JP2020027047A - Radar system and radar signal processing method thereof - Google Patents

Radar system and radar signal processing method thereof Download PDF

Info

Publication number
JP2020027047A
JP2020027047A JP2018152343A JP2018152343A JP2020027047A JP 2020027047 A JP2020027047 A JP 2020027047A JP 2018152343 A JP2018152343 A JP 2018152343A JP 2018152343 A JP2018152343 A JP 2018152343A JP 2020027047 A JP2020027047 A JP 2020027047A
Authority
JP
Japan
Prior art keywords
transmission
signal
radar system
mesh
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018152343A
Other languages
Japanese (ja)
Other versions
JP7166101B2 (en
Inventor
晋一 竹谷
Shinichi Takeya
晋一 竹谷
泰明 和田
Yasuaki Wada
泰明 和田
藤田 浩司
Koji Fujita
浩司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018152343A priority Critical patent/JP7166101B2/en
Publication of JP2020027047A publication Critical patent/JP2020027047A/en
Application granted granted Critical
Publication of JP7166101B2 publication Critical patent/JP7166101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

To detect a small target at a distance even by a compact transmitter or a compact receiver.SOLUTION: A radar system receives transmission signals transmitted from M (M>1) transmitters, respectively, divides an observation space determined from a reception beam of each of the transmission signals into three-dimensional meshes, extracts reception signals according to distance among the transmitters, observation space meshes, and receivers and performs video integration, and outputs three-dimensional positions of meshes in which the video-integrated value exceeds a predetermined threshold as target positions.SELECTED DRAWING: Figure 1

Description

本実施形態は、目標の3次元の位置を同定するレーダシステム及びそのレーダ信号処理方法に関する。   The present embodiment relates to a radar system for identifying a three-dimensional position of a target and a radar signal processing method thereof.

小型の送信装置や受信装置により、遠距離の小目標を観測するレーダシステムにあっては、SNが低く、また測角精度も低いため、目標が検出できなかったり、3次元の位置精度が劣化したりする場合があった。   In a radar system that observes small targets at long distances with small transmitters and receivers, the target cannot be detected or the three-dimensional position accuracy deteriorates due to low SN and low angle measurement accuracy. Or you might.

符号化レーダ、吉田、‘改訂レーダ技術’、電子情報通信学会、pp.278-280(1996)Coding radar, Yoshida, 'Revised radar technology', IEICE, pp.278-280 (1996) 符号コード(M系列)発生方式、M.I.Skolnik, ‘Introduction to radar systems’, pp.429-430, McGRAW-HILL(1980)Code code (M-sequence) generation method, M.I.Skolnik, ‘Introduction to radar systems’, pp.429-430, McGRAW-HILL (1980) CFAR処理、吉田、‘改訂レーダ技術’、電子情報通信学会、pp.87-89(1996)CFAR processing, Yoshida, 'Revised radar technology', IEICE, pp.87-89 (1996) 拡張アレイ(KR積アレイ)、Wing-Kin Ma, ‘DOA Estimation of Quasi-Stationary Signals With Less Sensors Than Sources and Unknown Spatial Noise Covariance: A Khatri-Rao Subspace Approach’, IEEE Trans. Signal Process., vol.58, no.4, pp.2168-2180, April(2010)Extended array (KR product array), Wing-Kin Ma, 'DOA Estimation of Quasi-Stationary Signals With Less Sensors Than Sources and Unknown Spatial Noise Covariance: A Khatri-Rao Subspace Approach', IEEE Trans. Signal Process., Vol.58 , no.4, pp.2168-2180, April (2010) 空間平均法、菊間、‘アレーアンテナによる適応信号処理’、科学技術出版、pp.163-170, pp.336-337(1999)Spatial averaging method, Kikuma, 'Adaptive signal processing by array antenna', Science and Technology Publishing, pp.163-170, pp.336-337 (1999) スクイント測角(振幅比較モノパルス)、吉田、‘改訂レーダ技術’、電子情報通信学会、pp.260-264(1996)Squint angle measurement (amplitude comparison monopulse), Yoshida, 'Revised radar technology', IEICE, pp.260-264 (1996)

以上述べたように、比較的小型の送信装置や受信装置によって遠距離の小目標を観測するレーダシステムにあっては、SNが低く、また測角精度も低いため、目標が検出できなかったり、3次元の位置精度が劣化したりする場合があった。
本実施形態は上記課題に鑑みなされたもので、比較的小型の送信装置や受信装置の場合でも、遠距離の小目標を検出することのできるレーダシステムとそのレーダ信号処理方法を提供することを目的とする。
As described above, in a radar system that observes a small target at a long distance with a relatively small transmitting device or receiving device, the target cannot be detected because the SN is low and the angle measurement accuracy is low. In some cases, three-dimensional positional accuracy may be deteriorated.
The present embodiment has been made in view of the above problems, and provides a radar system and a radar signal processing method capable of detecting a small target at a long distance even in the case of a relatively small transmitting device or receiving device. Aim.

上記の課題を解決するために、本実施形態に係るレーダシステムは、M(M>1)台の送信装置とN(N≧1)台の受信装置とを備え、前記受信装置が前記M(M>1)台の送信装置からそれぞれ送信される送信信号を受信し、前記送信信号それぞれの受信ビームから決まる観測空間を3次元メッシュに分割し、前記送信装置〜観測空間メッシュ〜受信装置までの距離に応じて受信信号を抽出してビデオ積分し、前記ビデオ積分された値が所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する。   In order to solve the above-described problem, the radar system according to the present embodiment includes M (M> 1) transmitting apparatuses and N (N ≧ 1) receiving apparatuses, and the receiving apparatus includes the M (M> 1). M> 1) receive transmission signals transmitted from each of the transmission devices, divide an observation space determined by reception beams of the respective transmission signals into a three-dimensional mesh, and perform transmission from the transmission device to the observation space mesh to the reception device. A received signal is extracted according to the distance, video integrated, and a three-dimensional position of the mesh whose video integrated value exceeds a predetermined threshold is output as a target position.

第1の実施形態に係るレーダシステムの送信装置の構成を示すブロック図。FIG. 2 is a block diagram illustrating a configuration of a transmission device of the radar system according to the first embodiment. 第1の実施形態に係るレーダシステムの受信装置の構成を示すブロック図。FIG. 2 is a block diagram illustrating a configuration of a receiver of the radar system according to the first embodiment. 第1の実施形態に係るレーダシステムの具体的な運用例を示す概念図。FIG. 2 is a conceptual diagram showing a specific operation example of the radar system according to the first embodiment. 第1の実施形態において、M個の送信装置から出力される符号変調パルスを示す波形図。FIG. 4 is a waveform chart showing code modulation pulses output from M transmission devices in the first embodiment. 第1の実施形態において、M個の送信装置の変調信号に応じて、同一目標でも、送信装置〜目標〜受信装置の経路長が異なる様子を示すタイミング図。FIG. 6 is a timing chart showing how the path lengths of the transmission device, the target, and the reception device are different for the same target according to the modulation signals of M transmission devices in the first embodiment. 第2の実施形態に係るレーダシステムの受信装置の構成を示すブロック図。FIG. 5 is a block diagram showing a configuration of a receiving device of a radar system according to a second embodiment. 第2の実施形態の特徴とする信号処理器内のレンジ軸KR積処理器の具体的な構成を示すブロック図。FIG. 9 is a block diagram showing a specific configuration of a range axis KR product processor in a signal processor which is a feature of the second embodiment. 第2の実施形態において、相関行列を部分行列に分離して平均化する手法を説明するためのタイミング図。FIG. 10 is a timing chart for explaining a method of separating a correlation matrix into sub-matrices and averaging them in the second embodiment. 第3の実施形態に係るレーダシステムの受信装置の構成を示すブロック図。FIG. 13 is a block diagram showing a configuration of a receiving device of a radar system according to a third embodiment. 第3の実施形態において、施形態の受信ビーム形成の様子を示す概念図。FIG. 13 is a conceptual diagram illustrating a state of reception beam formation according to the embodiment in the third embodiment. 第3の実施形態の受信ビームの角度と誤差電圧との関係を示す波形図。FIG. 14 is a waveform chart showing a relationship between an angle of a reception beam and an error voltage according to the third embodiment. 第3の実施形態に係るレーダシステムの具体的な運用例を示す概念図。FIG. 9 is a conceptual diagram showing a specific operation example of the radar system according to the third embodiment. 第4の実施形態に係るレーダシステムの受信装置の構成を示すブロック図。FIG. 14 is a block diagram showing a configuration of a receiving device of a radar system according to a fourth embodiment. 第5の実施形態に係るレーダシステムの送信装置の構成を示すブロック図。FIG. 15 is a block diagram showing a configuration of a transmission device of a radar system according to a fifth embodiment. 第5の実施形態に係るレーダシステムの受信装置の構成を示すブロック図。FIG. 15 is a block diagram showing a configuration of a receiving device of a radar system according to a fifth embodiment. 第5の実施形態に係るレーダシステムの通信処理を説明するための概念図。FIG. 13 is a conceptual diagram for explaining communication processing of a radar system according to a fifth embodiment. 第5の実施形態に係るレーダシステムの通信情報の送受信方法を説明するためのタイミング図。FIG. 17 is a timing chart for explaining a method of transmitting and receiving communication information of the radar system according to the fifth embodiment. 第5の実施形態に係るレーダシステムの通信情報の送受信処理の様子を示すタイミング図。FIG. 17 is a timing chart showing a state of transmission / reception processing of communication information of the radar system according to the fifth embodiment. 第5の実施形態に係るレーダシステムの通信情報の復調後から距離を抽出する様子を示すタイミング図。FIG. 19 is a timing chart showing how a distance is extracted after demodulating communication information of the radar system according to the fifth embodiment.

