JP2020021842A - 光源装置、駆動方法、センシングモジュール - Google Patents

光源装置、駆動方法、センシングモジュール Download PDF

Info

Publication number
JP2020021842A
JP2020021842A JP2018144923A JP2018144923A JP2020021842A JP 2020021842 A JP2020021842 A JP 2020021842A JP 2018144923 A JP2018144923 A JP 2018144923A JP 2018144923 A JP2018144923 A JP 2018144923A JP 2020021842 A JP2020021842 A JP 2020021842A
Authority
JP
Japan
Prior art keywords
light
light emitting
light emission
source device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018144923A
Other languages
English (en)
Inventor
満志 田畑
Mitsuji Tabata
満志 田畑
貴志 増田
Takashi Masuda
貴志 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2018144923A priority Critical patent/JP2020021842A/ja
Priority to DE112019003828.1T priority patent/DE112019003828T5/de
Priority to US17/250,467 priority patent/US20210313777A1/en
Priority to CN201980049451.5A priority patent/CN112470351B/zh
Priority to PCT/JP2019/023648 priority patent/WO2020026608A1/ja
Publication of JP2020021842A publication Critical patent/JP2020021842A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】垂直共振器面発光レーザによる発光素子が複数配列された発光部を備える光源装置について、温度上昇の抑制を図る。【解決手段】本技術に係る光源装置は、垂直共振器面発光レーザによる発光素子が複数配列された発光部と、発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を発光対象期間内において時分割発光させる駆動部とを備える。時分割発光とすることで、同時発光される発光素子の数が減少される。【選択図】図3

Description

本技術は、垂直共振器面発光レーザによる発光素子が複数配列された発光部を備えた光源装置と、前記発光部の駆動方法と、前記発光部より発せられ被写体によって反射された光を受光して撮像するイメージセンサを備えたセンシングモジュールとに関する。
レーザ光を発する発光素子として、VCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発光レーザ)としての発光素子が知られている(例えば下記特許文献1、2を参照)。
VCSELとしての発光素子は、共振器が半導体の基板面に対して垂直方向に形成されて、レーザ光を垂直方向に出射するように構成され、近年においては、例えばSTL(Structured Light:構造化光)方式やToF(Time of Flight:光飛行時間)方式による被写体の測距を行う際の光源として広く用いられる。
特開2012−195436号公報 特開2015−103727号公報
ここで、被写体の測距としてSTL方式やToF方式による測距を行う場合は、VCSELとしての発光素子を二次元に複数配列した光源が用いられる。具体的には、それら複数の発光素子を発光させて得られる光を被写体に照射し、被写体からの反射光を受光して得られる画像に基づいて被写体の測距が行われる。
上記のような測距を行うにあたり、従来では、複数の発光素子を一斉に発光させる駆動方式が採用されている。具体的には、測距のために発光させるべき発光素子の全てを同時に発光させていた。
このため、発光素子が形成されたチップの温度が上昇し易く、発光素子の発光効率の低下を招来したり発光素子を駆動する駆動回路の回路特性悪化を招来したりする等、熱による不具合を誘発する虞があった。
本技術は上記の事情に鑑み為されたものであり、垂直共振器面発光レーザによる発光素子が複数配列された発光部を備える光源装置について、温度上昇の抑制を図ることを目的とする。
本技術に係る光源装置は、垂直共振器面発光レーザによる発光素子が複数配列された発光部と、前記発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を前記発光対象期間内において時分割発光させる駆動部と、を備えるものである。
時分割発光とすることで、同時発光される発光素子の数が減少される。
上記した本技術に係る光源装置においては、前記発光対象期間は、前記発光部より発せられ被写体で反射された光を受光するイメージセンサのフレーム期間と同期していることが望ましい。
これにより、発光部が発した光を被写体に照射しイメージセンサで受光して測距を行う場合に対応して、発光素子をイメージセンサのフレーム周期に応じた適切なタイミングで発光させることが可能とされる。
上記した本技術に係る光源装置においては、前記駆動部は、前記発光対象期間内において前記複数の発光素子を同時発光させる同時発光駆動と、前記発光対象期間内において前記複数の発光素子を時分割発光させる分割発光駆動との切り替えを行うことが望ましい。
同時発光を行うことで、発光部が発した光を被写体に照射しイメージセンサで受光して測距を行う場合において、動きのある被写体に対する測距精度の低下が防止される。
上記した本技術に係る光源装置においては、前記駆動部は、温度に基づき前記同時発光駆動と前記分割発光駆動との切り替えを行うことが望ましい。
これにより、例えば温度が所定値以上に上昇する場合に対応して同時発光から時分割発光に切り替えを行う等、同時発光と時分割発光の切り替えを温度に応じて適切に行うことが可能とされる。
上記した本技術に係る光源装置においては、前記駆動部は、前記同時発光駆動と前記分割発光駆動とで前記発光部の総発光量を同じとすることが望ましい。
これにより、発光部が発した光を被写体に照射しイメージセンサで受光して測距を行う場合において、イメージセンサによる受光量が同時発光駆動時と分割発光駆動時とで異なってしまうことの防止が図られる。
上記した本技術に係る光源装置においては、前記駆動部は、前記時分割発光において、同時発光させる前記発光素子の数を時間方向において変化させることが望ましい。
同時発光させる発光素子の数の多寡により温度上昇の態様は変化するため、上記構成によれば、時分割発光が行われる際の時間方向における温度の変化態様を制御することが可能とされる。具体的には、時間方向における温度の変化態様を、発光対象期間内における温度ピーク値を抑制するような態様に制御することが可能とされる。
上記した本技術に係る光源装置においては、前記駆動部は、前記時分割発光において、同時発光させる前記発光素子の数を時間方向において減少させることが望ましい。
時分割発光を行う際、発光される順番が遅いほど周囲の温度が上昇している可能性が高い。このため、同時発光させる発光素子の数を時間方向において減少させることで、発光される順番が遅い発光素子の数を、該順番が早い発光素子の数よりも減少させる。
上記した本技術に係る光源装置においては、前記駆動部は、前記時分割発光において同時発光させる前記発光素子の組である同時発光組の数を温度に応じて変化させることが望ましい。
同時発光組の数を増やすことは、同時発光される発光素子数の減少に繋がるため、温度上昇の抑制効果を高めることになる。一方で、同時発光組の数を増やすことは、被写体に動きがある場合の測距精度の低下に繋がる。上記のように同時発光組の数を温度に応じて変化させることで、例えば温度が高い場合は同時発光組数を増やし、温度が低い場合には同時発光組数を減らす等、温度に応じた適切な同時発光組数での時分割発光が実現可能となる。
上記した本技術に係る光源装置においては、前記駆動部は、温度上昇に応じて前記同時発光組の数を増加させることが望ましい。
これにより、温度が高まることに応じて温度上昇の抑制効果をより高めた発光駆動を行うことが可能とされる。
上記した本技術に係る光源装置においては、前記駆動部は、前記時分割発光において、前記発光部における隣接関係にある発光領域が連続して発光しないように前記発光素子を駆動することが望ましい。
隣接関係にある発光領域を連続して発光させると温度上昇を助長するため、上記のように隣接関係にある発光領域が連続して発光しないように発光素子を駆動する。
上記した本技術に係る光源装置においては、前記駆動部は、前記時分割発光において、前記発光部における外側の発光領域の次に内側の発光領域が発光するように前記発光素子を駆動することが望ましい。
発光部は中央部において熱を蓄積し易い傾向にあるため、内側の発光領域から発光を開始すると温度上昇を助長する虞がある。このため、上記のように外側の発光領域の次に内側の発光領域が発光するように発光素子を駆動する。
また、本技術に係る駆動方法は、垂直共振器面発光レーザによる発光素子が複数配列された発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を前記発光対象期間内において時分割発光させる駆動方法である。
さらに、本技術に係るセンシングモジュールは、上記した本技術に係る光源装置と、該光源装置が備える発光部より発せられ被写体によって反射された光を受光して撮像するイメージセンサとを備えるものである。
このような駆動方法やセンシングモジュールによっても、上記した本技術に係る光源装置と同様の作用が得られる。
本技術によれば、垂直共振器面発光レーザによる発光素子が複数配列された発光部を備える光源装置について、温度上昇の抑制を図ることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術に係る光源装置の一実施形態としての測距装置の構成例を示した図である。 STL(Structured Light)方式による測距手法の説明図である。 実施形態としての光源装置の回路構成例を示した図である。 実施形態としての光源装置が備える駆動回路の変形例を示した図である。 実施形態としての光源装置の変形例としての回路構成を示した図である。 実施形態としての光源装置の基板構成例を示した図である。 実施形態としての光源装置の他の基板構成例を示した図である。 実施形態としての光源装置のさらに他の基板構成例を示した図である。 実施形態としての光源装置が備える温度センサの配置例を示した図である。 実施形態としての光源装置が備える発光部の構造例を示した図である。 実施形態としての光源装置が備える発光部の他の構造例を示した図である。 同時発光による駆動の例を説明するための図である。 時分割発光の一例を示した図である。 時分割発光による作用を説明するための図である。 温度に応じた同時発光駆動/時分割発光駆動の切り替えを行う場合における動作の流れを例示したフローチャートである。 駆動例IIとしての動作の流れを示したフローチャートである。 隣接関係にある発光領域を連続して発光させない駆動手法の例を示した図である。 隣接関係にある発光領域を連続して発光させない駆動手法の他の例を示した図である。 外側の発光領域の次に内側の発光領域を発光させる駆動手法の例を示した図である。 外側の発光領域の次に内側の発光領域を発光させる駆動手法の他の例を示した図である。
以下、添付図面を参照し、本技術に係る実施形態を次の順序で説明する。

