JP2020038255A - Core alignment device for fusion of multicore optical fiber and connecting member - Google Patents

Core alignment device for fusion of multicore optical fiber and connecting member Download PDF

Info

Publication number
JP2020038255A
JP2020038255A JP2018164431A JP2018164431A JP2020038255A JP 2020038255 A JP2020038255 A JP 2020038255A JP 2018164431 A JP2018164431 A JP 2018164431A JP 2018164431 A JP2018164431 A JP 2018164431A JP 2020038255 A JP2020038255 A JP 2020038255A
Authority
JP
Japan
Prior art keywords
core optical
optical fibers
holding
holding unit
mcfs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018164431A
Other languages
Japanese (ja)
Other versions
JP7156867B2 (en
Inventor
高橋 英憲
Hidenori Takahashi
英憲 高橋
大樹 相馬
Daiki Soma
大樹 相馬
釣谷 剛宏
Takehiro Tsuritani
剛宏 釣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2018164431A priority Critical patent/JP7156867B2/en
Publication of JP2020038255A publication Critical patent/JP2020038255A/en
Application granted granted Critical
Publication of JP7156867B2 publication Critical patent/JP7156867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

To provide a core alignment device for connecting a plurality of first MCFs and a plurality of second MCFs even if phases of a plurality of first multicore optical fibers (MCFs) and phases of a plurality of second MCFs do not coincide with each other.SOLUTION: A core alignment device 100 for connecting a plurality of first MCFs and a plurality of second MCFs via a connecting member including a plurality of third MCFs, comprises: first holding means 31 for holding a first region including first end parts of the plurality of third MCFs; second holding means 32 for holding a second region including second end parts of the plurality of third MCFs; third holding means 1 for holding a third region arranged between the first region and the second region of each of the plurality of third MCFs; first rotation means 21 arranged between the first holding means and the third holding means, and rotating the plurality of third MCFs in peripheral directions; and second rotation means 22 arranged between the second holding means and the third holding means, and rotating the plurality of third MCFs in the peripheral directions.SELECTED DRAWING: Figure 2

Description

本発明は、マルチコア光ファイバを融着する際の調芯技術に関する。   The present invention relates to an alignment technique for fusing a multi-core optical fiber.

特許文献1は、シングルコア光ファイバ(以下、SCF)によるテープ芯線の融着方法を開示している。テープ芯線とは、複数の光ファイバを1列に並べて固着させたものである。特許文献1は、2つのテープ芯線をフォルダにより固定して対向させ、各光ファイバの位置を合わせた後、一括して融着することを開示している。また、特許文献2は、テープ芯線ではなく、複数の個別のSCFを一括して融着するため、複数のSCFを整列させ、かつ、その整列状態を維持するためのフォルダを開示している。さらに、特許文献3は、マルチコア光ファイバ(以下、MCF)の融着方法を開示している。   Patent Literature 1 discloses a method for fusing a tape core wire using a single core optical fiber (hereinafter, SCF). The tape core wire is one in which a plurality of optical fibers are arranged and fixed in a row. Patent Literature 1 discloses that two tape cores are fixed and opposed by a folder, and the optical fibers are aligned and then fused at once. In addition, Patent Document 2 discloses a folder for aligning a plurality of SCFs and maintaining the aligned state in order to fuse a plurality of individual SCFs collectively instead of a tape core wire. Further, Patent Document 3 discloses a method for fusing a multi-core optical fiber (hereinafter, MCF).

特開昭63−194208号公報JP-A-63-194208 特開2007−171825号公報JP 2007-171825 A 特開2013−210602号公報JP 2013-210602 A

MCFの各コアには個別の番号が付与されており、2つのMCFを融着する際には、同じ番号のコア同士を接続する必要がある。このため、2つのMCFを融着する際の調芯処理においては、まず、2つのMCFの位置決めを行い、続いて、2つのMCFのいずれか、或いは、両方を周方向に回転させて、2つのMCFの同じ番号のコア同士を対向させる必要がある。なお、2つのMCFの位置決めとは、2つのMCFの断面が平行、かつ、その中心が一致する様に2つのMCFの位置を決めることを意味する。なお、以下の説明において、2つのMCFの位置決めを行った後、2つのMCFの同じ番号のコア同士が対向する様に、2つのMCFのいずれか、或いは、両方を周方向に回転させることを、2つのMCFの“位相合わせ”と呼ぶものとする。なお、MCFの位相とは、所定方向に対する所定番号、例えば、番号1のコアの方向を意味するものとする。   Each core of the MCF is assigned an individual number. When two MCFs are fused, it is necessary to connect cores having the same number. For this reason, in the centering process when the two MCFs are fused, first, the two MCFs are positioned, and then one or both of the two MCFs are rotated in the circumferential direction. It is necessary to make cores of the same number of one MCF face each other. The positioning of the two MCFs means that the positions of the two MCFs are determined so that the cross sections of the two MCFs are parallel and their centers coincide. In the following description, after positioning the two MCFs, one or both of the two MCFs are rotated in the circumferential direction so that the cores of the same number of the two MCFs face each other. Let's call it "phase matching" of two MCFs. Note that the phase of the MCF means a direction of a predetermined number with respect to a predetermined direction, for example, the core of number 1.

上記の通り、2つのMCFを接続するには、2つのMCFの位相合わせのため、特許文献3が開示する様に、2つのMCFの少なくとも一方を周方向に回転させる回転機構が必要になる。ここで、複数のMCFをテープ芯線とする場合を考える。複数のMCFをテープ芯線とする際に、テープ芯線の各MCFの位相を完全に所定の位相にすることができれば、例えば、特許文献1に記載のSCFによるテープ芯線と同様に、MCFによるテープ芯線を一括して融着することができる。しかしながら、テープ芯線の各MCFの位相を総て同じ所定の位相としてテープ芯線を製造することは非常に難しく、一般的に、テープ芯線内の各MCFの位相はばらばらになる。したがって、特許文献1の構成をMCFのテープ芯線に対して適用することはできない。   As described above, in order to connect the two MCFs, a rotation mechanism for rotating at least one of the two MCFs in the circumferential direction is necessary as disclosed in Patent Document 3 in order to match the phases of the two MCFs. Here, a case where a plurality of MCFs are used as tape cores is considered. When a plurality of MCFs are used as tape cores, if the phases of the MCFs of the tape cores can be completely set to a predetermined phase, for example, similar to the tape cores by SCF described in Patent Document 1, the tape cores by MCF Can be fused together. However, it is very difficult to manufacture a tape core with all the MCFs of the tape core having the same predetermined phase. Generally, the phases of the MCFs in the tape core differ. Therefore, the configuration of Patent Document 1 cannot be applied to the MCF tape core.

本発明は、複数の第1MCFそれぞれの位相と複数の第2MCFそれぞれの位相が一致していなくても複数の第1MCFと複数の第2MCFとを接続するための調芯装置及び当該調芯装置で利用する接続部材を提供するものである。   The present invention relates to a centering device for connecting a plurality of first MCFs and a plurality of second MCFs even when the phases of the plurality of first MCFs do not match the phases of the plurality of second MCFs, and a centering device for the same. This is to provide a connecting member to be used.