以下、実施形態について、図面を参照して説明する。尚、各実施形態において、同一部分には同一符号を付して示し、重複する説明を省略する。
(第1の実施形態)
図1乃至図5を参照して、第1の実施形態に係るレーダシステムを説明する。
図1は本実施形態に係るレーダシステムの送信装置の構成を示すブロック図である。図1に示す送信装置では、チャープ信号生成器11でチャープ信号を生成し、符号生成器12で符号を生成して、変調器13でチャープ信号及び符号による変調を施して、周波数変換器14で高周波(RF)信号に周波数変換し、高出力増幅器15で、変調器13で生成したパルス幅に応じて高出力増幅し、送信アンテナ16より送信する。
Hereinafter, embodiments will be described with reference to the drawings. In each embodiment, the same portions are denoted by the same reference numerals, and redundant description will be omitted.
(First embodiment)
The radar system according to the first embodiment will be described with reference to FIGS.
FIG. 1 is a block diagram illustrating a configuration of a transmission device of a radar system according to the present embodiment. In the transmitting apparatus shown in FIG. 1, a chirp signal is generated by a chirp signal generator 11, a code is generated by a code generator 12, modulation is performed by a chirp signal and a code by a modulator 13, and a modulation is performed by a frequency converter 14. The signal is frequency-converted into a high-frequency (RF) signal, high-output amplified by a high-output amplifier 15 according to the pulse width generated by the modulator 13, and transmitted from a transmission antenna 16.

図2は本実施形態に係るレーダシステムの受信装置の構成を示すブロック図である。図2に示す受信装置では、受信アンテナ21により受信した信号を、低雑音増幅器22で増幅した後、周波数変換器23でベースバンドに変換し、AD変換器24によりディジタル信号に変換する。   FIG. 2 is a block diagram showing the configuration of the receiver of the radar system according to the present embodiment. In the receiving apparatus shown in FIG. 2, a signal received by the receiving antenna 21 is amplified by the low noise amplifier 22, converted to baseband by the frequency converter 23, and converted to a digital signal by the AD converter 24.

AD変換器24でディジタル信号に変換された受信信号はL系統の信号処理器251〜25Lに入力される。信号処理器251は、受信信号を送信変調信号に応じて相関処理してレンジ方向にパルス圧縮するパルス圧縮器A11、slow-time(レンジ)軸の圧縮出力を周波数軸の信号に変換するslow-timeFFT処理器A12、周波数軸に変換されたパルス圧縮信号から最大バンクの信号を抽出する最大バンク抽出器A13を備える。他の信号処理器252〜25Lも同様に構成される。   The received signal converted into a digital signal by the AD converter 24 is input to the L-system signal processors 251 to 25L. The signal processor 251 performs a pulse processing in a range direction by performing a correlation process on the received signal in accordance with the transmission modulation signal to compress the pulse in a range direction, and converts a compressed output of a slow-time (range) axis into a signal of a frequency axis. The timeFFT processor A12 includes a maximum bank extractor A13 that extracts a signal of a maximum bank from the pulse compression signal converted into a frequency axis. Other signal processors 252 to 25L are similarly configured.

各信号処理器251〜25Lの出力は、いずれも振幅積分器26に送られる。この振幅積分器26は、観測メッシュ位置毎に、送信位置(1〜M)の経路長Lに応じたレンジセルを抽出し、振幅積分する。この振幅積分結果は、検出器27で所定の振幅スレショルドを超えたメッシュセルをCFAR(非特許文献3参照)等により抽出し、その抽出セルを3Dデータ出力器28で3D画像に変換し出力する。   The outputs of the signal processors 251 to 25L are all sent to the amplitude integrator 26. The amplitude integrator 26 extracts a range cell corresponding to the path length L of the transmission position (1 to M) for each observation mesh position, and integrates the amplitude. As a result of the amplitude integration, a mesh cell exceeding a predetermined amplitude threshold is extracted by a detector 27 by CFAR (see Non-Patent Document 3) or the like, and the extracted cell is converted into a 3D image by a 3D data output unit 28 and output. .

上記構成において、図3乃至図5を参照して、具体的な処理動作を説明する。ここで、図3は、本実施形態に係るレーダシステムの具体的な運用例を示す概念図、図4は、M個の送信装置から出力される符号変調パルスを示す波形図、図5はM個の送信装置の変調信号に応じて、同一目標でも、送信装置〜目標〜受信装置の経路長が異なる様子を示すタイミング図で、(a)は送信タイミング、(b)は受信タイミングを示している。   In the above configuration, a specific processing operation will be described with reference to FIGS. Here, FIG. 3 is a conceptual diagram illustrating a specific operation example of the radar system according to the present embodiment, FIG. 4 is a waveform diagram illustrating code modulation pulses output from M transmitting devices, and FIG. FIG. 9 is a timing chart showing a state in which the path lengths of the transmission device, the target, and the reception device are different even for the same target according to the modulation signals of the transmission devices, where (a) shows the transmission timing and (b) shows the reception timing. I have.

本実施形態では、送信装置及び受信装置がそれぞれ図1及び図2に示すように構成されるものとし、図3に示すように、送信装置TがM個、受信装置Rが1個の場合を想定する。各送信装置Tと受信装置Rは、GPS(Global Positioning System)等で時刻同期され、送信/受信位置、送信時刻、送信周波数、送信ビーム方向は、通信回線等により既知であるものとする。   In the present embodiment, it is assumed that the transmitting device and the receiving device are configured as shown in FIGS. 1 and 2, respectively. As shown in FIG. 3, a case where the number of the transmitting devices T is M and the number of the receiving devices R is one is assumed. Suppose. Each transmitting apparatus T and receiving apparatus R are time-synchronized by a GPS (Global Positioning System) or the like, and the transmission / reception position, transmission time, transmission frequency, and transmission beam direction are known from a communication line or the like.

本実施形態では、小型の送受信散布型レーダにおける目標検出と3D位置同定手法の一案を示す。すなわち、小型の場合はSNが低いため、受信装置Rで目標を検出できないとすると、複数の送信装置Tからの信号のビデオ積分(振幅積分)が必要である。ただし、積分の際には、レンジセルが不明である。このため、本実施形態では、図3に示すように、観測空間をメッシュに分割し、メッシュ毎に経路長を算出し、受信データからレンジセルを抽出して積分することを考える。   In the present embodiment, a proposal of a target detection and 3D position identification method in a small transmitting / receiving scattered radar will be described. That is, if the target cannot be detected by the receiving device R because the SN is low when the device is small, video integration (amplitude integration) of the signals from the plurality of transmitting devices T is necessary. However, at the time of integration, the range cell is unknown. Therefore, in the present embodiment, as shown in FIG. 3, consider dividing the observation space into meshes, calculating the path length for each mesh, extracting the range cells from the received data, and integrating.

まず、送信波形は、図4に示すように、例えば符号変調パルス(非特許文献1参照)であり、送信装置毎に異なる符号変調を行う。   First, as shown in FIG. 4, the transmission waveform is, for example, a code modulation pulse (see Non-Patent Document 1), and performs different code modulation for each transmission device.

