JP2020015089A - Method of confining molten metal in rotary friction welding - Google Patents

Method of confining molten metal in rotary friction welding Download PDF

Info

Publication number
JP2020015089A
JP2020015089A JP2018141899A JP2018141899A JP2020015089A JP 2020015089 A JP2020015089 A JP 2020015089A JP 2018141899 A JP2018141899 A JP 2018141899A JP 2018141899 A JP2018141899 A JP 2018141899A JP 2020015089 A JP2020015089 A JP 2020015089A
Authority
JP
Japan
Prior art keywords
steel material
joining
metal
molten metal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018141899A
Other languages
Japanese (ja)
Inventor
宏二 上谷
Koji Kamiya
宏二 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsujino Ryoji
Original Assignee
Tsujino Ryoji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsujino Ryoji filed Critical Tsujino Ryoji
Priority to JP2018141899A priority Critical patent/JP2020015089A/en
Publication of JP2020015089A publication Critical patent/JP2020015089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a method of confining molten metal by which decrease in bonding strength is prevented, due to a void which is generated in a joint organization in such a manner that molten metal is discharged from an empty space to the exterior in rotary friction welding applicable for large-scale joining of steel materials with a relatively small mechanism in order to join steel materials which constitute a steel structure frame such as a pillar and a beam of a building steel structure.SOLUTION: According to this method, in rotary friction welding such that an empty space 50, which straddles an end face 11 of a first steel material 10 and an end face 21 of a second steel material 20, is processed, a joint metal 40 is rotated around a rotary shaft 71 to cause friction, a material organization near a rotary friction surface 62 is molten by use of frictional heat to produce a molten metal 80, and is integrated with an organization near a gap 61, thereby joining the first steel material 10 and the second steel material 20 via the joint metal 40, a molten metal confining device 300 is installed on the joint metal 40, and a ring part reverse face is placed on a surface 12 of the first steel material and a surface 22 of the second steel material.SELECTED DRAWING: Figure 3

Description

本発明は、回転摩擦による鋼材の接合方法および接合構造に関するものである。 特に、建築鋼構造に用いられる柱や梁など鋼構造骨組を構成する鋼材の接合方法および接合構造に関する。さらには、回転摩擦溶接における溶融金属の閉じ込め方法に関する。
The present invention relates to a method and a structure for joining steel materials by rotational friction. In particular, the present invention relates to a joining method and a joining structure of steel materials constituting a steel structure skeleton such as columns and beams used for building steel structures. Furthermore, the present invention relates to a method for confining molten metal in rotary friction welding.

図14に従来の摩擦圧接法による鋼材の接合例を示す。図14aに示すように、第1の鋼材110と第2の鋼材120とを押圧(摩擦圧力)しつつ第1の鋼材110と第2の鋼材120との接触部160に生ずる摩擦により接触部160近傍の材料組織を溶融または軟化させた後、さらに大きな押圧(アプセット圧力)を付加して一体化させる第1の鋼材110と第2の鋼材120との接合方法および接合構造である。摩擦圧接法の場合、図14bに示すように、溶融により液状化した接触部160近傍の組織は摩擦圧力およびアプセット圧力により摩擦面から排出されてバリ181の大部分を形成し、通常は接合に有効利用されることはない。一方、軟化した固体組織は摩擦面近傍に残存し鋼材同士の固体接合に寄与する。 FIG. 14 shows an example of joining steel materials by a conventional friction welding method. As shown in FIG. 14A, the first steel material 110 and the second steel material 120 are pressed (frictional pressure) while the first steel material 110 and the second steel material 120 contact each other due to friction generated in the contact portion 160. This is a joining method and a joining structure between the first steel material 110 and the second steel material 120 in which a material structure in the vicinity is melted or softened, and then a larger pressure (upset pressure) is applied to integrate the first steel material 110 and the second steel material 120. In the case of the friction welding method, as shown in FIG. 14b, the tissue in the vicinity of the contact portion 160 liquefied by melting is discharged from the friction surface by the friction pressure and the upset pressure and forms most of the burr 181. It will not be used effectively. On the other hand, the softened solid structure remains near the friction surface and contributes to the solid joining between the steel materials.

特許文献1には、ステンレス鋼の丸棒と黄銅の丸棒との先端を接するように接触部を加工して、接触部同士を押圧しつつ相互に相対回転させて生じる摩擦により接触部近傍の材料組織を溶融または軟化させて一体化させる摩擦圧接法および接合構造が提示されている。特許文献2には、2本のパイプの間に同径のリング部材を挟むように接触させて配置し、リング部材とパイプとに接触部を形成して、両側のパイプをリング部材に押圧しつつリング部材を回転させることにより生じる摩擦により接触部近傍の材料組織を溶融または軟化させて、最終的に両側のパイプとリング部材と一体として接合させる、いわゆるインサート法と称されている摩擦圧接法および接合構造が提示されている。特許文献3には、2本の鉄筋の間に鉄筋と同断面形状短尺の接合補助材を挟むように接触させて配置し、接合補助材とそれぞれ鉄筋の先端に接触部を形成し、両側の鉄筋を接合補助材に押圧しつつ接合補助材を回転させることにより生じる摩擦により接触部近傍の材料組織を溶融または軟化させて一体化させる摩擦圧接法および接合構造が提示されている。特許文献4には、空所に該空所より若干大径の棒状の挿入物を挿入させるに際し、挿入物に回転運動と挿入方向に大きな力を加え、空所入口近傍さらには空所内部を摩擦発熱によって軟化または溶融させ徐々に挿入物を挿入させる方法が提示されている。 Patent Literature 1 discloses that a contact portion is processed so that the tip of a stainless steel round bar and a brass round bar are in contact with each other, and the contact portions are pressed against each other while rotating relative to each other, thereby causing the vicinity of the contact portion to close. A friction welding method and a joining structure in which a material structure is melted or softened to be integrated are proposed. In Patent Document 2, a ring member of the same diameter is disposed so as to be sandwiched between two pipes, a contact portion is formed between the ring member and the pipe, and the pipes on both sides are pressed against the ring member. A friction welding method called a so-called insert method in which the material structure near the contact portion is melted or softened by friction generated by rotating the ring member, and finally joined integrally with the pipes on both sides and the ring member. And a joining structure are presented. In Patent Literature 3, a joining auxiliary material having the same cross-sectional shape and a short length is placed in contact with and sandwiched between two reinforcing bars, and a contact portion is formed between the joining auxiliary material and the tip of each reinforcing bar. There has been proposed a friction welding method and a joining structure in which a material structure in the vicinity of a contact portion is melted or softened by friction generated by rotating a joining aid while pressing a reinforcing bar against the joining aid to integrate the material structure. Patent Document 4 discloses that when inserting a rod-shaped insert having a diameter slightly larger than the empty space into the empty space, a rotational force and a large force are applied to the insert in the inserting direction, and the vicinity of the empty space entrance and the inside of the empty space are further reduced. A method has been proposed in which an insert is gradually inserted by being softened or melted by frictional heating.

出願人らによる従前の出願、特許文献5では、回転摩擦による鋼材の接合方法として図15、図16に示す回転摩擦溶接を提供している。すなわち、第1の鋼材210と第2の鋼材220とを隣接した位置に配置すると共に第1の鋼材210の端面211と第2の鋼材220の端面221とを対向させて配置する。空所250として、第1の鋼材210の端面211と第2の鋼材220の端面221とに跨り、第1の鋼材210の表面212と前記第2の鋼材220の表面222とに垂直な直線を回転軸271とし単調変化する曲線を母線とする回転対称形状の側周面252と、側周面252に連続する円錐体形状の底部251を加工する。一方、接合金属240は、単調変化する曲線を母線とする回転対称形状の側周面242を有する接合金属本体241と、接合金属本体241に連続する円錐体形状の先端面247aを有する先端部247とからなり、空所250に容易に挿入されうる大きさとする。接合金属240を空所250に回転軸271が一致するように挿入する。次いで、図16bに示すように、接合金属240に押し付け力Pを作用させながら回転軸271回りに回転ωを与えることにより接合金属240の先端部247と空所250の底部251との間の回転摩擦面262にて摩擦を生ぜしめる。摩擦熱によって液体化した溶融金属280を押し付け力Pによる押圧力と回転運動を利用して接合金属240の側周面242と空所250の側周面252との隙間261に充填させ、溶融金属280が隙間261の全域に充填されたときに回転運動を停止させる。その後の温度低下に伴って溶融金属280は凝固し、隙間261近傍の組織と一体化することにより接合が完了する。
In a previous application by the applicants, Patent Document 5, a rotary friction welding shown in FIGS. 15 and 16 is provided as a method of joining steel materials by rotary friction. That is, the first steel member 210 and the second steel member 220 are arranged at adjacent positions, and the end surface 211 of the first steel member 210 and the end surface 221 of the second steel member 220 are arranged to face each other. As the space 250, a straight line extending across the end face 211 of the first steel material 210 and the end face 221 of the second steel material 220 and perpendicular to the surface 212 of the first steel material 210 and the surface 222 of the second steel material 220 is formed. A rotationally symmetric side peripheral surface 252 having a rotation axis 271 as a generating line with a monotonically changing curve, and a conical bottom 251 continuous with the side peripheral surface 252 are machined. On the other hand, the joining metal 240 has a joining metal main body 241 having a rotationally symmetric side peripheral surface 242 with a monotonically changing curve as a generating line, and a tip 247 having a conical tip surface 247a continuous with the joining metal main body 241. And a size that can be easily inserted into the space 250. The joining metal 240 is inserted into the space 250 so that the rotation axis 271 coincides. Then, as shown in FIG. 16 b, rotation between the tip 247 of the joining metal 240 and the bottom 251 of the cavity 250 is given by applying a rotation ω around the rotation axis 271 while applying a pressing force P to the joining metal 240. The friction is generated at the friction surface 262. The molten metal 280 liquefied by the frictional heat is filled into the gap 261 between the side peripheral surface 242 of the joining metal 240 and the side peripheral surface 252 of the cavity 250 by using the pressing force and the rotating motion by the pressing force P, and the molten metal is melted. When the entire area of the gap 261 is filled with 280, the rotation is stopped. As the temperature decreases, the molten metal 280 solidifies and integrates with the structure near the gap 261 to complete the joining.

特開2000−301364号公報JP-A-2000-301364 特開2000−094157号公報JP 2000-094157 A 特開2011−152563号公報JP 2011-152563 A 特開昭52−075641号公報JP-A-52-075641 特願2017−179523号Japanese Patent Application No. 2017-179523

従来の摩擦圧接法は、鉄筋のように比較的小規模な鋼材の接合に実用化されている。ただし、特許文献3の長尺の鉄筋の場合は、回転するのに大規模な設備が必要である。特許文献4の方法では、空所入口近傍で接合に寄与しないバリが多く発生し、挿入を妨害するのでそれに打ち勝つような多大な力が必要である。さらにこれらの方法を建築鋼構造の柱や梁のように大規模な鋼材の接合に適用しようとすると、押圧および摩擦を加えるために要する加圧機構や動力機構の性能が巨大化する。従って、建築鋼構造の工事現場での現場接合に適用することは困難である。一方現状では、建築鋼構造の柱や梁などの鋼構造骨組を構成する鋼材の接合は、溶接または高力ボルト摩擦接合のいずれかによる場合がほとんどである。ところが、高力ボルト摩擦接合の場合にはボルト孔による被接合鋼材の断面欠損やボルト孔の片側だけからの締め付けが困難といった欠点があり、また、溶接の場合には施工現場の環境や技術者の技量によって欠陥が生じ得る欠点があり、これらの課題を解決できる新しい接合方法の提供が要望されている。
さらに、特許文献5で提示した回転摩擦溶接では、空所の底部で摩擦により生成された溶融金属を、空所と接合金属の側周面間の空間に隙間なく充填させる必要がある。静止面で囲まれた空隙に溶融金属が侵入すると、温度低下によって急激に凝固する。一方、空所と接合金属の側周面間の空隙のように壁面が大きな相対速度を持つ場合、ここに侵入した溶融金属は粘性流動を強いられ、エネルギーが供給され続けて容易に凝固せず、流体を保持して空隙に侵入していくことが可能になる。しかし、活発に流動する溶融金属が挿入体の回転運動によって、空所と接合金属の側周面間の空隙から吐出してバリを形成したり飛沫となって飛散する。溶融金属の吐出は空所内部に空隙を残し、材料欠陥となり接合強度を低下させる原因となる。
The conventional friction welding method has been put to practical use for joining relatively small-scale steel materials such as rebar. However, in the case of a long rebar in Patent Document 3, a large-scale facility is required for rotation. In the method of Patent Literature 4, many burrs not contributing to the joining are generated near the entrance of the void, which hinders the insertion, so that a great force is required to overcome it. Further, if these methods are applied to the joining of large-scale steel materials such as columns and beams of a building steel structure, the performance of a pressurizing mechanism and a power mechanism required for applying pressure and friction becomes enormous. Therefore, it is difficult to apply it to on-site joining of a building steel structure at a construction site. On the other hand, at present, steel materials constituting a steel structural framework such as columns and beams of building steel structures are mostly joined by either welding or high-strength bolt friction welding. However, in the case of high-strength bolt friction welding, there are drawbacks such as cross-sectional defects in the steel material to be joined due to the bolt holes and difficulty in tightening from only one side of the bolt holes. There is a drawback that a defect may occur due to the above skill, and it is desired to provide a new joining method that can solve these problems.
Furthermore, in the rotary friction welding proposed in Patent Document 5, it is necessary to fill the space between the cavity and the side peripheral surface of the joining metal without gaps with the molten metal generated by friction at the bottom of the cavity. When the molten metal enters the void surrounded by the stationary surface, it solidifies rapidly due to a decrease in temperature. On the other hand, when the wall surface has a large relative velocity, such as a gap between the void and the side peripheral surface of the joining metal, the molten metal that has entered here is forced to viscous flow, and energy is continuously supplied and it does not easily solidify. It is possible to hold the fluid and penetrate into the gap. However, due to the rotational movement of the insert, the actively flowing molten metal is discharged from the space between the cavity and the side peripheral surface of the joining metal to form burrs or scatter. