JP2020034596A - Method of manufacturing stretched resin film, method of manufacturing polarizer, and device for manufacturing stretched resin film - Google Patents

Method of manufacturing stretched resin film, method of manufacturing polarizer, and device for manufacturing stretched resin film Download PDF

Info

Publication number
JP2020034596A
JP2020034596A JP2018158255A JP2018158255A JP2020034596A JP 2020034596 A JP2020034596 A JP 2020034596A JP 2018158255 A JP2018158255 A JP 2018158255A JP 2018158255 A JP2018158255 A JP 2018158255A JP 2020034596 A JP2020034596 A JP 2020034596A
Authority
JP
Japan
Prior art keywords
resin film
water
stretching
film
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018158255A
Other languages
Japanese (ja)
Other versions
JP6535799B1 (en
Inventor
峻哉 若山
Shunya Wakayama
峻哉 若山
誠 土永
Makoto Tsuchinaga
誠 土永
繁嘉 桐部
Shigeyoshi Kiribe
繁嘉 桐部
徹雄 那須
Tetsuo NASU
徹雄 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2018158255A priority Critical patent/JP6535799B1/en
Application granted granted Critical
Publication of JP6535799B1 publication Critical patent/JP6535799B1/en
Priority to KR1020190101818A priority patent/KR20200024100A/en
Priority to CN201910794849.3A priority patent/CN110861325B/en
Publication of JP2020034596A publication Critical patent/JP2020034596A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • B29C2071/0045Washing using non-reactive liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

To provide a method of manufacturing a stretched resin film, which enables easy detection of appearance defects.SOLUTION: A stretched resin film manufacturing method of the present invention involves forming a stretched resin film on a non-water-absorbing film by conveying a laminate comprising a water-absorbing resin layer formed on one surface of an elongate non-water-absorbing film and applying an underwater stretching process and washing process to the laminate in the described order while conveying the laminate, and comprises detecting appearance defects on the stretched resin film on the basis of thickness of the stretched resin film after the washing process.SELECTED DRAWING: Figure 1

Description

本発明は、延伸樹脂膜の製造方法、偏光子の製造方法、および延伸樹脂膜の製造装置に関する。   The present invention relates to a method for manufacturing a stretched resin film, a method for manufacturing a polarizer, and an apparatus for manufacturing a stretched resin film.

長尺状のフィルムの片側に樹脂層が形成された積層体を延伸することにより、樹脂層の厚みが非常に薄い場合であっても樹脂層を破断させることなく延伸し、厚みが薄い延伸樹脂膜を得る方法が知られている。このような延伸樹脂膜の一例として、ポリエステル系樹脂フィルムとポリビニルアルコール系樹脂層(PVA系樹脂層)との積層体を延伸および染色することにより、ポリエステル系樹脂フィルム上に偏光子を形成する方法が提案されている(例えば、特許文献1)。しかしながら、上記の方法によって得られる延伸樹脂膜は、外観不良の検出が容易ではない。   By stretching a laminate having a resin layer formed on one side of a long film, the stretched resin is stretched without breaking the resin layer even when the thickness of the resin layer is extremely thin, and the stretched resin having a small thickness is obtained. Methods for obtaining membranes are known. As an example of such a stretched resin film, a method of forming a polarizer on a polyester-based resin film by stretching and dyeing a laminate of a polyester-based resin film and a polyvinyl alcohol-based resin layer (PVA-based resin layer) Has been proposed (for example, Patent Document 1). However, in the stretched resin film obtained by the above method, it is not easy to detect a defective appearance.

特開2001−343521号公報JP 2001-343521 A

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、外観不良の検出が容易である延伸樹脂膜の製造方法、そのような製造方法を用いた偏光子の製造方法、および延伸樹脂膜の製造装置を提供することにある。   The present invention has been made to solve the above-mentioned conventional problems, and its main objects are to provide a method for producing a stretched resin film in which the appearance defect can be easily detected, and to produce a polarizer using such a production method. An object of the present invention is to provide a method and an apparatus for producing a stretched resin film.

本発明の延伸樹脂膜の製造方法は、長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、上記積層体に水中延伸処理と洗浄処理とをこの順に施すことにより、上記非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造方法であって、上記洗浄処理後の上記延伸樹脂膜の厚みに基づいて、上記延伸樹脂膜の外観不良を検出することを含む。
本発明の延伸樹脂膜の製造方法は、長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、上記積層体に水中延伸処理と洗浄処理とをこの順に施すことにより、上記非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造方法であって、上記洗浄処理後の上記延伸樹脂膜の水分率に基づいて、上記延伸樹脂膜の外観不良を検出することを含む。
1つの実施形態においては、上記洗浄処理の後に、上記積層体を搬送しながら上記延伸樹脂膜の厚みを非接触で測定することと、測定された上記延伸樹脂膜の厚みに基づいて、上記洗浄処理後の上記延伸樹脂膜の水分率を算出することと、をさらに含む。
本発明の別の局面によれば、偏光子の製造方法が提供される。この偏光子の製造方法は、上記の製造方法により、上記非吸水性フィルム上に偏光子を形成する、偏光子の製造方法であって、上記非吸水性フィルムがポリエステル系樹脂フィルムであり、上記樹脂層がポリビニルアルコール系樹脂層であり、上記ポリエステル系樹脂フィルムと上記ポリビニルアルコール系樹脂層との積層体に染色処理を施すことをさらに含む。
本発明の別の局面によれば、延伸樹脂膜の製造装置が提供される。この延伸樹脂膜の製造装置は、長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、上記積層体に処理を施すことにより、上記非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造装置であって、上記積層体を水中延伸する水中延伸処理部と、水中延伸の後に上記積層体を洗浄する洗浄処理部と、上記洗浄処理後の上記延伸樹脂膜の厚みまたは水分率に基づいて、上記延伸樹脂膜の外観不良を検出する検査部と、を含む。
The method for producing a stretched resin film of the present invention comprises, while transporting a laminate in which a water-absorbent resin layer is formed on one side of a long non-water-absorbent film, performing an underwater stretching treatment and a washing treatment on the laminate. By performing in this order, a stretched resin film is formed on the non-water-absorbing film, and is a method for producing a stretched resin film, based on the thickness of the stretched resin film after the washing treatment, This includes detecting appearance defects.
The method for producing a stretched resin film of the present invention comprises, while transporting a laminate in which a water-absorbent resin layer is formed on one side of a long non-water-absorbent film, performing an underwater stretching treatment and a washing treatment on the laminate. A method for producing a stretched resin film, comprising forming a stretched resin film on the non-water-absorbent film by applying in this order, wherein the stretched resin film is formed based on a moisture content of the stretched resin film after the washing treatment. Detecting the poor appearance of the image.
In one embodiment, after the cleaning treatment, the thickness of the stretched resin film is measured in a non-contact manner while transporting the laminate, and the cleaning is performed based on the measured thickness of the stretched resin film. Calculating the moisture content of the stretched resin film after the treatment.
According to another aspect of the present invention, a method for manufacturing a polarizer is provided. The method for producing a polarizer is a method for producing a polarizer, wherein a polarizer is formed on the non-water-absorbing film by the above-described production method, wherein the non-water-absorbing film is a polyester resin film, The resin layer is a polyvinyl alcohol-based resin layer, and further includes performing a dyeing treatment on a laminate of the polyester resin film and the polyvinyl alcohol-based resin layer.
According to another aspect of the present invention, an apparatus for manufacturing a stretched resin film is provided. This stretched resin film manufacturing apparatus performs the above-mentioned non-water-absorbing process by performing a treatment on the above-mentioned laminated product while conveying a laminated product having a water-absorbing resin layer formed on one side of a long non-water-absorbing film. An apparatus for manufacturing a stretched resin film that forms a stretched resin film on a film, comprising: an underwater stretching section for stretching the laminate in water; a washing section for washing the laminate after stretching in water; and the washing step. An inspection unit for detecting a defective appearance of the stretched resin film based on the thickness or the moisture content of the stretched resin film after the treatment.

本発明によれば、洗浄処理後の前記延伸樹脂膜の厚みまたは水分率に基づいて延伸樹脂膜の外観不良を検出することにより、外観不良を容易に検出することができる。   According to the present invention, the appearance defect can be easily detected by detecting the appearance defect of the stretched resin film based on the thickness or the moisture content of the stretched resin film after the cleaning treatment.