Figure 2020027047

符号変調の種類としては、M系列(非特許文献2参照)等がある。図1を参照して送信信号の生成方法について述べる。
チャープ信号(11)とパルス内及びパルス間の符号(12)によって基準信号を変調して送信信号を生成し(12,13)、高周波(RF)信号に周波数変換し(14)、変調されたパルス幅に応じて高出力増幅し(15)、送信アンテナ16より送信する。
Figure 2020027047

Examples of the type of code modulation include an M sequence (see Non-Patent Document 2). A method of generating a transmission signal will be described with reference to FIG.
A reference signal is modulated by a chirp signal (11) and a code (12) within a pulse and between pulses to generate a transmission signal (12, 13), frequency-converted to a radio frequency (RF) signal (14), and modulated. High power amplification is performed according to the pulse width (15), and the signal is transmitted from the transmission antenna 16.

次に、図2の受信系統をもとに、受信を考える。受信アンテナ21により受信した信号は、低雑音増幅された後(22)、ベースバンドに周波数変換されて(23)、AD変換14によりディジタル信号に変換される。この受信信号は、次式となる。   Next, reception will be considered based on the reception system shown in FIG. The signal received by the receiving antenna 21 is low-noise amplified (22), frequency-converted to baseband (23), and converted to a digital signal by the AD converter 14. This received signal is given by the following equation.

Figure 2020027047

これを受信装置Rで受信して、M個の送信装置Tそれぞれの送信変調信号に応じて相関処理し、レンジ圧縮する(A11)。このために、基準信号をFFTによって周波数軸に変換する。
Figure 2020027047

This is received by the receiving device R, subjected to correlation processing according to the transmission modulation signals of the M transmitting devices T, and range compressed (A11). For this purpose, the reference signal is converted to a frequency axis by FFT.

Figure 2020027047

次に、参照信号は次式となる。
Figure 2020027047

Next, the reference signal is expressed by the following equation.

Figure 2020027047

これをFFTすると、次式となる。
Figure 2020027047

When this is subjected to FFT, the following equation is obtained.

Figure 2020027047

したがって、相関処理(圧縮処理)は次式となる。
Figure 2020027047

Therefore, the correlation processing (compression processing) is represented by the following equation.

Figure 2020027047

図5(a)に示すように、複数(1〜M台)の送信装置Tそれぞれの変調信号に応じて、同一目標でも、送信装置〜目標〜受信装置の経路長が異なる。このため、レンジ軸でずれた信号が受信されるようになり、上記の圧縮結果が得られる。
ここで、経路長Lは、次式で表現できる。
Figure 2020027047

As illustrated in FIG. 5A, the path lengths of the transmission device, the target, and the reception device are different depending on the modulation signals of the plurality (1 to M) of transmission devices T even for the same target. Therefore, a signal shifted on the range axis is received, and the above-described compression result is obtained.
Here, the path length L can be expressed by the following equation.

Figure 2020027047

図5(b)に示すように、観測3Dメッシュ位置毎に、送信位置(1〜M)の経路長Lに応じたレンジセルを抽出し、振幅積分(ビデオ積分)(26)した結果を、観測メッシュ空間に保存する。この結果より、所定の振幅スレショルドを超えたメッシュセルをCFAR(非特許文献3参照)等により抽出(27)すれば、そのセルが目標位置(xq, yq, zq)(q=1〜Q)となる。
Figure 2020027047

As shown in FIG. 5B, a range cell corresponding to the path length L of the transmission position (1 to M) is extracted for each observation 3D mesh position, and the result of amplitude integration (video integration) (26) is observed. Save in mesh space. From this result, if a mesh cell exceeding a predetermined amplitude threshold is extracted (27) by CFAR (see Non-Patent Document 3) or the like, the cell is located at a target position (xq, yq, zq) (q = 1 to Q). Becomes

以上のように本実施形態に係るレーダシステムは、M(M>1)台の送信装置とN(N≧1)台の受信装置において、受信ビームから決まる観測空間を3次元(3D)メッシュに分割し、送信装置〜観測空間メッシュ〜受信装置までの距離に応じて、受信信号を抽出してビデオ積分し、所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する。すなわち、複数の送信装置〜受信装置の経路長を考慮して振幅積分することにより、SNを向上させることができ、目標の3次元の位置を同定することができる。   As described above, in the radar system according to the present embodiment, the observation space determined by the reception beam is converted into a three-dimensional (3D) mesh in M (M> 1) transmission devices and N (N ≧ 1) reception devices. According to the distance from the transmission device to the observation space mesh to the reception device, the reception signal is extracted, video-integrated, and the three-dimensional position of the mesh exceeding a predetermined threshold is output as a target position. That is, by performing amplitude integration in consideration of the path lengths of a plurality of transmitting devices to receiving devices, the SN can be improved, and the target three-dimensional position can be identified.

(第2の実施形態)
第1の実施形態では、観測空間をX−Y−Zの3次元の空間にメッシュ分割し、各送信装置〜目標〜受信装置の経路長差を利用した積分により、目標の3Dの位置を同定する手法について述べた。この際、レンジ分解能は、周波数帯域で決まり、符合変調の場合はサンプリングレートの逆数で決まる。このレンジ分解能を積分しやすいように設定することが必要であるが、周波数帯域の制約により、必要なレンジ分解能が得られないことが考えられる。その対策について、図6乃至図8を参照して第2の実施形態として説明する。
(Second embodiment)
In the first embodiment, the observation space is mesh-divided into a three-dimensional space of XYZ, and the 3D position of the target is identified by integration using the path length difference between each of the transmission device, the target, and the reception device. The method to do it was described. At this time, the range resolution is determined by the frequency band, and in the case of code modulation, it is determined by the reciprocal of the sampling rate. It is necessary to set the range resolution so that it can be easily integrated. However, it is conceivable that the required range resolution cannot be obtained due to restrictions on the frequency band. The countermeasure will be described as a second embodiment with reference to FIGS.

送信装置は、図1と同様である。図6は、本実施形態に係るレーダシステムの受信装置の構成を示すブロック図、図7は本実施形態の特徴とする信号処理器内のレンジ軸KR積処理器の具体的な構成を示すブロック図、図8は本実施形態において、相関行列を部分行列に分離して平均化する手法を説明するためのタイミング図である。   The transmitting device is the same as in FIG. FIG. 6 is a block diagram illustrating a configuration of a receiver of the radar system according to the present embodiment, and FIG. 7 is a block illustrating a specific configuration of a range axis KR product processor in a signal processor which is a feature of the present embodiment. FIG. 8 and FIG. 8 are timing charts for explaining a method of averaging by separating the correlation matrix into sub-matrices in the present embodiment.

図6において、出力部にレンジ軸KR積処理器A14を配置した点が第1の実施形態と異なる。すなわち、本実施形態では、最大バンクを抽出したレンジ軸(fast-time軸)のデータを用いて、レンジ軸KR積(拡張アレイ)処理を行う(A15)。レンジ軸KR積処理器A14は、図7に示すように、反射点選定部A141、レンジ軸IFFT(またはドップラ軸FFT)処理部A142、部分相関行列平均化部A143、拡張アレイ処理部A144で構成される。   FIG. 6 differs from the first embodiment in that a range axis KR product processor A14 is arranged in the output section. That is, in the present embodiment, range axis KR product (extended array) processing is performed using data on the range axis (fast-time axis) from which the maximum bank has been extracted (A15). As shown in FIG. 7, the range axis KR product processor A14 includes a reflection point selecting unit A141, a range axis IFFT (or Doppler axis FFT) processing unit A142, a partial correlation matrix averaging unit A143, and an extended array processing unit A144. Is done.

レンジ軸の信号をFFT処理することにより、目標信号の位相勾配に対応する信号を得ることができる。この信号が、拡張アレイ処理(A144)のための入力ベクトルXaとなる。   By performing the FFT processing on the signal on the range axis, a signal corresponding to the phase gradient of the target signal can be obtained. This signal becomes the input vector Xa for the extended array processing (A144).

Figure 2020027047

次に、この信号(Xa, Xb)を用いて、拡張アレイ処理として、KR積アレイ処理(非特許文献4参照)を行う。まず、相関行列は次式で表現できる。
Figure 2020027047

Next, using these signals (Xa, Xb), KR product array processing (see Non-Patent Document 4) is performed as extended array processing. First, the correlation matrix can be expressed by the following equation.