本発明の一態様によると、複数の第1マルチコア光ファイバと複数の第2マルチコア光ファイバとを、複数の第3マルチコア光ファイバを含む接続部材を介して接続するための調芯装置は、前記複数の第3マルチコア光ファイバそれぞれの第1端部を含む第1領域を保持するための第1保持手段と、前記複数の第3マルチコア光ファイバそれぞれの第2端部を含む第2領域を保持するための第2保持手段と、前記複数の第3マルチコア光ファイバそれぞれの前記第1領域と前記第2領域との間にある第3領域を保持するための第3保持手段と、前記第1保持手段と前記第3保持手段との間にあって、前記複数の第3マルチコア光ファイバそれぞれを周方向に回転させる第1回転手段と、前記第2保持手段と前記第3保持手段との間にあって、前記複数の第3マルチコア光ファイバそれぞれを周方向に回転させる第2回転手段と、を備えていることを特徴とする。   According to one aspect of the present invention, the alignment device for connecting a plurality of first multi-core optical fibers and a plurality of second multi-core optical fibers via a connection member including a plurality of third multi-core optical fibers, First holding means for holding a first area including a first end of each of the plurality of third multi-core optical fibers, and holding a second area including a second end of each of the plurality of third multi-core optical fibers A second holding unit for holding a third region between the first region and the second region of each of the plurality of third multi-core optical fibers; and a first holding unit for holding the third region. A first rotating unit for rotating each of the plurality of third multi-core optical fibers in a circumferential direction, between the holding unit and the third holding unit, and between the second holding unit and the third holding unit; A second rotating means for rotating the respective serial plurality of third multi-core optical fiber in a circumferential direction, characterized in that it comprises.

本発明によると、複数の第1MCFそれぞれの位相と複数の第2MCFそれぞれの位相が一致していなくても複数の第1MCFと複数の第2MCFとを接続することができる。   According to the present invention, it is possible to connect the plurality of first MCFs and the plurality of second MCFs even if the phases of the plurality of first MCFs do not match the phases of the plurality of second MCFs.

一実施形態による接続部材の構成図。The block diagram of the connection member by one Embodiment. 一実施形態による調芯装置の構成図。FIG. 1 is a configuration diagram of a centering device according to an embodiment. 一実施形態による調芯装置にMCFを設定した状態を示す図。The figure which shows the state which set MCF to the centering apparatus by one Embodiment. 一実施形態による主保持部の構成図。The block diagram of the main holding part by one Embodiment. 一実施形態による補助保持部の構成図。The block diagram of the auxiliary | assistant holding part by one Embodiment. 一実施形態による回転機構部の構成図。FIG. 2 is a configuration diagram of a rotation mechanism unit according to one embodiment. 一実施形態による調芯装置の構成図。FIG. 1 is a configuration diagram of a centering device according to an embodiment. 一実施形態による接続部材の構成図。The block diagram of the connection member by one Embodiment. 一実施形態による接続部材の構成図。The block diagram of the connection member by one Embodiment. 一実施形態による主保持部の構成図。The block diagram of the main holding part by one Embodiment. 一実施形態による調芯装置の構成図。FIG. 1 is a configuration diagram of a centering device according to an embodiment.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. The following embodiment is an exemplification, and the present invention is not limited to the content of the embodiment. In the following drawings, components not necessary for the description of the embodiment are omitted from the drawings.

<第一実施形態>
以下、MCFのテープ芯線を、他のMCFのテープ芯線と接続するために使用する、本実施形態の調芯装置について説明する。なお、以下の説明において、接続する一方のMCFのテープ芯線を第1MCFテープ芯線と呼び、他方のテープ芯線を第2MCFテープ芯線と呼ぶものとする。また、第1MCFテープ芯線と第2MCFテープ芯線を纏めて、単に、MCFテープ芯線と呼ぶものとする。なお、第1MCFテープ芯線及び第2MCFテープ芯線に含まれるMCFの数は同じであり、かつ、各MCFのコア数及びコアの配置は同じとする。さらに、以下の説明において、第1MCFテープ芯線及び第2MCFテープ芯線は、4つのMCFをテープ状に固着させたものとし、各MCFには1から4の番号が付与されているものとする。
<First embodiment>
Hereinafter, a centering device of this embodiment, which is used to connect a tape core of an MCF to a tape core of another MCF, will be described. In the following description, the tape core of one MCF to be connected is called a first MCF tape core, and the other tape core is called a second MCF tape core. In addition, the first MCF tape core and the second MCF tape core are collectively referred to as an MCF tape core. In addition, the number of MCFs included in the first MCF tape core wire and the second MCF tape core wire is the same, and the number of cores and the arrangement of the cores in each MCF are the same. Further, in the following description, it is assumed that the first MCF tape core wire and the second MCF tape core wire have four MCFs fixed in a tape shape, and each MCF is numbered from 1 to 4.

本実施形態では、第1MCFテープ芯線と第2MCFテープ芯線の同じ番号のMCFの同じ番号のコアを接続するために接続部材を使用する。図1は、本実施形態による接続部材50を示している。接続部材50は、接続対象のMCFテープ芯線と同じMCF数、つまり、本実施形態では4つのMCF51〜54によるテープ芯線に基づき作成される。なお、MCF51〜54のコア数及びコアの配置は、第1MCFテープ芯線及び第2MCFテープ芯線の各MCFと同じである。接続部材50は、4つのMCF51〜54をテープ状に固着した固着領域58の両側において、MCF51〜54それぞれを固着しない個別領域を設ける。なお、以下の説明において、図1に示す様に、MCF51〜54の一方の端部を含む領域を第1領域と呼び、他方の端部を含む領域を第2領域と呼ぶものとする。さらに、第1領域と第2領域の間の領域の内の所定領域を第3領域と呼ぶものとする。なお、本実施形態においては、固着領域58と第3領域は等しい。さらに、以下の説明において、図1の左右方向を長手方向と呼び、図1の上下方向を幅方向と呼ぶものとする。接続部材50のMCF51〜54は、それぞれ、第1領域と第3領域の間と、第2領域と第3領域の間において、コーティング部55を有する。コーティング部55は、MCFの周囲全体を摩擦係数の高い材料でコーティングしたものである。なお、図1に示す様に、本実施形態において、MCF51〜54の長手方向において、コーティング部55は、それぞれ、異なる位置に設けられる。なお、コーティング部55の位置がどの様に設定されるかについては後述する。   In this embodiment, a connecting member is used to connect the same numbered cores of the same numbered MCFs of the first MCF tape core wire and the second MCF tape core wire. FIG. 1 shows a connecting member 50 according to the present embodiment. The connection member 50 is created based on the same number of MCFs as the MCF tape cores to be connected, that is, in the present embodiment, based on the tape cores of the four MCFs 51 to 54. The number of cores and the arrangement of the cores of the MCFs 51 to 54 are the same as those of the MCFs of the first MCF tape core wire and the second MCF tape core wire. The connection member 50 is provided with individual areas where the MCFs 51 to 54 are not fixed on both sides of the fixing area 58 where the four MCFs 51 to 54 are fixed in a tape shape. In the following description, as shown in FIG. 1, a region including one end of the MCFs 51 to 54 is referred to as a first region, and a region including the other end is referred to as a second region. Further, a predetermined area in the area between the first area and the second area is referred to as a third area. In this embodiment, the fixed region 58 and the third region are equal. Further, in the following description, the left-right direction in FIG. 1 is referred to as a longitudinal direction, and the up-down direction in FIG. 1 is referred to as a width direction. Each of the MCFs 51 to 54 of the connection member 50 has a coating portion 55 between the first region and the third region and between the second region and the third region. The coating portion 55 is formed by coating the entire periphery of the MCF with a material having a high coefficient of friction. As shown in FIG. 1, in the present embodiment, the coating portions 55 are provided at different positions in the longitudinal direction of the MCFs 51 to 54, respectively. How the position of the coating unit 55 is set will be described later.

