JP2020034450A - Device and method for measuring stress luminescence - Google Patents

Device and method for measuring stress luminescence Download PDF

Info

Publication number
JP2020034450A
JP2020034450A JP2018161972A JP2018161972A JP2020034450A JP 2020034450 A JP2020034450 A JP 2020034450A JP 2018161972 A JP2018161972 A JP 2018161972A JP 2018161972 A JP2018161972 A JP 2018161972A JP 2020034450 A JP2020034450 A JP 2020034450A
Authority
JP
Japan
Prior art keywords
stress
amount
excitation light
light
luminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018161972A
Other languages
Japanese (ja)
Other versions
JP6470863B1 (en
Inventor
翔 橋本
Sho Hashimoto
翔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Production Engineering Corp
Original Assignee
Toyota Production Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Production Engineering Corp filed Critical Toyota Production Engineering Corp
Priority to JP2018161972A priority Critical patent/JP6470863B1/en
Application granted granted Critical
Publication of JP6470863B1 publication Critical patent/JP6470863B1/en
Publication of JP2020034450A publication Critical patent/JP2020034450A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide a method and a device for measuring a stress luminescence which can measure irregularly generated stress luminescences by separating the stress luminescences from natural discharged light including luminance and phosphorescence.SOLUTION: The device for measuring a stress luminescence includes: an excitation light irradiation unit 20 for irradiating a stress luminescence painting 2 containing a stress luminous body with an excitation light L0; a stress light emission amount acquisition unit 14 for acquiring, in advance, the amount of stress luminescence according to a reference stress applied to the stress luminous body; a relation acquisition unit 15 for acquiring, in advance, the relation of the amount of fluorescence to the amount of excitation light exciting the stress luminous body; an excitation light amount determination unit 16 for determining an excitation light amount, where the ratio of the stress luminescence amount to the fluorescence amount is at least a predetermined value; and an irradiation control unit 17 for continuously irradiating the excitation light irradiation unit 20 with the excitation light amount of excitation light determined by the excitation light amount determination unit 16.SELECTED DRAWING: Figure 1

Description

本発明は、不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる応力発光計測装置及び応力発光計測方法に関する。   The present invention relates to a stress-stimulated luminescence measuring apparatus and a stress-stimulated luminescence measuring method capable of separately measuring stress-induced luminescence generated at an indefinite time interval from spontaneous emission light including fluorescence and phosphorescence.

従来、計測対象の残留応力や応力集中などによる破壊を検知又は予測するために、応力分布が計測されることが多い。一般的に、応力分布の計測手法として、(1)計測対象にひずみゲージを貼り付けてひずみ量を電気的に検出する手法A、(2)赤外線カメラを用いて計測対象の振動に対する発熱作用又は吸熱作用を計測して応力分布を求める手法B、(3)計測対象の表面にランダム模様を付与して複数カメラで撮像し、応力変動を求めるデジタル画像相関法Cなどが知られている。   Conventionally, stress distribution is often measured in order to detect or predict destruction due to residual stress or stress concentration of a measurement target. Generally, as a stress distribution measurement method, (1) a method A in which a strain gauge is attached to a measurement target to electrically detect a strain amount, and (2) a heat generation effect on vibration of the measurement target using an infrared camera or There are known a method B for obtaining a stress distribution by measuring an endothermic effect, and (3) a digital image correlation method C for obtaining a stress variation by giving a random pattern to the surface of a measurement target and taking an image with a plurality of cameras.

ところが、上記の手法Aは、ひずみゲージは貼り付けのための手間がかかるとともに計測部位が限られるという問題がある。また、上記の手法Bは、赤外線カメラは測定範囲が限られ、繰り返し加振が必要になるという問題がある。さらに、上記のデジタル画像相関法Cは、事前に表面模様の準備が必要になるという問題がある。   However, the above-mentioned method A has a problem that it takes time and effort to attach the strain gauge and the measurement site is limited. The method B has a problem that the measurement range of the infrared camera is limited, and it is necessary to repeatedly apply vibration. Further, the digital image correlation method C has a problem that preparation of a surface pattern is required in advance.

このため、非接触かつ広範囲に一括で応力計測するために、応力発光体を表面に付与した計測対象からの応力発光を撮像することにより、計測対象の応力分布を非接触で計測する技術が注目されている。例えば、特許文献1には、応力発光体の励起状態が飽和するまでの励起光照射時間を記憶しておき、この励起光照射時間分、励起光を照射することによって応力発光体の励起状態を飽和状態にし、一定条件で発光する装置が開示されている。なお、応力発光塗料を応力発光させるためには、応力発光塗料内の応力発光体を励起状態にする必要があり、この応力発光体の励起は、応力発光塗料に励起光を照射する必要がある。   For this reason, in order to collectively measure stress in a non-contact and wide area, a technique that non-contactly measures the stress distribution of the measurement target by capturing the image of the stress luminescence from the measurement target with the stress illuminant applied to the surface is attracting attention Have been. For example, Patent Document 1 stores the excitation light irradiation time until the excited state of the stress-stimulated luminescent material is saturated, and irradiates the excitation light for the excitation light irradiation time to change the excited state of the stress-stimulated luminescent material. A device that is saturated and emits light under constant conditions is disclosed. In order to cause the stress-stimulated luminescent material to emit the stress-stimulated luminescence, the stress-stimulated luminescent material in the stress-stimulated luminescent material needs to be in an excited state, and the excitation of the stress-stimulated luminescent material requires irradiation of the stress-stimulated luminescent material with excitation light. .

特開2016−180637号公報JP-A-2006-180637

しかしながら、応力発光塗料の励起エネルギーの充填率が低い状態になると、応力発光塗料に応力が与えられたとしても、応力に起因する応力発光の発光感度が低下するため、時間的に連続した応力計測を行うことができなくなってしまう。したがって、応力発光塗料の十分な励起状態を保持するために応力発光塗料に励起光を連続照射すればよいが、応力発光塗料に励起光を照射すると、励起光の照射時点から励起光量に応じた蛍光と燐光とが自然放出光として発光し、応力に起因する応力発光が自然放出光に埋もれてしまい、自然放出光から応力発光を分離して検出することが困難になるという課題が生ずる。   However, when the filling rate of the excitation energy of the stress-stimulated paint becomes low, even if the stress is applied to the stress-stimulated paint, the luminescence sensitivity of the stress-induced luminescence due to the stress decreases. Cannot be performed. Therefore, it is sufficient to continuously irradiate the stress-stimulated paint with excitation light in order to maintain a sufficiently excited state of the stress-stimulated paint. Fluorescence and phosphorescence are emitted as spontaneous emission light, and stress emission due to stress is buried in the spontaneous emission light, which causes a problem that it is difficult to separate and detect stress emission from spontaneous emission light.