本発明の1つの実施形態に係る偏光子の製造工程を示す概略図である。It is a schematic diagram showing a manufacturing process of a polarizer concerning one embodiment of the present invention. 洗浄処理後のPVA系樹脂層の厚みと水分率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a PVA-type resin layer after a washing | cleaning process, and a water content. 洗浄処理後のPVA系樹脂層の厚みと得られる偏光子の外観不良レベルとの関係を示すグラフである。4 is a graph showing the relationship between the thickness of a PVA-based resin layer after a cleaning treatment and the level of defective appearance of a polarizer obtained.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

A.延伸樹脂膜の製造方法
本発明の延伸樹脂膜の製造方法は、長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、積層体に水中延伸処理と洗浄処理とをこの順に施すことにより、非吸水性フィルム上に延伸樹脂膜を形成する、というものである。上記の製造方法は、洗浄処理後の延伸樹脂膜の厚みまたは水分率に基づいて、延伸樹脂膜の外観不良を検出することを含む。1つの実施形態においては、洗浄処理の後に、積層体を搬送しながら延伸樹脂膜の厚みを非接触で測定することと、測定された延伸樹脂膜の厚みに基づいて、洗浄処理後の延伸樹脂膜の水分率を算出することと、をさらに含む。上記の製造方法によれば、製造工程中で(インラインで)延伸樹脂膜の外観不良を容易に検出し得、さらには、外観不良が発生した場合に水中延伸処理工程などの前工程での処理条件を改善することにより、製造される延伸樹脂膜の品質を改善し得る。
A. Method for Producing Stretched Resin Film The method for producing a stretched resin film of the present invention comprises a step of subjecting a laminate in which a water-absorbent resin layer is formed on one side of a long non-water-absorbent film to an underwater stretching treatment on the laminate. And a washing treatment in this order to form a stretched resin film on the non-water-absorbing film. The above manufacturing method includes detecting a defective appearance of the stretched resin film based on the thickness or the moisture content of the stretched resin film after the cleaning treatment. In one embodiment, after the cleaning treatment, the thickness of the stretched resin film is measured in a non-contact manner while transporting the laminate, and based on the measured thickness of the stretched resin film, the stretched resin after the cleaning treatment is used. Calculating the moisture content of the membrane. According to the above manufacturing method, the appearance defect of the stretched resin film can be easily detected in the manufacturing process (in-line), and furthermore, when the appearance defect occurs, the process is performed in a pre-process such as an underwater stretching process. By improving the conditions, the quality of the produced stretched resin film can be improved.

非吸水性フィルムの吸水率は、好ましくは3%以下であり、より好ましくは2%以下であり、特に好ましくは0.1%〜1%である。吸水率は、JIS K 7209−2000に準じて求められる値である。非吸水性フィルムの厚みは、好ましくは10μm〜200μmである。非吸水性フィルムとしては、本発明の効果が得られる限りにおいて、任意の適切なフィルムを用いることができ、代表的には、熱可塑性樹脂により構成されたフィルムを用いることができる。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。   The water absorption of the non-water-absorbing film is preferably 3% or less, more preferably 2% or less, and particularly preferably 0.1% to 1%. The water absorption is a value determined according to JIS K 7209-2000. The thickness of the non-water-absorbing film is preferably from 10 μm to 200 μm. As the non-water-absorbing film, any appropriate film can be used as long as the effects of the present invention can be obtained. Typically, a film made of a thermoplastic resin can be used. Examples of the thermoplastic resin include, for example, ester resins such as polyethylene terephthalate resin, cycloolefin resins such as norbornene resin, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Is mentioned.

吸水性の樹脂層の吸水率は、好ましくは25%以上であり、より好ましくは25%〜130%であり、特に好ましくは25%〜110%である。延伸処理前の吸水性の樹脂層の厚みは、好ましくは3μm〜20μmである。吸水性の樹脂層を構成する樹脂材料としては、本発明の効果が得られる限りにおいて、任意の適切な樹脂材料を用いることができ、代表的には、PVA系樹脂を用いることができる。   The water absorption of the water-absorbing resin layer is preferably 25% or more, more preferably 25% to 130%, and particularly preferably 25% to 110%. The thickness of the water-absorbing resin layer before the stretching treatment is preferably 3 μm to 20 μm. As the resin material constituting the water-absorbing resin layer, any appropriate resin material can be used as long as the effects of the present invention can be obtained, and a PVA-based resin can be typically used.

本発明の延伸樹脂膜の製造方法は、偏光子の製造方法として利用することができる。以下では、延伸樹脂膜として偏光子を例に挙げて、偏光子の製造方法について説明する。   The method for producing a stretched resin film of the present invention can be used as a method for producing a polarizer. Hereinafter, a method of manufacturing a polarizer will be described using a polarizer as an example of the stretched resin film.

B.偏光子の製造方法
本発明の偏光子の製造方法は、長尺状のポリエステル系樹脂フィルムの片側にポリビニルアルコール系樹脂層(PVA系樹脂層)が形成された積層体を搬送しながら、積層体に染色処理を施すこと、および水中延伸処理と洗浄処理とをこの順に施すことにより、ポリエステル系樹脂フィルム上に偏光子を形成する、というものである。上記の製造方法は、洗浄処理後のPVA系樹脂層の厚みまたは水分率に基づいて、PVA系樹脂層の外観不良を検出することを含む。
B. Method for Producing Polarizer The method for producing a polarizer of the present invention relates to a method for producing a polarizer, comprising transporting a laminate in which a polyvinyl alcohol-based resin layer (PVA-based resin layer) is formed on one side of a long polyester resin film. Is subjected to a dyeing treatment, and an in-water stretching treatment and a washing treatment are performed in this order to form a polarizer on the polyester resin film. The above manufacturing method includes detecting a defective appearance of the PVA-based resin layer based on the thickness or the moisture content of the PVA-based resin layer after the cleaning treatment.

本発明者らの検証によれば、従来の製造方法に比べて積層体の搬送速度を高めた場合、最終的に得られる偏光子(延伸樹脂膜)に外観不良(例えば、スジ状痕)が発生することがわかった。しかしながら、積層体を搬送しながら、インラインでPVA系樹脂層の外観不良を検出することは容易ではない。そこで、本発明者らは、更なる検証の結果、洗浄処理後のPVA系樹脂層の水分率と得られる偏光子の外観不良のレベルとの間に相関があることを発見した。これにより、洗浄処理後のPVA系樹脂層の水分率に基づいて、偏光子の外観不良を検出することができる。特に、洗浄処理後のPVA系樹脂層の水分率をインラインで測定することにより、インラインでPVA系樹脂層の外観不良を検出することができる。   According to the verification of the present inventors, when the transport speed of the laminated body is increased as compared with the conventional manufacturing method, the finally obtained polarizer (stretched resin film) has poor appearance (for example, streak marks). It was found to happen. However, it is not easy to detect the appearance defect of the PVA-based resin layer inline while transporting the laminate. Therefore, the present inventors have found, as a result of further verification, that there is a correlation between the moisture content of the PVA-based resin layer after the cleaning treatment and the level of poor appearance of the obtained polarizer. This makes it possible to detect poor appearance of the polarizer based on the moisture content of the PVA-based resin layer after the cleaning treatment. In particular, by measuring the moisture content of the PVA-based resin layer after the cleaning treatment in-line, the appearance defect of the PVA-based resin layer can be detected in-line.

インラインでPVA系樹脂層(延伸樹脂膜)の水分率を測定する場合、一般的には、IR水分率計等の非接触式の水分率計が用いられる。しかしながら、本発明者らの検証によれば、非接触式の水分率計を用いてインラインでPVA系樹脂層の水分率を測定する方法では、空気中の水分やPVA系樹脂層の表面に付着した水膜等の影響により、高精度で水分率を測定することができないことがわかった。そこで、本発明者らは、更なる検証の結果、図2に示すように、洗浄処理後のPVA系樹脂層の厚みとPVA系樹脂層の水分率との間に相関があることを発見した。これは、PVA系樹脂層が吸水することによる面内方向の寸法変化は非吸水性のポリエステル系樹脂フィルムによって拘束されており、PVA系樹脂層は、吸水量に応じて厚み方向に膨張することが原因のひとつであると考えられる。これにより、洗浄処理後の延伸樹脂膜の厚みに基づいて、偏光子の外観不良を検出することができる。特に、洗浄処理後のPVA系樹脂層の厚みをインラインで測定することにより、インラインでPVA系樹脂層の外観不良を検出することができる。なお、図2のグラフは、下記表1に示す様々な延伸条件(具体的には、延伸浴のホウ酸濃度)で積層体に水中延伸処理を施したときの、洗浄処理後のPVA系樹脂層の厚みおよび水分率のデータをプロットしたものである。グラフ中の近似曲線は、プロットデータから指数関数となるように最小二乗法で求めた近似曲線である。図2中の水分率は、乾燥重量法に基づき、以下の式により算出したものである。
PVA系樹脂層の水分率=(洗浄処理後のPVA系樹脂層の重量−乾燥後のPVA系樹脂層の重量)/乾燥後のPVA系樹脂層の重量
When the moisture content of the PVA-based resin layer (stretched resin film) is measured in-line, a non-contact moisture content meter such as an IR moisture content meter is generally used. However, according to the verification of the present inventors, in the method of measuring the moisture content of the PVA-based resin layer in-line using a non-contact moisture content meter, the moisture in the air or the surface of the PVA-based resin layer is not adhered. It was found that the moisture content could not be measured with high accuracy due to the influence of the water film and the like. Therefore, the present inventors have further found that there is a correlation between the thickness of the PVA-based resin layer after the cleaning treatment and the moisture content of the PVA-based resin layer, as shown in FIG. . This is because the dimensional change in the in-plane direction due to the water absorption of the PVA-based resin layer is restrained by the non-water-absorbing polyester-based resin film, and the PVA-based resin layer expands in the thickness direction according to the amount of water absorption. Is considered to be one of the causes. This makes it possible to detect poor appearance of the polarizer based on the thickness of the stretched resin film after the cleaning treatment. In particular, by measuring the thickness of the PVA-based resin layer after the cleaning treatment in-line, the appearance defect of the PVA-based resin layer can be detected in-line. The graph of FIG. 2 shows the PVA-based resin after the washing treatment when the laminate was subjected to the underwater stretching treatment under various stretching conditions (specifically, boric acid concentration of the stretching bath) shown in Table 1 below. It is a plot of data of layer thickness and moisture content. The approximation curve in the graph is an approximation curve obtained from the plot data by the least square method so as to be an exponential function. The moisture percentage in FIG. 2 is calculated by the following equation based on the dry weight method.
Moisture percentage of PVA-based resin layer = (weight of PVA-based resin layer after cleaning treatment-weight of dried PVA-based resin layer) / weight of dried PVA-based resin layer