Figure 2020027047

ここで、反射点間の相関を抑圧するために、図8に示すように、相関行列を部分行列に分離し、平均化する手法(A143)を適用する(非特許文献5参照)。
まず、レンジ軸Rxxaについては、次式となる。レーダの送受信による複数の目標信号は、互いに相関をもつため、Xaの相関行列Rxxaの相関成分を抑圧するために、Xaの信号長のうち、順にNapセルずつ抽出し、そのたびにRxxaの算出を行う。
Figure 2020027047

Here, in order to suppress the correlation between the reflection points, as shown in FIG. 8, a technique of dividing the correlation matrix into sub-matrices and averaging (A143) is applied (see Non-Patent Document 5).
First, the following equation is given for the range axis Rxxa. Since multiple target signals transmitted and received by the radar have a correlation with each other, in order to suppress the correlation component of the correlation matrix Rxxa of Xa, the Nap cells are sequentially extracted from the signal length of Xa, and the Rxxa is calculated each time. I do.

Figure 2020027047

CPI単位の時間平均については、例えば、Rxxapを忘却係数を用いた平均処理により算出する。
Figure 2020027047

For the time average in CPI units, for example, Rxxap is calculated by an averaging process using a forgetting factor.

Figure 2020027047

以上の部分相関行列の平均値であるRxxapを用いて、拡張アレイ処理することにより、この左端と上端の要素をベクトル化すると、次式となる。
Figure 2020027047

When the elements at the left end and the upper end are vectorized by performing an extended array process using Rxxap, which is the average value of the above partial correlation matrix, the following equation is obtained.

Figure 2020027047
Figure 2020027047

Figure 2020027047

この部分相関行列の平均値を用いたベクトルXkraは、複数反射点間の相関が抑圧された受信信号である。この受信信号を用いて、観測空間のメッシュ毎に前述の振幅積分(26)を行い、目標を検出し(27)、検出した目標の3D位置を高精度に同定する(28)。
Figure 2020027047

The vector Xkra using the average value of the partial correlation matrix is a received signal in which the correlation between a plurality of reflection points has been suppressed. Using the received signal, the above-mentioned amplitude integration (26) is performed for each mesh in the observation space, a target is detected (27), and the 3D position of the detected target is identified with high accuracy (28).

以上のように、本実施形態に係るレーダシステムでは、M(M>1)台の送信装置とN(N≧1)台の受信装置において、送信〜目標〜受信信号からレンジ軸で、相関行列を算出し、部分相関空間で平均化した相関行列を用いてKR積アレイ信号を抽出し、さらに必要に応じてKR積アレイ処理をL(L>1)回繰り返した受信データを得て、受信ビームから決まる観測空間をメッシュに分割し、送信装置〜観測空間メッシュ〜受信装置までの距離に応じて、受信データから信号を抽出してビデオ積分し、所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する。すなわち、複数の送信装置〜受信装置の経路長を考慮して振幅積分する際に、レンジ軸拡張アレイ処理(KR積)により、高分解能に振幅積分するため、SNを向上させることが可能となり、目標の3次元の位置を同定することができる。   As described above, in the radar system according to the present embodiment, in the M (M> 1) transmitting devices and the N (N ≧ 1) receiving devices, the correlation matrix is calculated on the range axis from the transmission, target, and reception signals. Is calculated, a KR product array signal is extracted using the correlation matrix averaged in the partial correlation space, and if necessary, reception data obtained by repeating the KR product array processing L (L> 1) times is obtained. The observation space determined by the beam is divided into meshes, signals are extracted from the received data according to the distance from the transmission device to the observation space mesh to the reception device, video integrated, and the three-dimensional position of the mesh exceeding a predetermined threshold Is output as the target position. That is, when the amplitude integration is performed in consideration of the path lengths of a plurality of transmission devices to the reception devices, the amplitude integration is performed with high resolution by the range axis expansion array processing (KR product), so that the SN can be improved. A three-dimensional position of the target can be identified.

(第3の実施形態)
第1の実施形態及び第2の実施形態では、目標経路長により、目標の3D位置を同定する手法について述べた。その際には、送信装置が十分に離隔していない場合には、誤検出が生じる場合がある。第3の実施形態では、その対策手法について、図9乃至図12を参照して説明する。図9は本実施形態に係るレーダシステムの受信装置の構成を示すブロック図、図10は本実施形態の受信ビーム形成の様子を示す概念図、図11は本実施形態の受信ビームの角度と誤差電圧との関係を示す波形図、図12は本実施形態に係るレーダシステムの具体的な運用例を示す概念図である。
(Third embodiment)
In the first embodiment and the second embodiment, the method of identifying the target 3D position based on the target path length has been described. In this case, if the transmission devices are not sufficiently separated, erroneous detection may occur. In the third embodiment, a countermeasure method will be described with reference to FIGS. FIG. 9 is a block diagram showing a configuration of a receiver of the radar system according to the present embodiment, FIG. 10 is a conceptual diagram showing a state of reception beam formation in this embodiment, and FIG. 11 is an angle and an error of the reception beam in this embodiment. FIG. 12 is a conceptual diagram showing a specific operation example of the radar system according to the present embodiment.

図9において、本実施形態の特徴は、AD変換器24の出力をΣ系統とΔAZ,ΔEL系統に分離する。このうち、Σ系統では、信号処理器251〜25Mにおいて、それぞれ相関処理パルス圧縮器A11a、slow-timeFFTA12a、最大バンク抽出器A13a、レンジ軸KR積処理器A14aを経て、振幅積分器26a、検出器27により、第2の実施形態と同様に処理される。一方、ΔAZ,ΔEL系統では、Σ系列と同様に、信号処理器251〜25Mにおいて、それぞれ相関処理パルス圧縮器A11b、slow-timeFFTA12b、最大バンク抽出器A13b、レンジ軸KR積処理器A14bを経て、振幅積分器26bで第2の実施形態と同様に処理された後、測角器30で目標方向を測角する。この測角結果は検出器27の出力と共に誤検出抑圧器29に送られ、ここで目標の誤検出が抑圧された後、3Dデータ出力器28から3D化されて出力される。   In FIG. 9, the feature of the present embodiment is that the output of the AD converter 24 is separated into a Σ system and ΔAZ and ΔEL systems. Among them, in the Σ system, the signal processors 251 to 25M pass through the correlation processing pulse compressor A11a, the slow-time FFTA 12a, the maximum bank extractor A13a, the range axis KR product processor A14a, the amplitude integrator 26a, the detector 27, the same processing as in the second embodiment is performed. On the other hand, in the ΔAZ and ΔEL systems, similarly to the 同 様 series, the signal processors 251 to 25M pass through the correlation processing pulse compressor A11b, the slow-time FFTA 12b, the maximum bank extractor A13b, and the range axis KR product processor A14b, respectively. After being processed by the amplitude integrator 26b in the same manner as in the second embodiment, the goniometer 30 measures the target direction. The angle measurement result is sent to the erroneous detection suppressor 29 together with the output of the detector 27, where the erroneous detection of the target is suppressed.

上記構成によるレーダシステムにおいて、以下、その処理内容を説明する。ここで、図10(a)はΣ、ΔAZ,ΔALそれぞれのビーム方向、図10(b)はビーム断面でのΣビームに対するΔELとΔAZとのずれ量を示し、図11(a)はΣビームとΔAZまたはΔELの角度−振幅分布を示し、図11(b)はAZまたはEL角度に対する誤差電圧との関係として誤差電圧曲線を示している。   The processing contents of the radar system having the above configuration will be described below. Here, FIG. 10A shows the beam directions of Σ, ΔAZ, and ΔAL, FIG. 10B shows the shift amount between ΔEL and ΔAZ with respect to the Σ beam in the beam cross section, and FIG. FIG. 11B shows an error voltage curve as a relationship between the angle and the amplitude of ΔAZ or ΔEL, and FIG.

まず、スクイント測角について述べる。スクイント測角は、図10及び図11に示すように、和ビーム(Σビーム)に対して、AZ面とEL面で指向方向をずらせた差(スクイント)ビームを形成して、Σビームとの比により、測角(振幅比較モノパルス、非特許文献6参照)するものである。定式化すると、次式となる。   First, the squint angle measurement will be described. As shown in FIGS. 10 and 11, the squint angle measurement forms a difference (squint) beam in which the directivity direction is shifted between the AZ plane and the EL plane with respect to the sum beam (Σ beam), and Angle measurement (amplitude comparison monopulse, see Non-Patent Document 6) is performed based on the ratio. Formulated as follows.

Figure 2020027047

この誤差電圧εAZ(εEL)を観測し、予め取得しておいた図11に示す誤差電圧曲線より、目標角度AZ(EL)を算出する。
このスクイント測角を用いて誤検出を抑圧する手法について、図9の系統と用いて説明する。Σビームについては、第1の実施形態や第2の実施形態と同様である。本実施形態では、スクイント測角のために、Σと同様に、ΔAZ及びΔELの信号処理(A11b〜A14b)を行う。さらに、経路長を考慮した振幅積分(26b)についてもΣと同様に、ΔAZとΔELに対して行う。次に、Σビームについては目標検出を行い(27a)、図10及び図11に示すように、ΣとΔAZ及びΣとΔELにより測角を行う(30)。次に、この目標の測角値を中心に、図12の一点鎖線で示すような所定の角度幅を設定し、その範囲外に同定された反射点は、誤検出として抑圧する(29)。誤検出以外の目標反射点を3Dデータとして出力する(28)。以上により、誤検出を抑圧した目標反射点の3D位置を同定することができる。
Figure 2020027047

The error voltage εAZ (εEL) is observed, and the target angle AZ (EL) is calculated from the previously obtained error voltage curve shown in FIG.
A method for suppressing erroneous detection using the squint angle measurement will be described with reference to the system shown in FIG. The Σ beam is the same as in the first and second embodiments. In the present embodiment, signal processing (A11b to A14b) for ΔAZ and ΔEL is performed in the same way as for Σ for squint angle measurement. Further, the amplitude integration (26b) in consideration of the path length is performed for ΔAZ and ΔEL in the same manner as in Σ. Next, for the に つ い て beam, target detection is performed (27a), and as shown in FIGS. 10 and 11, angle measurement is performed using Σ and ΔAZ and Σ and ΔEL (30). Next, a predetermined angular width as shown by a dashed line in FIG. 12 is set around the target angle measurement value, and a reflection point identified outside the range is suppressed as an erroneous detection (29). The target reflection points other than erroneous detection are output as 3D data (28). As described above, it is possible to identify the 3D position of the target reflection point where the erroneous detection is suppressed.

以上のように、本実施形態に係るレーダシステムでは、受信装置において、AZ軸またはEL軸の少なくとも一方のスクイントビームを形成し、ビデオ積分値で測角し、各目標の測角値をもとに、誤検出を抑圧する。すなわち、複数の送信装置〜受信装置の経路長を考慮して振幅積分することによって発生する誤検出を、スクイント測角値を用いて抑圧することで、目標の3次元の位置を高精度に同定することができる。   As described above, in the radar system according to the present embodiment, the receiving device forms a squint beam of at least one of the AZ axis and the EL axis, measures the angle by the video integration value, and also calculates the angle measurement value of each target. At the same time, erroneous detection is suppressed. In other words, erroneous detection caused by performing amplitude integration in consideration of the path lengths of a plurality of transmitting devices to receiving devices is suppressed using a squint angle measurement value, so that a target three-dimensional position can be identified with high accuracy. can do.

(第4の実施形態)
第1乃至第3の実施形態では、経路長差を用いて目標の3D位置を同定する手法について述べた。3D位置(X−Y−Z)の中で、特に海面上のような場合の送信位置は、X−Yの水平面に配置されるので、目標のZ軸に対する経路差が現れ難い。本実施形態では、この対策について、図13を参照して説明する。
(Fourth embodiment)
In the first to third embodiments, the method of identifying the target 3D position using the path length difference has been described. Among the 3D positions (XYZ), the transmission position particularly on the sea surface is arranged on the XY horizontal plane, so that a path difference with respect to the target Z axis is unlikely to appear. In the present embodiment, this measure will be described with reference to FIG.

図13は第4の実施形態に係るレーダシステムの受信装置の構成を示すブロック図である。本実施形態では、まず、第3の実施形態と同様に、観測空間(X−Y−Z)の探索メッシュに対して、振幅積分を行い(26a)、目標の検出を行う(27a)。この出力の座標軸はX−Y−Zであるが、Z軸に関してはアンビギュイティを含んでいる。このアンビギュイティを抑圧するために、まず検出した反射点の距離を距離算出器31で算出する。   FIG. 13 is a block diagram illustrating a configuration of a receiver of the radar system according to the fourth embodiment. In the present embodiment, first, as in the third embodiment, amplitude integration is performed on a search mesh in the observation space (XYZ) (26a), and a target is detected (27a). The coordinate axes of this output are XYZ, but include ambiguities with respect to the Z axis. In order to suppress this ambiguity, first, the distance between the detected reflection points is calculated by the distance calculator 31.

Figure 2020027047

一方、第3の実施形態と同様の手法でΣビームとΔELビームを用いたスクイント測角により、目標のEL面の測角値θEL(p)を測角器30で算出する。目標反射点の距離と測角値により、次式でZ軸の座標を算出する。
Figure 2020027047

On the other hand, the angle measurement value θEL (p) of the target EL surface is calculated by the angle measuring device 30 by the squint angle measurement using the Σ beam and the ΔEL beam in the same manner as in the third embodiment. The coordinates of the Z axis are calculated by the following equation based on the distance of the target reflection point and the angle measurement value.

Figure 2020027047

もともとのX(p)、Y(p)と組み合わせて、反射点のX−Y−Z座標を出力することができ(28)、これによって、3D位置算出器32でアンビギュイティを含まない目標の3D位置を同定することができる。
以上のように、本実施形態に係るレーダシステムでは、受信装置において、EL軸でスクイントビームを形成し、必要に応じて角度軸拡張アレイを用いるか、乗算ビームを用いて、ビデオ積分値で測角し、経路長によるX−Y位置と測角値によるZの位置を組み合わせて出力する。すなわち、複数の送信装置〜受信装置の経路長を考慮して振幅積分することにより、SNを向上するとともに、目標の2次元(水平面)の位置を算出し、さらにスクイント測角値を組み合わせることで、目標の3次元の位置を同定することができる。
Figure 2020027047

The XYZ coordinates of the reflection point can be output in combination with the original X (p) and Y (p) (28), so that the 3D position calculator 32 does not include the ambiguity-free target. Can be identified.
As described above, in the radar system according to the present embodiment, in the receiving device, a squint beam is formed on the EL axis, and if necessary, an angle axis extended array or a multiplied beam is used to obtain a video integration value. The angle is measured, and the XY position based on the path length and the Z position based on the angle measurement value are combined and output. That is, by performing the amplitude integration in consideration of the path lengths of a plurality of transmitting devices to receiving devices, the SN is improved, the target two-dimensional (horizontal plane) position is calculated, and further, the Squint angle measurement values are combined. , The three-dimensional position of the target can be identified.

(第5の実施形態)
第1乃至第4の実施形態では、送信装置の位置、送信時刻、送信周波数、送信ビーム方向等の通信情報は、通信回線等を通じて既知であることを前提にしている。本実施形態では、通信情報が未知の場合に、受信装置で送信装置からの通信情報を得て、第1の実施形態と同様の手法で目標の3D位置を同定する手法について、図14乃至図19を参照して説明する。ここで、図14は本実施形態に係るレーダシステムの送信装置の構成を示すブロック図、図15は本実施形態に係るレーダシステムの受信装置の構成を示すブロック図、図16は本実施形態に係るレーダシステムの通信処理を説明するための概念図、図17は本実施形態に係るレーダシステムにおいて、目標の反射信号を用いた通信情報の送受信方法を説明するためのNヒットパルスを示すタイミング図、図18は本実施形態に係るレーダシステムの通信情報の送受信処理の様子を示すタイミング図、図19は本実施形態に係るレーダシステムの通信情報の復調後から距離を抽出する様子を示すタイミング図である。
(Fifth embodiment)
In the first to fourth embodiments, it is assumed that communication information such as the position of the transmission device, transmission time, transmission frequency, and transmission beam direction is known through a communication line or the like. In the present embodiment, when the communication information is unknown, the receiving device obtains the communication information from the transmitting device, and identifies the target 3D position in the same manner as in the first embodiment. 19 will be described. Here, FIG. 14 is a block diagram illustrating a configuration of a transmission device of the radar system according to the present embodiment, FIG. 15 is a block diagram illustrating a configuration of a reception device of the radar system according to the present embodiment, and FIG. FIG. 17 is a conceptual diagram for explaining communication processing of the radar system, and FIG. 17 is a timing chart showing N hit pulses for explaining a method of transmitting and receiving communication information using a target reflected signal in the radar system according to the present embodiment. FIG. 18 is a timing chart showing a state of transmission / reception processing of communication information of the radar system according to the present embodiment, and FIG. 19 is a timing chart showing a state of extracting a distance after demodulating communication information of the radar system according to the present embodiment. It is.