本発明は、上記の課題を解決するためになされたものであり、不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる応力発光計測装置及び応力発光計測方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and a stress luminescence measurement capable of measuring stress luminescence continuously occurring at indefinite time intervals from spontaneous emission light including fluorescence and phosphorescence. It is an object to provide an apparatus and a stress luminescence measurement method.

上述した課題を解決し、目的を達成するため、本発明は、応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測装置であって、前記応力発光塗料に励起光を連続照射する励起光照射部と、前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得部と、前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得部と、前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定部と、前記励起光照射部に対して前記励起光量決定部が決定した励起光量の励起光を連続して照射させる照射制御部とを備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a stress-stimulated luminescent material including a stress-stimulated luminescent material, which is irradiated with excitation light to bring the stress-stimulated luminescent material into an excited state, and the stress-stimulated luminescent material is provided at indefinite time intervals. A stress luminescence measuring device that measures stress luminescence according to stress applied to the stress luminescent paint, and an excitation light irradiator that continuously irradiates the stress luminescent paint with excitation light; and a stress according to a reference stress applied to the stress luminescent material. A stress light emission amount acquisition unit that previously acquires a light emission amount, a relationship acquisition unit that previously acquires a relationship of a spontaneous emission light amount to an excitation light amount that excites the stress light emitter, and a ratio of the stress emission amount to the spontaneous emission light amount is predetermined. An excitation light amount determining unit that determines an excitation light amount that is equal to or more than a value, and an irradiation control unit that continuously irradiates the excitation light irradiation unit with the excitation light of the excitation light amount determined by the excitation light amount determination unit. Features To.

また、本発明は、上記の発明において、前記励起光量決定部は、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする。   Further, according to the present invention, in the above invention, the excitation light amount determination unit is configured such that, when the stress light emission amount is equal to or more than a predetermined stress light emission amount exceeding the stress light emission amount corresponding to the reference stress, the excitation light amount determination unit determines the spontaneous emission amount The ratio of the amount of stress light emission is equal to or more than a predetermined value, and the amount of excitation light that enables stress light emission of the predetermined amount of stress light emission is determined.

また、本発明は、上記の発明において、前記応力発光塗料の発光を撮像する撮像部を備えたことを特徴とする。   Further, the present invention is characterized in that, in the above invention, an imaging unit for imaging the light emission of the stress-stimulated luminescent paint is provided.

また、本発明は、応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測方法であって、前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得ステップと、前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得ステップと、前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定ステップと、前記励起光量決定ステップが決定した励起光量の励起光を連続して照射させる照射制御ステップとを含むことを特徴とする。   Further, the present invention provides a stress-stimulated luminescent material including a stress-stimulated luminescent material, which is irradiated with excitation light to bring the stress-stimulated luminescent material into an excited state, and measures a stress-stimulated luminescence corresponding to a stress applied to the stress-stimulated luminescent material at an indefinite time interval. A stress emission measurement method for acquiring a stress emission amount in advance according to a reference stress applied to the stress illuminant, and a relationship between a spontaneous emission amount and an excitation light amount for exciting the stress illuminant. A relationship acquisition step of acquiring in advance, an excitation light amount determining step of determining an excitation light amount at which a ratio of the stress emission amount to the spontaneous emission amount becomes a predetermined value or more, and an excitation light amount of the excitation light amount determined by the excitation light amount determination step. And an irradiation control step of irradiating continuously.

また、本発明は、上記の発明において、前記励起光量決定ステップは、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする。   Further, in the present invention according to the above invention, the excitation light amount determining step includes, when the stress light emission amount is equal to or more than a predetermined stress light emission amount exceeding a stress light emission amount corresponding to the reference stress, the excitation light amount is determined with respect to the spontaneous emission light amount. The ratio of the amount of stress light emission is equal to or more than a predetermined value, and the amount of excitation light that enables stress light emission of the predetermined amount of stress light emission is determined.

また、本発明は、上記の発明において、前記応力発光塗料の発光を撮像する撮像ステップを含むことを特徴とする。   Further, the present invention is characterized in that, in the above invention, an imaging step of imaging the luminescence of the stress-stimulated paint is included.

本発明によれば、不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる。   ADVANTAGE OF THE INVENTION According to this invention, the stress light emission which generate | occur | produces continuously at an indefinite time interval can be measured separately from spontaneous emission light containing fluorescence and phosphorescence.

図1は、本実施の形態に係る応力発光計測装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a stress-stimulated luminescence measuring apparatus according to the present embodiment. 図2は、励起光の照射をオフした場合における自然放出光量の時間推移を示す図である。FIG. 2 is a diagram illustrating a time transition of the spontaneous emission light amount when the excitation light irradiation is turned off. 図3は、発生する応力に対する応力発光量の関係を示す図である。FIG. 3 is a diagram illustrating the relationship between the amount of stress light emission and the generated stress. 図4は、基準応力が加えられた場合における応力発光プロファイルを示す図である。FIG. 4 is a diagram illustrating a stress luminescence profile when a reference stress is applied. 図5は、励起光量に対する自然放出光量の関係を示す図である。FIG. 5 is a diagram illustrating the relationship between the amount of excitation light and the amount of spontaneous emission. 図6は、従来の連続励起による発光状態と本実施の形態の連続励起による発光状態とを比較する図である。FIG. 6 is a diagram comparing the light emission state by the conventional continuous excitation with the light emission state by the continuous excitation of the present embodiment. 図7は、制御部による応力発光計測処理手順を示すフローチャートである。FIG. 7 is a flowchart illustrating a stress emission measurement processing procedure performed by the control unit.

