JP2020019677A - Ceramic antibacterial material, antibacterial part, manufacturing method of antibacterial part, and ceramic composite material - Google Patents

Ceramic antibacterial material, antibacterial part, manufacturing method of antibacterial part, and ceramic composite material Download PDF

Info

Publication number
JP2020019677A
JP2020019677A JP2018144790A JP2018144790A JP2020019677A JP 2020019677 A JP2020019677 A JP 2020019677A JP 2018144790 A JP2018144790 A JP 2018144790A JP 2018144790 A JP2018144790 A JP 2018144790A JP 2020019677 A JP2020019677 A JP 2020019677A
Authority
JP
Japan
Prior art keywords
antibacterial
ceramic
mass
component
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018144790A
Other languages
Japanese (ja)
Other versions
JP7026904B2 (en
Inventor
新谷 一博
Kazuhiro Shintani
一博 新谷
幸夫 宗田
Yukio Muneda
幸夫 宗田
俊一 衛藤
Shunichi Eto
俊一 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Ferrotec Material Technologies Corp
Original Assignee
Kanazawa Institute of Technology (KIT)
Ferrotec Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT), Ferrotec Ceramics Corp filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2018144790A priority Critical patent/JP7026904B2/en
Publication of JP2020019677A publication Critical patent/JP2020019677A/en
Application granted granted Critical
Publication of JP7026904B2 publication Critical patent/JP7026904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a ceramic antibacterial material having excellent antibacterial properties, an antibacterial part made of the material, and a manufacturing method thereof.SOLUTION: The ceramic antibacterial material is composed of a sintered body containing 30 to 80 mass% of silicon nitride and 20 to 70 mass% of boron nitride. Further, the antibacterial part made of the ceramic antibacterial material is used in a situation where suppressing of bacteria growth is needed.SELECTED DRAWING: Figure 1

Description

本願発明は、セラミックス抗菌材料に関する。   The present invention relates to a ceramic antibacterial material.

悪性新生物の治療を受ける患者は、健常者に比べて体力や免疫力の低下が著しいため、手術の際に手術部位に発生する感染症に罹る恐れがある。このような感染症の発症は、医療技術や医薬品の進歩により徐々に減少してきているが、コストの関係から中低所得国においては、なお発症頻度の高い感染症である。また、高所得国においても、医療関連感染症の中で上位の感染症であり、未だ重要な問題である。対策としては、抗菌薬の投与や抗菌性材料の埋没などが行われているが、抗菌薬の長期使用は耐性菌の発生が懸念されるため、その使用にも限界がある。   Patients undergoing treatment for malignant neoplasms have a significant decrease in physical strength and immunity as compared to healthy subjects, and may suffer infections that occur at the surgical site during surgery. Although the onset of such infectious diseases has been gradually decreasing due to advances in medical technology and pharmaceuticals, infectious diseases are still high in middle and low income countries due to cost considerations. In high-income countries, it is also the top infectious disease among medical-related infectious diseases, and is still an important issue. As a countermeasure, administration of an antibacterial agent or burying of an antibacterial material is performed. However, long-term use of the antibacterial agent has a limit in its use because of fear that resistant bacteria may be generated.

そこで、近年、抗菌薬を使用せずに抗菌効果を生じさせる技術として、抗菌プレートを用いたものが考案されている(例えば特許文献1、非特許文献1、非特許文献2参照)。この技術は、プレートの表面にサメ肌の鱗を模した特定の凹凸形状を形成することで、薬剤を用いずにプレート表面の細菌に対して抗菌効果を生じさせるものである。   Therefore, in recent years, a technique using an antibacterial plate has been devised as a technique for producing an antibacterial effect without using an antibacterial drug (for example, see Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2). According to this technique, an antibacterial effect against bacteria on the plate surface is produced without using a chemical by forming a specific uneven shape simulating shark skin scale on the surface of the plate.

国際公開第17/066265号International Publication No. 17/066265

Reddy et al、「Micropatterned Surfaces for Reducing the Risk of Catheter-Associated Urinary Tract Infection」、JOURNAL OF ENDOUROLOGY、Mary Ann Liebert, Inc.、September 2011、Volume 25、Number 9、p.1547-1552Reddy et al, "Micropatterned Surfaces for Reducing the Risk of Catheter-Associated Urinary Tract Infection", JOURNAL OF ENDOUROLOGY, Mary Ann Liebert, Inc., September 2011, Volume 25, Number 9, p. 1547-1552 Chung et al、「Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus」、Biointerphases、American Vacuum Society、29 June 2007、Volume 2、Number 2、p.89-94Chung et al, "Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus", Biointerphases, American Vacuum Society, 29 June 2007, Volume 2, Number 2, p. 89-94

本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、抗菌性に優れた新たな技術を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a new technique having excellent antibacterial properties.

上記課題を解決するために、本発明のある態様のセラミックス抗菌材料は、窒化珪素および窒化硼素を含有する焼結体で構成されている。   In order to solve the above problems, a ceramic antibacterial material according to an embodiment of the present invention is formed of a sintered body containing silicon nitride and boron nitride.

この態様によると、抗菌性に優れた抗菌部品の材料に使用できる。   According to this aspect, it can be used as a material for an antibacterial component having excellent antibacterial properties.

上記のセラミックス抗菌材料は、窒化珪素を30〜80質量%含有し、窒化硼素を20〜70質量%含有してもよい。   The above ceramic antibacterial material may contain 30 to 80% by mass of silicon nitride and 20 to 70% by mass of boron nitride.

上記のセラミックス抗菌材料は、焼結助剤成分を更に備えてもよい。また、上記のセラミックス抗菌材料は、窒化珪素を27〜80質量%含有し、窒化硼素を17〜70質量%含有し、焼結助剤成分を3〜25質量%含有してもよい。これにより、焼結体の強度が増し、抗菌材料としての応用範囲が広がる。   The ceramic antibacterial material may further include a sintering aid component. The above-mentioned ceramic antibacterial material may contain 27 to 80% by mass of silicon nitride, 17 to 70% by mass of boron nitride, and 3 to 25% by mass of a sintering aid component. As a result, the strength of the sintered body is increased, and the range of application as an antibacterial material is expanded.

上記のセラミックス抗菌材料は、表面の算術平均粗さRaが0.2〜5μmの範囲であるとよい。より好ましくは、Raが0.3〜5μmの範囲であるとよい。このような表面の微小な凹凸により抗菌性能を向上できる。   The above-mentioned ceramic antibacterial material preferably has a surface arithmetic average roughness Ra in the range of 0.2 to 5 μm. More preferably, Ra is in the range of 0.3 to 5 μm. Antimicrobial performance can be improved by such minute irregularities on the surface.

本発明の他の態様は抗菌部品である。この抗菌部品は、細菌の繁殖を抑制する必要のある状況で使用される部品であって、少なくとも表面の一部が上記のセラミックス抗菌材料で構成されている。これにより、表面以外の部分をセラミックス抗菌材料以外の比較的安価な材料で構成できるので、抗菌部品のコストを低減できる。   Another embodiment of the present invention is an antimicrobial component. This antibacterial component is a component used in a situation where it is necessary to suppress the propagation of bacteria, and at least a part of the surface is made of the above-mentioned ceramic antibacterial material. Thus, since the portion other than the surface can be made of a relatively inexpensive material other than the ceramic antibacterial material, the cost of the antibacterial component can be reduced.

上記のセラミックス抗菌部品は、表面に深さが100μm以上の凹部が複数形成されていてもよい。これにより、抗菌効果を高めることができる。   The above-mentioned ceramic antibacterial component may have a plurality of concave portions having a depth of 100 μm or more formed on the surface. Thereby, the antibacterial effect can be enhanced.

本発明の更に別の態様は、抗菌部品の製造方法である。この方法は、窒化珪素の粉末および窒化硼素の粉末が混合された混合物を非酸化性雰囲気で焼結して焼結体を作製する工程と、細菌の繁殖を抑制する必要のある状況で使用される抗菌部品の形状に焼結体を機械加工する工程と、を含む。   Yet another aspect of the present invention is a method for manufacturing an antimicrobial component. This method is used in a step of sintering a mixture of a powder of silicon nitride and a powder of boron nitride in a non-oxidizing atmosphere to produce a sintered body, and in a situation where it is necessary to suppress the growth of bacteria. Machining the sintered body into the shape of the antibacterial component.

この態様によると、抗菌効果の高い材料で抗菌部品を効率良く製造できる。   According to this aspect, an antibacterial component can be efficiently manufactured from a material having a high antibacterial effect.

上記の抗菌部品の製造方法は、抗菌部品の表面に深さが100μm以上の凹部を機械加工またはレーザ加工で複数形成してもよい。これにより、抗菌効果の高い抗菌部品を製造できる。   In the above method for manufacturing an antibacterial component, a plurality of recesses having a depth of 100 μm or more may be formed on the surface of the antibacterial component by machining or laser processing. Thus, an antibacterial component having a high antibacterial effect can be manufactured.

本発明の更に別の態様は、セラミックス複合材料である。この複合材料は、セラミックス抗菌材料の粉末と、金属、樹脂、繊維、紙およびガラスから選択される少なくとも一種以上の材料と、が混合されている。   Still another embodiment of the present invention relates to a ceramic composite material. In this composite material, a powder of a ceramic antibacterial material and at least one or more materials selected from metals, resins, fibers, paper and glass are mixed.

この態様によると、抗菌性能を発揮しつつ複合材料自体の物性、例えば、比重や強度を調整できる。   According to this aspect, physical properties of the composite material itself, for example, specific gravity and strength can be adjusted while exhibiting antibacterial performance.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。また、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   Note that any combination of the above-described components and any conversion of the expression of the present invention among methods, apparatuses, systems, and the like are also effective as embodiments of the present invention. A combination of the above-described elements as appropriate may be included in the scope of the invention for which protection is sought by the present patent application.

本発明によれば、抗菌性に優れた部品を実現できる。   According to the present invention, a component having excellent antibacterial properties can be realized.

図1(a)〜図1(e)は、抗菌試験の方法を説明するための模式図である。FIGS. 1A to 1E are schematic diagrams for explaining a method of an antibacterial test. 図2(a)〜図2(e)は、各試験片の表面写真を示す図である。2 (a) to 2 (e) are diagrams showing surface photographs of each test piece. 図3(a)〜図3(d)は、ホトベールII-k70の表面の拡大写真(50倍〜3000倍)を示す図である。FIGS. 3A to 3D are enlarged photographs (50 to 3000 times) of the surface of Photoveel II-k70.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。   Hereinafter, embodiments for implementing the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

(焼結体の製造方法)
本発明者らは、抗菌材料に適したセラミックスを見出すために鋭意検討した結果、窒化珪素(Si)と窒化硼素(BN)を含有する焼結体が抗菌材料に適していることを見出した。はじめに、セラミックス抗菌材料に適した焼結体の製造方法について説明する。
(Sintered body manufacturing method)
The present inventors have conducted intensive studies to find ceramics suitable for an antibacterial material, and have found that a sintered body containing silicon nitride (Si 3 N 4 ) and boron nitride (BN) is suitable for an antibacterial material. I found it. First, a method for producing a sintered body suitable for a ceramic antibacterial material will be described.

まず、窒化珪素27〜80質量%と窒化硼素17〜70質量%とからなる主原料粉末を、焼結助剤成分3〜25質量%と混合して原料粉末を調製する。この混合は、例えば、湿式ボールミル等により行うことができる。なお、焼結助剤成分の質量によっては、窒化珪素30〜80質量%と窒化硼素20〜70質量%とを混合した主原料粉末を用いてもよい。   First, a raw material powder composed of 27 to 80% by mass of silicon nitride and 17 to 70% by mass of boron nitride is mixed with 3 to 25% by mass of a sintering aid component. This mixing can be performed, for example, by a wet ball mill or the like. Note that, depending on the mass of the sintering aid component, a main raw material powder obtained by mixing 30 to 80% by mass of silicon nitride and 20 to 70% by mass of boron nitride may be used.

窒化硼素は、被削性に優れるものの強度特性が悪い。したがって、焼結体中に粗大な窒化硼素が存在すると、それが破壊起点となって、加工時のカケ、割れ発生要因となる。このような粗大な窒化硼素粒子を形成しないためには、原料粉末を微粉にすることが有効である。主原料粉末、特に窒化硼素の原料粉末は平均粒径1μm未満のものを使用することが望ましい。窒化硼素は、六方晶系(h−BN)低圧相のものや立方晶系(c−BN)高圧相のものなどが存在するが、快削性の観点では六方晶系の窒化硼素が好ましい。また、加工性の観点では、窒化硼素が多いほど、また、窒化珪素が少ないほど好ましい。また、機械的強度やヤング率は、窒化硼素が少ないほど、また、窒化珪素が多いほど高くなる。   Although boron nitride is excellent in machinability, it has poor strength characteristics. Therefore, if coarse boron nitride is present in the sintered body, it becomes a fracture starting point and causes cracks and cracks during processing. In order not to form such coarse boron nitride particles, it is effective to make the raw material powder fine. It is desirable to use a main raw material powder, particularly a boron nitride raw material powder, having an average particle size of less than 1 μm. Boron nitride includes a hexagonal (h-BN) low-pressure phase and a cubic (c-BN) high-pressure phase, but hexagonal boron nitride is preferable from the viewpoint of free-cutting properties. Further, from the viewpoint of workability, it is preferable that the content of boron nitride is large and the content of silicon nitride is small. Further, the mechanical strength and the Young's modulus increase as the amount of boron nitride decreases and as the amount of silicon nitride increases.

焼結助剤は、窒化珪素や窒化硼素の焼結に使用されているものから選択することができる。好ましい焼結助剤は酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化イットリウム(イットリア)、およびランタノイド金属の酸化物から得られた1種若しくは2種以上である。より好ましくはアルミナとイットリアの混合物、若しくはこれに更にマグネシアを添加した混合物、若しくはイットリアとマグネシアの混合物等である。焼結助剤成分の配合量は、全原料粉末の1〜25質量%、特に3〜25質量%の範囲とすることが望ましい。   The sintering aid can be selected from those used for sintering silicon nitride or boron nitride. Preferred sintering aids are one or more obtained from oxides of aluminum oxide (alumina), magnesium oxide (magnesia), yttrium oxide (yttria), and lanthanoid metals. More preferably, it is a mixture of alumina and yttria, a mixture obtained by further adding magnesia thereto, or a mixture of yttria and magnesia. The compounding amount of the sintering aid component is desirably in the range of 1 to 25% by mass, particularly 3 to 25% by mass of the whole raw material powder.

焼結助剤成分の配合量が1質量%以上、好ましくは3質量%以上であれば、緻密化しやすくなり、焼結体の密度不足や機械的特性の低下を抑制できる。一方、焼結助剤成分の配合量が25質量%以下であれば、強度の低い粒界相が低減されることで、機械的強度の低下や粒界相の増加による加工性の低下が抑制できる。   When the compounding amount of the sintering aid component is 1% by mass or more, preferably 3% by mass or more, it becomes easy to be densified, and it is possible to suppress insufficient density and reduction in mechanical properties of the sintered body. On the other hand, when the blending amount of the sintering aid component is 25% by mass or less, the grain boundary phase having a low strength is reduced, so that a decrease in mechanical strength and a decrease in workability due to an increase in the grain boundary phase are suppressed. it can.

次に、原料粉末を高温加圧下で焼結させ、焼結体とする。この焼結は、例えば、ホットプレスより行うことができる。なお、アルゴン雰囲気で行ってもよい。ホットプレスは、非酸化性雰囲気である例えば窒素雰囲気中で行うが、加圧窒素中で行ってもよい。ホットプレス温度は1700〜1950℃の範囲内がよい。温度が低すぎると焼結が不十分となり、高すぎると主原料の熱分解が起こるようになる。加圧力は20〜50MPaの範囲内が適当である。ホットプレスの持続時間は温度や寸法にもよるが、通常は1〜4時間程度である。高温加圧焼結は、HIP(ホットアイソスタティクプレス)により行うこともできる。この場合の焼結条件も、当業者であれば適宜設定できる。   Next, the raw material powder is sintered under high temperature and pressure to obtain a sintered body. This sintering can be performed by, for example, hot pressing. Note that the heat treatment may be performed in an argon atmosphere. The hot pressing is performed in a non-oxidizing atmosphere, for example, a nitrogen atmosphere, but may be performed in pressurized nitrogen. The hot pressing temperature is preferably in the range of 1700 to 1950 ° C. If the temperature is too low, sintering will be insufficient, and if it is too high, thermal decomposition of the main raw material will occur. The pressure is suitably in the range of 20 to 50 MPa. The duration of hot pressing depends on the temperature and size, but is usually about 1 to 4 hours. High-temperature pressure sintering can also be performed by HIP (hot isostatic press). Sintering conditions in this case can also be appropriately set by those skilled in the art.