通常、送信装置T1〜TMと受信装置Rが見通し内にある場合は、直接通信情報を送受信できる。しかしながら、実際の運用では、送受信間が常に見通し内にあるとは限らない。そこで、本実施形態では、図16に示すように、送受信間が見通し外にある場合を想定し、通信情報を目標の反射信号を用いて送受信することを考える。   Normally, when the transmitting devices T1 to TM and the receiving device R are in line of sight, communication information can be transmitted and received directly. However, in actual operation, the interval between transmission and reception is not always in line of sight. Therefore, in the present embodiment, as shown in FIG. 16, it is assumed that transmission and reception are out of line of sight, and transmission and reception of communication information using a target reflected signal is considered.

図14に示す送信装置では、通信変調信号生成器17において、送信装置の位置、送信時刻、送信周波数、送信ビーム方向等の通信情報から通信変調信号を生成し、IFFT処理器18において、必要に応じて逆FFT処理して、変調器13に送る。そして、変調器13で、チャープ信号生成器11で生成されたチャープ信号と組み合わせにより送信信号を変調し、周波数変換器3によって高周波(RF)信号に変換して、高出力増幅器15で増幅して、アンテナ16から送信する。ここで、上記通信情報は、例えば図17に示すように、送信パルスを2分割し、レンジ期間P1と通信期間P2に割り当て、必要に応じてSN向上のために、Nヒット送信する。レンジ期間P1では、例えばパルス圧縮用にチャープ信号や符号変調を用いる。   14, the communication modulation signal generator 17 generates a communication modulation signal from communication information such as the position of the transmission device, transmission time, transmission frequency, and transmission beam direction. According to the inverse FFT processing, the signal is sent to the modulator 13. The modulator 13 modulates the transmission signal in combination with the chirp signal generated by the chirp signal generator 11, converts the transmission signal to a high frequency (RF) signal by the frequency converter 3, and amplifies the signal by the high power amplifier 15. , From the antenna 16. Here, as shown in FIG. 17, for example, the communication information divides a transmission pulse into two, allocates the transmission pulse to a range period P1 and a communication period P2, and transmits N hits as needed to improve SN. In the range period P1, for example, a chirp signal or code modulation is used for pulse compression.

図15に示す受信装置では、アンテナ21により受信した信号を低雑音増幅器22によって低雑音で増幅し、周波数変換器23によってベースバンドに周波数変換し、AD変換器24によってディジタル信号に変換した後、信号処理器251〜25Lに送る。信号処理器251(252〜25Lも同様のため図示せず)では、P1抽出器A15でレンジ期間P1の参照信号から生成される相関処理パルスを用いて入力された受信信号からレンジ期間P1の信号を抽出し、相関処理パルス圧縮器A16で相関処理することによってパルス圧縮する。さらに、slow-time軸FFT処理器A17でslow-time軸のFFT処理を行って、検出器A18で信号を検出する。ここで、P2範囲選定器A19で通信期間P2を選定し、P2抽出器A20でP2を抽出した後、slow-time相関処理器A21で通信期間の変調に対応する参照信号との相関処理を行って、復調器A22で通信情報を復調する。   In the receiving apparatus shown in FIG. 15, the signal received by the antenna 21 is amplified with low noise by the low-noise amplifier 22, frequency-converted to baseband by the frequency converter 23, and converted to a digital signal by the AD converter 24. The signals are sent to the signal processors 251 to 25L. In the signal processor 251 (252 to 25L are not shown because they are the same), the signal of the range period P1 is obtained from the received signal input by the P1 extractor A15 using the correlation processing pulse generated from the reference signal of the range period P1. Is extracted and subjected to correlation processing by a correlation processing pulse compressor A16 to perform pulse compression. Further, the slow-time axis FFT processor A17 performs FFT processing on the slow-time axis, and the detector A18 detects a signal. Here, a communication period P2 is selected by a P2 range selector A19, and P2 is extracted by a P2 extractor A20, and then a correlation process with a reference signal corresponding to the modulation of the communication period is performed by a slow-time correlation processor A21. Then, the demodulator A22 demodulates the communication information.

一方、P1+P2選定器A23において、レンジ期間P1と通信期間P2の両者の信号を選定し、補正器A24で通信期間も含めた参照信号を補正して、相関処理器A11で相関処理し、slow-time軸FFT処理器A12でslow-time軸のFFT処理を行い、最大バンク抽出器A13で最大バンクを抽出する。このような処理を1〜L台の送信装置〜受信装置の経路について処理し、観測空間のメッシュに対して振幅積分し(26)、目標検出し(27)、3D位置を同定する(28)。   On the other hand, the P1 + P2 selector A23 selects signals in both the range period P1 and the communication period P2, corrects the reference signal including the communication period in the corrector A24, performs correlation processing in the correlation processor A11, and performs slow- The FFT processing of the slow-time axis is performed by the time axis FFT processor A12, and the maximum bank is extracted by the maximum bank extractor A13. Such a process is performed for the routes of 1 to L transmitting devices to receiving devices, and amplitude integration is performed on the mesh of the observation space (26), a target is detected (27), and a 3D position is identified (28). .

すなわち、本実施形態において、通信情報は、前述したように、送信パルスを2分割してレンジ期間P1と通信期間P2に割り当て、必要に応じてSN向上のために、Nヒット送信する。レンジ期間P1では、例えばパルス圧縮用にチャープ信号や符号変調を用いる。受信した信号は、図18に示すように、まず、送信変調信号を参照信号として、レンジ期間P1の信号を抽出し(A15)、相関処理によりレンジ圧縮する(A16)。これをレンジセル毎のslow-time軸(パルスヒット軸)でFFT処理し(A17)、最大バンク信号の圧縮波形を用いて信号を検出する(A18)。この検出信号のうち、所定のスレショルドを超える目標信号を抽出すると、通信期間P2の信号を抽出できるため(A19,A20)、その通信期間P2の信号を用いて復調でき、通信情報を得ることができる(A21,A22)。この通信情報により、送信位置、送信時刻、送信周波数、送信ビーム方向が受信装置でわかり、送信タイミング調整、送信周波数への同調、送信ビーム方向へ受信ビーム方向の制御等を実施することができる。この通信情報の復調は、受信SNの高い目標について行う。   That is, in the present embodiment, as described above, the communication information is divided into two and the transmission pulse is allocated to the range period P1 and the communication period P2, and N hits are transmitted as needed to improve the SN. In the range period P1, for example, a chirp signal or code modulation is used for pulse compression. As shown in FIG. 18, the received signal first extracts a signal in the range period P1 using the transmission modulation signal as a reference signal (A15), and performs range compression by correlation processing (A16). This is subjected to FFT processing on the slow-time axis (pulse hit axis) for each range cell (A17), and a signal is detected using the compressed waveform of the maximum bank signal (A18). When a target signal exceeding a predetermined threshold is extracted from the detection signals, a signal in the communication period P2 can be extracted (A19, A20). Therefore, demodulation can be performed using the signal in the communication period P2 to obtain communication information. Yes (A21, A22). With this communication information, the transmission position, transmission time, transmission frequency, and transmission beam direction can be known by the receiving device, and transmission timing adjustment, tuning to the transmission frequency, control of the reception beam direction in the transmission beam direction, and the like can be performed. The demodulation of the communication information is performed for a target having a high reception SN.