以下、添付図面を参照して、本実施の形態に係る応力発光計測装置及び応力発光計測方法について説明する。   Hereinafter, with reference to the accompanying drawings, a stress luminescence measuring device and a stress luminescence measuring method according to the present embodiment will be described.

<装置構成>
図1は、本実施の形態に係る応力発光計測装置1の構成を示す図である。図1に示した応力発光計測装置1は、例えば外部からの力Pが加わることによって発生した応力Sにより金属疲労が生じる計測対象部材101の表面に、応力発光体が含まれる応力発光塗料2が塗布されている。
<Apparatus configuration>
FIG. 1 is a diagram illustrating a configuration of a stress luminescence measuring device 1 according to the present embodiment. The stress luminescence measuring device 1 shown in FIG. 1 includes, for example, a stress luminescent paint 2 containing a stress luminescent material on a surface of a measurement target member 101 in which metal fatigue occurs due to a stress S generated when an external force P is applied. It has been applied.

計測対象部材101に発生する応力Sは、不定な時間間隔で連続発生する。応力発光計測装置1は、応力発光体を含む応力発光塗料2に励起光L0を連続照射して応力発光体を励起状態にし、応力発光体に発生する応力Sに応じた応力発光L2を計測する。なお、応力発光体が励起状態にあると、応力発光L2とは無関係に蛍光及び燐光として自然放出する自然放出光L1を発光する。   The stress S generated in the measurement target member 101 continuously occurs at irregular time intervals. The stress-stimulated luminescence measuring device 1 continuously irradiates the stress-stimulated light L0 to the stress-stimulated luminescent material 2 including the stress-stimulated luminescent material to bring the stress-stimulated luminescent material into an excited state, and measures the stress-stimulated luminescence L2 corresponding to the stress S generated in the stress-stimulated luminescent material. . When the stress-stimulated luminescent material is in the excited state, it emits spontaneous emission light L1 which spontaneously emits as fluorescence and phosphorescence irrespective of the stress-stimulated light L2.

応力発光体は、外部からの機械刺激により発光する発光材料である。機械刺激の種類としては摩擦、衝撃、圧縮、引っ張り、ねじりなどがあり、かかる機械刺激により応力発光体に応力が発生する。応力発光体は、例えば、粒子径の制御が可能な粉末状のセラミックス微粒子であり、ユーロピウムをドープし構造制御したアルミン酸ストロンチウム(SrAl2O4:Eu)、遷移金属や希土類をドープした硫化亜鉛(ZnS:Mn)、チタン酸バリウム・カルシウム((Ba,Ca)TiO3:Pr)、アルミン酸カルシウム・イットリウム(CaYAl3O7:Ce)などである。なお、上記の応力発光体は、紫外線を励起光として可視光を発光するものであるが、紫外線や近赤外線を発光するものであってもよい。   The stress-stimulated luminescent material is a light-emitting material that emits light by an external mechanical stimulus. Types of mechanical stimulus include friction, impact, compression, tension, and torsion, and the mechanical stimulus generates stress in the stress-stimulated luminous body. The stress-stimulated luminous body is, for example, a powdery ceramic fine particle whose particle diameter can be controlled, such as strontium aluminate (SrAl2O4: Eu) whose structure is controlled by doping europium, and zinc sulfide (ZnS: doped with a transition metal or rare earth). Mn), barium calcium titanate ((Ba, Ca) TiO3: Pr), calcium yttrium aluminate (CaYAl3O7: Ce), and the like. The stress luminescent material emits visible light using ultraviolet light as excitation light, but may emit ultraviolet light or near infrared light.

図1に示した応力発光計測装置1は、励起光L0である紫外線を応力発光塗料2に連続照射する励起光照射部20と、応力発光塗料2の発光を撮像する撮像部30と、装置本体10とを有する。   The stress-stimulated luminescence measuring device 1 illustrated in FIG. 1 includes an excitation-light irradiating unit 20 that continuously irradiates ultraviolet light, which is an excitation light L0, to the stress-stimulated luminescent paint 2, an imaging unit 30 that captures light emission of the stress-stimulated luminescent paint 2, and an apparatus main body. And 10.

装置本体10は、入出力部11、記憶部12及び制御部13を有し、励起光照射部20及び撮像部30に接続される。入出力部11は、各種操作入力及び表示出力等を行うタッチパネル式ディスプレイなどの入出力インターフェースである。   The apparatus main body 10 includes an input / output unit 11, a storage unit 12, and a control unit 13, and is connected to the excitation light irradiation unit 20 and the imaging unit 30. The input / output unit 11 is an input / output interface such as a touch panel display for performing various operation inputs and display outputs.

記憶部12は、フラッシュメモリ等の不揮発性メモリ又はハードディスク装置等の二次記憶媒体等からなる記憶デバイスであり、応力発光量LMSを含む応力発光量データD1と、蛍光光量の励起光量依存性の関係f2を含む関係データD2と、励起光量L0aを含む励起光量データD3と、計測画像Dを含む計測画像データD4とを記憶する。   The storage unit 12 is a storage device including a non-volatile memory such as a flash memory or a secondary storage medium such as a hard disk device. The storage unit 12 includes stress emission amount data D1 including the stress emission amount LMS and the excitation light amount dependency of the fluorescence amount. The relationship data D2 including the relationship f2, the excitation light amount data D3 including the excitation light amount L0a, and the measurement image data D4 including the measurement image D are stored.

制御部13は、応力発光計測装置1を全体制御する制御部であり、応力発光量取得部14、関係取得部15、励起光量決定部16、照射制御部17及び計測画像取得制御部18を有する。実際には、これらの機能部に対応するプログラムを図示しないROMや不揮発性メモリに記憶しておき、これらのプログラムをCPU(Central Processing Unit)にロードして実行することにより、応力発光量取得部14、関係取得部15、励起光量決定部16、照射制御部17及び計測画像取得制御部18にそれぞれ対応するプロセスを実行させることになる。   The control unit 13 is a control unit that controls the stress luminescence measuring device 1 as a whole, and includes a stress luminescence amount acquisition unit 14, a relationship acquisition unit 15, an excitation light amount determination unit 16, an irradiation control unit 17, and a measurement image acquisition control unit 18. . Actually, programs corresponding to these functional units are stored in a non-illustrated ROM or a non-volatile memory, and these programs are loaded into a CPU (Central Processing Unit) and executed, so that a stress luminescence amount acquiring unit is obtained. 14, the relation acquisition unit 15, the excitation light quantity determination unit 16, the irradiation control unit 17, and the measurement image acquisition control unit 18 execute the corresponding processes.