<1.測距装置の構成>
<2.測距手法について>
<3.発光駆動に係る回路構成について>
<4.基板構成のバリエーション>
<5.VCSELの構造例>
<6.実施形態としての駆動手法>
[6-1.駆動例I]
[6-2.駆動例II]
[6-3.駆動例III]
<7.実施形態のまとめ及び変形例>
<8.本技術>
<1.測距装置の構成>

図1は、本技術に係る光源装置の一実施形態としての測距装置1の構成例を示している。
図示のように測距装置1は、発光部2、駆動部3、電源回路4、発光側光学系5、撮像側光学系6、イメージセンサ7、画像処理部8、制御部9、及び温度検出部10を備えている。
発光部2は、複数の光源により光を発する。後述するように、本例の発光部2は、各光源としてVCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発光レーザ)による発光素子2aを有しており、それら発光素子2aが例えばマトリクス状等の所定態様により配列されて構成されている。
駆動部3は、発光部2を駆動するための電気回路を有して構成される。
電源回路4は、例えば測距装置1に設けられた不図示のバッテリ等からの入力電圧(後述する入力電圧Vin)に基づき、駆動部3の電源電圧(後述する駆動電圧Vd)を生成する。駆動部3は、該電源電圧に基づいて発光部2を駆動する。
発光部2より発せられた光は、発光側光学系5を介して測距対象としての被写体Sに照射される。そして、このように照射された光の被写体Sからの反射光は、撮像側光学系6を介してイメージセンサ7の撮像面に入射する。
イメージセンサ7は、例えばCCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の撮像素子とされ、上記のように撮像側光学系6を介して入射する被写体Sからの反射光を受光し、電気信号に変換して出力する。
イメージセンサ7は、受光した光を光電変換して得た電気信号について、例えばCDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。そしてデジタルデータとしての画像信号を、後段の画像処理部8に出力する。
また、本例のイメージセンサ7は、フレーム同期信号Fsを駆動部3に出力する。これにより駆動部3は、発光部2における発光素子2aをイメージセンサ7のフレーム周期に応じたタイミングで発光させることが可能とされる。
画像処理部8は、例えばDSP(Digital Signal Processor)等により画像処理プロセッサとして構成される。画像処理部8は、イメージセンサ7から入力されるデジタル信号(画像信号)に対して、各種の画像信号処理を施す。
制御部9は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータ、或いはDSP等の情報処理装置を備えて構成され、発光部2による発光動作を制御するための駆動部3の制御や、イメージセンサ7による撮像動作に係る制御を行う。
制御部9は、測距部9aとしての機能を有する。測距部9aは、画像処理部8を介して入力される画像信号(つまり被写体Sからの反射光を受光して得られる画像信号)に基づき、被写体Sまでの距離を測定する。本例の測距部9aは、被写体Sの三次元形状の特定を可能とするために、被写体Sの各部について距離の測定を行う
ここで、測距装置1における具体的な測距の手法については後に改めて説明する。
温度検出部10は、発光部2の温度を検出する。温度検出部10としては、例えばダイオードを用いて温度検出を行う構成を採ることができる。
本例では、温度検出部10により検出された温度の情報は駆動部3に供給され、これにより駆動部3は該温度の情報に基づいて発光部2の駆動を行うことが可能とされる。
<2.測距手法について>

測距装置1における測距手法としては、例えばSTL(Structured Light:構造化光)方式やToF(Time of Flight:光飛行時間)方式による測距手法を採用することができる。
STL方式は、例えばドットパターンや格子パターン等の所定の明/暗パターンを有する光を照射された被写体Sを撮像して得られる画像に基づいて距離を測定する方式である。
図2は、STL方式の説明図である。
STL方式では、例えば図2Aに示すようなドットパターンによるパターン光Lpを被写体Sに照射する。パターン光Lpは、複数のブロックBLに分割されており、各ブロックBLにはそれぞれ異なるドットパターンが割当てられている(ブロックBL間でドットパターンが重複しないようにされている)。
図2Bは、STL方式の測距原理についての説明図である。
ここでは、壁Wとその前に配置された箱BXとが被写体Sとされ、該被写体Sに対してパターン光Lpが照射された例としている。図中の「G」はイメージセンサ7による画角を模式的に表している。
また、図中の「BLn」はパターン光Lpにおける或るブロックBLの光を意味し、「dn」はイメージセンサ7による撮像画像に映し出されるブロックBLnのドットパターンを意味している。
ここで、壁Wの前の箱BXが存在しない場合、撮像画像においてブロックBLnのドットパターンは図中の「dn’」の位置に映し出される。すなわち、箱BXが存在する場合と箱BXが存在しない場合とで、撮像画像においてブロックBLnのパターンが映し出される位置が異なるものであり、具体的には、パターンの歪みが生じる。
STL方式は、このように照射したパターンが被写体Sの物体形状によって歪むことを利用して被写体Sの形状や奥行きを求める方式となる。具体的には、パターンの歪み方から被写体Sの形状や奥行きを求める方式である。
STL方式を採用する場合、イメージセンサ7としては、例えばグローバルシャッタ方式によるIR(Infrared:赤外線)イメージセンサが用いられる。そして、STL方式の場合、測距部9aは、発光部2がパターン光を発光するように駆動部3を制御すると共に、画像処理部8を介して得られる画像信号についてパターンの歪みを検出し、パターンの歪み方に基づいて距離を計算する。
続いて、ToF方式は、発光部2より発された光が対象物で反射されてイメージセンサ7に到達するまでの光の飛行時間(時間差)を検出することで、対象物までの距離を測定する方式である。
ToF方式として、いわゆるダイレクトToF方式を採用する場合、イメージセンサ7としてはSPAD(Single Photon Avalanche Diode)を用い、また発光部2はパルス駆動する。この場合、測距部9aは、画像処理部8を介して入力される画像信号に基づき、発光部2より発せられイメージセンサ7により受光される光について発光から受光までの時間差を計算し、該時間差と光の速度とに基づいて被写体Sの各部の距離を計算する。
なお、ToF方式として、いわゆるインダイレクトToF方式(位相差法)を採用する場合、イメージセンサ7としては例えばIRイメージセンサが用いられる。
<3.発光駆動に係る回路構成について>