次に、受信SNの低い目標に対しては、図19に示すように、P1とP2の信号を含めて相関処理することにより、SNを高くすることを考える。このため、レンジ期間P1と通信期間P2の両者の信号を選定し(A23)、通信期間も含めた参照信号を補正して(A24)、相関処理し(A11)、さらにslow-time軸のFFT処理を行って(A12)、最大バンク抽出器13で最大バンクを抽出する(A13)。これらを1〜L台の送信装置〜受信装置の経路について処理し、観測空間のメッシュに対して振幅積分し(26)、目標検出し(27)、3D位置を同定する(28)。   Next, as shown in FIG. 19, for a target having a low reception SN, it is considered to increase the SN by performing a correlation process including the signals of P1 and P2. Therefore, the signals of both the range period P1 and the communication period P2 are selected (A23), the reference signal including the communication period is corrected (A24), the correlation processing is performed (A11), and the FFT of the slow-time axis is further performed. The processing is performed (A12), and the maximum bank is extracted by the maximum bank extractor 13 (A13). These are processed for the paths from 1 to L transmitters to receivers, amplitude integration is performed on the mesh in the observation space (26), the target is detected (27), and the 3D position is identified (28).

以上のように、第5の実施形態に係るレーダシステムでは、送信装置の位置、周波数、送信時刻、送信ビーム指向方向等の情報を送信波に重畳し、SNの大きな反射点(目標)の反射信号を抽出した結果から通信情報を抽出し、その通信情報に基づいて複数の送信装置と受信装置との同期及び同調を行う。すなわち、送信装置と受信装置間で反射点の反射信号を用いて通信することにより、送信装置と受信装置とが直接通信できない通信環境にあっても、送信時刻等の情報を共有し、複数の送信装置〜受信装置の経路長を考慮して振幅積分することにより、SNを向上するとともに、目標の3次元の位置を同定できる。   As described above, in the radar system according to the fifth embodiment, information such as the position, frequency, transmission time, and transmission beam directivity direction of the transmission device is superimposed on the transmission wave, and the reflection point (target) having a large SN is reflected. Communication information is extracted from the result of signal extraction, and synchronization and synchronization between a plurality of transmitting devices and receiving devices are performed based on the communication information. That is, by communicating using the reflection signal at the reflection point between the transmitting device and the receiving device, even in a communication environment where the transmitting device and the receiving device cannot directly communicate, information such as transmission time is shared, and a plurality of By performing amplitude integration in consideration of the path length from the transmission device to the reception device, it is possible to improve the SN and identify the target three-dimensional position.

なお、第5の実施形態では、レンジ期間P1と通信期間P2を含めて相関処理する手法について述べたが、通信情報を復調した送信装置と受信装置との同期、同調を行う部分に通信情報を利用し、レンジングのための相関処理には、レンジ期間P1のみを用いる手法でもよい。   In the fifth embodiment, the method of performing the correlation process including the range period P1 and the communication period P2 has been described. However, the communication information is transmitted to a portion that performs synchronization and tuning between the transmitting device and the receiving device that have demodulated the communication information. A method using only the range period P1 may be used for the correlation process for ranging.

上述したように第1乃至第5の実施形態に係るレーダシステムは、小型の送信装置や受信装置の場合でも、遠距離の小目標をも検出することができる。
なお、本発明は上記実施形態をそのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
As described above, the radar systems according to the first to fifth embodiments can detect a small target at a long distance even in the case of a small transmitting device or a small receiving device.
It should be noted that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements in an implementation stage without departing from the scope of the invention. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Further, constituent elements of different embodiments may be appropriately combined.

11…チャープ信号生成器、12…符号生成器、13…変調器、14…周波数変換器、15…高出力増幅器、16…送信アンテナ、17…通信変調信号生成器、18…IFFT処理器、
21…受信アンテナ、22…低雑音増幅器、23…周波数変換器、24…AD変換器、251〜25L…信号処理器、A11,A11a,A11b…パルス圧縮器、A12,A12a,A12b…slow-timeFFT処理器、A13,A13a,A13b…最大バンク抽出器、A14,A14a,A14b…レンジ軸KR積処理器、A141…反射点選定部、A142…レンジ軸IFFT(またはドップラ軸FFT)処理部、A143…部分相関行列平均化部、A144…拡張アレイ処理部、A15…P1抽出器、A16…相関処理器、A17…slow-time軸FFT処理器、A18…検出器、A19…P2範囲選定器、A20…P2抽出器、A21…slow-time相関処理器、A22…復調器、A23…P1+P2選定器、A24…補正器、26,26a,26b…振幅積分器、27…検出器、28…3Dデータ出力器、29…誤検出抑圧器、30…測角器、31…距離算出器、32…3D位置算出器。
11: chirp signal generator, 12: code generator, 13: modulator, 14: frequency converter, 15: high power amplifier, 16: transmission antenna, 17: communication modulation signal generator, 18: IFFT processor,
21: receiving antenna, 22: low noise amplifier, 23: frequency converter, 24: AD converter, 251 to 25L: signal processor, A11, A11a, A11b: pulse compressor, A12, A12a, A12b: slow-time FFT Processors, A13, A13a, A13b: Maximum bank extractor, A14, A14a, A14b: Range axis KR product processor, A141: Reflection point selector, A142: Range axis IFFT (or Doppler axis FFT) processor, A143 ... Partial correlation matrix averaging unit, A144: Extended array processing unit, A15: P1 extractor, A16: Correlation processor, A17: Slow-time axis FFT processor, A18: Detector, A19: P2 range selector, A20 ... P2 extractor, A21: slow-time correlation processor, A22: demodulator, A23: P1 + P2 selector, A24: corrector, 26, 26a, 2 b ... amplitude integrator 27 ... detector, 28 ... 3D data output unit, 29 ... misdetection suppressor, 30 ... goniometer, 31 ... distance calculator, 32 ... 3D position calculator.

Claims (9)

M(M>1)台の送信装置とN(N≧1)台の受信装置とを備え、
前記受信装置は、
前記M台の送信装置からそれぞれ送信される送信信号を受信し、
前記送信信号それぞれの受信ビームから決まる観測空間を3次元メッシュに分割し、
前記送信装置〜観測空間メッシュ〜受信装置までの距離に応じて受信信号を抽出してビデオ積分し、
前記ビデオ積分された値が所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する
レーダシステム。
M (M> 1) transmitting devices and N (N ≧ 1) receiving devices,
The receiving device,
Receiving transmission signals transmitted from the M transmission devices,
The observation space determined from the reception beam of each of the transmission signals is divided into a three-dimensional mesh,
Extracting the received signal according to the distance from the transmitting device to the observation space mesh to the receiving device and video integrating,
A radar system for outputting a three-dimensional position of a mesh whose video-integrated value exceeds a predetermined threshold as a target position.
M(M>1)台の送信装置とN(N≧1)台の受信装置とを備え、
前記受信装置は、
前記M台の送信装置からそれぞれ送信される送信信号を受信し、
前記送信信号が目標を反射して受信された信号についてレンジ軸で相関行列を算出し、
前記相関行列のうち部分相関空間で相関行列を平均化し、
前記平均化された相関行列を用いてKR積アレイ処理を行って受信データを抽出し、
前記送信信号それぞれの受信ビームから決まる観測空間を3次元メッシュに分割し、
前記送信装置〜観測空間メッシュ〜受信装置までの距離に応じて前記受信データから信号を抽出してビデオ積分し、
前記ビデオ積分された値が所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する
レーダシステム。
M (M> 1) transmitting devices and N (N ≧ 1) receiving devices,
The receiving device,
Receiving transmission signals transmitted from the M transmission devices,
The transmission signal calculates a correlation matrix on the range axis for the signal received by reflecting the target,
Averaging the correlation matrix in the partial correlation space of the correlation matrix,
KR product array processing is performed using the averaged correlation matrix to extract received data,
The observation space determined from the reception beams of the transmission signals is divided into three-dimensional meshes,
Extracting a signal from the received data according to the distance from the transmitting device to the observation space mesh to the receiving device and performing video integration,
A radar system for outputting a three-dimensional position of a mesh whose video-integrated value exceeds a predetermined threshold as a target position.
前記受信装置は、さらに前記KR積アレイ処理をL(L>1)回繰り返して前記受信データを取得する請求項2記載のレーダシステム。   The radar system according to claim 2, wherein the receiving device further acquires the reception data by repeating the KR product array processing L (L> 1) times. 前記受信装置は、前記観測空間にAZ軸またはEL軸の少なくとも一方のスクイントビームを形成し、前記ビデオ積分した値で測角し、各目標の測角値をもとに誤検出を抑圧する請求項1または2記載のレーダシステム。   The receiving device forms a squint beam of at least one of the AZ axis and the EL axis in the observation space, measures the angle by the video integrated value, and suppresses erroneous detection based on the angle measurement value of each target. The radar system according to claim 1. 受信装置は、前記観測空間にEL軸のスクイントビームを形成し、前記ビデオ積分した値で測角し、前記送信装置〜観測空間メッシュ〜受信装置までの経路長によるX−Y位置と測角値によるZの位置を組み合わせて前記目標位置を出力する請求項1または2記載のレーダシステム。   The receiving device forms a squint beam of the EL axis in the observation space, measures the angle by the video integrated value, and measures the XY position and angle based on the path length from the transmitting device to the observation space mesh to the receiving device. The radar system according to claim 1, wherein the target position is output by combining Z positions based on values. 前記ビデオ積分は、角度軸拡張アレイを用いるか、乗算ビームを用いて処理する請求項5記載のレーダシステム。   6. The radar system according to claim 5, wherein the video integration is processed using an angle axis extended array or using a multiplication beam. 前記送信装置は、当該送信装置の位置、送信周波数、送信時刻、送信ビーム指向方向を含む送信情報を送信波に重畳し、
前記受信装置は、SNが所定値より大きい反射点を有する受信信号を抽出し、その抽出した受信信号から前記送信情報を抽出して、抽出された送信信号に基づいて前記M台の送信装置と前記N台の受信装置との同期及び同調を行う請求項1または2記載のレーダシステム。
The transmitting device superimposes transmission information including a position of the transmitting device, a transmission frequency, a transmission time, a transmission beam directivity direction on a transmission wave,
The receiving device extracts a reception signal having a reflection point whose SN is greater than a predetermined value, extracts the transmission information from the extracted reception signal, and transmits the M transmission devices based on the extracted transmission signal. 3. The radar system according to claim 1, wherein the radar system performs synchronization and tuning with the N receivers.
M(M>1)台の送信装置からそれぞれ送信される送信信号を受信し、
前記送信信号それぞれの受信ビームから決まる観測空間を3次元メッシュに分割し、
前記送信装置〜観測空間メッシュ〜受信装置までの距離に応じて受信信号を抽出してビデオ積分し、
前記ビデオ積分された値が所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する
レーダシステムのレーダ信号処理方法。
Receiving transmission signals transmitted from M (M> 1) transmission devices,
The observation space determined from the reception beam of each of the transmission signals is divided into a three-dimensional mesh,
Extracting the received signal according to the distance from the transmitting device to the observation space mesh to the receiving device and video integrating,
A radar signal processing method for a radar system, wherein a three-dimensional position of a mesh whose video-integrated value exceeds a predetermined threshold is output as a target position.
M(M>1)台の送信装置からそれぞれ送信される送信信号を受信し、
前記送信信号が目標を反射して受信された信号についてレンジ軸で相関行列を算出し、
前記相関行列のうち部分相関空間で相関行列を平均化し、
前記平均化された相関行列を用いてKR積アレイ処理を行って受信データを抽出し、
前記送信信号それぞれの受信ビームから決まる観測空間を3次元メッシュに分割し、
前記送信装置〜観測空間メッシュ〜受信装置までの距離に応じて前記受信データから信号を抽出してビデオ積分し、
前記ビデオ積分された値が所定のスレショルドを超えたメッシュの3次元位置を目標位置として出力する
レーダシステムのレーダ信号処理方法。
Receiving transmission signals transmitted from M (M> 1) transmission devices,
The transmission signal calculates a correlation matrix on the range axis for the signal received by reflecting the target,
Averaging the correlation matrix in the partial correlation space of the correlation matrix,
KR product array processing is performed using the averaged correlation matrix to extract received data,
The observation space determined from the reception beam of each of the transmission signals is divided into a three-dimensional mesh,
Extracting a signal from the received data according to the distance from the transmitting device to the observation space mesh to the receiving device and performing video integration,
A radar signal processing method for a radar system, wherein a three-dimensional position of a mesh whose video-integrated value exceeds a predetermined threshold is output as a target position.
JP2018152343A 2018-08-13 2018-08-13 Radar system and its radar signal processing method Active JP7166101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152343A JP7166101B2 (en) 2018-08-13 2018-08-13 Radar system and its radar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152343A JP7166101B2 (en) 2018-08-13 2018-08-13 Radar system and its radar signal processing method

Publications (2)

Publication Number Publication Date
JP2020027047A true JP2020027047A (en) 2020-02-20
JP7166101B2 JP7166101B2 (en) 2022-11-07

Family

ID=69622063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152343A Active JP7166101B2 (en) 2018-08-13 2018-08-13 Radar system and its radar signal processing method

Country Status (1)

Country Link
JP (1) JP7166101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514821A (en) * 2021-06-30 2021-10-19 中国电子科技集团公司第三十六研究所 Positioning method, device and system based on time-varying time difference
JP7479968B2 (en) 2020-07-03 2024-05-09 株式会社東芝 Radar device and radar signal processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068224A (en) * 2010-08-23 2012-04-05 Toshiba Corp Mimo radar system, transmitting unit, receiving unit, and mimo radar signal processing method
JP2017053721A (en) * 2015-09-09 2017-03-16 株式会社東芝 Radar system, signal processing system, signal processing method, and program
JP2017090229A (en) * 2015-11-10 2017-05-25 富士通テン株式会社 Arriving direction estimating device, arriving direction estimating method, and arriving direction estimating program
CN107167785A (en) * 2017-07-11 2017-09-15 吉林大学 A kind of sane big array MIMO radar target transmitting-receiving angle combined estimation method
JP2018105770A (en) * 2016-12-27 2018-07-05 株式会社東芝 Radar system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068224A (en) * 2010-08-23 2012-04-05 Toshiba Corp Mimo radar system, transmitting unit, receiving unit, and mimo radar signal processing method
JP2017053721A (en) * 2015-09-09 2017-03-16 株式会社東芝 Radar system, signal processing system, signal processing method, and program
JP2017090229A (en) * 2015-11-10 2017-05-25 富士通テン株式会社 Arriving direction estimating device, arriving direction estimating method, and arriving direction estimating program
JP2018105770A (en) * 2016-12-27 2018-07-05 株式会社東芝 Radar system
CN107167785A (en) * 2017-07-11 2017-09-15 吉林大学 A kind of sane big array MIMO radar target transmitting-receiving angle combined estimation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479968B2 (en) 2020-07-03 2024-05-09 株式会社東芝 Radar device and radar signal processing method
CN113514821A (en) * 2021-06-30 2021-10-19 中国电子科技集团公司第三十六研究所 Positioning method, device and system based on time-varying time difference
CN113514821B (en) * 2021-06-30 2024-05-14 中国电子科技集团公司第三十六研究所 Positioning method, device and system based on time-varying time difference

Also Published As

Publication number Publication date
JP7166101B2 (en) 2022-11-07

Similar Documents

Publication Publication Date Title
US10175348B2 (en) Use of range-rate measurements in a fusion tracking system via projections
JP6271032B2 (en) Antenna specification estimating device and radar device
JP5535024B2 (en) Radar equipment
US9470782B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
CN108885254B (en) Object detection device
JP5197138B2 (en) Multi static radar device
US20060033656A1 (en) System and method for adaptive broadcast radar system
US7961147B1 (en) Long baseline phase interferometer ambiguity resolution using frequency differences
Radmard et al. Data fusion in MIMO DVB-T-based passive coherent location
JP2011242182A (en) Passive radar system and passive radar method
JP2010197178A (en) Pulse compression device
JP6462365B2 (en) Radar apparatus and radar signal processing method thereof
Radmard et al. Data association in multi-input single-output passive coherent location schemes
JP6716352B2 (en) Radar system and radar signal processing method thereof
JP7166101B2 (en) Radar system and its radar signal processing method
JP2017106799A (en) Synthetic-aperture radar device and radar signal processing method thereof
JP2016188789A (en) Synthetic aperture radar device and method for processing radar signal of the same
JP2009270863A (en) Bistatic radar system
JP2016017843A (en) Radar device
JP2015099097A (en) Synthetic aperture radar device and image processing method thereof
JP2017161358A (en) Radar device
JP2016136116A (en) Radar device and radar signal processing method therefor
US11534085B2 (en) Signal processing device, radar system, and signal processing method
JP6851957B2 (en) Radar system and its radar signal processing method
US11960023B2 (en) Radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221025

R150 Certificate of patent or registration of utility model

Ref document number: 7166101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150