応力発光量取得部14は、応力発光体に加えられる基準応力SSに応じた応力発光量LMSを予め取得する。この応力発光量LMSは、応力発光量データD1に含まれる。   The stress luminescence amount acquiring unit 14 acquires the stress luminescence amount LMS corresponding to the reference stress SS applied to the stress luminous body in advance. The stress light emission amount LMS is included in the stress light emission amount data D1.

関係取得部15は、応力発光体を励起する励起光量に対する蛍光光量の関係f2を予め取得する。この関係f2は、関係データD2に含まれる。   The relationship acquisition unit 15 acquires in advance the relationship f2 of the amount of fluorescence to the amount of excitation light for exciting the stress-stimulated luminescent material. This relationship f2 is included in the relationship data D2.

励起光量決定部16は、蛍光光量に対する応力発光量LMSの比が所定値以上となる励起光量L0aを決定する。決定した励起光量L0aは、励起光量データD3に含まれる。   The excitation light quantity determining unit 16 determines the excitation light quantity L0a at which the ratio of the stress light emission quantity LMS to the fluorescence light quantity becomes a predetermined value or more. The determined excitation light amount L0a is included in the excitation light amount data D3.

照射制御部17は、励起光照射部20を介して、励起光量決定部16が決定した励起光量L0aの励起光を応力発光塗料2に対して連続照射する。   The irradiation control unit 17 continuously irradiates the stress-emitting paint 2 with the excitation light of the excitation light amount L0a determined by the excitation light amount determination unit 16 via the excitation light irradiation unit 20.

計測画像取得制御部18は、撮像部30により撮像された応力発光塗料2の計測画像Dを取得し、記憶部12の計測画像データD4として記憶する。   The measurement image acquisition control unit 18 acquires the measurement image D of the stress-stimulated paint 2 captured by the imaging unit 30 and stores the measurement image D in the storage unit 12 as measurement image data D4.

<励起光量L0aの決定処理>
次に、励起光量決定部16による励起光量L0aの決定処理について説明する。
<Process for determining excitation light amount L0a>
Next, a process of determining the excitation light amount L0a by the excitation light amount determination unit 16 will be described.

まず、上記のように、自然放出光L1は、応力発光体が励起状態にあると、応力発光L2とは無関係に蛍光及び燐光を自然放出する。蛍光は、励起光L0から吸収した励起状態のエネルギーの一部を熱として放出し、残りの励起状態のエネルギーを光として放出するものであり、励起光よりも長波長側にシフトした光、例えば緑色の可視光として放出される。一方、燐光は、異なるエネルギー準位間の項間交差が起こり、すぐに基底状態に戻れず、蛍光に比してゆっくりと発光し続ける。例えば、蛍光は10-6〜10-3秒で発光し、燐光は10-3〜10秒で発光する。これに対し、応力Sに起因する応力発光L2は、励起状態のエネルギーの一部を熱として放出し、蛍光及び燐光のエネルギー準位に近く、かつ、異なる特定のエネルギー準位に遷移し、応力Sが発生した場合、この遷移した特定のエネルギー準位から基底状態に遷移することによって、例えば緑色の可視光として発光する。 First, as described above, the spontaneous emission light L1 spontaneously emits fluorescence and phosphorescence irrespective of the stress light emission L2 when the stress-stimulated luminescent material is in the excited state. Fluorescence emits part of the energy of the excited state absorbed from the excitation light L0 as heat and emits the remaining energy of the excited state as light, and is light shifted to a longer wavelength side than the excitation light, for example, Emitted as green visible light. On the other hand, in phosphorescence, intersystem crossing between different energy levels occurs, the phosphorescent light cannot return to the ground state immediately, and emits light more slowly than fluorescence. For example, fluorescence emits light in 10 -6 to 10 -3 seconds, and phosphorescence emits light in 10 -3 to 10 seconds. On the other hand, the stress light emission L2 caused by the stress S emits part of the energy of the excited state as heat, and is close to the energy levels of fluorescence and phosphorescence, and transitions to different specific energy levels. When S has occurred, a transition is made from the specific energy level to the ground state, thereby emitting, for example, green visible light.

したがって、図2に示すように、自然放出光量LM1は、第1励起光L01又は第2励起光L02が照射されている間は、蛍光が大部分を占める蛍光領域E1が形成され、第1励起光L01の照射がオフされた時点t1からは燐光のみとなり、燐光の光量が時間経過とともに減少する燐光領域E2が形成される時間推移を呈する。例えば、最大励起状態の自然放出光量LM1(最大光量Lmax)を100%として正規化した場合、時点t2,t3,t4と時間経過するに従って、それぞれ光量が30%、20%、10%に減少する。   Therefore, as shown in FIG. 2, the spontaneous emission light amount LM1 forms the fluorescent region E1 in which the majority of the fluorescence is emitted while the first excitation light L01 or the second excitation light L02 is irradiated, and the first excitation light L1 is emitted. From the time point t1 when the irradiation of the light L01 is turned off, only phosphorescence is present, and a time transition is formed in which a phosphorescent region E2 in which the amount of phosphorescence decreases with the passage of time is formed. For example, when the spontaneous emission light quantity LM1 (maximum light quantity Lmax) in the maximum excitation state is normalized as 100%, the light quantity decreases to 30%, 20%, and 10% as time elapses from time t2, t3, and t4. .

一方、応力Sが発生した場合に応力発光体から発光する応力発光L2の応力発光量LM2は、ひずみ量とひずみ速度との乗算値で決定され、ひずみ速度が一定であった場合、図3に示すように、発生する応力Sの大きさに対して直線的な関係f1を有する。しかし、応力Sの発生時に、応力発光体における応力発光のエネルギー準位におけるエネルギー充填率が低いと、応力Sに応じた応力発光量LM2を発光することができなくなる。この関係f1を維持しない応力発光が発生すると、精度の高い応力分布、応力変化を得ることができないとともに、応力発光が燐光に埋もれてしまう可能性がある。   On the other hand, the stress light emission amount LM2 of the stress light emission L2 emitted from the stress light emitter when the stress S is generated is determined by a multiplication value of the strain amount and the strain rate, and when the strain rate is constant, FIG. As shown, the magnitude of the generated stress S has a linear relationship f1. However, if the energy filling rate at the energy level of the stress-stimulated luminescent material in the stress-stimulated luminescent material is low when the stress S is generated, the luminescence amount LM2 corresponding to the stress S cannot be emitted. If stress light emission that does not maintain the relationship f1 occurs, stress distribution and stress change with high accuracy cannot be obtained, and the stress light emission may be buried in phosphorescence.

このため、本実施の形態では、照射制御部17が励起光照射部20を介して励起光L0を応力発光塗料2に対して連続照射を行って、発生した応力Sに応じた応力発光量LMSが得られるエネルギー充填量となるようにしている。しかし、励起光L0が応力発光体に照射されると、上記の自然放出光L1、特に蛍光が発生し、十分なエネルギー充填量に励起された状態であっても、応力発光量LM2が自然放出光量LM1に埋もれてしまい、応力発光L2と自然放出光L1とを分離して計測できなくなってしまう。   For this reason, in the present embodiment, the irradiation control unit 17 continuously irradiates the stress light-emitting paint 2 with the excitation light L0 via the excitation light irradiation unit 20, and the stress light emission amount LMS corresponding to the generated stress S. Is obtained so that the energy filling amount can be obtained. However, when the excitation light L0 irradiates the stress-stimulated luminescent material, the above-mentioned spontaneous emission light L1, particularly fluorescence is generated, and the stress-emission light LM2 is spontaneously emitted even when excited to a sufficient energy filling amount. It is buried in the light amount LM1, and the stress light emission L2 and the spontaneous emission light L1 cannot be measured separately.

そこで、図3及び図4に示すように、応力発光量取得部14は、基準応力SSに対する応力発光量LMSを取得する。そして、この信号成分である応力発光量LMSを、雑音成分である自然放出光量LM1から分離して計測できるようにするため、励起光L0の連続照射時における自然放出光量LM1を小さくするため、励起光量LM0を小さくする。   Therefore, as shown in FIGS. 3 and 4, the stress light emission amount acquiring unit 14 acquires the stress light emission amount LMS with respect to the reference stress SS. Then, in order to measure the stress light emission amount LMS as a signal component separately from the spontaneous emission light amount LM1 as a noise component, the spontaneous emission light amount LM1 during continuous irradiation of the excitation light L0 is reduced. The light amount LM0 is reduced.

図5に示すように、励起光量LM0に対する自然放出光量LM1の関係f2は、励起光量LM0の増大に伴って自然放出光量LM1が増大する。関係取得部15は、この関係f2を予め取得しておく。なお、自然放出光量LM1は、励起光L0が連続照射されているため、ほとんど蛍光光量である。なお、自然放出光量LM1及び応力発光量LM2は、単位時間あたりに通過する光量である。   As shown in FIG. 5, in the relation f2 of the spontaneous emission light amount LM1 to the excitation light amount LM0, the spontaneous emission light amount LM1 increases as the excitation light amount LM0 increases. The relationship acquisition unit 15 acquires this relationship f2 in advance. The spontaneous emission light amount LM1 is almost a fluorescent light amount because the excitation light L0 is continuously irradiated. Note that the spontaneous emission light amount LM1 and the stress light emission amount LM2 are light amounts that pass per unit time.

そして、励起光量決定部16は、自然放出光量(蛍光光量)LM1に対する応力発光量LMSの比が所定値以上となる励起光量L0aを決定する。この励起光量L0aは、励起光量L0aの時の自然放出光量Laに対する応力発光量LMSの比が所定値、例えば25dB以上となる値である。なお、励起光量L0aで励起する場合、励起光量L0aによって応力発光体に充填されるエネルギー充填率は飽和状態でなく、エネルギー充填量が低い。このため、励起光量L0aは、発生する応力S(基準応力SS)に応じた応力発光量LMSを発光できるエネルギー充填量以上となることが必要である。   Then, the excitation light amount determination unit 16 determines the excitation light amount L0a at which the ratio of the stress light emission amount LMS to the spontaneous emission light amount (fluorescence light amount) LM1 is equal to or more than a predetermined value. The excitation light quantity L0a is a value at which the ratio of the stress light emission quantity LMS to the spontaneous emission light quantity La at the time of the excitation light quantity L0a becomes a predetermined value, for example, 25 dB or more. When the excitation is performed with the excitation light quantity L0a, the energy filling rate of filling the stress-stimulated luminous body with the excitation light quantity L0a is not saturated, and the energy filling quantity is low. Therefore, the excitation light amount L0a needs to be equal to or larger than the energy filling amount capable of emitting the stress light emission amount LMS corresponding to the generated stress S (reference stress SS).

図6(a)に示すように、従来、自然放出光量LM1は、励起光L0の連続照射によって応力発光体のエネルギー充填率が100%(飽和状態)となっていて、自然放出光量LM1は最大光量Lmaxであった。応力発光量LMSが最大光量Lmax以下となった場合、応力発光L2は自然放出光L1に完全に埋もれてしまう。   As shown in FIG. 6A, conventionally, the spontaneous emission light amount LM1 is such that the energy filling rate of the stress-stimulated luminescent material is 100% (saturated state) due to continuous irradiation of the excitation light L0, and the spontaneous emission light amount LM1 is maximum. The light amount was Lmax. When the stress light emission amount LMS becomes equal to or less than the maximum light amount Lmax, the stress light emission L2 is completely buried in the spontaneous emission light L1.

これに対し、本実施の形態では、図6(b)に示すように、励起光量LM0を励起光量L0aまで減らして自然放出光量LM1を最大光量Lmaxより小さく、さらに、応力発光量LMSよりも小さい自然放出光量Laとしているため、応力発光L2は自然放出光L1に埋もれない。すなわち、応力発光量LMSと自然放出光量Laとの間に大きな光量差ΔLが生じ、応力発光L2と自然放出光L1とを分離して計測することができる。すなわち、励起光L0を連続照射する場合であっても、雑音成分としての自然放出光量Laに対する、信号成分としての応力発光量LMSの比(S/N比)を所定値以上、例えば25dB以上とすることができ、応力発光L2と自然放出光L1とを分離して計測することができる。   On the other hand, in the present embodiment, as shown in FIG. 6B, the amount of excitation light LM0 is reduced to the amount of excitation light L0a, the amount of spontaneous emission LM1 is smaller than the maximum amount of light Lmax, and is smaller than the amount of stress emission LMS. Since the spontaneous emission light amount La is used, the stress light emission L2 is not buried in the spontaneous emission light L1. That is, a large light amount difference ΔL occurs between the stress light emission LMS and the spontaneous emission light La, and the stress light emission L2 and the spontaneous emission light L1 can be measured separately. That is, even when the excitation light L0 is continuously irradiated, the ratio (S / N ratio) of the stress light emission LMS as a signal component to the spontaneous emission light La as a noise component is set to a predetermined value or more, for example, 25 dB or more. Therefore, the stress light emission L2 and the spontaneous emission light L1 can be measured separately.

特に、不定な時間間隔で応力発光L2が連続発生する場合であっても、励起光L0を連続照射しているので、応力発光L2を自然放出光L1から分離して計測することができる。   In particular, even when the stress light emission L2 is continuously generated at indefinite time intervals, since the excitation light L0 is continuously irradiated, the stress light emission L2 can be measured separately from the spontaneous emission light L1.

<応力発光計測処理>
次に、制御部13による応力発光計測処理手順について説明する。図7は、制御部13による応力発光計測処理手順を示すフローチャートである。図7に示すように、まず、応力発光量取得部14は、基準応力SSに応じた応力発光量LMSを取得する(ステップS101)。その後、関係取得部15は、励起光量LM0に対する自然放出光量(蛍光光量)LM1の関係f2を取得する(ステップS102)。その後、励起光量決定部16は、自然放出光量LM1に対する応力発光量LMSの比が所定値以上となる励起光量L0aを決定する(ステップS103)。
<Stress luminescence measurement processing>
Next, the procedure of the stress emission measurement process by the control unit 13 will be described. FIG. 7 is a flowchart illustrating a stress luminescence measurement processing procedure performed by the control unit 13. As shown in FIG. 7, first, the stress light emission amount acquiring unit 14 acquires the stress light emission amount LMS corresponding to the reference stress SS (step S101). Thereafter, the relationship acquisition unit 15 acquires a relationship f2 of the spontaneous emission light amount (fluorescence light amount) LM1 with respect to the excitation light amount LM0 (Step S102). Thereafter, the excitation light quantity determination unit 16 determines the excitation light quantity L0a at which the ratio of the stress light emission quantity LMS to the spontaneous emission light quantity LM1 becomes equal to or more than a predetermined value (step S103).

その後、制御部13は、応力発光計測の開始か否かを判定する(ステップS104)。応力発光計測の開始でないならば(ステップS104;No)、ステップS104の判定処理を繰り返す。一方、応力発光計測の開始であるならば(ステップS104;Yes)、照射制御部17の制御のもとに、励起光量決定部16によって決定された励起光量L0aの励起光L0を、励起光照射部20を介して連続照射するとともに、計測画像取得制御部18の制御のもとに、撮像部30を介して応力発光塗料2の計測画像Dを撮像し、計測画像データD4として記憶する(ステップS105)。   Thereafter, the control unit 13 determines whether or not to start the stress luminescence measurement (Step S104). If the stress luminescence measurement has not been started (Step S104; No), the determination processing of Step S104 is repeated. On the other hand, if it is the start of the stress emission measurement (Step S104; Yes), the excitation light L0 of the excitation light amount L0a determined by the excitation light amount determination unit 16 is irradiated with the excitation light under the control of the irradiation control unit 17. While continuously irradiating through the unit 20, under the control of the measurement image acquisition control unit 18, the measurement image D of the stress-stimulated paint 2 is captured via the imaging unit 30 and stored as measurement image data D4 (step). S105).

その後、応力発光計測の終了か否かを判定する(ステップS106)。応力発光計測の終了でないならば(ステップS106;No)、ステップS105に移行して上記の照射処理及び撮像処理を繰り返し行う。一方、応力発光計測の終了であるならば(ステップS106;Yes)、本処理を終了する。   Thereafter, it is determined whether or not the stress luminescence measurement has been completed (step S106). If the stress emission measurement is not completed (Step S106; No), the process proceeds to Step S105, and the above-described irradiation processing and imaging processing are repeatedly performed. On the other hand, if it is the end of the stress luminescence measurement (Step S106; Yes), the present process is ended.

なお、励起光量決定部16は、応力発光量LM2が基準応力SSに応じた応力発光量LMSを超える所定応力発光量以上となった場合、自然放出光量LM1に対する応力発光量LM2の比が所定値以上であって、所定応力発光量の応力発光を可能にする励起光量を決定する調整してもよい。すなわち、応力発光量LM2が大きくなり、単位時間あたりのエネルギー消費量が高くなった場合、励起光量LM0を増加して、常時、高いエネルギー充填率を維持するように調整してもよい。なお、この場合、基準応力SSが大きくなり、基準応力SSに対する応力発光量LMSが大きくなることと等価であるため、応力発光量LMSを設定変更すればよい。   When the stress light emission amount LM2 is equal to or greater than a predetermined stress light emission amount exceeding the stress light emission amount LMS corresponding to the reference stress SS, the excitation light amount determination unit 16 determines that the ratio of the stress light emission amount LM2 to the spontaneous emission light amount LM1 is a predetermined value. As described above, the adjustment may be performed to determine the amount of excitation light that enables the stress light emission of the predetermined stress light emission amount. That is, when the stress light emission amount LM2 increases and the energy consumption per unit time increases, the excitation light amount LM0 may be increased so as to always maintain a high energy filling rate. In this case, since the reference stress SS increases and the stress light emission LMS with respect to the reference stress SS increases, the setting of the stress light emission LMS may be changed.

さらに、上記の実施の形態では、撮像部30を用いた計測画像を得るようにしていたが、これに限らず、目視計測を行ってもよい。   Further, in the above-described embodiment, a measurement image using the imaging unit 30 is obtained. However, the present invention is not limited to this, and visual measurement may be performed.

