JP2020041647A - Structure for cooling bearing device - Google Patents

Structure for cooling bearing device Download PDF

Info

Publication number
JP2020041647A
JP2020041647A JP2018171129A JP2018171129A JP2020041647A JP 2020041647 A JP2020041647 A JP 2020041647A JP 2018171129 A JP2018171129 A JP 2018171129A JP 2018171129 A JP2018171129 A JP 2018171129A JP 2020041647 A JP2020041647 A JP 2020041647A
Authority
JP
Japan
Prior art keywords
spacer
bearing
bearing device
inner race
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018171129A
Other languages
Japanese (ja)
Other versions
JP7096742B2 (en
Inventor
惠介 那須
Keisuke NASU
惠介 那須
智彦 小畑
Tomohiko Obata
智彦 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018171129A priority Critical patent/JP7096742B2/en
Priority to EP19860198.1A priority patent/EP3851692B1/en
Priority to PCT/JP2019/035365 priority patent/WO2020054661A1/en
Priority to CN201980059203.9A priority patent/CN112673186A/en
Priority to KR1020217007456A priority patent/KR20210057733A/en
Priority to TW108132949A priority patent/TWI821394B/en
Publication of JP2020041647A publication Critical patent/JP2020041647A/en
Application granted granted Critical
Publication of JP7096742B2 publication Critical patent/JP7096742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To provide a structure for cooling a bearing device that can efficiently cool a bearing with a reduced amount of compressed air from a low-speed range to a high-speed range and facilitates adjustment of preload.SOLUTION: A structure for cooling a bearing device has an outer ring spacer 4 and an inner ring spacer 5 respectively adjacent to an outer ring 2 and an inner ring 3 of a rolling type bearing 1. The structure for cooling a bearing device is provided with an air-cooling nozzle 10 for discharging compressed air toward an outer peripheral surface of the inner ring spacer 5, in the outer ring spacer 4. The inner ring spacer 5 has a high heat conductivity and a high linear expansion coefficient in an axial direction as compared to the outer ring spacer 4. The rolling type bearing 1 has fixed position preload as the preload system thereof.SELECTED DRAWING: Figure 1

Description

この発明は、軸受装置の冷却構造に関し、例えば、工作機械の主軸装置における軸受の冷却構造に関する。   The present invention relates to a cooling structure of a bearing device, for example, relates to a cooling structure of a bearing in a spindle device of a machine tool.

工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇は小さく抑える必要がある。しかしながら最近の工作機械では、加工能率を向上させるため高速化の傾向にあり、主軸を支持する軸受からの発熱も高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだいわゆるモータビルトインタイプが多くなってきており、装置の発熱要因ともなってきている。
発熱による軸受の温度上昇は、軸受の予圧の増加をもたらす結果となり、主軸の高速化、高精度化を考えると極力抑えたい。
In a spindle device of a machine tool, it is necessary to keep the temperature rise of the device small in order to secure processing accuracy. However, in recent machine tools, there is a tendency to increase the speed in order to improve machining efficiency, and the heat generated from the bearings supporting the spindle increases with the speed. In addition, the so-called motor built-in type in which a driving motor is incorporated in the inside of the apparatus has been increasing, which is also a factor of heat generation of the apparatus.
A rise in the temperature of the bearing due to heat generation results in an increase in the preload of the bearing.

温度上昇により軸受の予圧が上がることを調整する機構としては、内輪間座を、主軸より熱伝導率が大きく、主軸の材料より比重の小さい材料で構成する「工作機械主軸軸受の予圧調整機構」( 特許文献1)が提案されている。
また、外輪間座に圧縮空気を内輪間座に向けて吐出するノズルを設けた「工作機械主軸用空冷間座付軸受」(特許文献2)が提案されている。
As a mechanism for adjusting the increase in preload of the bearing due to temperature rise, the "preload adjustment mechanism for machine tool spindle bearing" consists of the inner ring spacer made of a material that has a higher thermal conductivity than the spindle and a lower specific gravity than the material of the spindle. (Patent Document 1) has been proposed.
Further, a "bearing with an air-cooled spacer for a machine tool spindle" has been proposed in which a nozzle for discharging compressed air toward the inner ring spacer is provided in the outer ring spacer (Patent Document 2).

特開平9−19805号公報JP-A-9-19805 特許第6144024号公報Japanese Patent No. 6144024

特許文献1の提案は、外輪間座と内輪間座の熱膨張差により、軸受の予圧を軽減する技術であり、温度差が生じにくい低速域から中速域では、効果が発揮されにくい。
特許文献2の提案は、内輪間座に圧縮空気を吹き付けて冷却する技術であり、圧縮エアの供給量が多いと軸受冷却効果が増し、軸受の高速化、高剛性化に寄与する。しかし、その反面、より大きな容量を持つ圧縮機を採用しなければならず、工作機械の大形化やエネルギー消費量の増加を招くため、少ない圧縮エアで軸受を効率良く冷却する必要がある。また、特許文献2の空冷間座付軸受は、内輪間座を冷却することで隣接する軸受を冷却するが、その際、内輪間座の熱膨張は、空冷を実施しない場合に比べ小さい。また、通常、工作機械の主軸において、アンギュラ形式の転がり軸受は背面組合せで使用されるため、空冷間座が軸受の背面間にある場合は、内輪間座の熱膨張が小さい方が、予圧や軸受の軌道面の接触面圧が増大し、発熱しやすくなる。そのため、空冷の効果を得にくい。
The proposal in Patent Document 1 is a technique for reducing the preload of a bearing by a difference in thermal expansion between an outer race spacer and an inner race spacer, and is less effective in a low-speed region to a medium-speed region where a temperature difference is unlikely to occur.
The proposal of Patent Document 2 is a technique of cooling by blowing compressed air to the inner ring spacer. When the supply amount of compressed air is large, the effect of cooling the bearing is increased, which contributes to speeding up and increasing rigidity of the bearing. However, on the other hand, it is necessary to employ a compressor having a larger capacity, which leads to an increase in the size of the machine tool and an increase in energy consumption. Therefore, it is necessary to efficiently cool the bearing with a small amount of compressed air. Further, the bearing with the air-cooled spacer in Patent Document 2 cools the adjacent bearing by cooling the inner ring spacer, but at this time, the thermal expansion of the inner ring spacer is smaller than that in the case where air cooling is not performed. Also, since the rolling bearing of the angular type is usually used in a back-to-back combination in the main shaft of a machine tool, when the air-cooled spacer is between the backs of the bearing, the smaller the thermal expansion of the inner ring spacer, the lower the preload or the like. The contact surface pressure on the raceway surface of the bearing increases, and heat is easily generated. Therefore, it is difficult to obtain the effect of air cooling.