本実施形態では、第1領域側のMCF51〜54を、それぞれ、第1MCFテープ芯線の番号1、2、3及び4のMCFと融着し、第2領域側のMCF51〜54を、それぞれ、第2MCFテープ芯線の番号1、2、3及び4のMCFと融着することで、第1MCFテープ芯線と第2MCFテープ芯線を接続する。   In the present embodiment, the MCFs 51 to 54 on the first area side are fused with the MCFs of the first MCF tape core numbers 1, 2, 3, and 4, respectively, and the MCFs 51 to 54 on the second area side are respectively The first MCF tape core wire and the second MCF tape core wire are connected by fusing with the MCFs of Nos. 1, 2, 3 and 4 of the 2MCF tape core wire.

図2は、本実施形態による調芯装置100の構成図である。主保持部1は、接続部材50の固着領域58を保持するフォルダであり、調芯装置100から脱着可能に構成される。図4は、主保持部1の構成図である。なお、主保持部1が接続部材50を保持している状態において、幅方向は、図4の左右方向に対応し、長手方向は図4の面と直交する方向に対応する。図4に示す様に主保持部1は、上側保持部11と下側保持部12を有し、上側保持部11と下側保持部12は不図示のロック機構によりロックされる様に構成される。なお、上側保持部11と下側保持部12が接する面には、接続部材50の固着領域58を保持するための溝13が設けられる。上側保持部11と下側保持部12を分離した状態で、下側保持部12の溝に、接続部材50の固着領域58を載せ、上側保持部11を下側保持部12に対してロックすることで、接続部材50は、主保持部1に保持される。なお、このロック状態において、主保持部1に対する接続部材50の相対位置は動かない様に主保持部1及び接続部材50の大きさは設定される。接続部材50を保持した後、主保持部1は、調芯装置100の本体に固定される。   FIG. 2 is a configuration diagram of the alignment device 100 according to the present embodiment. The main holding unit 1 is a folder that holds the fixing area 58 of the connection member 50, and is configured to be detachable from the alignment device 100. FIG. 4 is a configuration diagram of the main holding unit 1. In the state where the main holding unit 1 holds the connecting member 50, the width direction corresponds to the left-right direction in FIG. 4, and the longitudinal direction corresponds to the direction orthogonal to the plane in FIG. As shown in FIG. 4, the main holding unit 1 has an upper holding unit 11 and a lower holding unit 12, and the upper holding unit 11 and the lower holding unit 12 are configured to be locked by a lock mechanism (not shown). You. A groove 13 for holding the fixing region 58 of the connection member 50 is provided on a surface where the upper holding portion 11 and the lower holding portion 12 are in contact with each other. With the upper holding portion 11 and the lower holding portion 12 separated from each other, the fixing region 58 of the connecting member 50 is placed in the groove of the lower holding portion 12, and the upper holding portion 11 is locked to the lower holding portion 12. Thus, the connection member 50 is held by the main holding unit 1. In this locked state, the sizes of the main holding portion 1 and the connecting member 50 are set so that the relative position of the connecting member 50 with respect to the main holding portion 1 does not move. After holding the connection member 50, the main holding unit 1 is fixed to the main body of the alignment device 100.

図3は、接続部材50を保持した主保持部1を調芯装置100の本体に固定した状態を示している。図3において、黒塗りの太線は接続部材50のMCF51〜54を示している。主保持部1を調芯装置100の本体に固定した状態において、第1領域側のコーティング部55が回転機構部21に位置し、第2領域側のコーティング部55が回転機構部22に位置する様に、コーティング部55の位置は設定される。回転機構部21及び22については後述する。また、主保持部1を調芯装置100の本体に固定した状態において、第1領域が補助保持部31に位置し、第2領域が補助保持部32に位置する様に、接続部材50と調芯装置100の各部分のサイズは設定されている。   FIG. 3 shows a state where the main holding unit 1 holding the connecting member 50 is fixed to the main body of the centering device 100. In FIG. 3, thick black lines indicate the MCFs 51 to 54 of the connection member 50. In a state where the main holding unit 1 is fixed to the main body of the alignment device 100, the coating unit 55 on the first area side is located on the rotation mechanism unit 21 and the coating unit 55 on the second area side is located on the rotation mechanism unit 22. Thus, the position of the coating unit 55 is set. The rotation mechanisms 21 and 22 will be described later. When the main holding unit 1 is fixed to the main body of the alignment device 100, the connecting member 50 is adjusted so that the first region is located on the auxiliary holding unit 31 and the second region is located on the auxiliary holding unit 32. The size of each part of the core device 100 is set.

補助保持部31及び32は、それぞれ、接続部材50のMCF51〜54の端部近傍を保持する。補助保持部31及び32の構成は同様であるため、以下では、補助保持部31について説明する。図5は、補助保持部31がMCF51〜54の端部近傍を保持している様子を示している。なお、図5の左右方向は幅方向に対応し、図5の面と直交する方向は長手方向に対応する。図5に示す様に補助保持部31は、上側保持部312と下側保持部311を有し、下側保持部311には、V字状の溝が設けられる。なお、V字状の溝の幅の最大値は、MCF51〜54それぞれを溝に載せたときに、MCF51〜54の全体が溝内に入ることがない大きさとする。MCF51〜54それぞれをV字状の溝に載せた後、上側保持部312によりMCF51から54に下向きの力を加えることで、補助保持部31は、接続部材50を保持する。なお、本実施形態において、補助保持部31が接続部材50を保持した状態において、MCF51〜54は、周方向に回転可能とする。つまり、MCF51〜54の位置を固定するが、周方向の回転については可能な様に、上側保持部312がMCF51〜54に加える力は設定される。   The auxiliary holding portions 31 and 32 hold the vicinity of the ends of the MCFs 51 to 54 of the connection member 50, respectively. Since the configurations of the auxiliary holding units 31 and 32 are the same, the auxiliary holding unit 31 will be described below. FIG. 5 shows a state in which the auxiliary holding unit 31 holds the vicinity of the ends of the MCFs 51 to 54. 5 corresponds to the width direction, and the direction perpendicular to the plane of FIG. 5 corresponds to the longitudinal direction. As shown in FIG. 5, the auxiliary holding unit 31 has an upper holding unit 312 and a lower holding unit 311. The lower holding unit 311 is provided with a V-shaped groove. Note that the maximum value of the width of the V-shaped groove is set to a size such that when each of the MCFs 51 to 54 is placed in the groove, the entirety of the MCFs 51 to 54 does not enter the groove. After placing each of the MCFs 51 to 54 in the V-shaped groove, the auxiliary holding unit 31 holds the connection member 50 by applying a downward force to the MCFs 51 to 54 by the upper holding unit 312. In the present embodiment, the MCFs 51 to 54 are rotatable in the circumferential direction when the auxiliary holding unit 31 holds the connection member 50. That is, although the positions of the MCFs 51 to 54 are fixed, the force applied by the upper holding unit 312 to the MCFs 51 to 54 is set so that the rotation in the circumferential direction is possible.

