷重計測器が、フォースゲージであることを特徴とする請求項7に記載の硬さ計測装置。   The hardness measuring device according to claim 7, wherein the load measuring device is a force gauge. 前記荷重計測器が、前記圧子と荷重計測部のロードセルから構成され、前記圧子が前記ロードセルに取付けられていることを特徴とする請求項7記載の硬さ計測装置。   The hardness measuring device according to claim 7, wherein the load measuring device includes the indenter and a load cell of a load measuring unit, and the indenter is attached to the load cell. 予め定められている基準値と、請求項1〜6のいずれか1項に記載の硬さ計測法により計測された硬さ計測値との差fを算出し、「前記基準値−前記計測値=f>0」の関係にある場合に、前記被計測物の硬さを合格とし、前記被計測物を解砕工程に供する命令を発する合否判定機能を備えることを特徴とする請求項7に記載の硬さ計測装置。   A difference f between a predetermined reference value and a hardness measurement value measured by the hardness measurement method according to any one of claims 1 to 6 is calculated, and “the reference value−the measurement value” is calculated. = F> 0, a pass / fail determination function is provided for accepting the hardness of the object to be measured and issuing a command for subjecting the object to a crushing step. The hardness measuring device as described. 焼成物の解砕可否の判定方法であって、
前記焼成物を被計測物とし、
予め定められている基準値と、請求項1〜6のいずれかに記載の硬さ計測法により計測された前記被計測物の硬さ計測値との差fを算出し、「前記基準値−前記計測値=f>0」の関係にある場合に、前記被計測物の硬さを合格とし、前記被計測物を解砕工程に供するものとする合否判定を下すことを特徴とする解砕可否の判定方法。
A method for determining whether or not the fired material can be disintegrated,
The fired object is an object to be measured,
A difference f between a predetermined reference value and a hardness measurement value of the object measured by the hardness measurement method according to any one of claims 1 to 6, is calculated, and "the reference value- When the relationship of the measurement value = f> 0 is satisfied, the hardness of the object to be measured is considered to be acceptable, and a pass / fail judgment is made that the object to be measured is subjected to a crushing step. How to determine availability.
JP2018167193A 2018-09-06 2018-09-06 Hardness measuring method and hardness measuring device for fired material, and method for judging whether crushing is possible Active JP7256950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167193A JP7256950B2 (en) 2018-09-06 2018-09-06 Hardness measuring method and hardness measuring device for fired material, and method for judging whether crushing is possible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167193A JP7256950B2 (en) 2018-09-06 2018-09-06 Hardness measuring method and hardness measuring device for fired material, and method for judging whether crushing is possible

Publications (2)

Publication Number Publication Date
JP2020041819A true JP2020041819A (en) 2020-03-19
JP7256950B2 JP7256950B2 (en) 2023-04-13

Family

ID=69798035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167193A Active JP7256950B2 (en) 2018-09-06 2018-09-06 Hardness measuring method and hardness measuring device for fired material, and method for judging whether crushing is possible

Country Status (1)