なお、上記の実施の形態で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。   In addition, each configuration illustrated in the above embodiment is a schematic function, and does not necessarily need to be physically configured as illustrated. In other words, the form of distribution / integration of each device is not limited to the one shown in the drawing, and all or a part thereof is functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.

本発明の応力発光計測装置及び応力発光計測方法は、応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、前記応力発光体に加えられる応力に応じた応力発光を計測する場合に有用であり、特に不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測する場合に有用である。   The stress-stimulated luminescence measuring device and the stress-stimulated luminescence measuring method according to the present invention are configured to irradiate a stress-stimulated luminescent material including a stress-stimulated luminescent material with excitation light to bring the stress-stimulated luminescent material into an excited state, and to apply a stress corresponding to the stress applied to the stress-stimulated luminescent material It is useful when measuring luminescence, and particularly useful when measuring stressed luminescence that continuously occurs at indefinite time intervals from spontaneous emission light including fluorescence and phosphorescence.

1 応力発光計測装置
2 応力発光塗料
10 装置本体
11 入出力部
12 記憶部
13 制御部
14 応力発光量取得部
15 関係取得部
16 励起光量決定部
17 照射制御部
18 計測画像取得制御部
20 励起光照射部
30 撮像部
101 計測対象部材
D 計測画像
D1 応力発光量データ
D2 関係データ
D3 励起光量データ
D4 計測画像データ
E1 蛍光領域
E2 燐光領域
f1,f2 関係
L0 励起光
L0a 励起光量
L1 自然放出光
L2 応力発光
La 自然放出光量
LM0 励起光量
LM1 自然放出光量
LM2 応力発光量
Lmax 最大光量
LMS 応力発光量
P 力
S 応力
SS 基準応力
t1,t2,t3,t4 時点
ΔL 光量差
REFERENCE SIGNS LIST 1 stress luminescence measurement device 2 stress luminescence paint 10 device main body 11 input / output unit 12 storage unit 13 control unit 14 stress luminescence amount acquisition unit 15 relationship acquisition unit 16 excitation light quantity determination unit 17 irradiation control unit 18 measurement image acquisition control unit 20 excitation light Irradiation unit 30 Imaging unit 101 Measurement target member D Measurement image D1 Stress luminescence amount data D2 Relation data D3 Excitation light amount data D4 Measurement image data E1 Fluorescence area E2 Phosphorescence area f1, f2 Relation L0 Excitation light L0a Excitation light L1 Spontaneous emission light L2 Stress Light emission La Spontaneous emission light amount LM0 Excitation light amount LM1 Spontaneous emission light amount LM2 Stress light emission amount Lmax Maximum light amount LMS Stress light emission amount P Force S Stress SS Reference stress t1, t2, t3, t4 Time ΔL Light amount difference

Claims (6)

応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測装置であって、
前記応力発光塗料に励起光を連続照射する励起光照射部と、
前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得部と、
前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得部と、
前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定部と、
前記励起光照射部に対して前記励起光量決定部が決定した励起光量の励起光を連続して照射させる照射制御部と、
を備えたことを特徴とする応力発光計測装置。
The stress-stimulated luminescent material including the stress-stimulated luminescent material is irradiated with excitation light to cause the stress-stimulated luminescent material to be in an excited state, and a stress-stimulated luminescence measuring device that measures a stress-stimulated luminescence corresponding to a stress applied to the stress-stimulated luminescent material at an indefinite time interval. So,
An excitation light irradiating unit that continuously irradiates the stress-stimulated paint with excitation light,
A stress luminescence amount acquisition unit that previously acquires a stress luminescence amount according to a reference stress applied to the stress luminous body,
A relationship acquisition unit that acquires in advance the relationship between the amount of spontaneous emission to the amount of excitation light that excites the stress-stimulated luminescent material,
An excitation light amount determination unit that determines an excitation light amount at which a ratio of the stress light emission amount to the spontaneous emission light amount becomes a predetermined value or more,
An irradiation control unit that continuously irradiates the excitation light irradiation unit with excitation light of the excitation light amount determined by the excitation light amount determination unit,
A stress-stimulated luminescence measuring device comprising:
前記励起光量決定部は、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする請求項1に記載の応力発光計測装置。   The excitation light amount determining unit, when the stress light emission amount is equal to or more than a predetermined stress light emission amount exceeding the stress light emission amount corresponding to the reference stress, a ratio of the stress light emission amount to the spontaneous emission light amount is equal to or more than a predetermined value. The stress luminescence measuring device according to claim 1, wherein an excitation light amount that enables the stress luminescence of the predetermined stress luminescence amount is determined. 前記応力発光塗料の発光を撮像する撮像部を備えたことを特徴とする請求項1又は2に記載の応力発光計測装置。   The stress-stimulated luminescence measuring device according to claim 1, further comprising an imaging unit configured to image the luminescence of the stress-stimulated luminescent paint. 応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測方法であって、
前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得ステップと、
前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得ステップと、
前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定ステップと、
前記励起光量決定ステップが決定した励起光量の励起光を連続して照射させる照射制御ステップと、
を含むことを特徴とする応力発光計測方法。
The stress-stimulated luminescent material including the stress-stimulated luminescent material is irradiated with excitation light to cause the stress-stimulated luminescent material to be in an excited state, and a stress-stimulated luminescence measuring method for measuring the stress-stimulated luminescence corresponding to the stress applied to the stress-stimulated luminescent material at an indefinite time interval. So,
Stress light emission amount acquisition step of previously acquiring a stress light emission amount according to a reference stress applied to the stress light emitter,
A relationship acquisition step of acquiring in advance the relationship between the amount of spontaneous emission to the amount of excitation light to excite the stress-stimulated luminescent material,
An excitation light amount determination step of determining an excitation light amount at which a ratio of the stress emission amount to the spontaneous emission amount is equal to or more than a predetermined value,
An irradiation control step of continuously irradiating excitation light of the excitation light amount determined by the excitation light amount determination step,
A stress luminescence measurement method comprising:
前記励起光量決定ステップは、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする請求項4に記載の応力発光計測方法。   The excitation light amount determining step includes, when the stress light emission amount is equal to or more than a predetermined stress light emission amount exceeding the stress light emission amount corresponding to the reference stress, a ratio of the stress light emission amount to the spontaneous emission light amount is equal to or more than a predetermined value. The method according to claim 4, wherein an excitation light amount that enables the predetermined amount of stress light emission is determined. 前記応力発光塗料の発光を撮像する撮像ステップを含むことを特徴とする請求項4又は5に記載の応力発光計測方法。   The stress luminescence measuring method according to claim 4, further comprising an imaging step of imaging luminescence of the stress luminescent paint.
JP2018161972A 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method Active JP6470863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161972A JP6470863B1 (en) 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161972A JP6470863B1 (en) 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method

Publications (2)

Publication Number Publication Date
JP6470863B1 JP6470863B1 (en) 2019-02-13
JP2020034450A true JP2020034450A (en) 2020-03-05

Family

ID=65358136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161972A Active JP6470863B1 (en) 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method

Country Status (1)

Country Link
JP (1) JP6470863B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184704B2 (en) * 2019-04-19 2022-12-06 株式会社トヨタプロダクションエンジニアリング Mechanoluminescence measurement device and mechanoluminescence measurement method
JP7054124B2 (en) * 2019-06-06 2022-04-13 国立研究開発法人産業技術総合研究所 Strain measuring device and strain measuring method
WO2020246460A1 (en) * 2019-06-06 2020-12-10 国立研究開発法人産業技術総合研究所 Strain measuring device and strain measuring method
JP7054125B2 (en) * 2019-06-06 2022-04-13 国立研究開発法人産業技術総合研究所 Stress luminescence measuring device and stress luminescence measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506698A (en) * 1999-08-06 2003-02-18 ユニバーシティ・オブ・フロリダ Luminescent brittle coatings in strain analysis
JP2007510913A (en) * 2003-11-05 2007-04-26 イノヴェイティブ サイエンティフィック ソリューションズ,インコーポレイテッド Method for determining surface contact force
JP2007279013A (en) * 2006-03-13 2007-10-25 Railway Technical Res Inst Pressure distribution measuring system and calibrating probe
JP2010190865A (en) * 2009-02-20 2010-09-02 National Institute Of Advanced Industrial Science & Technology Stress light emission analyzer, stress light emission analysis method, stress light emission analysis program, and recording medium
JP2015075477A (en) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 Stress luminescence evaluation system and stress luminescence evaluation method
JP2018119834A (en) * 2017-01-24 2018-08-02 株式会社トヨタプロダクションエンジニアリング Distortion amount calculator, method for calculating distortion amount, and distortion amount calculation program
CN108398420A (en) * 2018-01-31 2018-08-14 华南理工大学 The detection device of luminescent material mechanoluminescence performance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506698A (en) * 1999-08-06 2003-02-18 ユニバーシティ・オブ・フロリダ Luminescent brittle coatings in strain analysis
JP2007510913A (en) * 2003-11-05 2007-04-26 イノヴェイティブ サイエンティフィック ソリューションズ,インコーポレイテッド Method for determining surface contact force
JP2007279013A (en) * 2006-03-13 2007-10-25 Railway Technical Res Inst Pressure distribution measuring system and calibrating probe
JP2010190865A (en) * 2009-02-20 2010-09-02 National Institute Of Advanced Industrial Science & Technology Stress light emission analyzer, stress light emission analysis method, stress light emission analysis program, and recording medium
JP2015075477A (en) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 Stress luminescence evaluation system and stress luminescence evaluation method
JP2018119834A (en) * 2017-01-24 2018-08-02 株式会社トヨタプロダクションエンジニアリング Distortion amount calculator, method for calculating distortion amount, and distortion amount calculation program
CN108398420A (en) * 2018-01-31 2018-08-14 华南理工大学 The detection device of luminescent material mechanoluminescence performance

Also Published As

Publication number Publication date
JP6470863B1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6499363B1 (en) Stress luminescence measuring apparatus and stress luminescence measuring method
JP6470863B1 (en) Stress luminescence measuring apparatus and stress luminescence measuring method
JP2020034466A (en) Device and method for measuring stress luminescence
CN105723246B (en) There is the radiation detector for stablizing light output for imaging applications
Chithambo et al. Time-resolved optically stimulated luminescence and spectral emission features of α-Al2O3: C
ATE467235T1 (en) LIGHT EMISSION COMPONENT COMPRISING A PHOTOLUMINescent MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
HUP0301927A2 (en) Method, device and security system for authenticating luminescent a markings
JP2000503396A (en) A fast method for determining unknown absorbed radiation dose with high sensitivity using optically stimulated luminescence
JP2010190865A (en) Stress light emission analyzer, stress light emission analysis method, stress light emission analysis program, and recording medium
Kalita et al. Temperature dependence of persistent luminescence in CaAl2O4: Eu2+, Nd3+ related to beta irradiation and optical excitation
KR20200108412A (en) Optical measuring device and optical measuring method
JP7213695B2 (en) Mechanoluminescence measurement device and mechanoluminescence measurement method
Fu et al. Enhanced blue mechanoluminescence of SrnMgSi2O5+ n: Eu alkali-earth silicate induced by defective phase
JP2019002702A (en) Distortion amount calculation device, distortion amount calculation method, and distortion amount calculation program
JP2020169936A (en) Stress luminescence measuring device and stress luminescence measuring method
JP2020176903A (en) Device for measuring background data, device for measuring stress light emission and method for measuring background data
JP4581086B2 (en) Method for manufacturing phosphorescent material
JP7184704B2 (en) Mechanoluminescence measurement device and mechanoluminescence measurement method
Kalita et al. Probing the electron trap-depth distribution in Sr4Al14O25: Eu2+, Dy3+
Scheiner et al. Ultraviolet priming of triboluminescence
KR101848061B1 (en) Use of mechano luminescence as a probe in detecting fine crack on teeth and as a self-diagnosing probe on implants
JP5842586B2 (en) Authenticity verifier and authenticity verification method
US20230022560A1 (en) Photonic markers enabling temperature sensing and/or security marking using low frame rate cameras
WO2021039170A1 (en) Mechanoluminescence measuring device
JP2010500595A (en) Method and detector for measuring and / or judging afterglow of ceramic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190118

R150 Certificate of patent or registration of utility model

Ref document number: 6470863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250