図2に戻り、第1保持部41は、第1MCFテープ芯線を固定して保持し、第2保持部42は、第2MCFテープ芯線を固定して保持する。なお、第1保持部41及び第2保持部42は、主保持部1と同様に、調芯装置100の本体から着脱可能な様に構成される。第1保持部41及び第2保持部42の構成は同様であり、例えば、特許文献1に記載のテープ芯線(SCF)の融着に使用するフォルダと同様の構成を使用できる。図3は、第1保持部41及び第2保持部42が、それぞれ、第1MCFテープ芯線61及び第2MCFテープ芯線62を保持して、調芯装置100の本体に装着されている状態も示している。なお、参照符号611はテープ状に固着されている部分を示し、参照符号612は、固着のためのコーティングを取り除き、各MCFが剥き出しになっている領域を示している。例えば、各MCFが剥き出しになっている領域612は、補助保持部31及び32と同様の構成により固定することができる。しかしながら、各MCFが剥き出しになっている領域612において、各MCFが周方向に回転しない様に第1保持部41及び第2保持部42は、MCFを保持する。   Returning to FIG. 2, the first holding unit 41 fixes and holds the first MCF tape core, and the second holding unit 42 fixes and holds the second MCF tape core. In addition, the first holding unit 41 and the second holding unit 42 are configured to be detachable from the main body of the centering device 100, similarly to the main holding unit 1. The configurations of the first holding unit 41 and the second holding unit 42 are the same. For example, the same configuration as the folder used for fusing the tape core wire (SCF) described in Patent Document 1 can be used. FIG. 3 also shows a state in which the first holding unit 41 and the second holding unit 42 hold the first MCF tape core wire 61 and the second MCF tape core wire 62, respectively, and are mounted on the main body of the alignment device 100. I have. Reference numeral 611 indicates a portion fixed in a tape shape, and reference numeral 612 indicates a region where each MCF is exposed by removing a coating for fixing. For example, the region 612 where each MCF is exposed can be fixed by the same configuration as the auxiliary holding units 31 and 32. However, in the region 612 where each MCF is exposed, the first holding unit 41 and the second holding unit 42 hold the MCF so that each MCF does not rotate in the circumferential direction.

図3に示す様に、調芯装置100に主保持部1、第1保持部41及び第2保持部42を装着した後、回転機構部21及び22を使用して、接続部材50のMCF51〜54をそれぞれ周方向に回転させることで、第1MCFテープ芯線及び第2MCFテープ芯線の各MCFと、MCF51〜54の位相合わせを行う。なお、回転機構部21及び22の構成は同様であるため、以下では、回転機構部21について説明する。図6は、回転機構部21の構成を示している。回転機構部21は、摩擦係数の高い部材で構成された、可動板211〜214を有する。可動板211〜214は、それぞれ、MCF51〜54のコーティング部55と接する様に、可動板211〜214及びMCF51〜54のコーティング部55の位置は設定されている。可動板211〜214は、不図示の駆動源により幅方向に移動が可能である。不図示の駆動源により、可動板211〜214を幅方向に移動させることで、可動板211〜214とコーティング部55の摩擦により、MCF51〜54は周方向に回転する。なお、図示してはいないが、回転機構部21は、図5の下側保持部311と同様のV字状の溝を有する上側保持部を有する。上側保持部は、MCF51〜54に対して可動板211〜214とは反対側から、つまり、上側からMCF51〜54が幅方向に移動しない様にMCF51〜54を保持する。   As shown in FIG. 3, after the main holding unit 1, the first holding unit 41, and the second holding unit 42 are attached to the alignment device 100, the MCF 51 to the MCF 51 of the connection member 50 are rotated using the rotation mechanism units 21 and 22. Each of the MCFs 51 to 54 is phase-matched with each MCF of the first MCF tape core wire and the second MCF tape core wire by rotating each of them in the circumferential direction. Since the configurations of the rotation mechanism units 21 and 22 are the same, the rotation mechanism unit 21 will be described below. FIG. 6 shows the configuration of the rotation mechanism 21. The rotation mechanism 21 has movable plates 211 to 214 made of a member having a high coefficient of friction. The positions of the movable plates 211 to 214 and the coating portions 55 of the MCFs 51 to 54 are set such that the movable plates 211 to 214 are in contact with the coating portions 55 of the MCFs 51 to 54, respectively. The movable plates 211 to 214 can be moved in the width direction by a driving source (not shown). By moving the movable plates 211 to 214 in the width direction by a drive source (not shown), the MCFs 51 to 54 rotate in the circumferential direction due to friction between the movable plates 211 to 214 and the coating unit 55. Although not shown, the rotation mechanism section 21 has an upper holding section having a V-shaped groove similar to the lower holding section 311 in FIG. The upper holding unit holds the MCFs 51 to 54 from the side opposite to the movable plates 211 to 214 with respect to the MCFs 51 to 54, that is, from the upper side so that the MCFs 51 to 54 do not move in the width direction.

例えば、図3に示す様に、第1MCFテープ芯線61の番号1、2、3及び4のMCFの端面と、第1領域側のMCF51〜54の端面をそれぞれ対向させる。なお、本実施形態では、主保持部1、第1保持部41及び第2保持部42を調芯装置100の本体に装着すると、融着する2つのMCFの断面の中心が一致する様に構成されているものとする。しかしながら、例えば、第1保持部41又は補助保持部31を3次元の各方向に移動可能な様に構成し、公知の方法を使用して融着する2つのMCFの断面の中心が一致する様に第1保持部41又は補助保持部31を移動させる構成とすることもできる。   For example, as shown in FIG. 3, the end faces of the MCFs Nos. 1, 2, 3 and 4 of the first MCF tape core wire 61 and the end faces of the MCFs 51 to 54 on the first area side are respectively opposed to each other. In this embodiment, when the main holding unit 1, the first holding unit 41, and the second holding unit 42 are mounted on the main body of the centering apparatus 100, the cross-section centers of the two MCFs to be fused are aligned. It is assumed that However, for example, the first holding unit 41 or the auxiliary holding unit 31 is configured to be movable in each of three-dimensional directions, and the center of the cross section of the two MCFs to be fused using a known method is matched. Alternatively, the first holding unit 41 or the auxiliary holding unit 31 may be moved.

例えば、不図示のミラー等を用いて、第1MCFテープ芯線61の各MCFの端面と、第1領域側のMCF51〜54の端面とを撮像して不図示のディスプレイに端面を表示する。そして、作業者は、ディスプレイに表示された端面を確認しながら、第1領域側のMCF51〜54の各位相が、第1MCFテープ芯線61の融着対象のMCFの位相と一致する様に、第1領域側のMCF51〜54を回転させる。第1領域側のMCF51〜54の各位相が、第1MCFテープ芯線61の融着対象のMCFの位相に一致した後、例えば、非特許文献1に開示されている融着方法を使用することで、第1MCFテープ芯線61と接続部材50を融着することができる。第2領域側についても同様である。なお、可動板211〜214によりMCF51〜54の位相を決めた後、可動板211〜214の移動を停止させると、コーティング部50と可動板との摩擦によりMCF51〜54は、その位相で保持される。しかしながら、可動板211〜214によりMCF51〜54の位相を決めた後、補助保持部31及び補助保持部32の上側保持部312がMCF51〜54に加える力を強くし、補助保持部31及び補助保持部32によりMCF51〜54の回転を抑える構成とすることもできる。この場合、補助保持部31及び補助保持部32は、MCF51〜54を回転可能に保持する第1状態と、MCF51〜54が回転しない様に保持する第2状態に設定可能な様に構成される。   For example, an end face of each MCF of the first MCF tape core wire 61 and end faces of the MCFs 51 to 54 on the first area side are imaged using a mirror or the like (not shown), and the end faces are displayed on a display (not shown). Then, while checking the end face displayed on the display, the worker sets the first MCF tape core wire 61 such that the respective phases of the MCFs 51 to 54 coincide with the phases of the MCFs to be fused of the first MCF tape core wire 61. The MCFs 51 to 54 on one side are rotated. After the phases of the MCFs 51 to 54 on the first area side match the phases of the MCFs to be fused of the first MCF tape core 61, for example, by using the fusion method disclosed in Non-Patent Document 1. The first MCF tape core wire 61 and the connecting member 50 can be fused. The same applies to the second area side. After the phases of the MCFs 51 to 54 are determined by the movable plates 211 to 214, when the movement of the movable plates 211 to 214 is stopped, the MCFs 51 to 54 are held in that phase by friction between the coating unit 50 and the movable plate. You. However, after the phases of the MCFs 51 to 54 are determined by the movable plates 211 to 214, the force applied to the MCFs 51 to 54 by the upper holding portions 312 of the auxiliary holding portions 31 and 32 is increased, and the auxiliary holding portions 31 and the auxiliary holding portions are increased. The rotation of the MCFs 51 to 54 may be suppressed by the unit 32. In this case, the auxiliary holding unit 31 and the auxiliary holding unit 32 can be set to a first state in which the MCFs 51 to 54 are rotatably held and a second state in which the MCFs 51 to 54 are held so as not to rotate. .