Country Link
JP (1) JP7256950B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820051A (en) * 1986-08-21 1989-04-11 Nec Corporation Apparatus for determining microhardness
JPH0420840A (en) * 1990-05-15 1992-01-24 Fujitsu Ltd Hardness evaluating method for green sheet
JPH0590347U (en) * 1991-08-20 1993-12-10 スタンレー電気株式会社 Insulation thin film hardness measuring device
JPH0633066U (en) * 1992-10-08 1994-04-28 三菱重工業株式会社 Crack detection device for solidified bodies
JPH1117242A (en) * 1997-06-19 1999-01-22 Nissan Motor Co Ltd Method of manufacturing burned ceramic board
JP2008241654A (en) * 2007-03-29 2008-10-09 Kansai Paint Co Ltd Device for measuring coating hardness
JP2010014404A (en) * 2007-10-23 2010-01-21 Institute Of National Colleges Of Technology Japan Indentation type hardness tester
JP2010123396A (en) * 2008-11-19 2010-06-03 Sumitomo Electric Ind Ltd Positive electrode, nonaqueous electrolyte secondary battery, and methods of manufacturing them
JP2011017548A (en) * 2009-07-07 2011-01-27 Hyogo College Of Medicine Hardness measuring penetrator and method for manufacturing the same
JP2012008075A (en) * 2010-06-28 2012-01-12 Aska Company Physical strength measurement device of object
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP2013182757A (en) * 2012-03-01 2013-09-12 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP2013540275A (en) * 2010-10-22 2013-10-31 セルガード エルエルシー Penetration and / or compression test system and method
JP2017203180A (en) * 2016-05-10 2017-11-16 住友電気工業株式会社 Coated ceramic substrate and manufacturing method of the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820051A (en) * 1986-08-21 1989-04-11 Nec Corporation Apparatus for determining microhardness
JPH0420840A (en) * 1990-05-15 1992-01-24 Fujitsu Ltd Hardness evaluating method for green sheet
JPH0590347U (en) * 1991-08-20 1993-12-10 スタンレー電気株式会社 Insulation thin film hardness measuring device
JPH0633066U (en) * 1992-10-08 1994-04-28 三菱重工業株式会社 Crack detection device for solidified bodies
JPH1117242A (en) * 1997-06-19 1999-01-22 Nissan Motor Co Ltd Method of manufacturing burned ceramic board
JP2008241654A (en) * 2007-03-29 2008-10-09 Kansai Paint Co Ltd Device for measuring coating hardness
JP2010014404A (en) * 2007-10-23 2010-01-21 Institute Of National Colleges Of Technology Japan Indentation type hardness tester
JP2010123396A (en) * 2008-11-19 2010-06-03 Sumitomo Electric Ind Ltd Positive electrode, nonaqueous electrolyte secondary battery, and methods of manufacturing them
JP2011017548A (en) * 2009-07-07 2011-01-27 Hyogo College Of Medicine Hardness measuring penetrator and method for manufacturing the same
JP2012008075A (en) * 2010-06-28 2012-01-12 Aska Company Physical strength measurement device of object
JP2013540275A (en) * 2010-10-22 2013-10-31 セルガード エルエルシー Penetration and / or compression test system and method
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP2013182757A (en) * 2012-03-01 2013-09-12 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP2017203180A (en) * 2016-05-10 2017-11-16 住友電気工業株式会社 Coated ceramic substrate and manufacturing method of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
井田一郎: "セラミックの焼成温度と構造特性の関係", 精密機械, vol. 33巻7号, JPN6022015700, 1967, JP, pages 445 - 453, ISSN: 0004935463 *
山本 卓: "正しい硬さ試験の理解のために", 精密工学会誌, vol. 75, no. 10, JPN6022015699, 2009, pages 1183 - 1188, ISSN: 0004935464 *

Also Published As

Publication number Publication date
JP7256950B2 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
Jonsén et al. Tensile strength and fracture energy of pressed metal powder by diametral compression test
US7347105B2 (en) Method for the analysis of a test specimen of reducible material that contains iron
US20230009484A1 (en) Rock hardness measurement
Galen et al. Strength anisotropy in cold compacted ductile and brittle powders
JP2008303108A (en) Graphite material
US20060156826A1 (en) Arrangement and method for the analysis of the strength of a specimen of reducible material that contains iron
JP7256950B2 (en) Hardness measuring method and hardness measuring device for fired material, and method for judging whether crushing is possible
EP4269353A1 (en) Zirconia granules, green compact, and methods respectively for producing those products
Shen et al. In situ detection of lithium-ion batteries by ultrasonic technologies
Kang et al. Cutting force model considering tool edge geometry for micro end milling process
EP1337832A2 (en) Compression test method and apparatus for determining granule strength
CN208254973U (en) A kind of compression sample on hot modeling test machine
Hégron et al. Compaction of a Bed of Fragmentable ${\rm UO} _2 $ Particles and Associated Acoustic Emission
CN112292223A (en) Diamond bonded body and method for producing diamond bonded body
TWI638916B (en) Destrutive insepection method and quality determination method of quartz glass crucible
CN108254253A (en) Material or component equivalent stress-strain relation assay method
Zhang A study of direct powder rolling route for CP-Titanium
Krämer et al. Deformation behavior of Cu-composites processed by HPT
Romelczyk et al. Microstructure and mechanical properties of fine-grained iron processed by hydroextrusion
JP2020175310A (en) Apparatus for disintegrating fired product
Yarullin et al. Effect of mixed-mode loading on surface crack propagation in steels
LIN et al. A new approach to investigate real flow stress in micro-extrusion
Mao et al. Fracture mechanisms of NCM polycrystalline particles in lithium-ion batteries: A review
Zhou et al. Experimental research on the strength distribution of brittle spheres under compression
CN107957378A (en) The performance testing device and method of cutter after a kind of reconditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7256950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150