図3は、図1に示した発光部2と駆動部3と電源回路4とを有して構成された光源装置100の回路構成例を示している。なお、図3では光源装置100の回路構成例と共に、図1に示したイメージセンサ7と制御部9を併せて示している。
本例では、発光部2と駆動部3と電源回路4は共通の基板(後述する基板B)上に形成されている。ここでは、少なくとも発光部2を含み、発光部2と共通の基板上に形成される構成単位を光源装置100と呼んでいる。
図示のように光源装置100は、発光部2と駆動部3と電源回路4と共に温度検出部10を備えている。
発光部2は、前述したようにVCSELとしての発光素子2aを複数備えている。図3では図示の都合から発光素子2aの数を「4」としているが、発光部2における発光素子2aの数はこれに限らず、少なくとも2以上とされればよい。
電源回路4は、DC/DCコンバータ40を備え、直流電圧による入力電圧Vinに基づき、駆動部3が発光部2の駆動に用いる駆動電圧Vd(直流電圧)を生成する。
駆動部3は、駆動回路30と駆動制御部31とを備えている。
駆動回路30は、発光素子2aごとにスイッチング素子Q1及びスイッチSWを有すると共に、スイッチング素子Q2と定電流源30aとを有している。
スイッチング素子Q1及びスイッチング素子Q2にはFET(field-effect transistor)が用いられ、本例ではPチャンネル型のMOSFET(MOS:metal-oxide-semiconductor)が用いられている。
各スイッチング素子Q1は、DC/DCコンバータ40の出力ライン、すなわち駆動電圧Vdの供給ラインに対して並列の関係に接続され、スイッチング素子Q2は、スイッチング素子Q1に対して並列接続されている。
具体的に、各スイッチング素子Q1及びスイッチング素子Q2は、ソースがDC/DCコンバータ40の出力ラインに接続されている。各スイッチング素子Q1のドレインは、発光部2における発光素子2aのうちそれぞれ対応する一つの発光素子2aのアノードと接続されている。
図示のように各発光素子2aのカソードはグランド(GND)に接続されている。
スイッチング素子Q2は、ドレインが定電流源30aを介してグランドに接続され、ゲートがドレインと定電流源30aとの接続点に接続されている。
各スイッチング素子Q1のゲートは、それぞれ対応する一つのスイッチSWを介してスイッチング素子Q2のゲートに接続されている。
上記構成による駆動回路30においては、スイッチSWがONとされたスイッチング素子Q1が導通し、導通したスイッチング素子Q1に接続された発光素子2aに駆動電圧Vdが印加され、該発光素子2aが発光する。
このとき、発光素子2aには駆動電流Idが流れるが、上記構成による駆動回路30においてはスイッチング素子Q1とスイッチング素子Q2がカレントミラー回路を構成しており、駆動電流Idの電流値は定電流源30aの電流値に応じた値とされる。
駆動制御部31は、駆動回路30におけるスイッチSWのON/OFF制御を行うことで、発光素子2aのON/OFFを制御する。
駆動制御部31にはイメージセンサ7よりフレーム同期信号Fsが供給されており、これにより駆動制御部31は発光素子2aのONタイミングやOFFタイミングをイメージセンサ7のフレーム周期に同期させることが可能とされている。
また、駆動制御部31は、発光素子2aのON/OFF制御を制御部9からの指示に基づき行うことが可能に構成されている。
また、本例の駆動制御部31は、温度検出部10により検出された発光部2の温度に基づき発光素子2aのON/OFF制御を行うが、これについては後に改めて説明する。
ここで、図3では、スイッチング素子Q1を発光素子2aのアノード側に設けた構成を例示したが、図4に示す駆動回路30Aのように、スイッチング素子Q1を発光素子2aのカソード側に設けた構成とすることもできる。
この場合、発光部2における各発光素子2aは、アノードがDC/DCコンバータ40の出力ラインに接続されている。
カレントミラー回路を構成するスイッチング素子Q1及びスイッチング素子Q2には、Nチャンネル型のMOSFETが用いられる。スイッチング素子Q2は、ドレイン及びゲートが定電流源30aを介してDC/DCコンバータ40の出力ラインに接続され、ソースはグランドに接続される。
各スイッチング素子Q1は、ドレインが対応する発光素子2aのカソードに接続され、ソースがグランドに接続される。各スイッチング素子Q1のゲートは、それぞれ対応するスイッチSWを介してスイッチング素子Q2のゲートとドレインに接続される。
この場合も駆動制御部31がスイッチSWのON/OFF制御を行うことで、発光素子2aをON/OFFさせることができる。
図5は、変形例としての光源装置100Aの構成例を示している。
光源装置100Aは、電源回路4に代えて電源回路4Aが設けられ、また駆動部3に代えて駆動部3Aが設けられている。
電源回路4Aは、複数のDC/DCコンバータ40を有する(図の例では二つ)。一方のDC/DCコンバータ40には入力電圧Vin1が、他方のDC/DCコンバータ40には入力電圧Vin2が供給される。駆動部3Aは、それぞれが異なるDC/DCコンバータ40から駆動電圧Vdを入力する複数の駆動回路30を備えている。図示のように各駆動回路30においては、定電流源30aに代えて可変電流源30bが設けられている。可変電流源30bは、電流値が可変の電流源とされる。
この場合、発光部2における発光素子2aは、それぞれON/OFF制御される駆動回路30が異なる複数の発光素子群に分けられる。
この場合の駆動制御部31は、各駆動回路30におけるスイッチSWのON/OFF制御を行う。
この光源装置100Aのように、少なくともDC/DCコンバータ40と駆動回路30の組を複数系統に分けた構成とすることで、系統ごとに発光素子2aの駆動電流Idを異なる値とすることができる。例えば、系統ごとに駆動電圧Vdの電圧値、及び可変電流源30bの電流値を異ならせることで、系統ごとに駆動電流Idの値を異ならせることができる。また、DC/DCコンバータ40が駆動電流Idについて定電流制御を行う構成であれば、各DC/DCコンバータ40間でそれぞれ定電流制御の目標値を異ならせることで、系統ごとに駆動電流Idの値を異ならせることもできる。
図5のような構成を採る場合には、発光部2における発光強度分布や温度分布等に応じて系統ごとに駆動電圧Vdや駆動電流Idの値を異ならせることが考えられる。例えば、発光部2における温度が高い箇所に対応した系統について駆動電流Idを増やし且つ駆動電圧Vdを上げる等が考えられる。
<4.基板構成のバリエーション>