この発明の目的は、低速域から高速域まで、少ない圧縮エアで軸受を効率良く冷却することができ、また予圧の調整が行い易い軸受装置の冷却構造を提供することである。   An object of the present invention is to provide a cooling structure of a bearing device that can efficiently cool a bearing with a small amount of compressed air from a low speed range to a high speed range and that can easily adjust a preload.

この発明の軸受装置の冷却構造は、転がり軸受の外輪および内輪にそれぞれ隣接する外輪間座および内輪間座を有し、前記外輪間座に、前記内輪間座の外周面に向けて圧縮エアを吐出する空冷ノズルが設けられた軸受装置の冷却構造であって、
前記内輪間座は前記外輪間座に比べて、熱伝導率が高く、かつ軸方向の線膨張係数が高く、前記転がり軸受の予圧形式が定位置予圧である。
The cooling structure of the bearing device of the present invention has an outer ring spacer and an inner ring spacer adjacent to the outer ring and the inner ring of the rolling bearing, respectively, and applies compressed air to the outer ring spacer toward an outer peripheral surface of the inner ring spacer. A cooling structure of a bearing device provided with an air cooling nozzle for discharging,
The inner ring spacer has a higher thermal conductivity and a higher coefficient of linear expansion in the axial direction than the outer ring spacer, and the preload type of the rolling bearing is a fixed position preload.

この構成によると、外輪間座に設けた空冷ノズルより内輪間座の外周面に圧縮エアを吐出することで、内輪間座が冷却され、内輪間座における熱伝導で軸受が冷却される。このため、内輪間座に熱伝導率の高い材質を用いることで、冷却効果を上げることができる。特に、低速域から中速域では、少量の圧縮エアで軸受を冷却することができる。
また、定位置予圧形式であって、内輪間座の材質に外輪間座の材質よりも線膨張係数の高いものを使用することで、内輪間座は熱膨張しやすくなり、軸受の予圧や回転中の軸受の軌道面の接触面圧が低減でき、軸受の昇温をより抑えられる。この線膨張差による予圧や軌道面の接触面圧の低減は、高速域の場合に効果的である。
このように、外輪間座と内輪間座の熱膨張差、内輪間座の高熱伝導率、および空冷間座の技術を組み合わせることで、上記各課題は解消される。
According to this configuration, the compressed air is discharged from the air-cooling nozzle provided in the outer race spacer to the outer peripheral surface of the inner race spacer, whereby the inner race spacer is cooled, and the bearing is cooled by heat conduction in the inner race spacer. Therefore, by using a material having high thermal conductivity for the inner ring spacer, the cooling effect can be improved. In particular, the bearing can be cooled with a small amount of compressed air from a low speed range to a middle speed range.
In addition, by using a fixed-position preload type with a material with a higher linear expansion coefficient than the material of the outer ring spacer as the material of the inner ring spacer, the inner ring spacer easily expands thermally, and the bearing preload and rotation The contact surface pressure of the raceway surface of the middle bearing can be reduced, and the temperature rise of the bearing can be further suppressed. The reduction of the preload and the contact surface pressure of the raceway surface due to the difference in linear expansion is effective in a high speed range.
As described above, by combining the thermal expansion difference between the outer race spacer and the inner race spacer, the high thermal conductivity of the inner race spacer, and the technology of the air-cooled spacer, each of the above problems is solved.

この発明において、前記内輪間座が、内輪間座本体と、この内輪間座本体の少なくとも前記軸受の内輪と接触する端面を覆う覆い材とを有し、前記覆い材が前記内輪間座本体よりも機械加工性の良い材質からなっていてもよい。
内輪間座の端面が機械加工性の良い材質の覆い材で覆われていると、内輪間座の端面の直角度と表面粗さを高精度に仕上げることができて、軸受の内輪と密接させることができる。そのため、熱伝導性の向上による冷却効果の向上が期待できる。
内輪間座は、熱伝導率が高い材質であることが必要であり、例えば銅やアルミが好ましいが、銅やアルミなど、熱伝導率が高い材質は一般的に軟質金属であるため、高精度に加工するには工数がかかる。この課題につき、内輪間座を熱伝導性に優れた内輪間座本体とその表面を覆う材料とで構成することで、内輪間座内部での熱伝導性の向上と、加工精度の向上による密着性の向上による接触部での熱伝導性の向上とが両立され、冷却効果をより高めることができる。
In the present invention, the inner race spacer has an inner race spacer main body, and a covering member that covers at least an end surface of the inner race spacer main body that comes into contact with the inner ring of the bearing, wherein the covering member is more than the inner race spacer main body. May also be made of a material having good machinability.
If the end face of the inner ring spacer is covered with a covering material of good machinability, the squareness and surface roughness of the end face of the inner ring spacer can be finished with high accuracy, and the inner ring of the bearing will be in close contact with the inner ring of the bearing be able to. Therefore, an improvement in the cooling effect due to the improvement in thermal conductivity can be expected.
The inner ring spacer needs to be made of a material having a high thermal conductivity, such as copper or aluminum.However, a material having a high thermal conductivity such as copper or aluminum is generally a soft metal, and therefore has high precision. It takes a lot of man-hours to process it. To solve this problem, the inner ring spacer is composed of an inner ring spacer body with excellent thermal conductivity and a material that covers the surface of the inner ring spacer, thereby improving the heat conductivity inside the inner ring spacer and improving the processing accuracy. The improvement of the heat conductivity at the contact portion due to the improvement of the heat resistance is compatible, and the cooling effect can be further enhanced.

この発明において、前記内輪間座が、内輪間座本体と、この内輪間座本体の軸方向両端面に接合された端部材とを有し、この端部材は、前記内輪間座本体よりも機械加工性の良い材質からなるようにしてもよい。
この構成の場合も、内輪間座内部での熱伝導性の向上と、加工精度の向上による密着性の向上による接触部での熱伝導性の向上とが両立され、冷却効果をより高めることができる。
In the present invention, the inner race spacer has an inner race spacer main body and end members joined to both axial end surfaces of the inner race spacer main body, and the end member is more mechanical than the inner race spacer main body. It may be made of a material having good workability.
In the case of this configuration as well, the improvement of the thermal conductivity inside the inner ring spacer and the improvement of the thermal conductivity at the contact portion due to the improvement of the adhesion due to the improvement of the processing accuracy are achieved, and the cooling effect can be further enhanced. it can.

前記内輪間座における、前記内輪間座本体よりも機械加工性の良い材質は、外輪間座と同じ材質であってもよい。
外輪間座は冷却ノズルの形成等のために鋼材等の機械加工性の良い材質が用いられる。そのため、内輪間座における機械加工性の良い材料に外輪間座と同じ材質を用いることができる。
The material of the inner race spacer having better machinability than the inner race spacer main body may be the same material as the outer race spacer.
For the outer ring spacer, a material having good machinability such as steel is used for forming a cooling nozzle or the like. Therefore, the same material as the outer race spacer can be used as the material having good machinability in the inner race spacer.

この発明において、軸方向に並ぶ2列以上の軸受を備え、隣合う軸受の外輪間および内輪間に前記外輪間座および内輪間座がそれぞれ介在していてもよい。
例えば、前記隣合う軸受がアンギュ玉軸受であって、背面組み合わせに配置されていてもよい。
2列以上の軸受の場合に、内輪間座の線膨張係数を高くしたことによる予圧の調整効果が良好に得られる。
特に、軸受が背面組み合わせに配置されたアンギュ玉軸受の場合、内輪間座の線膨張係数を高くしたことによる予圧の調整効果がより良好に得られる。
In the present invention, two or more rows of bearings arranged in the axial direction may be provided, and the outer ring spacer and the inner ring spacer may be interposed between outer rings and inner rings of adjacent bearings.
For example, the adjacent bearings may be angular contact ball bearings and may be arranged in a back combination.
In the case of two or more rows of bearings, the effect of adjusting the preload by increasing the linear expansion coefficient of the inner ring spacer is favorably obtained.
In particular, in the case of an angular contact ball bearing in which the bearings are arranged in a back-to-back combination, the effect of adjusting the preload by increasing the linear expansion coefficient of the inner ring spacer is better obtained.

この発明の軸受装置の冷却構造は、転がり軸受の外輪および内輪にそれぞれ隣接する外輪間座および内輪間座を有し、前記外輪間座に、前記内輪間座の外周面に向けて圧縮エアを吐出する空冷ノズルが設けられた軸受装置の冷却構造であって、前記内輪間座は前記外輪間座に比べて、熱伝導率が高く、かつ軸方向の線膨張係数が高く、前記転がり軸受の予圧形式が定位置予圧であるため、少ない圧縮エアで軸受を効率良く冷却することができ、また予圧の調整が行い易い。   The cooling structure of the bearing device of the present invention has an outer ring spacer and an inner ring spacer adjacent to the outer ring and the inner ring of the rolling bearing, respectively, and applies compressed air to the outer ring spacer toward an outer peripheral surface of the inner ring spacer. A cooling structure of a bearing device provided with an air-cooling nozzle for discharging, wherein the inner race spacer has a higher thermal conductivity and a higher coefficient of linear expansion in an axial direction than the outer race spacer, and Since the preload type is the fixed position preload, the bearing can be efficiently cooled with a small amount of compressed air, and the preload can be easily adjusted.

この発明の第1の実施形態に係る軸受装置の冷却構造の一部を示す部分縦断面図である。FIG. 2 is a partial longitudinal sectional view showing a part of a cooling structure of the bearing device according to the first embodiment of the present invention. 同軸受装置の間座部分の横断面図である。It is a cross-sectional view of the spacer part of the same bearing device. 同軸受装置を備えた工作機械の主軸装置の縦断面図である。It is a longitudinal section of the main spindle device of the machine tool provided with the bearing device. この発明の他の実施形態に係る軸受装置の冷却構造の一部を示す部分縦断面図である。FIG. 10 is a partial longitudinal sectional view showing a part of a cooling structure of a bearing device according to another embodiment of the present invention. この発明のさらに他の実施形態に係る軸受装置の冷却構造の一部を示す部分縦断面図である。FIG. 10 is a partial longitudinal sectional view showing a part of a cooling structure of a bearing device according to still another embodiment of the present invention.

この発明の第1の実施形態に係る軸受装置の冷却構造を図1ないし図3と共に説明する。この例の軸受装置の冷却構造は、工作機械の主軸装置や、他の種々の装置に適用される。
図1に示すように、この軸受装置は、軸方向に並ぶ複数の転がり軸受1,1の外輪2、2間および内輪3、3間に、外輪間座4および内輪間座5をそれぞれ介在させている。外輪間座4と内輪間座5とで間座装置14が構成される。外輪2および外輪間座4が図3のようにハウジング6に設置され、内輪3および内輪間座5が回転軸7に嵌合される。
図3は、この軸受装置の冷却構造を備えた工作機械の主軸装置の、例えばフロント側となる一部の断面図である。前記回転軸7は、この主軸装置の主軸である。
A cooling structure of a bearing device according to a first embodiment of the present invention will be described with reference to FIGS. The cooling structure of the bearing device of this example is applied to a spindle device of a machine tool and various other devices.
As shown in FIG. 1, in this bearing device, an outer ring spacer 4 and an inner ring spacer 5 are respectively interposed between the outer rings 2, 2 and between the inner rings 3, 3 of the plurality of rolling bearings 1, 1 arranged in the axial direction. ing. The outer ring spacer 4 and the inner ring spacer 5 constitute a spacer device 14. The outer race 2 and the outer race spacer 4 are installed in the housing 6 as shown in FIG. 3, and the inner race 3 and the inner race spacer 5 are fitted to the rotating shaft 7.
FIG. 3 is a cross-sectional view of a part of a main spindle device of a machine tool provided with the cooling structure of the bearing device, for example, on a front side. The rotating shaft 7 is a main shaft of the main shaft device.

各転がり軸受1,1は、アンギュラ玉軸受であり、背面組合せで設置されている。内輪外径面および外輪内径面における接触角の反偏り側に、それぞれカウンタボアが設けられている。内輪3のカウンタボアは、内輪端面側から軌道面側に向かうに従って、大径となるように傾斜する傾斜面3aに形成されている。内外輪3、2の軌道面間に複数の転動体8が介在され、これら転動体8が保持器9により円周等配に保持される。保持器9は外輪案内形式のリング形状である。   Each of the rolling bearings 1 and 1 is an angular ball bearing, and is installed in a back-to-back combination. A counter bore is provided on each of the inner ring outer diameter surface and the outer ring inner diameter surface on the side of the non-biased contact angle. The counter bore of the inner race 3 is formed on an inclined surface 3a that is inclined so as to have a larger diameter from the inner race end face toward the raceway. A plurality of rolling elements 8 are interposed between the raceway surfaces of the inner and outer rings 3, 2, and these rolling elements 8 are held by a retainer 9 at equal circumferential intervals. The retainer 9 has an outer ring guide type ring shape.

転がり軸受1,1の予圧構造につき説明する。
2列の転がり軸受1,1のうち、ハウジング6の内側(図の右側)の転がり軸受1における外輪2は、ハウジング6の内周面に設けられた段差部6aに側面が係合する。ハウジング6の端面側の転がり軸受1における外輪2は、ハウジング6の端面にボルト等で固定されたリング状の蓋部材17の側面に係合する。
2列の転がり軸受1,1のうち、回転軸7の中央側の転がり軸受1における内輪3は、外輪7の外周に嵌合して位置固定された内側スリーブ26の端面に係合する。ハウジング6の端面側の転がり軸受1における内輪23、ハウジング6の端面の外周に設けられた端部側スリーブ27の端面に係合する。回転軸7の端部の外周面は雄ねじ部7aに形成され、雄ねじ部7aに螺合するナット部材28により、前記端部側スリーブ27が軸方向の内側に押しつけらている。
このように、両列の転がり軸受1,1が外輪間座4および内輪間座5を挟んで配置され、両列の転がり軸受1,1の外輪2,2および内輪3,3がハウジング6および回転軸7に位置固定されることで、転がり軸受1,1は定位置予圧されている。
The preload structure of the rolling bearings 1 and 1 will be described.
Of the two rows of rolling bearings 1, 1, the outer ring 2 of the rolling bearing 1 inside the housing 6 (the right side in the drawing) engages with a step portion 6 a provided on the inner peripheral surface of the housing 6. The outer ring 2 in the rolling bearing 1 on the end face side of the housing 6 is engaged with a side face of a ring-shaped lid member 17 fixed to an end face of the housing 6 with bolts or the like.
Of the two rows of rolling bearings 1, 1, the inner ring 3 of the rolling bearing 1 on the center side of the rotating shaft 7 engages with the end surface of the inner sleeve 26 fitted and fixed on the outer periphery of the outer ring 7. The inner ring 23 in the rolling bearing 1 on the end face side of the housing 6 engages with the end face of an end-side sleeve 27 provided on the outer periphery of the end face of the housing 6. The outer peripheral surface of the end portion of the rotating shaft 7 is formed in a male screw portion 7a, and the end sleeve 27 is pressed inward in the axial direction by a nut member 28 screwed into the male screw portion 7a.
In this manner, the rolling bearings 1 and 1 in both rows are arranged with the outer ring spacer 4 and the inner ring spacer 5 interposed therebetween, and the outer rings 2 and 2 and the inner rings 3 and 3 of the rolling bearings 1 and 1 in both rows are formed by the housing 6 and By being fixed to the rotating shaft 7, the rolling bearings 1 and 1 are preloaded at a fixed position.

冷却構造について説明する。
外輪間座4は、中央の外輪間座本体24と、一対の潤滑ノズル構成部材25,25とでなる。外輪間座本体24は断面略T字形状に形成され、外輪間座本体24の内径側における両側部に、前記一対の潤滑ノズル部材25,25がそれぞれ嵌め込み状態に接合され、左右対称形状の外輪間座4を構成する。外輪間座本体24および潤滑ノズル構成部材25,25は、いずれもリング状である。
外輪間座本体24に、内輪間座5の外周面に向けて圧縮エアを吐出する1個または複数個(この例では3個)の空冷ノズル10が設けられている。これら空冷ノズル10のエア噴出方向は、図2のように、主軸7の回転方向L1の前方へ傾斜させている。これら複数個の空冷ノズル10は円周等配に配設されている。
各空冷ノズル10は、それぞれ直線状である。空冷ノズル10は、外輪間座4の軸心に垂直な断面における任意の半径方向の直線L2から、この直線L2と直交する方向にオフセットした位置に設けることで、前記傾斜を生じさせている。ノズル10を傾斜させる理由は、吐出エアを主軸7の回転方向に旋回流とするためである。
The cooling structure will be described.
The outer race spacer 4 includes a central outer race spacer main body 24 and a pair of lubrication nozzle constituting members 25, 25. The outer race spacer main body 24 is formed to have a substantially T-shaped cross section, and the pair of lubricating nozzle members 25 are joined to both sides on the inner diameter side of the outer race spacer main body 24 in a fitted state, respectively. The spacer 4 is formed. The outer race spacer main body 24 and the lubrication nozzle constituting members 25, 25 are both ring-shaped.
The outer ring spacer main body 24 is provided with one or more (three in this example) air cooling nozzles 10 for discharging compressed air toward the outer peripheral surface of the inner ring spacer 5. The air ejection direction of these air cooling nozzles 10 is inclined forward in the rotation direction L1 of the main shaft 7, as shown in FIG. The plurality of air-cooling nozzles 10 are arranged at equal intervals around the circumference.
Each of the air cooling nozzles 10 is linear. The inclination of the air-cooling nozzle 10 is caused by providing the air-cooling nozzle 10 at a position offset from a straight line L2 in an arbitrary radial direction in a cross section perpendicular to the axis of the outer race spacer 4 in a direction orthogonal to the straight line L2. The reason for inclining the nozzle 10 is to make the discharge air swirl in the rotation direction of the main shaft 7.