図1は、本発明の1つの実施形態に係る偏光子の製造工程を示す概略図である。本実施形態に係る偏光子の製造工程は、代表的には、ポリエステル系樹脂フィルムとPVA系樹脂層との積層体200を、繰り出し部101から繰り出し、搬送ロールによってホウ酸水溶液の浴110中に浸漬した後(膨潤処理)、二色性物質(ヨウ素)およびヨウ化カリウムの水溶液の浴120中に浸漬する(染色処理)。次いで、ホウ酸およびヨウ化カリウムの水溶液の浴130中に浸漬する(架橋処理)。次いで、積層体200を、ホウ酸水溶液の延伸浴140中に浸漬しながら、速比の異なるロールで縦方向(長手方向、搬送方向、MD方向)に張力を付与して延伸する(水中延伸処理)。次いで、水中延伸した積層体200を、ヨウ化カリウム水溶液の浴150中に浸漬して洗浄する(洗浄処理)。次いで、検査部160により、洗浄処理後の積層体200におけるPVA系樹脂層の厚みまたは水分率に基づいて、最終的に得られる偏光子の外観不良を検出する。次いで、オーブン170により積層体200を乾燥する(乾燥処理)ことにより、ポリエステル系樹脂フィルム上に偏光子が形成された光学積層体100が得られる。その後、得られた光学積層体100を巻き取り部180にて巻き取る。図示は省略するが、積層体200に膨潤処理を施す前に、空中延伸処理を施してもよい。なお、図1に示す製造工程は一例であり、上記の処理の回数、順序等は、特に限定されない。   FIG. 1 is a schematic view illustrating a manufacturing process of a polarizer according to one embodiment of the present invention. The manufacturing process of the polarizer according to the present embodiment is typically, a laminate 200 of a polyester-based resin film and a PVA-based resin layer is fed out from the feeding unit 101, and is placed in a boric acid aqueous solution bath 110 by a transport roll. After immersion (swelling treatment), the substrate is immersed in a bath 120 of an aqueous solution of a dichroic substance (iodine) and potassium iodide (dyeing treatment). Next, it is immersed in a bath 130 of an aqueous solution of boric acid and potassium iodide (crosslinking treatment). Next, the laminate 200 is stretched by applying tension in the longitudinal direction (longitudinal direction, transport direction, MD direction) with rolls having different speed ratios while being immersed in a stretching bath 140 of an aqueous boric acid solution (underwater stretching treatment). ). Next, the underwater-stretched laminate 200 is immersed and washed in a bath 150 of an aqueous potassium iodide solution (washing treatment). Next, the inspection unit 160 detects a defective appearance of the finally obtained polarizer based on the thickness or the moisture content of the PVA-based resin layer in the laminated body 200 after the cleaning process. Next, the laminated body 200 is dried (drying treatment) by the oven 170 to obtain the optical laminated body 100 in which the polarizer is formed on the polyester resin film. Thereafter, the obtained optical laminated body 100 is wound up by the winding section 180. Although illustration is omitted, an air stretching process may be performed before the swelling process is performed on the laminate 200. Note that the manufacturing process shown in FIG. 1 is an example, and the number, order, and the like of the above processes are not particularly limited.

B−1.積層体
ポリエステル系樹脂フィルムとPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、ポリエステル系樹脂フィルムの表面に、PVA系樹脂を含む塗布液を塗布し、乾燥することにより、ポリエステル系樹脂フィルム上にPVA系樹脂層を形成する。
B-1. Laminate Any appropriate method can be adopted as a method for producing a laminate of the polyester resin film and the PVA resin layer. Preferably, a coating solution containing a PVA-based resin is applied to the surface of the polyester-based resin film, and dried to form a PVA-based resin layer on the polyester-based resin film.

塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。   Any appropriate method can be adopted as a method of applying the coating liquid. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (such as a comma coating method) and the like can be mentioned. The coating / drying temperature of the coating solution is preferably 50 ° C. or higher.

乾燥後のPVA系樹脂層の厚みは、好ましくは、3μm〜40μm、さらに好ましくは3μm〜20μmであり、特に好ましくは5μm〜15μmである。   The thickness of the PVA-based resin layer after drying is preferably 3 μm to 40 μm, more preferably 3 μm to 20 μm, and particularly preferably 5 μm to 15 μm.

PVA系樹脂層を形成する前に、ポリエステル系樹脂フィルムに表面処理(例えば、コロナ処理等)を施してもよいし、ポリエステル系樹脂フィルム上に易接着層を形成してもよい。このような処理を行うことにより、ポリエステル系樹脂フィルムとPVA系樹脂層との密着性を向上させることができる。   Before forming the PVA-based resin layer, the polyester-based resin film may be subjected to a surface treatment (for example, corona treatment) or an easy-adhesion layer may be formed on the polyester-based resin film. By performing such a treatment, the adhesion between the polyester resin film and the PVA resin layer can be improved.

B−1−1.ポリエステル系樹脂フィルム
ポリエステル系樹脂フィルムの厚みは、好ましくは20μm〜300μm、より好ましくは50μm〜200μmである。20μm未満であると、PVA系樹脂層の形成が困難になるおそれがある。
B-1-1. Polyester Resin Film The thickness of the polyester resin film is preferably 20 μm to 300 μm, more preferably 50 μm to 200 μm. If it is less than 20 μm, formation of a PVA-based resin layer may be difficult.

ポリエステル系樹脂フィルムは、好ましくは、その吸水率が0.2%以上であり、さらに好ましくは0.3%以上である。ポリエステル系樹脂フィルムは、水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、延伸応力を大幅に低下させることができ、高倍率に延伸することができる。一方、ポリエステル系樹脂フィルムの吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このようなポリエステル系樹脂フィルムを用いることにより、製造時にポリエステル系樹脂フィルムの寸法安定性が著しく低下して、得られる偏光子の外観が悪化するなどの不具合を防止することができる。また、水中延伸時にポリエステル系樹脂フィルムが破断したり、ポリエステル系樹脂フィルムからPVA系樹脂層が剥離したりするのを防止することができる。   The polyester resin film preferably has a water absorption of 0.2% or more, more preferably 0.3% or more. The polyester resin film absorbs water, and the water acts as a plasticizer and can be plasticized. As a result, the stretching stress can be greatly reduced, and stretching can be performed at a high magnification. On the other hand, the water absorption of the polyester resin film is preferably 3.0% or less, more preferably 1.0% or less. By using such a polyester-based resin film, it is possible to prevent problems such as the dimensional stability of the polyester-based resin film being remarkably reduced at the time of production and the appearance of the obtained polarizer being deteriorated. Further, it is possible to prevent breakage of the polyester resin film during stretching in water and separation of the PVA resin layer from the polyester resin film.

ポリエステル系樹脂フィルムのガラス転移温度(Tg)は、好ましくは120℃以下である。このようなポリエステル系樹脂フィルムを用いることにより、PVA系樹脂層の結晶化を抑制しながら、積層体の延伸性を十分に確保することができる。さらに、水によるポリエステル系樹脂フィルムの可塑化と、水中延伸を良好に行うことを考慮すると、100℃以下、さらには90℃以下であることがより好ましい。一方、ポリエステル系樹脂フィルムのガラス転移温度は、好ましくは60℃以上である。このようなポリエステル系樹脂フィルムを用いることにより、上記PVA系樹脂を含む塗布液を塗布・乾燥する際に、ポリエステル系樹脂フィルムが変形(例えば、凹凸やタルミ、シワ等の発生)するなどの不具合を防止して、良好に積層体を作製することができる。また、PVA系樹脂層の延伸を、好適な温度(例えば、60℃程度)にて良好に行うことができる。なお、ポリエステル系樹脂フィルムのガラス転移温度は、例えば、構成材料に変性基を導入する、または、結晶化材料を用いて加熱することにより調整することができる。ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。   The glass transition temperature (Tg) of the polyester resin film is preferably 120 ° C. or lower. By using such a polyester resin film, the stretchability of the laminate can be sufficiently ensured while suppressing crystallization of the PVA resin layer. Further, in consideration of good plasticization of the polyester-based resin film with water and good stretching in water, the temperature is more preferably 100 ° C or less, further preferably 90 ° C or less. On the other hand, the glass transition temperature of the polyester resin film is preferably 60 ° C. or higher. When such a polyester resin film is used, when applying and drying the coating solution containing the PVA resin, the polyester resin film is deformed (for example, irregularities, tarmi, wrinkles, etc. are generated). Is prevented, and a laminate can be produced favorably. Further, the stretching of the PVA-based resin layer can be favorably performed at a suitable temperature (for example, about 60 ° C.). The glass transition temperature of the polyester resin film can be adjusted, for example, by introducing a modifying group into the constituent material or by heating using a crystallized material. The glass transition temperature (Tg) is a value determined according to JIS K7121.