ここで、光源装置100としては、図6乃至図8に示す構成とすることができる。
光源装置100としては、図6Aに示すように、発光部2としての回路が形成されたチップCh2と、駆動部3としての回路が形成されたチップCh3と、電源回路4が形成されたチップCh4とを同一の基板B上に形成した構成とすることができる。
また、駆動部3と電源回路4は、同一のチップCh34に形成することもでき、その場合、光源装置100は、図6Bに示すようにチップCh2とチップCh34とを同一の基板B上に形成した構成とすることもできる。
また、チップChに対して他のチップChを搭載した構成とすることもできる。
その場合、光源装置100としては、例えば図7Aのように、チップCh2を搭載したチップCh3とチップCh4とを基板B上に形成した構成や、図7BのようにチップCh2とチップCh4とを搭載したチップCh3を基板B上に形成した構成、或いは、図7CのようにチップCh2を搭載したチップCh34を基板B上に形成した構成とすることができる。
また、光源装置100は、イメージセンサ7を含む構成とすることもできる。
例えば、図8Aでは、チップCh2、チップCh3、チップCh4と共に、イメージセンサ7としての回路が形成されたチップCh7を同一の基板B上に形成した光源装置100の構成を例示している。
また、図8Bでは、チップCh2を搭載したチップCh34とチップCh7とを同一の基板B上に形成した光源装置100の構成を例示している。
なお、前述した光源装置100Aについても、図6乃至図8で説明したものと同様の構成を採ることが可能である。
ここで、温度検出部10について、ダイオード等の温度検出素子は、例えば図6A、図6B、図8AのようにチップCh2が基板B上に形成されている場合には、基板BにおけるチップCh2の近傍位置(例えば基板B上におけるチップCh2の側方位置等)に形成すればよい。
また、図7A乃至図7Cや図8BのようにチップCh2が他のチップChに搭載された構成においては、温度検出素子は該他のチップChにおけるチップCh2の近傍位置(例えばチップCh2の真下となる位置等)に形成すればよい。
温度検出部10は、ダイオード等の温度検出素子を有する温度センサ10aを複数有する構成とすることもできる。
図9は、温度検出部10が複数の温度センサ10aを有する場合における各温度センサ10aの配置例を示している。
この図9の例では、複数の温度センサ10aを一箇所に集中して位置させず、発光素子2aが配列される面に平行な面内において離散的に配置している。具体的に、複数の温度センサ10aは、例えば縦2×横2=4個等の所定個数の発光素子2aで成る発光ブロックごとに一つずつ配置することができる。このとき、各温度センサ10aは、発光素子2aが配列される面に平行な面内において等間隔に配置することもできる。
なお、図9では、9個の発光素子2aに対し4個の温度センサ10aを配置した例を示しているが、発光素子2a、温度センサ10aの配置数はこれに限定されるものではない。
図9の例のように複数の温度センサ10aを離散的に配置することで、発光部2の面内温度分布を検出することが可能となる。また、発光面におけるエリアごとの温度を検出し分けることができ、さらには、温度センサ10aの配置数を増やすことで発光素子2aごとの温度を検出し分けることも可能である。
<5.VCSELの構造例>

続いて、発光部2が形成されたチップCh2の構造例について図10及び図11を参照して説明しておく。
図10は、図6A、図6B、図8Aのように基板B上に形成される場合のCh2の構造例を示し、図11は、図7A乃至図7Cや図8Bのように他のチップCh上に搭載される場合のCh2の構造例を示している。
なお、図10、図11では一例として、駆動回路30が発光素子2aのアノード側に挿入された場合(図3参照)に対応した構造例を示す。
図10に示すように、チップCh2は、各発光素子2aに対応する部分がメサMとして形成されている。
チップCh2は、その基板として半導体基板20が用いられ、半導体基板20の下層側にはカソード電極Tcが形成されている。半導体基板20には、例えばGaAs(ヒ化ガリウム)基板が用いられる。
半導体基板20上において、各メサMには、下層側から上層側にかけて順に第一多層膜反射鏡層21、活性層22、第二多層膜反射鏡層25、コンタクト層26、及びアノード電極Taが形成されている。
第二多層膜反射鏡層25の一部(具体的には下端部)には、電流狭窄層24が形成されている。また、活性層22を含み、第一多層膜反射鏡層21と第二多層膜反射鏡層25とに挟まれた部分が共振器23とされる。
第一多層膜反射鏡層21は、N型導電性を示す化合物半導体で形成され、第二多層膜反射鏡層25はN型導電性を示す化合物半導体で形成されている。
活性層22は、レーザ光を発生させるための層とされ、電流狭窄層24は、活性層22に効率よく電流を注入し、レンズ効果をもたらす層とされる。
電流狭窄層24は、メサMを形成後に、酸化されていない状態で選択酸化が行われ、中心部の酸化領域(又は選択酸化領域という)24aと、酸化領域24aの周囲の酸化されていない未酸化領域24bとを有する。電流狭窄層24においては、これら酸化領域24aと未酸化領域24bとにより電流狭窄構造が形成され、未酸化領域24bとしての電流狭窄領域に電流が導電する。
コンタクト層26は、アノード電極Taとのオーミック接触を確実にするために設けられている。
アノード電極Taは、コンタクト層26上において、基板Bを平面視した際に例えば環状(リング状)等の中央部が開口された形状により形成されている。コンタクト層26において、上部にアノード電極Taが形成されてない部分は開口部26aとされている。
活性層22で発生した光は、共振器23内を往復した後、開口部26aを介して外部に出射される。
ここで、チップCh2におけるカソード電極Tcは、基板Bにおける配線層に形成されたグランド配線Lgを介してグランドに接続される。
また、図中において、パッドPaは、基板B上に形成されたアノード電極用のパッドを表している。このパッドPaは、基板Bの配線層に形成された配線Ldを介して、駆動回路30が有する何れか一つのスイッチング素子Q1のドレインと接続されている。
図中では、一つの発光素子2aのみについて、アノード電極Taが、チップCh2上に形成されたアノード配線La及びボンディングワイヤBWを介して一つのパッドPaに接続されることを示しているが、基板Bには発光素子2aごとのパッドPa及び配線Ldが形成され、またチップCh2上には発光素子2aごとのアノード配線Laがそれぞれ形成されており、個々の発光素子2aのアノード電極Taは、それぞれ対応するアノード配線La及びボンディングワイヤBWを介して対応するパッドPaに接続される。
続いて、図11の場合、チップCh2としては裏面照射型のチップCh2を用いる。すなわち、図10の例のように半導体基板20の上層側方向(表面方向)に光を出射するのではなく、半導体基板20の裏面方向に光を出射するタイプのチップCh2を用いる。
この場合、アノード電極Taには、光出射用の開口は形成されず、コンタクト層26に開口部26aは形成されない。
駆動部3(駆動回路30)が形成されたチップCh3(又はチップCh34:以下、図11の説明において同様)においては、発光素子2aごとに、アノード電極Taとの電気的接続を行うためのパッドPaが形成されている。チップCh3の配線層には、パッドPaごとに配線Ldが形成されている。図示は省略したが、これら配線Ldにより、各パッドPaは、チップCh3内に形成された駆動回路30における対応する一つのスイッチング素子Q1のドレインと接続される。
また、チップCh2において、カソード電極Tcは、それぞれ配線Lc1、配線Lc2を介して電極Tc1、電極Tc2と接続されている。電極Tc1、電極Tc2は、それぞれチップCh3に形成されたパッドPc1、パッドPc2と接続するための電極とされる。
チップCh3の配線層には、パッドPc1と接続されたグランド配線Lg1、パッドPc2と接続されたグランド配線Lg2が形成されている。図示は省略したが、これらグランド配線Lg1、Lg2はグランドに接続されている。
チップCh2における各アノード電極TaとチップCh3における各パッドPaとの接続、及びチップCh2における電極Tc1、電極Tc2とチップCh3におけるパッドPc1、パッドPc2との接続はそれぞれ半田バンプHbを介して行われている。
つまり、この場合におけるチップCh2のチップCh3に対する実装は、いわゆるフリップチップ実装により行われている。
<6.実施形態としての駆動手法>
[6-1.駆動例I]