図3において、外輪間座本体24の外周面には、冷却エアである圧縮エアを導入する導入溝11が設けられている。この導入溝11は、外輪間座4の外周面における軸方向中間部に設けられ、かつ、図2に示すように、各ノズル10に連通する円弧状に形成されている。導入溝11は、外輪間座本体24の外周面において、エアオイル供給孔(図示せず)が設けられる円周方向位置を除く円周方向の大部分を占める角度範囲α1(図2参照)にわたって設けられている。
圧縮エアの導入経路は、軸受潤滑用のエアオイルとは独立経路で構成される。よって図3に示すように、ハウジング6に冷却エア用供給孔13が設けられ、この冷却エア用供給孔13に導入溝11が連通するように構成されている。ハウジング6の外部には、冷却エア用供給孔13に圧縮エアを供給する図示外の供給装置が配管接続されている。
In FIG. 3, an introduction groove 11 for introducing compressed air as cooling air is provided on the outer peripheral surface of the outer ring spacer main body 24. The introduction groove 11 is provided at an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4, and is formed in an arc shape communicating with each nozzle 10 as shown in FIG. The introduction groove 11 is provided on the outer peripheral surface of the outer race spacer main body 24 over an angular range α1 (see FIG. 2) occupying most of the circumferential direction except for a circumferential position where an air oil supply hole (not shown) is provided. Have been.
The compressed air introduction path is configured as a path independent of the air oil for bearing lubrication. Therefore, as shown in FIG. 3, the cooling air supply hole 13 is provided in the housing 6, and the introduction groove 11 is configured to communicate with the cooling air supply hole 13. A supply device (not shown) that supplies compressed air to the cooling air supply hole 13 is connected to the outside of the housing 6 by piping.

冷却作用につき説明する。
外輪間座4の空冷ノズル10から内輪間座5の外周に圧縮空気を吹き付ける。これにより、内輪間座5が冷却され、熱伝導によって転がり軸受1の内輪3が冷却される。空冷ノズル10は上記のように回転方向前方に傾けられているため、吐出エアが主軸7の回転方向に旋回流として作用し、冷却効果が向上する。
The cooling operation will be described.
Compressed air is blown from the air cooling nozzle 10 of the outer race spacer 4 to the outer periphery of the inner race spacer 5. Thus, the inner race spacer 5 is cooled, and the inner race 3 of the rolling bearing 1 is cooled by heat conduction. Since the air cooling nozzle 10 is inclined forward in the rotation direction as described above, the discharge air acts as a swirling flow in the rotation direction of the main shaft 7, and the cooling effect is improved.

潤滑構造について説明する。
外輪間座4は、転がり軸受1内にそれぞれエアオイルを供給する潤滑用ノズル16を有する。外輪間座4の前記両側の潤滑ノズル構成部材25,25は、転がり軸受1内に突出して内輪3の前記傾斜面3aに隙間δを介して対向する環状の鍔部23を有していて、この鍔部23内の円周方向の1箇所または複数箇所に前記潤滑用ノズル16が形成されている。内輪3の前記傾斜面3aには環状溝3aaが設けられ、前記潤滑用ノズル16は、環状溝3aaに向けてエアオイルを吐出するように設けられている。
The lubrication structure will be described.
The outer race spacer 4 has a lubrication nozzle 16 for supplying air oil into the rolling bearing 1. The lubricating nozzle constituting members 25 on both sides of the outer race spacer 4 have annular flanges 23 projecting into the rolling bearing 1 and facing the inclined surface 3a of the inner race 3 with a gap δ therebetween. The lubricating nozzle 16 is formed at one or more positions in the circumferential direction in the flange portion 23. An annular groove 3aa is provided on the inclined surface 3a of the inner ring 3, and the lubrication nozzle 16 is provided so as to discharge air oil toward the annular groove 3aa.

潤滑用ノズル16の入口部は、ハウジング6に設けられたエアオイル供給孔(図示せず)に連通し、このエアオイル供給孔に設けられた図示外のエアオイル供給装置からエアオイルが供給される。   The inlet of the lubrication nozzle 16 communicates with an air oil supply hole (not shown) provided in the housing 6, and air oil is supplied from an air oil supply device (not shown) provided in the air oil supply hole.

排気構造について説明する。
この軸受装置には、潤滑用のエアオイルを吐出するエアオイル排気路19が設けられている。このエアオイル排気路19は、外輪間座4の外輪間座本体24における円周方向の一部に設けられた排気溝20と、ハウジング6に設けられ排気溝20に連通するハウジング内排気溝21と、ハウジング6内で軸方向に延びるハウジング内排気孔22とで構成される。
The exhaust structure will be described.
This bearing device is provided with an air oil exhaust passage 19 for discharging air oil for lubrication. The air-oil exhaust passage 19 includes an exhaust groove 20 provided in a part of the outer race spacer main body 24 of the outer race spacer 4 in the circumferential direction, an exhaust groove 21 provided in the housing 6 and communicating with the exhaust groove 20. , And a housing exhaust hole 22 extending in the axial direction within the housing 6.

間座装置14の材質、加工精度等につき説明する。
この間座装置14は、内輪間座5が外輪間座4に比べて、熱伝導率が高く、かつ軸方向の線膨張係数が高い特性を有している。
外輪間座4の材質は、次の理由より炭素鋼などが良い。
・炭素鋼は機械加工性に優れているため、空冷ノズル10などの複雑な形状を加工する上で好ましい。
・コスト、入手性が良い。
内輪間座5の材質は、次の理由より銅やアルミニウムが良い。
・圧縮エアによる冷却効果を上げるためには、熱伝導率が高い材質にする必要がある。 ・内輪間座5と外輪間座4との熱膨張差を利用し、転がり軸受1の予圧を軽減させるためには、内輪間座5は線膨張係数が外輪間座4よりも高い材質にする必要がある。
・コスト、入手性が良い
The material, working accuracy, and the like of the spacer device 14 will be described.
This spacer device 14 has characteristics that the inner ring spacer 5 has a higher thermal conductivity and a higher coefficient of linear expansion in the axial direction than the outer ring spacer 4.
The material of the outer ring spacer 4 is preferably carbon steel for the following reasons.
-Since carbon steel is excellent in machinability, it is preferable for processing a complicated shape such as the air-cooled nozzle 10.
・ Cost and availability are good.
The material of the inner ring spacer 5 is preferably copper or aluminum for the following reasons.
-In order to increase the cooling effect by compressed air, it is necessary to use a material having a high thermal conductivity. In order to reduce the preload of the rolling bearing 1 by utilizing the thermal expansion difference between the inner ring spacer 5 and the outer ring spacer 4, the inner ring spacer 5 is made of a material having a higher linear expansion coefficient than the outer ring spacer 4. There is a need.
・ Good cost and availability

内輪間座5の加工精度については、冷却効率を上げるために次のように、端面の直角度と表面粗さを高精度に仕上げることが好ましい。これにより、内輪間座5の端面を転がり軸受1の内輪3の端面と密接させることができ、熱伝導性が向上して冷却効果の向上が期待できる。   Regarding the processing accuracy of the inner ring spacer 5, it is preferable to finish the squareness of the end face and the surface roughness with high accuracy as described below in order to increase the cooling efficiency. As a result, the end face of the inner race spacer 5 can be brought into close contact with the end face of the inner race 3 of the rolling bearing 1, so that the heat conductivity is improved and the cooling effect can be expected to be improved.