ポリエステル系樹脂フィルムを構成するエステル系樹脂として、1つの実施形態においては、非晶質の(結晶化していない)ポリエチレンテレフタレート系樹脂が好ましく用いられる。中でも、非晶性の(結晶化しにくい)ポリエチレンテレフタレート系樹脂が特に好ましく用いられる。非晶性のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸および/またはシクロヘキサンジカルボン酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールやジエチレングリコールをさらに含む共重合体が挙げられる。   In one embodiment, an amorphous (non-crystallized) polyethylene terephthalate resin is preferably used as the ester resin constituting the polyester resin film. Among them, an amorphous (hard to crystallize) polyethylene terephthalate resin is particularly preferably used. Specific examples of the amorphous polyethylene terephthalate-based resin include a copolymer further containing isophthalic acid and / or cyclohexanedicarboxylic acid as a dicarboxylic acid, and a copolymer further containing cyclohexanedimethanol or diethylene glycol as a glycol.

ポリエステル系樹脂フィルムは、予め(PVA系樹脂層を形成する前)、延伸されていてもよい。1つの実施形態においては、長尺状のポリエステル系樹脂フィルムの横方向に延伸されている。横方向は、好ましくは、後述の積層体の延伸方向に直交する方向である。なお、本明細書において、「直交」とは、実質的に直交する場合も包含する。ここで、「実質的に直交」とは、90°±5.0°である場合を包含し、好ましくは90°±3.0°、さらに好ましくは90°±1.0°である。ポリエステル系樹脂フィルムの延伸温度は、ガラス転移温度(Tg)に対し、好ましくはTg−10℃〜Tg+50℃である。ポリエステル系樹脂フィルムの延伸倍率は、好ましくは1.5倍〜3.0倍である。ポリエステル系樹脂フィルムの延伸方法としては、任意の適切な方法が採用され得る。具体的には、固定端延伸でもよいし、自由端延伸でもよい。延伸方式は、乾式でもよいし、湿式でもよい。ポリエステル系樹脂フィルムの延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、上述の延伸倍率は、各段階の延伸倍率の積である。   The polyester-based resin film may be stretched in advance (before forming the PVA-based resin layer). In one embodiment, it is stretched in the transverse direction of a long polyester resin film. The lateral direction is preferably a direction orthogonal to the stretching direction of the laminate described below. In addition, in this specification, "orthogonal" includes a case where they are substantially orthogonal. Here, “substantially orthogonal” includes 90 ° ± 5.0 °, preferably 90 ° ± 3.0 °, and more preferably 90 ° ± 1.0 °. The stretching temperature of the polyester resin film is preferably from Tg-10 ° C to Tg + 50 ° C with respect to the glass transition temperature (Tg). The stretch ratio of the polyester resin film is preferably 1.5 times to 3.0 times. Any appropriate method can be adopted as a method for stretching the polyester resin film. Specifically, fixed-end stretching or free-end stretching may be used. The stretching method may be a dry method or a wet method. The stretching of the polyester-based resin film may be performed in one step or may be performed in multiple steps. In the case of performing in multiple stages, the above-mentioned stretching ratio is a product of the stretching ratios in each stage.

B−1−2.PVA系樹脂を含む塗布液
上記塗布液は、代表的には、上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部〜20重量部である。このような樹脂濃度であれば、ポリエステル系樹脂フィルムに密着した均一な塗布膜を形成することができる。
B-1-2. Coating solution containing PVA-based resin The coating solution is typically a solution in which the PVA-based resin is dissolved in a solvent. Examples of the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferable. The concentration of the PVA-based resin in the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film adhered to the polyester resin film can be formed.

塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。1つの実施形態においては、塗布液はハロゲン化物をさらに含む。ハロゲン化物としては、例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部〜20重量部である。これにより、PVA系樹脂層がハロゲン化物を含まない場合に比べて、PVA系樹脂層を液体に浸漬したときのポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。その結果、得られる偏光子の光学特性を向上し得る。   An additive may be added to the coating solution. Examples of the additive include a plasticizer and a surfactant. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include a nonionic surfactant. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer. In one embodiment, the coating liquid further contains a halide. Halides include, for example, iodide and sodium chloride. Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable. The content of the halide in the coating solution is preferably 5 to 20 parts by weight based on 100 parts by weight of the PVA-based resin. Thereby, compared with the case where the PVA-based resin layer does not contain a halide, the disorder of the orientation of the polyvinyl alcohol molecules when the PVA-based resin layer is immersed in the liquid and the decrease in the orientation can be suppressed. As a result, the optical characteristics of the obtained polarizer can be improved.

上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン−ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン−ビニルアルコール共重合体は、エチレン−酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%〜100モル%であり、好ましくは95.0モル%〜99.95モル%、さらに好ましくは99.0モル%〜99.93モル%である。ケン化度は、JIS K 6726−1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。   Any appropriate resin can be adopted as the PVA-based resin. For example, polyvinyl alcohol and an ethylene-vinyl alcohol copolymer are mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. . The saponification degree can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.

PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000〜10000であり、好ましくは1200〜4500、さらに好ましくは1500〜4300である。なお、平均重合度は、JIS K 6726−1994に準じて求めることができる。   The average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose. The average degree of polymerization is usually from 1,000 to 10,000, preferably from 1,200 to 4,500, and more preferably from 1,500 to 4,300. The average degree of polymerization can be determined according to JIS K 6726-1994.

B−2.空中延伸処理
特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、ポリエステル系樹脂フィルムの結晶化を抑制しながら延伸することができ、後のホウ酸水中延伸においてポリエステル系樹脂フィルムの過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。さらには、ポリエステル系樹脂フィルム上にPVA系樹脂を塗布する場合、ポリエステル系樹脂フィルムのガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、ポリエステル系樹脂フィルム上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。
B-2. Aerial stretching treatment In particular, in order to obtain high optical properties, a two-stage stretching method in which dry stretching (auxiliary stretching) and stretching in boric acid in water is selected. By introducing auxiliary stretching as in two-stage stretching, stretching can be performed while suppressing crystallization of the polyester-based resin film, and in subsequent boric acid in water stretching, the polyester-based resin film is stretched due to excessive crystallization. It is possible to solve the problem that the property is reduced and to stretch the laminate at a higher magnification. Furthermore, when applying a PVA-based resin on a polyester-based resin film, in order to suppress the influence of the glass transition temperature of the polyester-based resin film, the application of the PVA-based resin is compared with the case where the PVA-based resin is applied on a normal metal drum. It is necessary to lower the temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. In contrast, by introducing auxiliary stretching, even when a PVA-based resin is applied on a polyester-based resin film, the crystallinity of the PVA-based resin can be increased, and high optical characteristics can be achieved. Becomes At the same time, by increasing the orientation of the PVA-based resin in advance, it is possible to prevent problems such as a decrease in the orientation of the PVA-based resin and dissolution when immersed in water in a subsequent dyeing step or stretching step. , High optical characteristics can be achieved.

空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用されうる。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定されうる。自由端延伸の場合、 幅方向の収縮率=(1/延伸倍率)1/2で計算される。 The stretching method in the air-assisted stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, uniaxially stretching through a laminate between rolls having different peripheral speeds). Although good, free end stretching can be actively employed to obtain high optical properties. In one embodiment, the air stretching process includes a heating roll stretching step of stretching the laminate by a peripheral speed difference between the heating rolls while transporting the laminate in the longitudinal direction. The aerial stretching process typically includes a zone stretching step and a heated roll stretching step. The order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first. The zone stretching step may be omitted. In one embodiment, the zone stretching step and the hot roll stretching step are performed in this order. In another embodiment, in a tenter stretching machine, the film is stretched by gripping the end of the film and increasing the distance between the tenters in the flow direction (the expansion of the distance between the tenters becomes the stretching ratio). At this time, the distance of the tenter in the width direction (perpendicular to the flow direction) is set to be arbitrarily small. Preferably, it can be set so as to be closer to the free-end stretching with respect to the stretching ratio in the flow direction. In the case of free-end stretching, the shrinkage in the width direction is calculated as (1 / stretch ratio) 1/2 .

空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。   The air-assisted stretching may be performed in one stage or may be performed in multiple stages. When the stretching is performed in multiple stages, the stretching ratio is a product of the stretching ratios of the respective stages. The stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.

空中補助延伸における延伸倍率は、好ましくは2.0倍〜3.5倍である。空中補助延伸と水中延伸とを組み合わせた場合の最大延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。   The stretching ratio in the air-assisted stretching is preferably 2.0 times to 3.5 times. The maximum stretching ratio in the case where the in-air assisted stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and still more preferably 6.0 times, with respect to the original length of the laminate. That is all. In the present specification, the “maximum stretch ratio” refers to a stretch ratio immediately before the laminate is broken, and separately refers to a stretch ratio at which the laminate is broken, and refers to a value 0.2 lower than the value.

空中補助延伸の延伸温度は、好ましくはポリエステル系樹脂フィルムのガラス転移温度(Tg)以上であり、さらに好ましくはポリエステル系樹脂フィルムのガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。   The stretching temperature of the in-air auxiliary stretching is preferably equal to or higher than the glass transition temperature (Tg) of the polyester resin film, more preferably equal to or higher than the glass transition temperature (Tg) of the polyester resin film + 10 ° C., and particularly preferably equal to or higher than Tg + 15 ° C. is there. On the other hand, the upper limit of the stretching temperature is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress the rapid progress of crystallization of the PVA-based resin, and to suppress problems caused by the crystallization (for example, hinder the orientation of the PVA-based resin layer by stretching). it can.

B−3.膨潤処理
必要に応じて、空中延伸処理の後、水中延伸処理や染色処理の前に、膨潤処理(不溶化処理)を施す。上記膨潤処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。膨潤処理を施すことにより、PVA系樹脂層に耐水性を付与し、水に浸漬した時のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部〜4重量部である。膨潤浴(ホウ酸水溶液)の液温は、好ましくは20℃〜50℃である。
B-3. Swelling treatment If necessary, a swelling treatment (insolubilization treatment) is performed after the air stretching treatment and before the underwater stretching treatment and the dyeing treatment. The swelling treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution. By performing the swelling treatment, it is possible to impart water resistance to the PVA-based resin layer and to prevent a decrease in the orientation of PVA when immersed in water. The concentration of the boric acid aqueous solution is preferably 1 part by weight to 4 parts by weight based on 100 parts by weight of water. The liquid temperature of the swelling bath (boric acid aqueous solution) is preferably from 20C to 50C.

B−4.染色処理
上記染色処理は、代表的には、PVA系樹脂層をヨウ素で染色することにより行う。具体的には、PVA系樹脂層にヨウ素を吸着させることにより行う。当該吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液(染色浴)に積層体を浸漬させる方法である。ヨウ素が良好に吸着し得るからである。
B-4. Dyeing treatment The above-mentioned dyeing treatment is typically performed by dyeing a PVA-based resin layer with iodine. Specifically, it is performed by adsorbing iodine on the PVA-based resin layer. Examples of the adsorption method include a method of dipping a PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of coating the PVA-based resin layer with the dyeing solution, and a method of applying the dyeing solution to the PVA-based resin layer. A spraying method and the like can be mentioned. A preferred method is to immerse the laminate in a dye solution (dye bath). This is because iodine can be favorably adsorbed.

上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.05重量部〜0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.1重量部〜10重量部、より好ましくは0.3重量部〜5重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃〜50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒〜5分であり、より好ましくは30秒〜90秒である。   The staining solution is preferably an iodine aqueous solution. The amount of iodine is preferably 0.05 to 0.5 parts by weight based on 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add iodide to an aqueous iodine solution. Examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. And the like. Among these, potassium iodide is preferable. The amount of iodide is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, based on 100 parts by weight of water. The temperature of the dyeing solution at the time of dyeing is preferably 20 ° C to 50 ° C in order to suppress dissolution of the PVA-based resin. When the PVA-based resin layer is immersed in the dyeing solution, the immersion time is preferably from 5 seconds to 5 minutes, more preferably from 30 seconds to 90 seconds, in order to secure the transmittance of the PVA-based resin layer.

染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光子に求められる光学特性(単体透過率および偏光度)に応じて適切に設定することができる。このような染色条件としては、例えば、染色液としてヨウ素水溶液を用い、ヨウ素水溶液におけるヨウ素およびヨウ化カリウムの含有量の比を、1:5〜1:20とする。ヨウ素水溶液におけるヨウ素およびヨウ化カリウムの含有量の比は、好ましくは1:5〜1:10である。これにより、上記のような光学特性を有する偏光子が得られ得る。   Dyeing conditions (concentration, solution temperature, immersion time) can be appropriately set according to the optical properties (single transmittance and degree of polarization) required of the finally obtained polarizer. As such a dyeing condition, for example, an aqueous solution of iodine is used as a dyeing solution, and the ratio of the contents of iodine and potassium iodide in the aqueous solution of iodine is 1: 5 to 1:20. The ratio between the contents of iodine and potassium iodide in the aqueous iodine solution is preferably from 1: 5 to 1:10. Thereby, a polarizer having the above-described optical characteristics can be obtained.

B−5.架橋処理
必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与し、後の水中延伸で、高温の水中へ浸漬した際のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部〜5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部〜5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃〜50℃である。
B-5. Crosslinking treatment If necessary, crosslinking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The crosslinking treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution. By performing the cross-linking treatment, water resistance is imparted to the PVA-based resin layer, and it is possible to prevent a decrease in the orientation of PVA when immersed in high-temperature water during subsequent stretching in water. The concentration of the boric acid aqueous solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. When a crosslinking treatment is performed after the above-mentioned dyeing treatment, it is preferable to further add an iodide. By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. The amount of iodide is preferably 1 to 5 parts by weight based on 100 parts by weight of water. Specific examples of iodide are as described above. The liquid temperature of the crosslinking bath (boric acid aqueous solution) is preferably from 20C to 50C.

B−6.水中延伸処理
水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記ポリエステル系樹脂フィルムやPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光子を製造することができる。
B-6. Underwater stretching treatment The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the in-water stretching treatment, the polyester resin film or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Stretching can be performed at a high magnification while suppressing it. As a result, a polarizer having excellent optical characteristics can be manufactured.

積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。   Any appropriate method can be adopted as a method for stretching the laminate. Specifically, fixed-end stretching or free-end stretching (for example, a method of uniaxially stretching through a laminate between rolls having different peripheral speeds) may be used. Preferably, free end stretching is selected. The stretching of the laminate may be performed in one stage or may be performed in multiple stages. In the case of performing in multiple stages, the stretching ratio (maximum stretching ratio) of the laminate described later is a product of the stretching ratios in each stage.

水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光子を製造することができる。   The underwater stretching is preferably performed by immersing the laminate in an aqueous boric acid solution (stretching in boric acid in water). By using a boric acid aqueous solution as the stretching bath, it is possible to provide the PVA-based resin layer with rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water. Specifically, boric acid can generate a tetrahydroxyborate anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding. As a result, rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be stretched favorably, and a polarizer having excellent optical characteristics can be manufactured.

上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部〜10重量部であり、より好ましくは2.5重量部〜6重量部であり、特に好ましくは3重量部〜5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光子を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。   The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. It is. By setting the boric acid concentration to 1 part by weight or more, the dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizer having higher characteristics can be manufactured. In addition to the boric acid or the borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.

好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部〜15重量部、より好ましくは0.5重量部〜8重量部である。   Preferably, an iodide is blended in the above-mentioned stretching bath (boric acid aqueous solution). By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. Specific examples of iodide are as described above. The concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight, based on 100 parts by weight of water.

延伸温度(延伸浴の液温)は、好ましくは40℃〜85℃、より好ましくは60℃〜75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、ポリエステル系樹脂フィルムのガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水によるポリエステル系樹脂フィルムの可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなり、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒〜5分である。   The stretching temperature (liquid temperature of the stretching bath) is preferably 40C to 85C, more preferably 60C to 75C. At such a temperature, the film can be stretched at a high magnification while suppressing the dissolution of the PVA-based resin layer. Specifically, as described above, the glass transition temperature (Tg) of the polyester-based resin film is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., there is a possibility that the stretching may not be performed well even in consideration of the plasticization of the polyester resin film by water. On the other hand, the higher the temperature of the stretching bath is, the higher the solubility of the PVA-based resin layer is, and there is a possibility that excellent optical properties cannot be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.

水中延伸による延伸倍率は、好ましくは1.5倍以上、より好ましくは3.0倍以上である。積層体の総延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上であり、さらに好ましくは5.5倍以上である。このような高い延伸倍率を達成することにより、光学特性に極めて優れた偏光子を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。   The stretching ratio by underwater stretching is preferably 1.5 times or more, more preferably 3.0 times or more. The total stretch ratio of the laminate is preferably at least 5.0 times, more preferably at least 5.5 times, the original length of the laminate. By achieving such a high draw ratio, a polarizer having extremely excellent optical properties can be manufactured. Such a high stretching ratio can be achieved by employing an underwater stretching method (boric acid in water stretching).

B−7.洗浄処理
洗浄処理は、代表的には、ヨウ化カリウム水溶液を入れた洗浄浴に積層体を浸漬することにより行う。ヨウ化カリウムの濃度は、好ましくは2重量%〜5重量%である。
B-7. Cleaning Treatment The cleaning treatment is typically performed by immersing the laminate in a cleaning bath containing an aqueous potassium iodide solution. The concentration of potassium iodide is preferably between 2% by weight and 5% by weight.