なお、本実施形態では、可動板211〜214をMCF51〜54の下側に設けたが可動板の位置は、MCF51〜54の下側に限定されない。例えば、可動板211〜214をMCF51〜54の上側に設けることができる。この場合、例えば、回転機構部21及び22には、補助保持部31の下側保持部311と同様のV字状の溝を設けた下側保持部を設けて、MCF51〜54が幅方向に移動することを抑える。さらに、可動板211〜214を、幅方向及び長手方向を含む面とは垂直方向に伸びる様に設け、可動板211〜214を垂直方向に動かすことで、MCF51〜54を周方向に回転させる構成とすることもできる。この場合、各MCF51〜54のコーティング部50の長手方向の位置を同じにすることができる。さらに、本実施形態では、コーティング55と可動板211〜214との摩擦力により、MCF51〜54を周方向に回転させたが、例えば、コーティング55及び可動板211〜214にお互いが噛み合う様に溝を設ける構成とし、ギア形式により可動板211〜214の動力をMCF51〜54に伝達させてMCF51〜54を回転させる構成とすることもできる。つまり、可動板をラックとし、MCF51〜54には、対応するラックと噛み合うギアを設ける構成とすることもできる。   In the present embodiment, the movable plates 211 to 214 are provided below the MCFs 51 to 54, but the positions of the movable plates are not limited to the lower sides of the MCFs 51 to 54. For example, the movable plates 211 to 214 can be provided above the MCFs 51 to 54. In this case, for example, a lower holding portion provided with a V-shaped groove similar to the lower holding portion 311 of the auxiliary holding portion 31 is provided in the rotation mechanism portions 21 and 22 so that the MCFs 51 to 54 are arranged in the width direction. Suppress moving. Further, the movable plates 211 to 214 are provided so as to extend in a direction perpendicular to the plane including the width direction and the longitudinal direction, and the MCFs 51 to 54 are rotated in the circumferential direction by moving the movable plates 211 to 214 in the vertical direction. It can also be. In this case, the positions of the coating portions 50 in the longitudinal direction of the MCFs 51 to 54 can be the same. Further, in the present embodiment, the MCFs 51 to 54 are rotated in the circumferential direction by the frictional force between the coating 55 and the movable plates 211 to 214. For example, the grooves are formed so that the coating 55 and the movable plates 211 to 214 mesh with each other. May be provided, and the power of the movable plates 211 to 214 may be transmitted to the MCFs 51 to 54 in a gear form to rotate the MCFs 51 to 54. That is, the movable plate may be a rack, and the MCFs 51 to 54 may be provided with gears that mesh with the corresponding racks.

<第二実施形態>
続いて、第二実施形態について第一実施形態との相違点を中心に説明する。図7は、本実施形態による調芯装置101を示している。第一実施形態と異なり、本実施形態では、主保持部11と主保持部12の2つの主保持部を有し、第1保持部41、補助保持部31及び回転機構部21と、第2保持部42、補助保持部32及び回転機構部22は、主保持部に対して互いに同じ側に配置される。図8は、本実施形態による接続部材501を示している。本実施形態の接続部材501の第3領域は、2つの固着領域581及び582と、2つの固着領域581及び582の間にあって、MCF51〜54が剥き出しにされた個別領域を有する。個別領域においてMCF51〜MCF54は、180度だけ曲げられる。そして、主保持部11は、固着領域581を保持し、主保持部12は、固着領域582を保持する。その他の構成や、MCF51〜54の位相合わせの方法は、第一実施形態と同様である。
<Second embodiment>
Subsequently, the second embodiment will be described focusing on differences from the first embodiment. FIG. 7 shows a centering device 101 according to the present embodiment. Unlike the first embodiment, this embodiment has two main holding units, a main holding unit 11 and a main holding unit 12, and has a first holding unit 41, an auxiliary holding unit 31, a rotation mechanism unit 21, and a second holding unit. The holding unit 42, the auxiliary holding unit 32, and the rotation mechanism unit 22 are arranged on the same side with respect to the main holding unit. FIG. 8 shows a connection member 501 according to the present embodiment. The third region of the connection member 501 of the present embodiment has two fixed regions 581 and 582 and an individual region between the two fixed regions 581 and 582, where the MCFs 51 to 54 are exposed. In the individual area, the MCFs 51 to 54 are bent by 180 degrees. Then, the main holding unit 11 holds the fixing region 581, and the main holding unit 12 holds the fixing region 582. The other configurations and the method of adjusting the phases of the MCFs 51 to 54 are the same as in the first embodiment.

本実施形態では、接続する第1MCFテープ芯線と第2MCFテープ芯線が同じ方向に敷設されている場合でも接続部材501により両テープ芯線を接続することができる。   In the present embodiment, even when the first MCF tape core wire and the second MCF tape core wire to be connected are laid in the same direction, both tape core wires can be connected by the connection member 501.

<第三実施形態>
続いて、第三実施形態について第一実施形態及び第二実施形態との相違点を中心に説明する。第一実施形態及び第二実施形態の接続部材は、第3領域において固着領域を有し、主保持部は、固着領域を保持していた。また、固着領域を保持することで、コーティング部50が回転機構部21及び22に位置する様に、接続部材は構成されていた。本実施形態の接続部材502は、図9に示す様に第3領域において固着領域を有さない。つまり、接続部材502は、個別のMCFである。しかしながら、例えば、図9に示す様に、第3領域には、主保持部1により保持する範囲を示すマーク56及びマーク57を設ける。図10は、本実施形態による主保持部1を示している。主保持部1は、MCF51〜MCF54を保持する。例えば、マーク56〜マーク57の範囲を主保持部1に保持させることで、コーティング部50は、それぞれ、回転機構部に位置する様に、コーティング部50、マーク56及びマーク57の位置は設定されている。なお、マーク56及びマーク57を設けることなく、作業者が、目視によりコーティング部50が回転機構に位置する様に主保持部1により保持させる接続部材502の位置を決める構成であっても良い。
<Third embodiment>
Subsequently, the third embodiment will be described focusing on differences from the first embodiment and the second embodiment. The connection members of the first embodiment and the second embodiment have a fixing region in the third region, and the main holding unit holds the fixing region. In addition, the connection member is configured such that the coating portion 50 is located at the rotation mechanism portions 21 and 22 by holding the fixing region. The connecting member 502 of the present embodiment does not have a fixed region in the third region as shown in FIG. That is, the connection member 502 is an individual MCF. However, for example, as shown in FIG. 9, a mark 56 and a mark 57 indicating the range held by the main holding unit 1 are provided in the third area. FIG. 10 shows the main holding unit 1 according to the present embodiment. The main holding unit 1 holds MCF51 to MCF54. For example, by allowing the main holding unit 1 to hold the range of the marks 56 to the marks 57, the positions of the coating unit 50, the marks 56, and the marks 57 are set such that the coating unit 50 is located at the rotation mechanism unit. ing. Note that, without providing the mark 56 and the mark 57, the operator may visually determine the position of the connection member 502 to be held by the main holding unit 1 so that the coating unit 50 is positioned on the rotating mechanism.