以上より、内輪間座5は、熱伝導率が100W/m ・k 以上であり、内輪間座5の端面の直角度は、内輪間座5の内周面に対し、5μm 以下であり、表面粗さはRa1.0μm 以下であり、線膨張係数が15×10−6以上であることが望ましい。
また、予圧が付加されている状態の転がり軸受1に対し、内輪間座5を円滑に膨張させるためには、内輪間座5のヤング率も重要となり、60GPa 以上が望ましい。
As described above, the thermal conductivity of the inner race spacer 5 is 100 W / m · k or more, and the perpendicularity of the end surface of the inner race spacer 5 is 5 μm or less with respect to the inner peripheral surface of the inner race spacer 5. It is desirable that the roughness be Ra 1.0 μm or less and the linear expansion coefficient be 15 × 10 −6 or more.
Further, in order to smoothly expand the inner race spacer 5 with respect to the rolling bearing 1 to which the preload is applied, the Young's modulus of the inner race spacer 5 is also important, and is preferably 60 GPa or more.

作用、効果につき説明する。
外輪間座4に設けた空冷ノズル10より内輪間座5の外周面に圧縮エアを吐出することで、内輪間座5が冷却され、内輪間座5における転がり軸受1の内輪3への熱伝導で、転がり軸受1が冷却される。このため、内輪間座5に熱伝導率の高い材質を用いることで、冷却効果を上げることができる。特に、低速域から中速域では、少量の圧縮エアの軸受1を冷却することができる。
また、定位置予圧形式であって、内輪間座5の材質に外輪間座4の材質よりも線膨張係数の高いものを使用しているため、内輪間座5は熱膨張しやすくなり、転がり軸受1の予圧や回転中の転がり軸受1の軌道面の接触面圧が低減でき、転がり軸受の昇温がより抑えられる。この線膨張差による予圧や軌道面の接触面圧の低減は、高速域の場合に効果的である。特に、転がり軸受1,1が背面組み合わせの場合により効果的である。
The operation and effect will be described.
By discharging compressed air from the air-cooling nozzle 10 provided on the outer race spacer 4 to the outer peripheral surface of the inner race spacer 5, the inner race spacer 5 is cooled, and heat transfer to the inner race 3 of the rolling bearing 1 in the inner race spacer 5 is performed. Thus, the rolling bearing 1 is cooled. Therefore, by using a material having high thermal conductivity for the inner ring spacer 5, the cooling effect can be improved. In particular, in the low to medium speed range, the bearing 1 with a small amount of compressed air can be cooled.
In addition, since the inner ring spacer 5 has a higher linear expansion coefficient than the material of the outer ring spacer 4 as the material of the inner ring spacer 5 of the fixed position preload type, the inner ring spacer 5 is easily thermally expanded and rolled. The preload of the bearing 1 and the contact surface pressure of the raceway surface of the rolling bearing 1 during rotation can be reduced, and the temperature rise of the rolling bearing can be further suppressed. The reduction of the preload and the contact surface pressure of the raceway surface due to the difference in linear expansion is effective in a high speed range. In particular, it is more effective when the rolling bearings 1 and 1 are combined on the back side.

なお、熱の影響による各間座4,5の軸方向の延伸は、次式、
ΔL=a×L×(T2−T1)
で求めることができる。
ここで、
ΔL:熱の影響による間座の軸方向の延伸、
a:線膨張係数、
L:間座幅寸法、
T1:初期の温度、T2:変化後の温度
上式のように、線膨張係数a以外に、温度差(T2−T1)、間座幅寸法Lの影響も受ける。高速域で温度差が生じやすい条件や間座幅寸法Lが長い場合、内輪間座5に線膨張係数が高い材質を用いれば、より大きく内輪間座5と外輪間座4との膨張差が生じる。
The axial stretching of each of the spacers 4 and 5 due to the influence of heat is represented by the following equation:
ΔL = a × L × (T2-T1)
Can be obtained by
here,
ΔL: axial stretching of the spacer due to heat,
a: linear expansion coefficient,
L: Spacing width dimension,
T1: Initial temperature, T2: Temperature after change As shown in the above equation, in addition to the linear expansion coefficient a, the temperature difference (T2−T1) and the spacer width L are also affected. Under conditions where a temperature difference is likely to occur in the high-speed range or when the spacer width L is long, if a material having a high linear expansion coefficient is used for the inner ring spacer 5, the expansion difference between the inner ring spacer 5 and the outer ring spacer 4 will be larger. Occurs.

内輪間座5の端面の直角度や表面粗さは、上記のように冷却効果の向上のためには高精度であることが好ましい。しかし、熱伝導率が高く、かつ線膨張係数が高いことから内輪間座5に好ましい材質である銅やアルミニウムは、軟質金属であるため、加工性は良くない。高精度に加工するためには、工数がかかる。
そのため、内輪間座5は、銅やアルミニウムを主体とし、精度が必要な面に炭素鋼を用いた構成としてもよい。これにより加工性が上がる。ただしその場合、銅やアルミニウムの効果を低減させないために、内輪間座5の断面に対し、80%以上を銅やアルミニウムなどの軟質金属にすることが望ましい。
It is preferable that the squareness and the surface roughness of the end face of the inner ring spacer 5 have high precision as described above in order to improve the cooling effect. However, copper or aluminum, which is a preferable material for the inner ring spacer 5 because of its high thermal conductivity and high linear expansion coefficient, is a soft metal and therefore has poor workability. In order to process with high precision, it takes man-hours.
Therefore, the inner ring spacer 5 may be mainly composed of copper or aluminum, and may be configured to use carbon steel on a surface requiring accuracy. This increases workability. However, in this case, it is preferable that 80% or more of the cross section of the inner ring spacer 5 is made of a soft metal such as copper or aluminum in order not to reduce the effect of copper or aluminum.