B−8.PVA系樹脂層の厚み測定
洗浄処理後、積層体を搬送しながらPVA系樹脂層の厚みを非接触で測定する。PVA系樹脂層の厚みは、例えば、分光干渉計により測定することができる。厚みの測定頻度は、好ましくは15秒〜120秒に1回、より好ましくは30秒から90秒に1回である。図2のグラフに示されるPVA系樹脂層の厚みと水分率との関係を参照することにより、洗浄処理後のPVA系樹脂層の厚みからPVA系樹脂層の水分率を算出することができる。
B-8. Measurement of thickness of PVA-based resin layer After the washing treatment, the thickness of the PVA-based resin layer is measured in a non-contact manner while transporting the laminate. The thickness of the PVA-based resin layer can be measured by, for example, a spectral interferometer. The frequency of measuring the thickness is preferably once every 15 seconds to 120 seconds, more preferably once every 30 seconds to 90 seconds. By referring to the relationship between the thickness of the PVA-based resin layer and the moisture content shown in the graph of FIG. 2, the moisture content of the PVA-based resin layer can be calculated from the thickness of the PVA-based resin layer after the cleaning treatment.

B−9.乾燥処理
乾燥処理における乾燥温度は、好ましくは30℃〜100℃である。
B-9. Drying process The drying temperature in the drying process is preferably 30C to 100C.

C.偏光子
上記の製造方法により得られる偏光子は、実質的には、ヨウ素が吸着配向されたPVA系樹脂層である。偏光子の厚みは、好ましくは10μm以下であり、より好ましくは8μm以下であり、さらに好ましくは7.5μm以下であり、特に好ましくは5μm以下である。一方、偏光子の厚みは、好ましくは0.5μm以上、より好ましくは1.5μm以上である。厚みが薄すぎると得られる偏光子の光学特性が低下するおそれがある。偏光子は、好ましくは、波長380nm〜780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上である。偏光子の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。
C. Polarizer The polarizer obtained by the above-described production method is substantially a PVA-based resin layer in which iodine is adsorbed and oriented. The thickness of the polarizer is preferably 10 μm or less, more preferably 8 μm or less, further preferably 7.5 μm or less, and particularly preferably 5 μm or less. On the other hand, the thickness of the polarizer is preferably 0.5 μm or more, more preferably 1.5 μm or more. If the thickness is too small, the optical properties of the obtained polarizer may be deteriorated. The polarizer preferably exhibits absorption dichroism at any wavelength from 380 nm to 780 nm. The single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, and further preferably 42.0% or more. The degree of polarization of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.

D.延伸樹脂膜の製造装置
本発明の実施形態による延伸樹脂膜の製造装置は、長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、積層体に処理を施すことにより、非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造装置である。この製造装置は、積層体を水中延伸する水中延伸処理部と、水中延伸の後に積層体を洗浄する洗浄処理部と、洗浄処理後の延伸樹脂膜の厚みまたは水分率に基づいて、延伸樹脂膜の外観不良を検出する検査部と、を含む。上記水中延伸処理部は、上記B−6項で説明した水中延伸処理を施し得る任意の適切な延伸装置である。上記洗浄処理部は、上記B−7項で説明した洗浄処理を施し得る任意の適切な洗浄装置(洗浄浴)である。検査部は、延伸樹脂膜の厚みまたは水分率と得られる偏光子の外観不良レベルとの関係が予めメモリーされており、洗浄処理後の延伸樹脂膜の厚みまたは水分率に基づいて偏光子の外観不良を検出する。上記製造装置は、さらに、上記B項で説明した各処理を実施するのに適した任意の適切な構成を含み得る。また、上記製造装置は、非接触式の膜厚計、および/または、洗浄処理後のPVA系樹脂層の厚みに基づいてPVA系樹脂層の水分率を算出する算出部を含み得る。
D. Apparatus for manufacturing stretched resin film The apparatus for manufacturing a stretched resin film according to the embodiment of the present invention is configured to transfer a laminate in which a water-absorbing resin layer is formed on one side of a long non-water-absorbing film, This is an apparatus for producing a stretched resin film that forms a stretched resin film on a non-water-absorbing film by performing a treatment. The manufacturing apparatus includes an underwater stretching section for stretching the laminate in water, a washing section for washing the laminate after stretching in water, and a stretched resin film based on the thickness or moisture content of the stretched resin film after the washing process. And an inspection unit for detecting a poor appearance of the inspection. The underwater stretching section is any suitable stretching apparatus capable of performing the underwater stretching described in the section B-6. The cleaning processing section is any appropriate cleaning apparatus (cleaning bath) that can perform the cleaning processing described in the section B-7. The inspection unit stores in advance the relationship between the thickness or moisture content of the stretched resin film and the level of defective appearance of the obtained polarizer, and based on the thickness or moisture content of the stretched resin film after the cleaning process, the appearance of the polarizer is determined. Detect defects. The manufacturing apparatus may further include any appropriate configuration suitable for performing each processing described in the above section B. In addition, the manufacturing apparatus may include a non-contact type film thickness meter and / or a calculation unit that calculates the moisture content of the PVA-based resin layer based on the thickness of the PVA-based resin layer after the cleaning process.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。
(1)PVA系樹脂層の厚み
PVA系樹脂層の厚みを、光干渉膜厚計(オーシャンオプティクス社製、XUSB4)を用いて測定した。なお、ポリエステル系樹脂フィルム/PVA系樹脂層からなる積層体のポリエステル系樹脂フィルム側に光干渉膜厚計を配置し、PVA系樹脂層の厚みを測定した。
(2)PVA系樹脂層の水分率
洗浄処理後のPVA系樹脂層の水分率を、PVA系樹脂層の厚みおよび図2に示すグラフに基づいて求めた。
(3)偏光子の外観
実施例および比較例で得られた偏光子を目視で確認し、以下の基準で外観の良否を判断した。
○・・・スジ状痕が目視で確認されなかった、または、目視で確認されたが後工程でフィルムに貼り合せた状態ではスジ状痕は視認されなかった
△・・・スジ状痕が目視で確認されたが、後工程で貼り合せるフィルムによってスジ状痕が視認されなくなる場合と視認される場合とがあった
×・・・スジ状痕が目視ではっきりと確認され、かつ、後工程でフィルムに貼り合せた状態でスジ状痕が確認された
また、実施例および比較例で得られた偏光子を目視で確認し、スジ状痕のレベルに応じて0(スジ状痕なし)から8(大きなスジ状痕あり)までの数値付与し、外観不良レベルを数値化した。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. In addition, the measuring method of each characteristic is as follows.
(1) Thickness of PVA-based resin layer The thickness of the PVA-based resin layer was measured using an optical interference thickness meter (XUSB4, manufactured by Ocean Optics). The thickness of the PVA-based resin layer was measured by arranging an optical interference thickness meter on the polyester-based resin film side of the laminate composed of the polyester-based resin film / PVA-based resin layer.
(2) Moisture content of PVA-based resin layer The moisture content of the PVA-based resin layer after the cleaning treatment was determined based on the thickness of the PVA-based resin layer and the graph shown in FIG.
(3) Appearance of Polarizer The polarizers obtained in Examples and Comparative Examples were visually checked, and the quality of the appearance was judged based on the following criteria.
・ ・ ・: No streak was visually observed, or streak was visually observed, but no streak was visually observed in a state where it was bonded to a film in a later process. △: Streak was visually observed. However, there were cases where streak marks were not visually recognized and cases where they were visually recognized due to the film to be bonded in the subsequent process. × ... The streak marks were clearly confirmed visually, and in the subsequent process. Streak marks were observed in the state of being stuck to the film. Moreover, the polarizers obtained in Examples and Comparative Examples were visually checked, and depending on the level of the streak marks, from 0 (no streak marks) to 8 Numerical values up to (with large streak marks) were given, and the level of poor appearance was quantified.

[実施例1]
ポリエステル系樹脂フィルムとして、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
ポリエステル系樹脂フィルムの一方の面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を所定の搬送速度で搬送しながら、以下の各処理を施した。
第一に、積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の膨潤浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に40秒間浸漬させた(膨潤処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が約43%となるように濃度を調整しながら50秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に40秒間浸漬させた(架橋処理)。
次いで、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度3.6重量%)に50秒間浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
次いで、積層体を液温20℃のヨウ化カリウム水溶液(ヨウ化カリウム濃度2.8重量%)に5秒間浸漬させた(洗浄処理)。洗浄処理後のPVA系樹脂層の厚みを測定したところ、7.34μmであった。
その後、70℃に保たれたオーブン中で積層体を乾燥することにより、ポリエステル系樹脂フィルム上に形成された厚み5.50μmの偏光子を得た。さらに、同様の手順により、合計2つの偏光子を作製した。
得られた偏光子を上記(3)の評価に供した。結果を表2に示す。洗浄処理後のPVA系樹脂層の厚みと、外観不良レベルとの関係を図3に示す。
[Example 1]
As the polyester-based resin film, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption of 0.75% and a Tg of about 75 ° C. was used.
100% by weight of a PVA-based resin in which polyvinyl alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") are mixed at a ratio of 9: 1. To this part, 13 parts by weight of potassium iodide was added to prepare a PVA aqueous solution (coating solution).
The PVA solution was coated on one surface of the polyester resin film and dried at 60 ° C. to form a 13 μm-thick PVA resin layer to prepare a laminate.
The following processes were performed while the obtained laminate was being conveyed at a predetermined conveyance speed.
First, the laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. with free-end uniaxial stretching (air-assisted stretching).
Next, the laminate was immersed in a swelling bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 40 seconds (swelling treatment).
Next, a polarizer finally obtained is placed in a dyeing bath (liquid aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. It was immersed for 50 seconds while adjusting the concentration so that the single transmittance (Ts) was about 43% (dyeing treatment).
Next, it was immersed in a crosslinking bath of a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 40 seconds. (Crosslinking treatment).
Next, while the laminate was immersed in a boric acid aqueous solution (boric acid concentration: 3.6% by weight) at a liquid temperature of 70 ° C for 50 seconds, the total stretching ratio in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds was 5%. The film was uniaxially stretched so as to have a magnification of 0.5 (underwater stretching treatment).
Next, the laminate was immersed in a potassium iodide aqueous solution (potassium iodide concentration: 2.8% by weight) at a liquid temperature of 20 ° C. for 5 seconds (washing treatment). When the thickness of the PVA-based resin layer after the washing treatment was measured, it was 7.34 μm.
Thereafter, the laminate was dried in an oven maintained at 70 ° C. to obtain a polarizer having a thickness of 5.50 μm formed on the polyester resin film. Furthermore, a total of two polarizers were produced by the same procedure.
The obtained polarizer was subjected to the evaluation of the above (3). Table 2 shows the results. FIG. 3 shows the relationship between the thickness of the PVA-based resin layer after the cleaning treatment and the appearance defect level.

[実施例2]
積層体の搬送速度を実施例1の搬送速度の1.1倍としたこと以外は実施例1と同様にして偏光子を作製した。洗浄処理後のPVA系樹脂層の厚みは、7.95μmであった。
得られた偏光子を上記(3)の評価に供した。結果を表2に示す。また、洗浄処理後のPVA系樹脂層の厚みと、外観不良レベルとの関係を図3に示す。
[Example 2]
A polarizer was produced in the same manner as in Example 1, except that the transport speed of the laminate was 1.1 times the transport speed of Example 1. The thickness of the PVA-based resin layer after the cleaning treatment was 7.95 μm.
The obtained polarizer was subjected to the evaluation of the above (3). Table 2 shows the results. FIG. 3 shows the relationship between the thickness of the PVA-based resin layer after the cleaning treatment and the appearance defect level.

[比較例1]
積層体の搬送速度を実施例1の搬送速度の1.2倍としたこと、膨潤浴の液温を45℃としたこと、水中延伸処理におけるホウ酸水溶液のホウ酸濃度を3.5重量%としたこと、および、洗浄処理におけるヨウ化カリウム水溶液のヨウ化カリウム濃度を4.0重量%としたこと以外は実施例1と同様にして偏光子を作製した。洗浄処理後のPVA系樹脂層の厚みは、8.24μmであった。さらに、同様の手順により、合計2つの偏光子を作製した。
得られた偏光子を上記(3)の評価に供した。結果を表2に示す。また、洗浄処理後のPVA系樹脂層の厚みと、外観不良レベルとの関係を図3に示す。
[Comparative Example 1]
The transport speed of the laminate was 1.2 times the transport speed of Example 1, the liquid temperature of the swelling bath was 45 ° C., and the boric acid concentration of the boric acid aqueous solution in the underwater stretching treatment was 3.5% by weight. A polarizer was produced in the same manner as in Example 1, except that the potassium iodide concentration of the aqueous potassium iodide solution in the washing treatment was 4.0% by weight. The thickness of the PVA-based resin layer after the cleaning treatment was 8.24 μm. Furthermore, a total of two polarizers were produced by the same procedure.
The obtained polarizer was subjected to the evaluation of the above (3). Table 2 shows the results. FIG. 3 shows the relationship between the thickness of the PVA-based resin layer after the cleaning treatment and the appearance defect level.

表2から明らかなように、洗浄処理後のPVA系樹脂層の厚みが厚いほど、PVA系樹脂層の水分率が高かった。また、洗浄処理後の厚み7.95μm以下である実施例の偏光子は、スジ状痕が発生しなかった。さらに、図3から明らかなように、洗浄処理後のPVA系樹脂層の厚みと外観不良レベルとの間には相関があった。また、外観不良レベルが0〜4の場合、OK(偏光子の外観:○)であり、外観不良レベルが4〜5の場合、グレー(偏光子の外観:△)であり、外観不良レベルが5〜8の場合、NG(偏光子の外観:×)であった。例えば、洗浄処理後のPVA系樹脂層の厚みが約8.25μm以上の場合、外観不良レベルが5以上となり、偏光子として実用に耐えないレベルであった。上記のとおり、洗浄処理後のPVA系樹脂層の厚みまたは水分率に基づいて、インラインで、スジ状痕などの外観不良を検出することができる。   As is clear from Table 2, the greater the thickness of the PVA-based resin layer after the cleaning treatment, the higher the moisture content of the PVA-based resin layer. In the polarizer of Example having a thickness of 7.95 μm or less after the cleaning treatment, no streak-like marks were generated. Furthermore, as is clear from FIG. 3, there was a correlation between the thickness of the PVA-based resin layer after the cleaning treatment and the level of poor appearance. When the appearance defect level is 0 to 4, it is OK (appearance of the polarizer: ○), and when the appearance defect level is 4 to 5, it is gray (appearance of the polarizer: Δ), and the appearance defect level is In the case of 5 to 8, it was NG (appearance of polarizer: x). For example, when the thickness of the PVA-based resin layer after the cleaning treatment is about 8.25 μm or more, the appearance defect level is 5 or more, which is a level that cannot be practically used as a polarizer. As described above, based on the thickness or the moisture content of the PVA-based resin layer after the cleaning treatment, it is possible to detect inferior appearance such as streak marks in-line.

本発明の延伸樹脂膜の製造方法は、画像表示装置に用いられる偏光子の製造に好適に用いられる。   The method for producing a stretched resin film of the present invention is suitably used for producing a polarizer used for an image display device.

160 膜厚測定部
200 積層体
160 Thickness measuring unit 200 Stack

Claims (5)

長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、前記積層体に水中延伸処理と洗浄処理とをこの順に施すことにより、前記非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造方法であって、
前記洗浄処理後の前記延伸樹脂膜の厚みに基づいて、前記延伸樹脂膜の外観不良を検出することを含む、延伸樹脂膜の製造方法。
While transporting a laminate having a water-absorbent resin layer formed on one side of a long non-water-absorbent film, the laminate is subjected to an in-water stretching treatment and a washing treatment in this order, whereby the non-water-absorbent film is obtained. Forming a stretched resin film on, a method for manufacturing a stretched resin film,
A method for manufacturing a stretched resin film, comprising detecting a defective appearance of the stretched resin film based on a thickness of the stretched resin film after the cleaning treatment.
長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、前記積層体に水中延伸処理と洗浄処理とをこの順に施すことにより、前記非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造方法であって、
前記洗浄処理後の前記延伸樹脂膜の水分率に基づいて、前記延伸樹脂膜の外観不良を検出することを含む、延伸樹脂膜の製造方法。
While transporting a laminate having a water-absorbent resin layer formed on one side of a long non-water-absorbent film, the laminate is subjected to an in-water stretching treatment and a washing treatment in this order, whereby the non-water-absorbent film is obtained. Forming a stretched resin film on, a method for manufacturing a stretched resin film,
A method for manufacturing a stretched resin film, comprising detecting a defective appearance of the stretched resin film based on a moisture content of the stretched resin film after the washing treatment.
前記洗浄処理の後に、前記積層体を搬送しながら前記延伸樹脂膜の厚みを非接触で測定することと、
測定された前記延伸樹脂膜の厚みに基づいて、前記洗浄処理後の前記延伸樹脂膜の水分率を算出することと、をさらに含む、請求項1または2に記載の製造方法。
After the cleaning treatment, the thickness of the stretched resin film is measured in a non-contact manner while transporting the laminate,
The method according to claim 1, further comprising: calculating a moisture content of the stretched resin film after the cleaning process based on the measured thickness of the stretched resin film.
請求項1から3のいずれかに記載の製造方法により、前記非吸水性フィルム上に偏光子を形成する、偏光子の製造方法であって、
前記非吸水性フィルムがポリエステル系樹脂フィルムであり、前記樹脂層がポリビニルアルコール系樹脂層であり、
前記ポリエステル系樹脂フィルムと前記ポリビニルアルコール系樹脂層との積層体に染色処理を施すことをさらに含む、偏光子の製造方法。
A method for producing a polarizer, comprising: forming a polarizer on the non-water-absorbent film by the production method according to any one of claims 1 to 3.
The non-water-absorbing film is a polyester-based resin film, the resin layer is a polyvinyl alcohol-based resin layer,
A method for producing a polarizer, further comprising performing a dyeing treatment on a laminate of the polyester-based resin film and the polyvinyl alcohol-based resin layer.
長尺状の非吸水性フィルムの片側に吸水性の樹脂層が形成された積層体を搬送しながら、前記積層体に処理を施すことにより、前記非吸水性フィルム上に延伸樹脂膜を形成する、延伸樹脂膜の製造装置であって、
前記積層体を水中延伸する水中延伸処理部と、
水中延伸の後に前記積層体を洗浄する洗浄処理部と、
前記洗浄処理後の前記延伸樹脂膜の厚みまたは水分率に基づいて、前記延伸樹脂膜の外観不良を検出する検査部と、を含む、延伸樹脂膜の製造装置。
By carrying out a treatment on the laminate while conveying the laminate having a water-absorbent resin layer formed on one side of a long non-water-absorbent film, a stretched resin film is formed on the non-water-absorbent film. An apparatus for manufacturing a stretched resin film,
An underwater stretching section for stretching the laminate underwater,
A washing processing unit for washing the laminate after stretching in water,
A stretched resin film manufacturing apparatus, comprising: an inspection unit configured to detect a defective appearance of the stretched resin film based on a thickness or a moisture content of the stretched resin film after the cleaning process.
JP2018158255A 2018-08-27 2018-08-27 Method for producing stretched resin film, method for producing polarizer, and device for producing stretched resin film Active JP6535799B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018158255A JP6535799B1 (en) 2018-08-27 2018-08-27 Method for producing stretched resin film, method for producing polarizer, and device for producing stretched resin film
KR1020190101818A KR20200024100A (en) 2018-08-27 2019-08-20 Method of manufacturing stretched resin film, method of manufacturing polarizer and apparatus for manufacturing stretched resin film
CN201910794849.3A CN110861325B (en) 2018-08-27 2019-08-27 Method for producing stretched resin film, method for producing polarizing plate, and apparatus for producing stretched resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018158255A JP6535799B1 (en) 2018-08-27 2018-08-27 Method for producing stretched resin film, method for producing polarizer, and device for producing stretched resin film