例えば、第一実施形態において、接続部材50は固着領域58を有し、この固着領域58においてはMCF51〜MCF54を回転させることができない。したがって、固着領域58の両側において、MCF51〜MCF54の回転量の最大値はそれぞれ180度となる。したがって、最悪の場合、接続部材50において、MCF51〜MCF54の両側を相対的に360度回転させる必要がある。本実施形態では、MCF51〜MCF54それぞれの位相を調整した後、主保持部1により保持させることで、MCF51〜MCF54の両側の相対的な回転量の最大値を180度に抑えることができる。   For example, in the first embodiment, the connection member 50 has the fixing region 58, and the MCF 51 to the MCF 54 cannot be rotated in the fixing region 58. Therefore, the maximum value of the rotation amount of each of the MCFs 51 to 54 on both sides of the fixing region 58 is 180 degrees. Therefore, in the worst case, it is necessary to relatively rotate both sides of the MCFs 51 to 54 in the connection member 50 by 360 degrees. In the present embodiment, by adjusting the phases of the MCFs 51 to MCF 54 and then holding them by the main holding unit 1, the maximum value of the relative rotation amount on both sides of the MCFs 51 to MCF 54 can be suppressed to 180 degrees.

<第四実施形態>
続いて、第四実施形態について第一実施形態から第三実施形態との相違点を中心に説明する。第一実施形態から第三実施形態においては接続部材を使用していた。本実施形態では、接続部材を使用しない。図11は、本実施形態による調芯装置102の構成図である。第1保持部41には、第一実施形態と同様に第1MCFテープ芯線を保持させる。一方、本実施形態では、第2MCFテープ芯線の端部部分のコーティングを取り除き、第2MCFテープ芯線の各MCFの先端部分をばらばらにした後、第2MCFテープ芯線の各MCFにギアを通しておく。そして、第2MCFテープ芯線の固着領域を主保持部1に保持させて調芯装置の本体に固定した後、各MCFに通したギアが、回転機構部22の対応するラックと噛み合う様に各ギアの位置を決め、その後、各ギアをMCFに接着して固定させる。そして、各MCFの端部領域を第一実施形態の接続部材50と同様に補助保持部31に保持させる。この構成により、接続部材を使用することなく、第1MCFテープ芯線と第2MCFテープ芯線を接続することができる。なお、ギア方式により本実施形態を説明したが、摩擦方式とすることもできる。
<Fourth embodiment>
Subsequently, the fourth embodiment will be described focusing on differences from the first embodiment to the third embodiment. In the first to third embodiments, the connection member is used. In this embodiment, no connection member is used. FIG. 11 is a configuration diagram of the alignment device 102 according to the present embodiment. The first holding portion 41 holds the first MCF tape core wire in the same manner as in the first embodiment. On the other hand, in the present embodiment, the coating on the end portion of the second MCF tape core is removed, the leading end of each MCF of the second MCF tape core is separated, and then a gear is passed through each MCF of the second MCF tape core. Then, after the fixing region of the second MCF tape core wire is held by the main holding portion 1 and fixed to the main body of the alignment device, the gears passed through each MCF are meshed with the corresponding racks of the rotation mechanism portion 22 so that the gears are engaged. Is determined, and then each gear is bonded and fixed to the MCF. Then, the end holding region of each MCF is held by the auxiliary holding portion 31 similarly to the connection member 50 of the first embodiment. According to this configuration, the first MCF tape core wire and the second MCF tape core wire can be connected without using a connecting member. Although the present embodiment has been described with reference to the gear system, a friction system may be used.

<その他の実施形態>
第一実施形態から第四実施形態では、2つのMCFテープ芯線を接続するものとしたが、本発明は、複数の第1MCFと複数の第2MCFとをそれぞれ接続する場合にも適用することができる。
<Other embodiments>
In the first to fourth embodiments, two MCF tape core wires are connected, but the present invention can also be applied to a case where a plurality of first MCFs and a plurality of second MCFs are respectively connected. .

1:主保持部、21、22:回転機構部、31、32:補助保持部   1: Main holding unit, 21, 22: Rotating mechanism unit, 31, 32: Auxiliary holding unit

Claims (16)