内輪間座5を、銅やアルミニウムを主体とし、精度が必要な面に炭素鋼を用いる構成としては、次の図4および図5の各実施形態が採用できる。これらの実施形態において、特に説明する事項の他は、第1の実施形態と同様である。
図4の実施形態は、内輪間座5が、内輪間座本体5aと、この内輪間座本体5aの少なくとも転がり軸受1の内輪3と接触する端面を覆う覆い材5bとを有し、この覆い材5bが、内輪間座本体5aよりも機械加工性の良い材料からなっている。
内輪間座本体5aは、銅またはアルミニウムからなり、覆い材5bは炭素鋼等の加工性の良い材料からなる。覆い材5bは、例えば外輪間座4と同じ材質とされる。
As the configuration in which the inner ring spacer 5 is mainly made of copper or aluminum and carbon steel is used for a surface requiring accuracy, the following embodiments shown in FIGS. 4 and 5 can be adopted. These embodiments are the same as the first embodiment, except for items to be particularly described.
In the embodiment shown in FIG. 4, the inner race spacer 5 has an inner race spacer main body 5a, and a covering member 5b that covers at least an end surface of the inner race spacer main body 5a that comes into contact with the inner ring 3 of the rolling bearing 1. The material 5b is made of a material having better machinability than the inner race spacer main body 5a.
The inner ring spacer main body 5a is made of copper or aluminum, and the covering member 5b is made of a material having good workability such as carbon steel. The covering member 5b is made of the same material as the outer ring spacer 4, for example.

覆い材5bは、内周面における円周方向の複数箇所に軸方向に延びる嵌合溝5baaが形成された環状の覆い材本体5baと、環状の蓋材5bbとでなり、覆い材本体5baの各嵌合溝5baaに、円周方向に分割された内輪間座本体5aの各分割体が嵌合している。この嵌合により、内輪間座本体5aの各分割体の周方向への動きが阻止されている。蓋材5bbは、覆い材本体5baの嵌合溝開口側の端面に被せられ、ビン29を蓋材5bbおよび内輪間座本体5aに渡って設けられたピン孔に圧入することなどで固定されている。
このように内輪間座5を、内輪間座本体5aと覆い材5bとで構成することで、銅やアルミニウムを主体とし、精度が必要な面に炭素鋼を用いた構成とすることができる。
The covering member 5b includes an annular covering member main body 5ba in which fitting grooves 5baa extending in the axial direction are formed at a plurality of circumferential positions on the inner peripheral surface, and an annular lid member 5bb. Each divided body of the inner race spacer body 5a divided in the circumferential direction is fitted in each fitting groove 5baa. By this fitting, the movement of each divided body of the inner race spacer main body 5a in the circumferential direction is prevented. The cover member 5bb is covered on the end surface of the cover member main body 5ba on the fitting groove opening side, and is fixed by press-fitting the bin 29 into a pin hole provided across the cover member 5bb and the inner race spacer main body 5a. I have.
By forming the inner race spacer 5 with the inner race spacer main body 5a and the covering member 5b in this manner, it is possible to use copper or aluminum as a main component and to use carbon steel on a surface requiring accuracy.

図5の実施形態は、内輪間座5が、環状の内輪間座本体5cと、この内輪間座本体5cの軸方向両端面に接合された環状の端部材5d,5dとを有する。内輪間座本体5cは、銅またはアルミニウム等からなり、端部材5d,5dは、内輪間座本体5cよりも機械加工性の良い材料、例えば炭素鋼からなる。内輪間座本体5cと端部材5d,5dとの接合は、接着剤等による接着、ピン等の止め具による固定、圧接などで行われる。
このように内輪間座5を、内輪間座本体5cと端部材5d,5dとで構成した場合も、銅やアルミニウムを主体とし、精度が必要な面に炭素鋼を用いた構成とすることができる。
In the embodiment of FIG. 5, the inner race spacer 5 has an annular inner race spacer main body 5c, and annular end members 5d, 5d joined to both axial end surfaces of the inner race spacer main body 5c. The inner race spacer main body 5c is made of copper or aluminum or the like, and the end members 5d, 5d are made of a material having better machinability than the inner race spacer main body 5c, for example, carbon steel. The joint between the inner race spacer main body 5c and the end members 5d, 5d is performed by bonding with an adhesive or the like, fixing with a stopper such as a pin, pressing, or the like.
As described above, when the inner race spacer 5 is constituted by the inner race spacer main body 5c and the end members 5d, 5d, it is also possible to adopt a configuration in which copper or aluminum is mainly used and carbon steel is used for a surface requiring accuracy. it can.

以上、実施形態に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments for carrying out the present invention have been described above based on the embodiments. However, the embodiments disclosed herein are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…転がり軸受
2…外輪
3…内輪
4…外輪間座
5…内輪間座
5a,5c…内輪間座本体
5b…覆い材
5d…端部材
6…ハウジング
7…回転軸
8…転動体
9…保持器
10…空冷ノズル
16…潤滑用ノズル
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring 3 ... Inner ring 4 ... Outer ring spacer 5 ... Inner ring spacer 5a, 5c ... Inner ring spacer body 5b ... Covering member 5d ... End member 6 ... Housing 7 ... Rotating shaft 8 ... Rolling element 9 ... Holding Unit 10 Air cooling nozzle 16 Lubrication nozzle

Claims (6)