得られた焼結体は、焼結助剤の種類や量を適切に選択すれば、25℃〜600℃での熱膨張係数が3×10−6/℃以下となる。この焼結体は被削性に優れ、かつ高強度であるため、精度の高い加工が可能であり、複雑な形状の加工部品の素材として好適である。そして、この焼結体を適当な研削砥石またはドリルを用いて加工することで、所定形状のセラミックス加工部品を製造できる。また、セラミックス加工部品に、研削砥石またはドリルを用いて更にスリット加工若しくは穴あけ加工を施すことで、部品表面に凹凸パターン(スリットや溝、穴等の複数の凹部)を形成することもできる。 If the type and amount of the sintering aid are appropriately selected, the obtained sintered body has a coefficient of thermal expansion at 25 ° C. to 600 ° C. of 3 × 10 −6 / ° C. or less. Since this sintered body has excellent machinability and high strength, it can be machined with high accuracy and is suitable as a material for a machined part having a complicated shape. Then, by processing this sintered body using an appropriate grinding wheel or drill, a ceramic processed part having a predetermined shape can be manufactured. In addition, a concave / convex pattern (a plurality of concave portions such as slits, grooves, and holes) can be formed on the surface of the ceramics component by further performing slitting or drilling using a grinding wheel or a drill.

凹部は、例えば、開口の一辺が10〜100μmの四角形であり、深さが100μm以上である。また、複数の凹部がマトリックス状に形成されている。隣接する凹部同士の間隔は、例えば、10〜50μm程度である。また、溝やスリットの幅は、例えば50〜2000μm程度である。   The concave portion has, for example, a rectangular shape with one side of the opening being 10 to 100 μm and a depth of 100 μm or more. Further, a plurality of concave portions are formed in a matrix. The interval between adjacent concave portions is, for example, about 10 to 50 μm. The width of the groove or slit is, for example, about 50 to 2000 μm.

こうして製造されたセラミックス加工部品の用途は特に制限されないが、例えば、生体に留置する部品、手術器具、衛生機器部品といった細菌の繁殖を抑制する必要のある状況で使用される部品として有用である。   The use of the ceramic processed part manufactured in this manner is not particularly limited, but is useful as a part used in a situation where it is necessary to suppress the growth of bacteria, such as a part to be placed in a living body, a surgical instrument, or a sanitary equipment part.

[実施例]
平均粒径0.5μmの六方晶窒化硼素(h−BN)粉末と、平均粒径0.2μmの窒化珪素粉末を混合した。この混合粉末(主原料粉末)に対して、焼結助剤として、イットリアとマグネシアを加え、エチルアルコールを溶媒としてボールミル混合を行った。得られたスラリーを乾燥させて原料粉末を得た。
[Example]
Hexagonal boron nitride (h-BN) powder having an average particle size of 0.5 μm and silicon nitride powder having an average particle size of 0.2 μm were mixed. To this mixed powder (main raw material powder), yttria and magnesia were added as sintering aids, and ball mill mixing was performed using ethyl alcohol as a solvent. The obtained slurry was dried to obtain a raw material powder.

この原料粉末を黒鉛製のダイスに充填し、窒素雰囲気中で30MPaの圧力を加えながら1800℃で1時間ホットプレス焼結を行い、セラミックス焼結体を得た。そして、得られたセラミックス焼結体が抗菌材料に適しているか確認するために、以下の2つの実験を行った。   The raw material powder was filled in a graphite die, and subjected to hot press sintering at 1800 ° C. for 1 hour while applying a pressure of 30 MPa in a nitrogen atmosphere to obtain a ceramic sintered body. Then, the following two experiments were performed to confirm whether the obtained ceramic sintered body was suitable for an antibacterial material.

(抗菌試験)
(1)試験方法
JIS Z 2801「抗菌性加工製品−抗菌性試験方法・抗菌効果」に準拠
(2)内容
図1(a)〜図1(e)は、抗菌試験の方法を説明するための模式図である。はじめに、抗菌性の評価の対象であるプレート状の試験片10をシャーレ12に載置する。そして、黄色ブドウ球菌または大腸菌(試験菌数0.4mL)を培養液13とともにシャーレ12に滴下する(図1(a))。培養液の量は、試験片10の表面が浸漬する程度に調整する。その状態で、シャーレ12をインキュベータ14に入れ、35℃で24時間培養する(図1(b))。
(Antibacterial test)
(1) Test method Compliant with JIS Z 2801 "Antibacterial processed product-Antibacterial test method and antibacterial effect" (2) Contents Figs. 1 (a) to 1 (e) are for explaining the method of the antibacterial test. It is a schematic diagram. First, a plate-shaped test piece 10 to be evaluated for antibacterial properties is placed on a petri dish 12. Then, Staphylococcus aureus or Escherichia coli (0.4 mL of test bacteria) is dropped onto the petri dish 12 together with the culture solution 13 (FIG. 1A). The amount of the culture solution is adjusted to such an extent that the surface of the test piece 10 is immersed. In this state, the petri dish 12 is placed in the incubator 14 and cultured at 35 ° C. for 24 hours (FIG. 1B).

その後、シャーレ12から培養液15のみを取り出し(図1(c))、別のシャーレ16に移し替え、再度インキュベータ14に入れて35℃、24時間培養する(図1(d))。そして、インキュベータ14から取り出したシャーレ16における菌数を計測する(図1(e))。   Thereafter, only the culture solution 15 is taken out from the petri dish 12 (FIG. 1 (c)), transferred to another petri dish 16, and put again in the incubator 14 and cultured at 35 ° C. for 24 hours (FIG. 1 (d)). Then, the number of bacteria in the petri dish 16 taken out from the incubator 14 is counted (FIG. 1 (e)).

(3)試験片
図2(a)〜図2(e)は、各試験片の表面写真を示す図である。試験片は、以下の5つである。
図2(a)hBN含有窒化珪素系セラミックス(Si−hBN:「ホトベールII-k70」株式会社フェローテックセラミックス製)、平坦面、表面粗さRa=0.35μm
図2(b)hBN含有窒化珪素系セラミックス(同上)、パターニング面(格子の幅21±1μm、四角穴の一辺50±2μm、深さ160±10μm)、表面粗さRa=0.46μm
図2(c)窒化珪素系セラミックス(Si:「HPSN606」株式会社フェローテックセラミックス製)、平坦面、表面粗さRa=0.19μm
図2(d)窒化珪素系セラミックス(同上)、パターニング面(格子の幅21±1μm、四角穴の一辺50±2μm、深さ160±10μm)表面粗さRa=0.19μm
図2(e)チタン合金(Ti−6Al−V)、平坦面、表面粗さRa=0.04μm
(3) Test pieces FIGS. 2A to 2E are photographs showing surface photographs of the test pieces. The following five test pieces were used.
FIG. 2 (a) hBN-containing silicon nitride ceramics (Si 3 N 4 -hBN: “Photoveil II-k70” manufactured by Ferrotec Ceramics Co., Ltd.), flat surface, surface roughness Ra = 0.35 μm
FIG. 2 (b) hBN-containing silicon nitride ceramics (same as above), patterning surface (lattice width 21 ± 1 μm, one side of square hole 50 ± 2 μm, depth 160 ± 10 μm), surface roughness Ra = 0.46 μm
FIG. 2C: Silicon nitride ceramics (Si 3 N 4 : “HPSN606” manufactured by Ferrotec Ceramics Co., Ltd.), flat surface, surface roughness Ra = 0.19 μm
FIG. 2 (d) Silicon nitride-based ceramics (same as above), patterned surface (grating width 21 ± 1 μm, one side of square hole 50 ± 2 μm, depth 160 ± 10 μm) Surface roughness Ra = 0.19 μm
FIG. 2 (e) Titanium alloy (Ti-6Al-V), flat surface, surface roughness Ra = 0.04 μm

図3(a)〜図3(d)は、ホトベールII-k70の表面の拡大写真を示す図である。図3(c)や図3(d)に示すように、ホトベールII-k70の表面は非常に微小な凹凸が形成されている。なお、ホトベールII-k70の組成は、窒化硼素が38.5質量%、窒化珪素が54.1質量%、イットリアが5.5質量%、マグネシア1.9質量%である。   3 (a) to 3 (d) are diagrams showing enlarged photographs of the surface of Photoveil II-k70. As shown in FIG. 3 (c) and FIG. 3 (d), very minute irregularities are formed on the surface of Photoveil II-k70. The composition of Photoveil II-k70 is 38.5% by mass of boron nitride, 54.1% by mass of silicon nitride, 5.5% by mass of yttria, and 1.9% by mass of magnesia.

(4)評価結果
表1は、黄色ブドウ球菌または大腸菌に対する各試験片の抗菌性を示したものである。
(4) Evaluation results Table 1 shows the antibacterial properties of each test piece against Staphylococcus aureus or Escherichia coli.

表1に示すように、試験菌が黄色ブドウ球菌の場合、実施例1、2に係る試験片(材質Si−hBN)は、表面形態が平坦かパターン面かに拘わらず、培養後のシャーレ16においては菌数が0個であった。また、参考例1、2に係る試験片(材質Si)も、表面形態が平坦かパターン面かに拘わらず、培養後のシャーレ16においては菌数が0個であった。一方、表面形態が平坦面である比較例に係る試験片(材質チタン合金)は、培養後のシャーレ16においては菌数が1740個であった。したがって、ブドウ球菌に対しては、hBN含有窒化珪素系セラミックスおよび窒化珪素系セラミックスが、試験片の表面形態に拘わらず抗菌性を示した。 As shown in Table 1, when the test bacterium is Staphylococcus aureus, the test pieces (material Si 3 N 4 -hBN) according to Examples 1 and 2 were cultured after culture regardless of whether the surface morphology was flat or patterned. In the Petri dish 16, the number of bacteria was 0. In addition, the test pieces (material Si 3 N 4 ) according to Reference Examples 1 and 2 had no bacterial count in the petri dish 16 after the culture, regardless of whether the surface morphology was flat or patterned. On the other hand, the test piece (material titanium alloy) according to the comparative example in which the surface morphology was a flat surface had 1740 bacteria in the Petri dish 16 after the culture. Therefore, the hBN-containing silicon nitride-based ceramics and silicon nitride-based ceramics exhibited antibacterial properties against staphylococci regardless of the surface morphology of the test piece.

また、表1に示すように、試験菌が大腸菌の場合、実施例1、2に係る試験片(材質Si−hBN)は、表面形態が平坦かパターン面かに拘わらず、培養後のシャーレ16においては菌数が0個であった。また、表面形態がパターン面である参考例2に係る試験片(材質Si)も、培養後のシャーレ16においては菌数が0個であった。一方、表面形態が平坦面である参考例1に係る試験片(材質Si)は、培養後のシャーレ16においては菌数が113個であった。また、表面形態が平坦面である比較例に係る試験片(材質チタン合金)は、培養後のシャーレ16においては菌数が40個であった。したがって、大腸菌に対しては、hBN含有窒化珪素系セラミックスが、試験片の表面形態に拘わらず抗菌性を示した。また、大腸菌に対しては、表面形態がパターン面である窒化珪素系セラミックスが、抗菌性を示した。 Further, as shown in Table 1, when the test bacterium was Escherichia coli, the test pieces (material Si 3 N 4 -hBN) according to Examples 1 and 2 were cultured after cultivation regardless of whether the surface morphology was flat or patterned. In the Petri dish 16, the number of bacteria was 0. Further, the test piece (material Si 3 N 4 ) according to Reference Example 2 in which the surface morphology was a pattern surface had no bacterial count in the Petri dish 16 after the culture. On the other hand, the test piece (material Si 3 N 4 ) according to Reference Example 1 in which the surface morphology was a flat surface had 113 cells in the petri dish 16 after the culture. The test piece (titanium alloy material) according to the comparative example in which the surface morphology was a flat surface had 40 bacteria in the Petri dish 16 after the culture. Therefore, the hBN-containing silicon nitride ceramic exhibited antibacterial properties against Escherichia coli regardless of the surface morphology of the test piece. Also, against Escherichia coli, silicon nitride-based ceramics whose surface morphology is a pattern surface showed antibacterial properties.