複数の第1マルチコア光ファイバと複数の第2マルチコア光ファイバとを、複数の第3マルチコア光ファイバを含む接続部材を介して接続するための調芯装置であって、
前記複数の第3マルチコア光ファイバそれぞれの第1端部を含む第1領域を保持するための第1保持手段と、
前記複数の第3マルチコア光ファイバそれぞれの第2端部を含む第2領域を保持するための第2保持手段と、
前記複数の第3マルチコア光ファイバそれぞれの前記第1領域と前記第2領域との間にある第3領域を保持するための第3保持手段と、
前記第1保持手段と前記第3保持手段との間にあって、前記複数の第3マルチコア光ファイバそれぞれを周方向に回転させる第1回転手段と、
前記第2保持手段と前記第3保持手段との間にあって、前記複数の第3マルチコア光ファイバそれぞれを周方向に回転させる第2回転手段と、
を備えていることを特徴とする調芯装置。
An alignment apparatus for connecting a plurality of first multi-core optical fibers and a plurality of second multi-core optical fibers via a connection member including a plurality of third multi-core optical fibers,
First holding means for holding a first region including a first end of each of the plurality of third multi-core optical fibers;
Second holding means for holding a second region including a second end of each of the plurality of third multi-core optical fibers;
Third holding means for holding a third region between the first region and the second region of each of the plurality of third multi-core optical fibers;
A first rotating unit that is located between the first holding unit and the third holding unit and that rotates each of the plurality of third multi-core optical fibers in a circumferential direction;
A second rotating unit between the second holding unit and the third holding unit, the second rotating unit rotating each of the plurality of third multi-core optical fibers in a circumferential direction;
A centering device comprising:
前記第1回転手段及び前記第2回転手段は、前記複数の第3マルチコア光ファイバそれぞれの回転が可能な様に前記第1保持手段及び前記第2保持手段が前記複数の第3マルチコア光ファイバそれぞれを保持している間に、前記複数の第3マルチコア光ファイバそれぞれを周方向に回転させることを特徴とする請求項1に記載の調芯装置。   The first rotation unit and the second rotation unit may be configured such that the first holding unit and the second holding unit are each configured to rotate the plurality of third multi-core optical fibers, respectively. The centering device according to claim 1, wherein each of the plurality of third multi-core optical fibers is rotated in a circumferential direction while holding the optical fiber. 前記第1回転手段及び前記第2回転手段は、前記複数の第3マルチコア光ファイバそれぞれが回転しない様に前記第3保持手段が前記複数の第3マルチコア光ファイバそれぞれを保持している間に、前記複数の第3マルチコア光ファイバそれぞれを周方向に回転させることを特徴とする請求項2に記載の調芯装置。   The first rotation unit and the second rotation unit may be configured such that the third holding unit holds each of the plurality of third multi-core optical fibers so that each of the plurality of third multi-core optical fibers does not rotate. The centering device according to claim 2, wherein each of the plurality of third multi-core optical fibers is rotated in a circumferential direction. 前記複数の第3マルチコア光ファイバは、前記第3領域内の固着領域において互いに固着されていることを特徴とする請求項1又は2に記載の調芯装置。   The centering device according to claim 1, wherein the plurality of third multi-core optical fibers are fixed to each other in a fixing region in the third region. 前記第3保持手段は、前記固着領域を保持することを特徴とする請求項4に記載の調芯装置。   The centering device according to claim 4, wherein the third holding unit holds the fixing region. 前記複数の第3マルチコア光ファイバは、それぞれ、前記第3保持手段により保持される位置を示すマークを有することを特徴とする請求項1から3のいずれか1項に記載の調芯装置。   4. The alignment apparatus according to claim 1, wherein each of the plurality of third multi-core optical fibers has a mark indicating a position held by the third holding unit. 5. 前記第1保持手段及び前記第2保持手段は、前記複数の第3マルチコア光ファイバそれぞれの回転が可能な様に前記複数の第3マルチコア光ファイバそれぞれを保持する第1状態と、前記複数の第3マルチコア光ファイバそれぞれが回転しない様に前記複数の第3マルチコア光ファイバそれぞれを保持する第2状態と、に設定可能な様に構成されていることを特徴とする請求項1から6のいずれか1項に記載の調芯装置。   The first holding unit and the second holding unit each include a first state for holding each of the plurality of third multi-core optical fibers such that each of the plurality of third multi-core optical fibers can rotate, and 7. The apparatus according to claim 1, wherein the third multi-core optical fiber is configured to be set to a second state in which each of the plurality of third multi-core optical fibers is held so as not to rotate. Item 2. The centering device according to item 1. 前記第1保持手段及び前記第2保持手段は、前記第3保持手段に対して同じ側に配置されることを特徴とする請求項1から7のいずれか1項に記載の調芯装置。   The centering device according to any one of claims 1 to 7, wherein the first holding unit and the second holding unit are arranged on the same side with respect to the third holding unit. 前記第1回転手段及び前記第2回転手段は、それぞれ、前記複数の第3マルチコア光ファイバそれぞれに対応する可動板を有し、
前記複数の第3マルチコア光ファイバは、それぞれ、前記第1回転手段及び前記第2回転手段の対応する可動板と接し、その周方向の全体に渡るコーティング部を有し、
前記可動板と前記コーティング部の摩擦力により前記複数の第3マルチコア光ファイバは、それぞれ、周方向に回転されることを特徴とする請求項1から8のいずれか1項に記載の調芯装置。
The first rotation unit and the second rotation unit each have a movable plate corresponding to each of the plurality of third multi-core optical fibers,
Each of the plurality of third multi-core optical fibers is in contact with a corresponding movable plate of the first rotating means and the second rotating means, and has a coating portion extending over the entire circumference thereof,
9. The centering device according to claim 1, wherein each of the plurality of third multi-core optical fibers is rotated in a circumferential direction by a frictional force between the movable plate and the coating unit. 10. .
前記第1回転手段及び前記第2回転手段は、それぞれ、前記複数の第3マルチコア光ファイバそれぞれに対応するラックを有し、
前記複数の第3マルチコア光ファイバは、それぞれ、前記第1回転手段及び前記第2回転手段の対応するラックと噛み合うギアを有することを特徴とする請求項1から8のいずれか1項に記載の調芯装置。
The first rotation unit and the second rotation unit each have a rack corresponding to each of the plurality of third multi-core optical fibers,
9. The device according to claim 1, wherein each of the plurality of third multi-core optical fibers has a gear that meshes with a corresponding rack of the first rotation unit and the second rotation unit. 10. Alignment device.
複数の第1マルチコア光ファイバと複数の第2マルチコア光ファイバと、を接続するための調芯装置であって、
前記複数の第1マルチコア光ファイバそれぞれの端部を含む領域を保持するための第1保持手段と、
前記複数の第2マルチコア光ファイバそれぞれの端部を含む領域を保持するための第2保持手段と、
前記複数の第1マルチコア光ファイバそれぞれを周方向に回転させる回転手段と、
を備えていることを特徴とする調芯装置。
A core alignment device for connecting a plurality of first multi-core optical fibers and a plurality of second multi-core optical fibers,
First holding means for holding a region including an end of each of the plurality of first multi-core optical fibers;
A second holding unit for holding a region including an end of each of the plurality of second multi-core optical fibers;
Rotating means for rotating each of the plurality of first multi-core optical fibers in a circumferential direction;
A centering device comprising:
前記第1保持手段は、前記複数の第1マルチコア光ファバイそれぞれの回転が可能な様に前記複数の第1マルチコア光ファイバそれぞれを保持し、
前記第2保持手段は、前記複数の第2マルチコア光ファイバそれぞれが回転しない様に記複数の第2マルチコア光ファイバそれぞれを保持することを特徴とする請求項11に記載の調芯装置。
The first holding unit holds each of the plurality of first multi-core optical fibers so that each of the plurality of first multi-core optical fibers can rotate.
The alignment device according to claim 11, wherein the second holding unit holds each of the plurality of second multi-core optical fibers so that each of the plurality of second multi-core optical fibers does not rotate.
前記複数の第1マルチコア光ファイバそれぞれはテープ状に固着されており、
前記複数の第2マルチコア光ファイバそれぞれはテープ状に固着されていることを特徴とする請求項1から12のいずれか1項に記載の調芯装置。
Each of the plurality of first multi-core optical fibers is fixed in a tape shape,
13. The alignment apparatus according to claim 1, wherein each of the plurality of second multi-core optical fibers is fixed in a tape shape.
複数の第1マルチコア光ファイバと複数の第2マルチコア光ファイバとを接続するための接続部材であって、
前記接続部材は、
第3マルチコア光ファイバと、
前記第3マルチコア光ファイバの周方向の全体に渡り設けられた第1被回転部材と、
前記第3マルチコア光ファイバの長手方向において、前記第1被回転部材とは異なる位置に前記第3マルチコア光ファイバの周方向の全体に渡り設けられた第2被回転部材と、
を有することを特徴とする接続部材。
A connection member for connecting the plurality of first multi-core optical fibers and the plurality of second multi-core optical fibers,
The connection member,
A third multi-core optical fiber;
A first rotatable member provided over the entire circumference of the third multi-core optical fiber,
In the longitudinal direction of the third multi-core optical fiber, a second rotated member provided over the entire circumference of the third multi-core optical fiber at a position different from the first rotated member;
A connection member comprising:
前記第1被回転部材及び前記第2被回転部材は、調芯装置の回転機構との摩擦力により回転されることを特徴とする請求項14に記載の接続部材。   The connection member according to claim 14, wherein the first and second rotated members are rotated by a frictional force with a rotation mechanism of a centering device. 前記第1被回転部材及び前記第2被回転部材は、ギアであることを特徴とする請求項14に記載の接続部材。   The connecting member according to claim 14, wherein the first and second rotated members are gears.
JP2018164431A 2018-09-03 2018-09-03 Alignment device for fusion splicing of multi-core optical fibers Active JP7156867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164431A JP7156867B2 (en) 2018-09-03 2018-09-03 Alignment device for fusion splicing of multi-core optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164431A JP7156867B2 (en) 2018-09-03 2018-09-03 Alignment device for fusion splicing of multi-core optical fibers

Publications (2)

Publication Number Publication Date
JP2020038255A true JP2020038255A (en) 2020-03-12
JP7156867B2 JP7156867B2 (en) 2022-10-19

Family

ID=69737901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164431A Active JP7156867B2 (en) 2018-09-03 2018-09-03 Alignment device for fusion splicing of multi-core optical fibers

Country Status (1)

Country Link
JP (1) JP7156867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138761A1 (en) * 2020-12-25 2022-06-30 住友電気工業株式会社 Optical fiber ribbon, optical fiber connection component, and method for manufacturing optical fiber connection component

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815562A (en) * 1994-07-01 1996-01-19 Hitachi Cable Ltd Alignment method of direction of rotating direction of optical fiber in optical fiber array and optical fiber array
JPH0815547A (en) * 1994-06-29 1996-01-19 Kyocera Corp Stage for rotating optical fiber terminal
JP2002258123A (en) * 2000-12-25 2002-09-11 Ngk Insulators Ltd Polarized wave fiber with ribbon, method of manufacturing the same, and polarized wave optical fiber array using the same
JP2003344735A (en) * 2002-05-28 2003-12-03 Photonic Science Technology Inc Polarization maintaining optical fiber ribbon manufacturing apparatus
JP2004012799A (en) * 2002-06-06 2004-01-15 Furukawa Electric Co Ltd:The Optical fiber aligning apparatus and optical fiber welding splicer
JP2004138736A (en) * 2002-10-16 2004-05-13 Sumitomo Electric Ind Ltd Polarization holding optical fiber and method for regulating axis of polarization holding optical fiber
JP2005284223A (en) * 2004-03-29 2005-10-13 Photonic Science Technology Inc Method and device for manufacturing polarization maintaining optical fiber array
JP2013160800A (en) * 2012-02-01 2013-08-19 Sumitomo Electric Ind Ltd Multi-core optical fiber tape
US20140219609A1 (en) * 2013-02-05 2014-08-07 Commscope, Inc. Of North Carolina Methods of connectorizing multi-core fiber optic cables and related apparatus
JP2015004762A (en) * 2013-06-20 2015-01-08 三菱電線工業株式会社 Optical fiber connection method
JP2015145989A (en) * 2014-02-04 2015-08-13 住友電気工業株式会社 Multi-core fiber aligning method, connector manufacturing method, and ribbon fiber manufacturing method
JP2015169873A (en) * 2014-03-10 2015-09-28 住友電気工業株式会社 Optical module production method
WO2016047658A1 (en) * 2014-09-24 2016-03-31 古河電気工業株式会社 Optical fibre ribbon, and optical-fibre-ribbon production method
JP2016127241A (en) * 2015-01-08 2016-07-11 Kddi株式会社 Multi-core optical amplifier and optical transmission system
WO2017195834A1 (en) * 2016-05-10 2017-11-16 住友電気工業株式会社 Coupled multicore optical fiber and optical transmission system including same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815547A (en) * 1994-06-29 1996-01-19 Kyocera Corp Stage for rotating optical fiber terminal
JPH0815562A (en) * 1994-07-01 1996-01-19 Hitachi Cable Ltd Alignment method of direction of rotating direction of optical fiber in optical fiber array and optical fiber array
JP2002258123A (en) * 2000-12-25 2002-09-11 Ngk Insulators Ltd Polarized wave fiber with ribbon, method of manufacturing the same, and polarized wave optical fiber array using the same
JP2003344735A (en) * 2002-05-28 2003-12-03 Photonic Science Technology Inc Polarization maintaining optical fiber ribbon manufacturing apparatus
JP2004012799A (en) * 2002-06-06 2004-01-15 Furukawa Electric Co Ltd:The Optical fiber aligning apparatus and optical fiber welding splicer
JP2004138736A (en) * 2002-10-16 2004-05-13 Sumitomo Electric Ind Ltd Polarization holding optical fiber and method for regulating axis of polarization holding optical fiber
JP2005284223A (en) * 2004-03-29 2005-10-13 Photonic Science Technology Inc Method and device for manufacturing polarization maintaining optical fiber array
JP2013160800A (en) * 2012-02-01 2013-08-19 Sumitomo Electric Ind Ltd Multi-core optical fiber tape
US20140219609A1 (en) * 2013-02-05 2014-08-07 Commscope, Inc. Of North Carolina Methods of connectorizing multi-core fiber optic cables and related apparatus
JP2015004762A (en) * 2013-06-20 2015-01-08 三菱電線工業株式会社 Optical fiber connection method
JP2015145989A (en) * 2014-02-04 2015-08-13 住友電気工業株式会社 Multi-core fiber aligning method, connector manufacturing method, and ribbon fiber manufacturing method
JP2015169873A (en) * 2014-03-10 2015-09-28 住友電気工業株式会社 Optical module production method
WO2016047658A1 (en) * 2014-09-24 2016-03-31 古河電気工業株式会社 Optical fibre ribbon, and optical-fibre-ribbon production method
JP2016127241A (en) * 2015-01-08 2016-07-11 Kddi株式会社 Multi-core optical amplifier and optical transmission system
WO2017195834A1 (en) * 2016-05-10 2017-11-16 住友電気工業株式会社 Coupled multicore optical fiber and optical transmission system including same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138761A1 (en) * 2020-12-25 2022-06-30 住友電気工業株式会社 Optical fiber ribbon, optical fiber connection component, and method for manufacturing optical fiber connection component

Also Published As

Publication number Publication date
JP7156867B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US3798099A (en) Method for splicing optical films
US20010053268A1 (en) Optical fiber fusion splicer
JP6648759B2 (en) Method for manufacturing imaging optical element and apparatus for manufacturing imaging optical element
JP2020038255A (en) Core alignment device for fusion of multicore optical fiber and connecting member
JP2020144301A (en) Fusion splicer and rotational alignment method of optical fiber
US20180299619A1 (en) Method of splicing optical fibers and apparatus thereof
EP2711751A1 (en) Method for distinguishing optical fiber and method for fusion-splicing optical fibers
JP6729064B2 (en) Method for manufacturing spliced multi-core optical fiber
US9268090B2 (en) Fusion splicing apparatus and method thereof
JP2015114607A (en) Method for aligning multicore fiber, method for manufacturing connector, and multicore fiber
JP7347762B2 (en) Optical fiber fusion splicing method
JP5985297B2 (en) Optical fiber connection method
JPH09203815A (en) Method for aligning polarization maintaining optical fiber, and polarization maintaining optical fiber array
JP2004053625A (en) Method and device for splicing optical fibers
JP6930170B2 (en) Manufacturing method of optical connection parts
CN105511236A (en) Optical conduction device and exposure machine
JP2015200747A (en) Optical fiber connection device
JP2005099362A (en) Fusion splicing device of optical fiber and fusion splicing method
JP2015064504A (en) Core adjustment method of optical fiber and manufacturing method of optical module
JP6303790B2 (en) Optical fiber connecting part manufacturing method
KR100893931B1 (en) A joining method for an electrical devices panel
KR100419880B1 (en) Polarization Maintaining Fiber Alignment And Inspection Equipment
JPS6022104A (en) Arraying method of optical fiber array
JP3701521B2 (en) Polarization maintaining fiber alignment device and polarization maintaining coupler manufacturing device
JP2002116339A (en) Fusion splicing method for constant polarization optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220902

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7156867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150