上記により説明した測距装置1のようにVCSELとしての発光素子2aが複数配列された発光部2を発光させて測距を行う際には、従来、複数の発光素子2aを同時に発光させる駆動方式が採用されていた。
図12は、このような同時発光による駆動の例を説明するための図である。
先ず前提として、測距を行う際には、発光部2は一定の発光周期により繰り返し発光される。具体的に、発光周期はイメージセンサ7のフレーム周期に同期させる。図中の発光対象期間Stは、イメージセンサ7のフレーム期間と同期している。例えば、イメージセンサ7のフレームレートは60fpsであり、発光対象期間Stは約16.6ms(ミリ秒)とされている。
ここで、以下の説明では、測距を行う際には、発光対象期間Stごとに発光部2における全ての発光素子2aが発光されるものとする。発光部2における発光素子2aの数は、説明上800であるものとする。すなわち、発光のch(チャネル)数はch1〜ch800の800である。
図12に示すように、従来の駆動方式においては、発光対象期間Stごとにch1〜ch800の発光素子2aを同時に発光させている。このとき、各発光素子2aを発光させる期間(ON期間)は発光対象期間Stよりも短く、例えば4ms程度とされる。
上記のような同時発光を行う場合には、発光素子2aが形成されたチップ(チップCh2)の温度が上昇し易くなり、環境温度によっては、発光素子2aの発光効率の低下を招来したり発光素子2aを駆動する駆動回路(駆動回路30、30A)の回路特性悪化を招来したりする等、熱による不具合を誘発する虞がある。
そこで、本実施形態では、発光対象期間St内において発光されるべき複数の発光素子2a(ch1〜ch800)を、発光対象期間St内において時分割発光させる。
図13に時分割発光の一例を示す。
図13では、発光対象期間St内に発光させるべき800chの発光素子2aを2分割し、発光対象期間St内において、ch1〜ch400の400個の発光素子2aを発光させた後、残りのch401〜ch800の400個の発光素子2aを発光させる例を示している。
このような時分割発光を行うことで、図14に示すように、同時発光とする場合よりも温度のピーク値を抑制することができる。すなわち、チップCh2の温度上昇の抑制を図ることができる。
上記のような時分割発光は、駆動制御部31がスイッチSWを制御することで実現される。本例において、駆動制御部31はロジック回路を有しており、該ロジック回路が上記した時分割発光のためのスイッチSWの制御を行うように構成されている。
時分割発光の例としては、上記のようなch1〜ch400とch401〜ch800の2分割に限定されず、3分割以上とすることもできる。
このとき、時分割発光において同時発光させる発光素子2aの数は、時間方向において変化させてもよい。例えば、ch1〜ch400の400個を発光させた後、ch401〜ch600の200個を発光させ、次いで残りのch601〜ch800の200個を発光させる例を挙げることができる。すなわち、時分割発光において同時発光させる発光素子2aの数を時間方向において減少させるものである。
時分割発光を行う際、発光される順番が遅いほど周囲の温度が上昇している可能性が高い。このため、上記のように同時発光させる発光素子2aの数を時間方向において減少させる、すなわち発光される順番が遅い発光素子2aの数を、該順番が早い発光素子2aの数よりも減少させることで、発光対象期間St内における温度ピーク値の抑制を図ることができ、温度上昇の抑制効果を高めることができる。
ここで、本例の駆動制御部31は、図12に例示したように発光素子2aを同時発光させる同時発光駆動と、図13に例示したように発光素子2aを時分割発光させる時分割発光駆動との切り替えを行うことが可能に構成されている。具体的に、駆動制御部31は、これら同時発光駆動と時分割発光駆動との切り替えを温度検出部10により検出される温度に基づき行う。
発光素子2aの発光効率の低下は、例えば70℃以上の領域で比較的顕著となる。このため、温度の閾値THとして例えば70℃以下の値を設定しておき、閾値THを基準として同時発光駆動と時分割発光駆動との切り替えを行うことが考えられる。
図15のフローチャートは、温度に応じた同時発光駆動/時分割発光駆動の切り替えを行う場合における駆動制御部31の動作の流れを例示している。
図示のように駆動制御部31は、温度検出部10により検出される温度が閾値TH以上でなければ(ステップS101:N)、全chの発光素子2aを同時発光させる(ステップS102)。一方、温度検出部10により検出される温度が閾値TH以上であれば(ステップS101:Y)、発光素子2aを時分割発光させる(ステップS103)。
このとき、温度検出部10の検出温度としては、温度検出部10が温度センサ10aを一つのみ備える場合には該温度センサ10aによる検出温度とする。また、温度検出部10が温度センサ10aを複数備える場合には、それら温度センサ10aによる検出温度の代表値を採用する。代表値としては、例えば複数の温度センサ10aの検出温度の平均値とすることが考えられる。或いは、所定の一つの温度センサ10a(例えば検出温度が最も高い温度センサ10a)による検出温度を代表値とすることも考えられる。
ここで、駆動制御部31は、時分割発光駆動の際、発光部2の総発光量(発光対象期間Stにおける総発光量)が同時発光駆動時と同じとなるように発光素子2aの駆動を行う。具体的に、例えば同時発光駆動時における各発光素子2aのON期間が上述した4msであれば、時分割発光駆動における各発光素子2aのON期間としても4msとする。
なお、図5に例示したようにDC/DCコンバータ40及び駆動回路30を複数系統に分けて構成した場合には、例えば各駆動回路30について発光素子2aのON期間を一致させると共に駆動電流Idの値を一致させることで、総発光量が同じとなるようにする。
同時発光駆動を行うことで、測距対象の被写体Sに動きがあっても、被写体Sが異なる位置にあるときの反射光が1フレーム期間内に纏めて受光されてしまうことの防止が図られ、測距精度が低下することの防止が図られる。
上記のように時分割発光駆動と同時発光駆動との切り替えを行うことで、測距精度の低下防止と、温度上昇の抑制の両立を図ることができる。
なお、同時発光駆動と時分割発光駆動との切り替えを行うことは必須ではなく、時分割発光駆動を常時行う構成とすることもできる。
[6-2.駆動例II]