転がり軸受の外輪および内輪にそれぞれ隣接する外輪間座および内輪間座を有し、前記外輪間座に、前記内輪間座の外周面に向けて圧縮エアを吐出する空冷ノズルが設けられた軸受装置の冷却構造であって、
前記内輪間座は前記外輪間座に比べて、熱伝導率が高く、かつ軸方向の線膨張係数が高く、前記転がり軸受の予圧形式が定位置予圧である軸受装置の冷却構造。
A bearing device having an outer ring spacer and an inner ring spacer respectively adjacent to an outer ring and an inner ring of a rolling bearing, wherein the outer ring spacer is provided with an air-cooled nozzle for discharging compressed air toward an outer peripheral surface of the inner ring spacer. Cooling structure,
The cooling structure for a bearing device, wherein the inner race spacer has a higher thermal conductivity and a higher coefficient of linear expansion in the axial direction than the outer race spacer, and a preload type of the rolling bearing is a fixed position preload.
請求項1に記載の軸受装置の冷却構造において、前記内輪間座が、内輪間座本体と、この内輪間座本体の少なくとも前記転がり軸受の内輪と接触する端面を覆う覆い材とを有し、前記覆い材が前記内輪間座本体よりも機械加工性の良い材質である軸受装置の冷却構造。   2. The cooling structure of the bearing device according to claim 1, wherein the inner race spacer has an inner race spacer main body, and a covering member that covers at least an end surface of the inner race spacer main body that comes into contact with the inner race of the rolling bearing, A cooling structure for a bearing device, wherein the covering member is made of a material having better machinability than the inner race spacer body. 請求項1に記載の軸受装置の冷却構造において、前記内輪間座が、内輪間座本体と、この内輪間座本体の軸方向両端面に接合された端部材とを有し、この端部材は、前記内輪間座本体よりも機械加工性の良い材質である軸受装置の冷却構造。   The cooling structure for a bearing device according to claim 1, wherein the inner race spacer has an inner race spacer main body and end members joined to both axial end surfaces of the inner race spacer main body. A cooling structure for a bearing device, which is made of a material having better machinability than the inner ring spacer body. 請求項2または請求項3に記載の軸受装置の冷却構造において、前記内輪間座本体よりも機械加工性の良い材質は、外輪間座と同じ材質である軸受装置の冷却構造。   4. The cooling structure for a bearing device according to claim 2, wherein the material having better machinability than the inner race spacer body is the same material as the outer race spacer. 5. 請求項1ないし請求項4のいずれか1項に記載の軸受装置の冷却構造において、軸方向に並ぶ2列以上の軸受を備え、隣合う軸受の外輪間および内輪間に前記外輪間座および内輪間座がそれぞれ介在する軸受装置の冷却構造。   The cooling structure for a bearing device according to any one of claims 1 to 4, further comprising two or more rows of bearings arranged in an axial direction, wherein the outer ring spacer and the inner ring are provided between outer rings and between inner rings of adjacent bearings. Cooling structure of bearing device with spacers interposed. 請求項5に記載の軸受装置の冷却構造において、前記隣合う軸受がアンギュ玉軸受であって、背面組み合わせに配置された軸受装置の冷却構造。   The cooling structure for a bearing device according to claim 5, wherein the adjacent bearing is an angular contact ball bearing, and the bearing device is arranged in a back-to-back combination.
JP2018171129A 2018-09-13 2018-09-13 Bearing device cooling structure Active JP7096742B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018171129A JP7096742B2 (en) 2018-09-13 2018-09-13 Bearing device cooling structure
EP19860198.1A EP3851692B1 (en) 2018-09-13 2019-09-09 Bearing device cooling structure, and main spindle device of machine tool
PCT/JP2019/035365 WO2020054661A1 (en) 2018-09-13 2019-09-09 Bearing device cooling structure, and main spindle device of machine tool
CN201980059203.9A CN112673186A (en) 2018-09-13 2019-09-09 Cooling structure for bearing device and spindle device for machine tool
KR1020217007456A KR20210057733A (en) 2018-09-13 2019-09-09 The cooling structure of the bearing unit and the spindle unit of the machine tool
TW108132949A TWI821394B (en) 2018-09-13 2019-09-12 Cooling structure for bearing device, and spindle device for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171129A JP7096742B2 (en) 2018-09-13 2018-09-13 Bearing device cooling structure

Publications (2)

Publication Number Publication Date
JP2020041647A true JP2020041647A (en) 2020-03-19
JP7096742B2 JP7096742B2 (en) 2022-07-06

Family

ID=69797890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171129A Active JP7096742B2 (en) 2018-09-13 2018-09-13 Bearing device cooling structure

Country Status (1)

Country Link
JP (1) JP7096742B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289245A (en) * 2000-04-10 2001-10-19 Nsk Ltd Bearing device
JP2006329265A (en) * 2005-05-24 2006-12-07 Nsk Ltd Rolling bearing
JP2012021574A (en) * 2010-07-14 2012-02-02 Ntn Corp Bearing device
WO2013011815A1 (en) * 2011-07-20 2013-01-24 日本精工株式会社 Main shaft apparatus
JP2015117820A (en) * 2013-11-18 2015-06-25 Ntn株式会社 Cooling structure of bearing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289245A (en) * 2000-04-10 2001-10-19 Nsk Ltd Bearing device
JP2006329265A (en) * 2005-05-24 2006-12-07 Nsk Ltd Rolling bearing
JP2012021574A (en) * 2010-07-14 2012-02-02 Ntn Corp Bearing device
WO2013011815A1 (en) * 2011-07-20 2013-01-24 日本精工株式会社 Main shaft apparatus
JP2015117820A (en) * 2013-11-18 2015-06-25 Ntn株式会社 Cooling structure of bearing device

Also Published As

Publication number Publication date
JP7096742B2 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
US10428875B2 (en) Cooling structure for bearing device
JP2004316757A (en) Cylindrical roller bearing and retainer for cylindrical roller bearing
KR102026075B1 (en) Combination ball bearing and main shaft device for machine tool
EP3848602A1 (en) Rolling bearing and spindle device equipped with rolling bearing
KR102448407B1 (en) Cooling structure of bearing device
TWI680029B (en) Main spindle device
JP2012026496A (en) Angular ball bearing, and bearing installation structure
JP6385089B2 (en) Cooling structure of bearing device
JP2020041647A (en) Structure for cooling bearing device
JP2011133000A (en) Cylindrical roller bearing device
JP2009138896A (en) Rolling bearing and its lubrication method
JP2008110426A (en) Spindle device
JP2016070485A (en) Holder for ball bearing
JP6609003B2 (en) Cooling structure of bearing device
WO2020054661A1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP6385090B2 (en) Cooling structure of bearing device
JP2506541Y2 (en) Bearing lubricator
JP6899306B2 (en) Bearing device cooling structure
WO2018074375A1 (en) Cooling structure for bearing device
JP7185546B2 (en) Cooling structure of bearing unit and spindle unit of machine tool
WO2022196421A1 (en) Angular ball bearing
JP2018169040A (en) Cooling structure of bearing device
WO2018181032A1 (en) Cooling structure for bearing device
JP2024043034A (en) bearing device
JP2008082500A (en) Lubricating device of rolling bearing

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220624

R150 Certificate of patent or registration of utility model

Ref document number: 7096742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150