Publications (2)

Publication Number Publication Date
JP6535799B1 JP6535799B1 (en) 2019-06-26
JP2020034596A true JP2020034596A (en) 2020-03-05

Family

ID=67023804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018158255A Active JP6535799B1 (en) 2018-08-27 2018-08-27 Method for producing stretched resin film, method for producing polarizer, and device for producing stretched resin film

Country Status (3)

Country Link
JP (1) JP6535799B1 (en)
KR (1) KR20200024100A (en)
CN (1) CN110861325B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197855A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Coating liquid for coating retardation film, composite retardation film, composite polarizing plate, liquid crystal display device, and manufacturing methods of coating liquid and composite retardation film
JP2015036729A (en) * 2013-08-12 2015-02-23 日東電工株式会社 Polarizing film, optical functional film laminate including polarizing film, manufacturing method of optical film laminate including polarizing film, and organic el display device having polarizing film
JP2015106150A (en) * 2013-12-03 2015-06-08 日東電工株式会社 Polarizing film with adhesive layer, and image display device
JP2015172565A (en) * 2014-02-19 2015-10-01 東レ株式会社 film inspection method and film manufacturing method using the same
WO2016072357A1 (en) * 2014-11-04 2016-05-12 住友化学株式会社 Method for manufacturing polarization plate sheet
WO2016093278A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for manufacturing polarizing film, and polarizing film
JP2016221797A (en) * 2015-05-29 2016-12-28 住友化学株式会社 Laminate film and production method for laminate film
WO2017104634A1 (en) * 2015-12-18 2017-06-22 住友化学株式会社 Production device and production method for polarizing film, and polarizing film
JP2017177691A (en) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 Inspection method, film production method, inspection instrument, film production apparatus, and inspection program

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165381A (en) * 1997-12-04 1999-06-22 Nippon Synthetic Chem Ind Co Ltd:The Manufacture of multilayer oriented film
JP2001343521A (en) 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same
JP4628617B2 (en) * 2000-09-26 2011-02-09 株式会社クレハ Heat shrinkable multilayer film
CN100577413C (en) * 2004-09-29 2010-01-06 东丽株式会社 Laminated film
CN100431768C (en) * 2005-08-31 2008-11-12 江苏大学 Method and device for measuring related parameter of underwater laser shock formation
JP5123016B2 (en) * 2008-03-24 2013-01-16 富士フイルム株式会社 Birefringence measuring apparatus, birefringence measuring method, film production system, and film production method
CN101793992B (en) * 2009-01-30 2014-09-24 日东电工株式会社 Method for manufacturing a laminated film
JP2010197448A (en) * 2009-02-23 2010-09-09 Sumitomo Chemical Co Ltd Method of manufacturing polarizing plate
JP5346695B2 (en) * 2009-06-10 2013-11-20 富士フイルム株式会社 Rubbing method and apparatus, and alignment film and optical member manufacturing method
JP2011197282A (en) * 2010-03-18 2011-10-06 Sumitomo Chemical Co Ltd Polarizing plate, method for evaluating the same, and method for producing the same
JP5721286B2 (en) * 2010-09-03 2015-05-20 日東電工株式会社 Manufacturing method of thin polarizing film
JP5414738B2 (en) * 2010-09-03 2014-02-12 日東電工株式会社 Manufacturing method of thin polarizing film
JP5490750B2 (en) * 2010-09-03 2014-05-14 日東電工株式会社 Manufacturing method of thin polarizing film
JP5871363B2 (en) * 2010-09-09 2016-03-01 日東電工株式会社 Manufacturing method of thin polarizing film
KR20140138752A (en) * 2012-03-02 2014-12-04 스미또모 가가꾸 가부시끼가이샤 Method for manufacturing polarizing plate
JP6054054B2 (en) * 2012-05-11 2016-12-27 日東電工株式会社 Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP5890767B2 (en) * 2012-11-19 2016-03-22 株式会社東京精密 Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus
JP6462199B2 (en) * 2012-12-04 2019-01-30 住友化学株式会社 Manufacturing method of polarizing film and polarizing plate
WO2016010031A1 (en) * 2014-07-16 2016-01-21 日東電工株式会社 Polarizing film and method for producing same
JPWO2016135997A1 (en) * 2015-02-27 2017-10-05 住友理工株式会社 Adhesive film for pasting windows
KR102587187B1 (en) * 2015-05-26 2023-10-06 스미또모 가가꾸 가부시키가이샤 Method for producing polarizing plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197855A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Coating liquid for coating retardation film, composite retardation film, composite polarizing plate, liquid crystal display device, and manufacturing methods of coating liquid and composite retardation film
JP2015036729A (en) * 2013-08-12 2015-02-23 日東電工株式会社 Polarizing film, optical functional film laminate including polarizing film, manufacturing method of optical film laminate including polarizing film, and organic el display device having polarizing film
JP2015106150A (en) * 2013-12-03 2015-06-08 日東電工株式会社 Polarizing film with adhesive layer, and image display device
JP2015172565A (en) * 2014-02-19 2015-10-01 東レ株式会社 film inspection method and film manufacturing method using the same
WO2016072357A1 (en) * 2014-11-04 2016-05-12 住友化学株式会社 Method for manufacturing polarization plate sheet
WO2016093278A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for manufacturing polarizing film, and polarizing film
JP2016221797A (en) * 2015-05-29 2016-12-28 住友化学株式会社 Laminate film and production method for laminate film
WO2017104634A1 (en) * 2015-12-18 2017-06-22 住友化学株式会社 Production device and production method for polarizing film, and polarizing film
JP2017177691A (en) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 Inspection method, film production method, inspection instrument, film production apparatus, and inspection program

Also Published As

Publication number Publication date
CN110861325A (en) 2020-03-06
CN110861325B (en) 2023-03-31
JP6535799B1 (en) 2019-06-26
KR20200024100A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
JP6702928B2 (en) Laminate, stretched laminate, method for producing stretched laminate, method for producing optical film laminate including polarizing film using the same, and polarizing film
TWI579134B (en) Production method of thin polarizing film and optical laminate
TWI801599B (en) Polarizing film and method for manufacturing polarizing film
TWI645224B (en) Polarizer
JP6109862B2 (en) Manufacturing method of laminate
JP7382974B2 (en) Polarizing film, polarizing plate, and method for manufacturing the polarizing film
JP6734745B2 (en) Polarizer and manufacturing method thereof
JP6535799B1 (en) Method for producing stretched resin film, method for producing polarizer, and device for producing stretched resin film
JP6535406B1 (en) Method for producing stretched resin film, method for producing polarizer, method for measuring moisture content of stretched resin film, and device for producing stretched resin film
KR102640210B1 (en) Polarizer, image display device and method of manufacturing polarizer
JP6050881B2 (en) Manufacturing method of laminate
JP6410503B2 (en) Manufacturing method of laminate
JP2016078219A (en) Manufacturing method of resin film
TW202318047A (en) Manufacturing method of polarizer sufficiently increases the single transmittance even if the humidification time is shortened when the polarizer is subjected to a humidification step
JP7240090B2 (en) Polarizing plate, image display device, and method for manufacturing polarizing plate
TW202317679A (en) Manufacturing method of polarizer including a dyeing step and a stretching step
TW202323878A (en) Method for manufacturing polarizer and method for manufacturing polarizing plate capable of suppressing display unevenness in an image display device
KR20230082572A (en) Method for manufacturing polarizer and method for manufacturing polarizing plate
JP2022112801A (en) Method of manufacturing polarizing film
WO2019078050A1 (en) Method for producing optical laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180921

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6535799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250