駆動例IIは、時分割発光における同時発光組の数を温度に応じて変化させるものである。ここで、同時発光組とは、時分割発光において同時発光させる発光素子2aの組を意味する。例えば、先に例示したように800chの発光素子2aを400chずつ駆動する時分割発光においては、各400chの発光素子2aの組が同時発光組に該当する。
本例では、同時発光組の数を温度上昇に応じて増加させる。
図16は、駆動制御部31が行う駆動例IIとしての動作の流れを示したフローチャートである。
先ず、本例では、温度検出部10により検出される温度に対する閾値THとして、複数の閾値THを設定しておく。ここでは、第一の閾値TH1と、第一の閾値TH1よりも値が大きい第二の閾値TH2を設定する例とする。
駆動制御部31は、温度検出部10により検出される温度が第一の閾値TH1未満のときは(ステップS201:Y)、同時発光駆動を行う(ステップS102)。また、駆動制御部31は、温度検出部10により検出される温度が第一の閾値TH1以上且つ第二の閾値TH2未満のときは(ステップS202:Y)、2分割による時分割発光とする(ステップS203)。すなわち、同時発光組の数を「2」とした発光素子2aの時分割発光駆動を行うものであり、具体的には、例えば400chと400chの時分割発光を行う。
また、駆動制御部31は、温度検出部10により検出される温度が第二の閾値TH2以上のときは(ステップS202:N)、3分割による時分割発光とする(ステップS204)。つまり、同時発光組の数を「3」とした発光素子2aの時分割発光駆動として、例えば400ch→200ch→200chの時分割発光駆動を行う。
上記のように温度上昇に応じて同時発光組の数を増加させることで、温度が高まることに応じて温度上昇の抑制効果をより高めた発光駆動を行うことが可能とされる。
従って、温度上昇に伴う不具合がより発生し難くなるようにすることができる。
ここで、第一の閾値TH1としては、上述した閾値TH(例えば70℃程度)と同値に設定し、第二の閾値TH2としては、例えばチップCh2の仕様上の許容上限温度(例えば130℃程度)よりも低い温度に設定する。これにより、発光効率の低下が予想される程度に温度が上昇した場合には2分割による時分割発光駆動が行われ、許容上限温度への到達が予想される程度に温度が上昇した場合には3分割による時分割発光駆動すなわち温度上昇抑制効果をより高めた時分割発光駆動が行われるようにできる。
[6-3.駆動例III]

駆動例IIIは、同時発光組の領域分けや領域ごとの発光順序に関するものである。
例えば、図17に示すように発光部2が縦方向において複数の発光領域Arに分割され、各発光領域Arにおける発光素子2aをそれぞれ同時発光組として時分割発光駆動する場合を考える。
例えば図17に示すように発光領域Arを分割した場合、隣接関係にある発光領域Arを連続して発光させてしまうと温度上昇を助長してしまう。そこで、駆動制御部31は、隣接関係にある発光領域Arが連続して発光しないように発光素子2aを駆動する。これにより、温度上昇の抑制効果を高める。
例えば、図17の例のように発光部2が上側から順に発光領域Ar1、Ar2、Ar3、Ar4、Ar5の五つの発光領域Arに分割されている場合において、駆動制御部31は、図中の発光領域Arごとに表した番号が示すように、発光領域Ar3→Ar1→Ar5→Ar2→Ar4の順で発光素子2aを発光させる。
或いは、図18に例示するように、発光領域Ar1→Ar5→Ar2→Ar4→Ar3の順で発光素子2aを発光させることもできる。なお、図18の例は、最後に「Ar4→Ar3」と隣接関係にある発光領域Arが連続発光されているが、「Ar1→Ar5→Ar2→Ar4」までは隣接関係にある発光領域Arが連続発光されておらず、この点において、隣接関係にある発光領域Arが連続して発光しないように発光素子2aを駆動する手法の一種に属する。
ここで、上記のような隣接関係にある発光領域Arを連続して発光させない手法に対しては、先に例示したような、同時発光させる発光素子2aの数を時間方向において減少させる手法を組み合わせることもできる。例えば、図18の例において、1,2番目に発光される発光領域Ar1,Ar5の発光素子2aの数を各200、3,4番目に発光される発光領域Ar2,Ar4の発光素子2aの数を各150、最後に発光される発光領域Ar3の発光素子2aの数を100とする等の例を挙げることができる。
また、発光部2における発光領域Arの分割態様としては、例えば図19に例示するように、中心から外側にかけて複数の発光領域Arに分割する態様とすることもできる。具体的に、図19の分割態様では、中心部の発光領域Arを除き、各発光領域Arがそれぞれその内側の発光領域Arの周囲を覆うように領域形状が設定されている。
ここで、発光部2は中央部において熱を蓄積し易い傾向にあるため、時分割発光において、内側の発光領域Arから発光を開始すると温度上昇を助長する虞がある。このため、例えば図19に例示するような発光領域Arの分割が行われている場合において、駆動制御部31は、発光部2における外側の発光領域Arの次に内側の発光領域Arが発光するように発光素子2aを駆動する。例えば、図19のように外側から内側にかけて順に発光領域Ar1、Ar2、Ar3、Ar4の四つの発光領域Arが設定されている場合において、駆動制御部31は、例えば発光領域Ar1→Ar2→Ar3→Ar4の順で各発光領域Arを発光させる。
或いは、図20に例示するように、発光領域Ar1→Ar3→Ar2→Ar4の順で各発光領域Arを発光させてもよい。なお、図20に示す手法では、「Ar1→Ar3」「Ar2→Ar4」の発光においてそれぞれ外側の発光領域Arの次に内側の発光領域Arが発光するようにしている。
上記のように外側の発光領域Arの次に内側の発光領域Arが発光するように発光素子2aを駆動することで、発光部2の中央部から発光が開始されてしまうことの防止が図られ、温度上昇の抑制効果を高めることができる。
なお、先の図18に示した駆動手法も、外側の発光領域Arの次に内側の発光領域Arが発光するように発光素子2aを駆動する手法の一種に該当する。
図19や図20で例示した駆動手法についても、同時発光させる発光素子2aの数を時間方向において減少させる手法を組み合わせることもできる。例えば、図19の例において、発光領域Ar1の発光素子2aの数を300、発光領域Ar2の発光素子2aの数を250、発光領域Ar3の発光素子2aの数を150、発光領域Ar4の発光素子2aの数を100とする等の例を挙げることができる。
なお、図17乃至図20により説明した駆動例IIIとしての時分割発光駆動の手法に対しては、駆動例IIのように同時発光組の数を時間方向において変化させる駆動手法を組み合わせることもできる。
<7.実施形態のまとめ及び変形例>

上記のように実施形態としての光源装置(測距装置1)は、垂直共振器面発光レーザによる発光素子(同2a)が複数配列された発光部(同2)と、発光部における発光素子について、発光対象期間(同St)内に発光されるべき複数の発光素子を発光対象期間内において時分割発光させる駆動部(同3又は3A)と、を備えるものである。
時分割発光とすることで、同時発光される発光素子の数が減少される。
従って、温度上昇の抑制を図ることができる。
また、実施形態としての光源装置においては、発光対象期間は、発光部より発せられ被写体で反射された光を受光するイメージセンサのフレーム期間と同期している。
これにより、発光部が発した光を被写体に照射しイメージセンサで受光して測距を行う場合に対応して、発光素子をイメージセンサのフレーム周期に応じた適切なタイミングで発光させることが可能とされる。
従って、測距精度の向上を図ることができる。また、光源装置が被写体の測距用の光源として用いられる場合に対応して温度上昇の抑制を図ることができる。
さらに、実施形態としての光源装置においては、駆動部は、発光対象期間内において複数の発光素子を同時発光させる同時発光駆動と、発光対象期間内において複数の発光素子を時分割発光させる分割発光駆動との切り替えを行っている。
同時発光を行うことで、発光部が発した光を被写体に照射しイメージセンサで受光して測距を行う場合において、動きのある被写体に対する測距精度の低下が防止される。
従って、上記構成によれば、測距精度の低下防止と、温度上昇の抑制の両立を図ることができる。
さらにまた、実施形態としての光源装置においては、駆動部は、温度に基づき同時発光駆動と分割発光駆動との切り替えを行っている。
これにより、例えば温度が所定値以上に上昇する場合に対応して同時発光から時分割発光に切り替えを行う等、同時発光と時分割発光の切り替えを温度に応じて適切に行うことが可能とされる。
従って、測距精度の低下を抑制しながら温度上昇の抑制を図ることができる。
また、実施形態としての光源装置においては、駆動部は、同時発光駆動と分割発光駆動とで発光部の総発光量を同じとしている。
これにより、発光部が発した光を被写体に照射しイメージセンサで受光して測距を行う場合において、イメージセンサによる受光量が同時発光駆動時と分割発光駆動時とで異なってしまうことの防止が図られる。
従って、同時発光駆動時と分割発光駆動時とで測距精度がばらつくことの防止を図ることができる。
さらに、実施形態としての光源装置においては、駆動部は、時分割発光において、同時発光させる発光素子の数を時間方向において変化させている。
同時発光させる発光素子の数の多寡により温度上昇の態様は変化するため、上記構成によれば、時分割発光が行われる際の時間方向における温度の変化態様を制御することが可能とされる。具体的には、時間方向における温度の変化態様を、発光対象期間内における温度ピーク値を抑制するような態様に制御することが可能とされる。
従って、温度上昇の抑制効果を高めることができる。
さらにまた、実施形態としての光源装置においては、駆動部は、時分割発光において、同時発光させる発光素子の数を時間方向において減少させている。
時分割発光を行う際、発光される順番が遅いほど周囲の温度が上昇している可能性が高い。このため、同時発光させる発光素子の数を時間方向において減少させることで、発光される順番が遅い発光素子の数を、該順番が早い発光素子の数よりも減少させる。
これにより、発光対象期間内における温度ピーク値の抑制を図ることができ、温度上昇の抑制効果を高めることができる。
また、実施形態としての光源装置においては、駆動部は、時分割発光において同時発光させる発光素子の組である同時発光組の数を温度に応じて変化させている。
同時発光組の数を増やすことは、同時発光される発光素子数の減少に繋がるため、温度上昇の抑制効果を高めることになる。一方で、同時発光組の数を増やすことは、被写体に動きがある場合の測距精度の低下に繋がる。上記のように同時発光組の数を温度に応じて変化させることで、例えば温度が高い場合は同時発光組数を増やし、温度が低い場合には同時発光組数を減らす等、温度に応じた適切な同時発光組数での時分割発光が実現可能となる。
従って、測距精度の低下を抑制しつつ、温度上昇の抑制効果を高めることができる。
さらに、実施形態としての光源装置においては、駆動部は、温度上昇に応じて同時発光組の数を増加させている。
これにより、温度が高まることに応じて温度上昇の抑制効果をより高めた発光駆動を行うことが可能とされる。
従って、温度上昇に伴う不具合がより発生し難い光源装置を提供することができる。
さらにまた、実施形態としての光源装置においては、駆動部は、時分割発光において、発光部における隣接関係にある発光領域が連続して発光しないように発光素子を駆動している。
隣接関係にある発光領域を連続して発光させると温度上昇を助長するため、上記のように隣接関係にある発光領域が連続して発光しないように発光素子を駆動する。
従って、温度上昇の抑制効果を高めることができる。
また、実施形態としての光源装置においては、駆動部は、時分割発光において、発光部における外側の発光領域の次に内側の発光領域が発光するように発光素子を駆動している。
発光部は中央部において熱を蓄積し易い傾向にあるため、内側の発光領域から発光を開始すると温度上昇を助長する虞がある。このため、上記のように外側の発光領域の次に内側の発光領域が発光するように発光素子を駆動する。
従って、温度上昇の抑制効果を高めることができる。
また、実施形態としての駆動方法は、垂直共振器面発光レーザによる発光素子(同2a)が複数配列された発光部(同2)における発光素子について、発光対象期間内に発光されるべき複数の発光素子を発光対象期間内において時分割発光させる駆動方法である。
さらに、実施形態としてのセンシングモジュールは、上記した実施形態としての光源装置と、該光源装置が備える発光部(同2)より発せられ被写体によって反射された光を受光して撮像するイメージセンサ(同7)とを備えるものである(例えば、図8に示す構成を参照)。
このような実施形態としての駆動方法やセンシングモジュールによっても、上記した実施形態としての光源装置と同様の作用及び効果を得ることができる。
なお、上記では、発光素子2aごとにスイッチSWを設けて、発光素子2aごとの個別駆動を可能とする構成を例示したが、本技術において、発光素子2aごとの個別駆動を可能に構成することは必須ではなく、少なくとも同時発光組ごとの個別駆動が可能とされていればよい。
また、上記では本技術が測距装置に適用される例を挙げたが、本技術は測距用の光源への適用に限定されるものではない。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<8.本技術>

なお本技術は以下のような構成も採ることができる。
(1)
垂直共振器面発光レーザによる発光素子が複数配列された発光部と、
前記発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を前記発光対象期間内において時分割発光させる駆動部と、を備える
光源装置。
(2)
前記発光対象期間は、前記発光部より発せられ被写体で反射された光を受光するイメージセンサのフレーム期間と同期している
前記(1)に記載の光源装置。
(3)
前記駆動部は、
前記発光対象期間内において前記複数の発光素子を同時発光させる同時発光駆動と、前記発光対象期間内において前記複数の発光素子を時分割発光させる分割発光駆動との切り替えを行う
前記(1)又は(2)に記載の光源装置。
(4)
前記駆動部は、
温度に基づき前記同時発光駆動と前記分割発光駆動との切り替えを行う
前記(3)に記載の光源装置。
(5)
前記駆動部は、
前記同時発光駆動と前記分割発光駆動とで前記発光部の総発光量を同じとする
前記(3)又は(4)に記載の光源装置。
(6)
前記駆動部は、
前記時分割発光において、同時発光させる前記発光素子の数を時間方向において変化させる
前記(1)乃至(5)の何れかに記載の光源装置。
(7)
前記駆動部は、
前記時分割発光において、同時発光させる前記発光素子の数を時間方向において減少させる
前記(6)に記載の光源装置。
(8)
前記駆動部は、
前記時分割発光において同時発光させる前記発光素子の組である同時発光組の数を温度に応じて変化させる
前記(1)乃至(7)の何れかに記載の光源装置。
(9)
前記駆動部は、
温度上昇に応じて前記同時発光組の数を増加させる
前記(8)に記載の光源装置。
(10)
前記駆動部は、
前記時分割発光において、前記発光部における隣接関係にある発光領域が連続して発光しないように前記発光素子を駆動する
前記(1)乃至(9)の何れかに記載の光源装置。
(11)
前記駆動部は、
前記時分割発光において、前記発光部における外側の発光領域の次に内側の発光領域が発光するように前記発光素子を駆動する
前記(1)乃至(10)の何れかに記載の光源装置。
1 測距装置、2 発光部、2a 発光素子、3,3A 駆動部、7 イメージセンサ、10 温度検出部、S 被写体、B 基板、Ch2、Ch3、Ch4、Ch34、Ch7 チップ、30、30A 駆動回路、31 駆動制御部、Q1,Q2 スイッチング素子、SW スイッチ、St 発光対象期間、100,100A 光源装置
<5.VCSELの構造例>
続いて、発光部2が形成されたチップCh2の構造例について図10及び図11を参照して説明しておく。
図10は、図6A、図6B、図8Aのように基板B上に形成される場合のチップCh2の構造例を示し、図11は、図7A乃至図7Cや図8Bのように他のチップCh上に搭載される場合のチップCh2の構造例を示している。
なお、図10、図11では一例として、駆動回路30が発光素子2aのアノード側に挿入された場合(図3参照)に対応した構造例を示す。
第一多層膜反射鏡層21は、N型導電性を示す化合物半導体で形成され、第二多層膜反射鏡層25は型導電性を示す化合物半導体で形成されている。

Claims (13)

  1. 垂直共振器面発光レーザによる発光素子が複数配列された発光部と、
    前記発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を前記発光対象期間内において時分割発光させる駆動部と、を備える
    光源装置。
  2. 前記発光対象期間は、前記発光部より発せられ被写体で反射された光を受光するイメージセンサのフレーム期間と同期している
    請求項1に記載の光源装置。
  3. 前記駆動部は、
    前記発光対象期間内において前記複数の発光素子を同時発光させる同時発光駆動と、前記発光対象期間内において前記複数の発光素子を時分割発光させる分割発光駆動との切り替えを行う
    請求項1に記載の光源装置。
  4. 前記駆動部は、
    温度に基づき前記同時発光駆動と前記分割発光駆動との切り替えを行う
    請求項3に記載の光源装置。
  5. 前記駆動部は、
    前記同時発光駆動と前記分割発光駆動とで前記発光部の総発光量を同じとする
    請求項3に記載の光源装置。
  6. 前記駆動部は、
    前記時分割発光において、同時発光させる前記発光素子の数を時間方向において変化させる
    請求項1に記載の光源装置。
  7. 前記駆動部は、
    前記時分割発光において、同時発光させる前記発光素子の数を時間方向において減少させる
    請求項6に記載の光源装置。
  8. 前記駆動部は、
    前記時分割発光において同時発光させる前記発光素子の組である同時発光組の数を温度に応じて変化させる
    請求項1に記載の光源装置。
  9. 前記駆動部は、
    温度上昇に応じて前記同時発光組の数を増加させる
    請求項8に記載の光源装置。
  10. 前記駆動部は、
    前記時分割発光において、前記発光部における隣接関係にある発光領域が連続して発光しないように前記発光素子を駆動する
    請求項1に記載の光源装置。
  11. 前記駆動部は、
    前記時分割発光において、前記発光部における外側の発光領域の次に内側の発光領域が発光するように前記発光素子を駆動する
    請求項1に記載の光源装置。
  12. 垂直共振器面発光レーザによる発光素子が複数配列された発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を前記発光対象期間内において時分割発光させる
    駆動方法。
  13. 垂直共振器面発光レーザによる発光素子が複数配列された発光部と、前記発光部における発光素子について、発光対象期間内に発光されるべき複数の発光素子を前記発光対象期間内において時分割発光させる駆動部と、を有する光源装置と、
    前記発光部より発せられ被写体によって反射された光を受光して撮像するイメージセンサと、を備える
    センシングモジュール。
JP2018144923A 2018-08-01 2018-08-01 光源装置、駆動方法、センシングモジュール Pending JP2020021842A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018144923A JP2020021842A (ja) 2018-08-01 2018-08-01 光源装置、駆動方法、センシングモジュール
DE112019003828.1T DE112019003828T5 (de) 2018-08-01 2019-06-14 Lichtquellenvorrichtung, ansteuerungsverfahren und erfassungsmodul
US17/250,467 US20210313777A1 (en) 2018-08-01 2019-06-14 Light source device, drive method, and sensing module
CN201980049451.5A CN112470351B (zh) 2018-08-01 2019-06-14 光源装置、驱动方法和感测模块
PCT/JP2019/023648 WO2020026608A1 (ja) 2018-08-01 2019-06-14 光源装置、駆動方法、センシングモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144923A JP2020021842A (ja) 2018-08-01 2018-08-01 光源装置、駆動方法、センシングモジュール

Publications (1)

Publication Number Publication Date
JP2020021842A true JP2020021842A (ja) 2020-02-06

Family

ID=69231667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144923A Pending JP2020021842A (ja) 2018-08-01 2018-08-01 光源装置、駆動方法、センシングモジュール

Country Status (5)

Country Link
US (1) US20210313777A1 (ja)
JP (1) JP2020021842A (ja)
CN (1) CN112470351B (ja)
DE (1) DE112019003828T5 (ja)
WO (1) WO2020026608A1 (ja)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572540A (en) * 1992-08-11 1996-11-05 University Of New Mexico Two-dimensional opto-electronic switching arrays
US7853154B2 (en) * 2006-01-13 2010-12-14 Mindspeed Technologies, Inc. Bias circuit for burst-mode/TDM systems with power save feature
US8089995B2 (en) * 2006-07-12 2012-01-03 Oracle America, Inc. Structures and methods for adjusting the wavelengths of lasers via temperature control
JP2008066579A (ja) * 2006-09-08 2008-03-21 Samsung Electronics Co Ltd 発光制御方法および発光装置
CN101466179A (zh) * 2007-12-19 2009-06-24 台达电子工业股份有限公司 可降低发光二极管操作温度的驱动电路与方法
JPWO2010016440A1 (ja) * 2008-08-08 2012-01-19 シャープ株式会社 バックライトおよびこれを用いた表示装置
JP2010166023A (ja) * 2008-09-30 2010-07-29 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
KR20110030780A (ko) * 2009-09-18 2011-03-24 엘지이노텍 주식회사 구동칩 및 이를 이용하는 표시 장치
JP2012147279A (ja) * 2011-01-13 2012-08-02 Spectr Design Kk 近赤外撮影装置
CN106662433B (zh) * 2014-06-27 2019-09-06 新加坡恒立私人有限公司 结构化光成像***及方法
JP6671629B2 (ja) * 2015-03-18 2020-03-25 株式会社リコー 物体検出装置、センシング装置、及び移動体装置
JP6922187B2 (ja) * 2016-11-08 2021-08-18 株式会社リコー 測距装置、監視カメラ、3次元計測装置、移動体、ロボット及び光源駆動条件設定方法
CN109901300B (zh) * 2017-12-08 2021-04-06 宁波盈芯信息科技有限公司 一种基于垂直腔面发射激光器规则点阵的激光散斑投射器
CN108107663A (zh) * 2018-01-23 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置

Also Published As

Publication number Publication date
DE112019003828T5 (de) 2021-04-29
WO2020026608A1 (ja) 2020-02-06
US20210313777A1 (en) 2021-10-07
CN112470351A (zh) 2021-03-09
CN112470351B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2020039777A1 (ja) 光源装置、温度検出方法、センシングモジュール
CN112640232B (zh) 光源设备和感测模块
WO2020044818A1 (ja) 光源装置、調整方法、センシングモジュール
CN112469959B (zh) 光源装置、成像装置和感测模块
US8908157B2 (en) Optical distance measuring device
US20120248514A1 (en) Solid-state image sensing device
JP5211008B2 (ja) 光電変換素子、受光装置、受光システム及び測距装置
US11112494B2 (en) Photodetector and portable electronic equipment
JP6639427B2 (ja) 受光装置
WO2020044817A1 (ja) 光源装置、検出方法、センシングモジュール
US20220276381A1 (en) Laser drive device, sensing module, and timing adjustment method
US11743615B2 (en) Light source device, image sensor, and sensing module
WO2020026608A1 (ja) 光源装置、駆動方法、センシングモジュール
JP2012151661A (ja) 赤外線撮像装置
CN112067120B (zh) 光检测装置
US11411042B2 (en) Image sensor with variant gate dielectric layers
US11199756B2 (en) Lighting device and method for operating a lighting device
US20170363742A1 (en) Systems and methods for time of flight laser pulse engineering
Balaban et al. Low-cost pulsed solid state illumination for microPIV measurements
TW202322501A (zh) 發光裝置及測距裝置
JP2024082067A (ja) 測距装置、製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807