加えて、本願発明者らは、表面形態の一つであるパターンの相違以外に、セラミックス抗菌材料の表面の算術平均粗さRaも抗菌性に影響があることに想到した。本実施の形態に係るセラミックス抗菌材料は、窒化珪素(Si)および窒化硼素(h−BN)を含有する組織を有しており、窒化硼素の特徴である劈開性により、加工面(切断や研削)には窒化ホウ素の脱落による、算術平均粗さRaが0.2〜5μm程度の微小な凹凸面が形成される(図3(a)〜図3(d)参照)。このような微小な凹凸面が菌に対して作用することで、抗菌性能が向上すると考えられる。 In addition, the present inventors have conceived that the arithmetic average roughness Ra of the surface of the ceramic antibacterial material also affects the antibacterial property, in addition to the difference in the pattern which is one of the surface morphologies. The ceramic antibacterial material according to the present embodiment has a structure containing silicon nitride (Si 3 N 4 ) and boron nitride (h-BN), and has a cleaved property which is a characteristic of boron nitride. In the cutting or grinding), a minute uneven surface having an arithmetic average roughness Ra of about 0.2 to 5 μm is formed due to dropping of boron nitride (see FIGS. 3A to 3D). It is considered that the antimicrobial performance is improved by such microscopic uneven surfaces acting on bacteria.

このように、上述の抗菌試験の結果から、ホトベールII-k70を一例とした窒化珪素および窒化硼素を含有する焼結体で構成されているセラミックス抗菌材料は、抗菌性に優れた抗菌部品の材料に使用できる。   Thus, from the results of the antibacterial test described above, the ceramic antibacterial material composed of a sintered body containing silicon nitride and boron nitride as an example of Photoveil II-k70 is a material for an antibacterial component having excellent antibacterial properties. Can be used for

また、窒化物系セラミックス抗菌材料は、ホトベールII-k70のように焼結助剤成分を更に備えてもよい。これにより、焼結体の強度が増し、抗菌材料としての応用範囲が広がる。   Further, the nitride-based ceramic antibacterial material may further include a sintering aid component such as Photoveel II-k70. As a result, the strength of the sintered body is increased, and the range of application as an antibacterial material is expanded.

(抗菌部品)
本実施の形態に係る抗菌部品は、細菌の繁殖を抑制する必要のある状況で使用される部品である。抗菌部品としては、例えば、生体内に留置する部品(人工骨)や手術器具、衛生機器(風呂、トイレ、洗面所等で利用される機器)等が挙げられる。これらの抗菌部品は、少なくとも表面の一部が上記のセラミックス抗菌材料で構成されている。これにより、表面以外の部分をセラミックス抗菌材料以外の比較的安価な材料で構成できるので、抗菌部品のコストを低減できる。
(Antibacterial parts)
The antibacterial component according to the present embodiment is a component used in a situation where it is necessary to suppress the growth of bacteria. Examples of the antibacterial component include a component (artificial bone) to be placed in a living body, a surgical instrument, a sanitary device (a device used in a bath, a toilet, a washroom, and the like). These antibacterial components have at least a part of the surface made of the above-mentioned ceramic antibacterial material. Thus, since the portion other than the surface can be made of a relatively inexpensive material other than the ceramic antibacterial material, the cost of the antibacterial component can be reduced.

抗菌部品は、表面に深さが100μm以上の凹部が複数形成されているとよい。これにより、抗菌効果を高めることができる。   The antibacterial component preferably has a plurality of recesses having a depth of 100 μm or more formed on the surface. Thereby, the antibacterial effect can be enhanced.

また、生体内に留置する部品としてセラミックス抗菌材料を用いることで、金属材料を用いた場合と比較して、CT撮影でのアーチファクトやMRI撮影での発熱がなく、人体に埋設しても術後の患部検査が可能となる。また、術後の感染症の抑制にも効果的である。   Also, by using a ceramic antibacterial material as a part to be placed in the living body, there is no artifact in CT imaging or heat generation in MRI imaging compared to the case of using metal material, and post-operative even if embedded in the human body Inspection of the affected area is possible. It is also effective in controlling postoperative infections.

また、窒化珪素と窒化硼素とを含有するセラミックス焼結体は、高強度で高マシナブル性(快削性)を有するので、複雑な微細加工が可能となり、人体の一部を置換するときの形状適合性がよい。また、人体への埋設時に、個々の体格や適用場所に応じて形状をその場で調整することも可能となる。   Further, since the ceramic sintered body containing silicon nitride and boron nitride has high strength and high machinability (free-cutting property), complicated fine processing becomes possible, and the shape when replacing a part of the human body is obtained. Good compatibility. In addition, when buried in a human body, the shape can be adjusted on the spot according to the individual physique and the application place.

(セラミックス生体材料の製造方法)
上述のように、本実施の形態に係る抗菌部品の製造方法は、窒化珪素の粉末と、窒化硼素の粉末と、焼結助剤成分を含む粉末とが混合された混合物を非酸化性雰囲気で焼結して焼結体を作製する工程と、細菌の繁殖を抑制する必要のある状況で使用される抗菌部品の形状に焼結体を機械加工する工程と、を含む。窒化珪素と窒化硼素とを含有するセラミックス焼結体は、高強度で高マシナブル性(快削性)を有するので、複雑な微細加工が可能である。そのため、抗菌効果の高い材料で抗菌部品を効率良く、また、高精度で製造できる。
(Ceramic biomaterial manufacturing method)
As described above, the method for manufacturing an antibacterial component according to the present embodiment includes the steps of: mixing a mixture of silicon nitride powder, boron nitride powder, and a powder containing a sintering aid component in a non-oxidizing atmosphere. Sintering to produce a sintered body; and machining the sintered body into a shape of an antibacterial component used in a situation where it is necessary to suppress the growth of bacteria. A ceramic sintered body containing silicon nitride and boron nitride has high strength and high machinability (free-cutting property), so that complicated fine processing can be performed. Therefore, an antibacterial component can be manufactured efficiently and with high precision using a material having a high antibacterial effect.

抗菌部品の製造方法は、抗菌部品の表面に深さが100μm以上の凹部を機械加工またはレーザ加工で複数形成する工程を更に含んでもよい。これにより、抗菌効果の高い抗菌部品を製造できる。   The method for manufacturing an antimicrobial component may further include a step of forming a plurality of recesses having a depth of 100 μm or more on the surface of the antimicrobial component by machining or laser processing. Thus, an antibacterial component having a high antibacterial effect can be manufactured.

(セラミックス複合材料)
本実施の形態の別の態様は、セラミックス複合材料である。この複合材料は、セラミックス抗菌材料の粉末と、金属、樹脂、繊維、紙およびガラスから選択される少なくとも一種以上の材料と、が混合されている。これにより、抗菌性能を発揮しつつ複合材料自体の物性、例えば、比重や強度を調整できる。
(Ceramic composite materials)
Another embodiment of the present embodiment is a ceramic composite material. In this composite material, a powder of a ceramic antibacterial material and at least one or more materials selected from metals, resins, fibers, paper and glass are mixed. Thereby, physical properties of the composite material itself, for example, specific gravity and strength can be adjusted while exhibiting antibacterial performance.

以上、本発明を上述の実施の形態や実施例を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや工程の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。   As described above, the present invention has been described with reference to the above-described embodiments and examples. However, the present invention is not limited to the above-described embodiments, and may be obtained by appropriately combining the configurations of the embodiments or replacing the configurations. This is also included in the present invention. It is also possible to appropriately change the combinations and the order of the steps in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment. The embodiments described above can also be included in the scope of the present invention.

10 試験片、 12 シャーレ、 13 培養液、 14 インキュベータ、 15 培養液、 16 シャーレ。   10 test pieces, 12 Petri dishes, 13 cultures, 14 incubators, 15 cultures, 16 Petri dishes.

Claims (9)

窒化珪素および窒化硼素を含有する焼結体で構成されたセラミックス抗菌材料。   A ceramic antibacterial material composed of a sintered body containing silicon nitride and boron nitride. 前記窒化珪素を30〜80質量%含有し、
前記窒化硼素を20〜70質量%含有することを特徴とする請求項1に記載のセラミックス抗菌材料。
Containing 30 to 80% by mass of the silicon nitride,
The ceramic antibacterial material according to claim 1, wherein the boron nitride is contained in an amount of 20 to 70 mass%.
焼結助剤成分を更に備え、
前記窒化珪素を27〜80質量%含有し、
前記窒化硼素を17〜70質量%含有し、
前記焼結助剤成分を3〜25質量%含有することを特徴とする請求項1に記載のセラミックス抗菌材料。
Further comprising a sintering aid component,
27-80% by mass of the silicon nitride,
Containing 17 to 70% by mass of the boron nitride,
The ceramic antibacterial material according to claim 1, wherein the sintering aid component is contained in an amount of 3 to 25% by mass.
表面の算術平均粗さRaが0.2〜5μmの範囲である請求項1乃至3のいずれか1項に記載のセラミックス抗菌材料。   The ceramic antibacterial material according to any one of claims 1 to 3, wherein the arithmetic average roughness Ra of the surface is in a range of 0.2 to 5 µm. 細菌の繁殖を抑制する必要のある状況で使用される部品であって、少なくとも表面の一部が請求項1乃至4のいずれか1項に記載のセラミックス抗菌材料で構成されている抗菌部品。   An antimicrobial component used in a situation where it is necessary to suppress the growth of bacteria, wherein at least a part of the surface is made of the ceramic antimicrobial material according to any one of claims 1 to 4. 前記表面に深さが100μm以上の凹部が複数形成されていることを特徴とする請求項5に記載の抗菌部品。   The antibacterial component according to claim 5, wherein a plurality of recesses having a depth of 100 µm or more are formed on the surface. 窒化珪素の粉末および窒化硼素の粉末が混合された混合物を非酸化性雰囲気で焼結して焼結体を作製する工程と、
細菌の繁殖を抑制する必要のある状況で使用される抗菌部品の形状に前記焼結体を機械加工する工程と、
を含む抗菌部品の製造方法。
Producing a sintered body by sintering a mixture of silicon nitride powder and boron nitride powder in a non-oxidizing atmosphere;
Machining the sintered body into the shape of an antimicrobial component used in situations where it is necessary to control the growth of bacteria,
A method for producing an antimicrobial component comprising:
前記抗菌部品の表面に深さが100μm以上の凹部を機械加工またはレーザ加工で複数形成する工程を更に含むことを特徴とする請求項7に記載の抗菌部品の製造方法。   The method for manufacturing an antimicrobial component according to claim 7, further comprising a step of forming a plurality of recesses having a depth of 100 µm or more on the surface of the antimicrobial component by machining or laser processing. 請求項1乃至4のいずれか1項に記載のセラミックス抗菌材料の粉末と、金属、樹脂、繊維、紙およびガラスから選択される少なくとも一種以上の材料と、が混合されたセラミックス複合材料。   A ceramic composite material comprising a mixture of the powder of the ceramic antibacterial material according to any one of claims 1 to 4 and at least one material selected from metals, resins, fibers, paper and glass.
JP2018144790A 2018-08-01 2018-08-01 Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials Active JP7026904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144790A JP7026904B2 (en) 2018-08-01 2018-08-01 Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144790A JP7026904B2 (en) 2018-08-01 2018-08-01 Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials

Publications (2)

Publication Number Publication Date
JP2020019677A true JP2020019677A (en) 2020-02-06
JP7026904B2 JP7026904B2 (en) 2022-03-01

Family

ID=69590089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144790A Active JP7026904B2 (en) 2018-08-01 2018-08-01 Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials

Country Status (1)

Country Link
JP (1) JP7026904B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500361A (en) * 2018-09-06 2022-01-04 シントクス テクノロジーズ インコーポレイテッド Anti-pathogenic compositions and methods thereof
US11844344B2 (en) 2018-09-06 2023-12-19 Sintx Technologies, Inc. Systems and methods for rapid inactivation of SARS-CoV-2 by silicon nitride and aluminum nitride
US11850214B2 (en) 2018-09-06 2023-12-26 Sintx Technologies, Inc. Antiviral compositions and devices and methods of use thereof
JP7483312B2 (en) 2020-04-06 2024-05-15 株式会社ニップン Antibacterial materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255571A (en) * 1989-03-29 1990-10-16 Shin Etsu Chem Co Ltd Readily workable ceramics
JP2002356374A (en) * 2001-03-28 2002-12-13 Sumitomo Metal Ind Ltd Free cutting ceramic and its manufacturing
JP2013067618A (en) * 2006-02-16 2013-04-18 Queen Mary & Westfield College Virucidal material
JP2015516239A (en) * 2012-05-09 2015-06-11 アメディカ コーポレイション Methods for changing the surface chemistry of biological implants and related devices
WO2017066265A1 (en) * 2015-10-12 2017-04-20 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
WO2017095352A1 (en) * 2015-12-01 2017-06-08 Ataturk Universitesi Bilimsel Arastirma Projeleri Birimi Use of wax, olive oil, butter mixture and/ or its combination with varying ratios of boron and/ or derivatives thereof, in treatment of wounds, burns, and skin diseases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255571A (en) * 1989-03-29 1990-10-16 Shin Etsu Chem Co Ltd Readily workable ceramics
JP2002356374A (en) * 2001-03-28 2002-12-13 Sumitomo Metal Ind Ltd Free cutting ceramic and its manufacturing
JP2013067618A (en) * 2006-02-16 2013-04-18 Queen Mary & Westfield College Virucidal material
JP2015516239A (en) * 2012-05-09 2015-06-11 アメディカ コーポレイション Methods for changing the surface chemistry of biological implants and related devices
WO2017066265A1 (en) * 2015-10-12 2017-04-20 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
WO2017095352A1 (en) * 2015-12-01 2017-06-08 Ataturk Universitesi Bilimsel Arastirma Projeleri Birimi Use of wax, olive oil, butter mixture and/ or its combination with varying ratios of boron and/ or derivatives thereof, in treatment of wounds, burns, and skin diseases

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500361A (en) * 2018-09-06 2022-01-04 シントクス テクノロジーズ インコーポレイテッド Anti-pathogenic compositions and methods thereof
US11844344B2 (en) 2018-09-06 2023-12-19 Sintx Technologies, Inc. Systems and methods for rapid inactivation of SARS-CoV-2 by silicon nitride and aluminum nitride
US11850214B2 (en) 2018-09-06 2023-12-26 Sintx Technologies, Inc. Antiviral compositions and devices and methods of use thereof
JP7422137B2 (en) 2018-09-06 2024-01-25 シントクス テクノロジーズ インコーポレイテッド Antipathogenic compositions and methods thereof
JP7483312B2 (en) 2020-04-06 2024-05-15 株式会社ニップン Antibacterial materials

Also Published As

Publication number Publication date
JP7026904B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
Shekhawat et al. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties
JP7026904B2 (en) Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials
Aboushelib et al. Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique
JP5973546B2 (en) Processable zirconia and process for producing processable zirconia
Kosmač et al. Ageing of dental zirconia ceramics
EP1064238B1 (en) Composition, manufacturing, and use of silicon nitride as a biomaterial for medical purpose
KR20140018185A (en) Ceramic cutting template
Amat et al. Machinability of a newly developed pre-sintered zirconia block for dental crown applications
WO2005042047A1 (en) Biological member and method for manufacture thereof
Zhang et al. Low elastic modulus Ti-Ag/Ti radial gradient porous composite with high strength and large plasticity prepared by spark plasma sintering
Long et al. Low temperature fabrication and characterizations of β-CaSiO3 ceramics
CN109678524B (en) Silicon nitride ceramic implant with controllable performance and preparation method thereof
Nayar et al. Comparative evaluation of the three different surface treatments–conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An: in vitro: study
Heimann Silicon nitride ceramics: Structure, synthesis, properties, and biomedical applications
JP4771616B2 (en) Biological zirconia ceramics and method for producing the same
JP2012522711A (en) Ceramic cutting template
Tan et al. Synthesis of high fracture toughness of hydroxyapatite bioceramics
KR20090064721A (en) Method for manufacturing ceramic drill for boring dentary bone
JP4753575B2 (en) Biomaterial, artificial joint using the same, and method for producing biomaterial
Che Daud et al. The effect of sintering on the properties of powder metallurgy (PM) F-75 alloy
JP4761749B2 (en) Biomaterial and artificial joint using the same
JP7042555B2 (en) Ceramic biomaterials and methods for manufacturing ceramic biomaterials
Taeh et al. Reviewing alumina-zirconia composite as a ceramic biomaterial
JP4109499B2 (en) Artificial joint
WO2022264617A1 (en) Ceramic biological material, biological component, and method for manufacturing biological component

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220204

R150 Certificate of patent or registration of utility model

Ref document number: 7026904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150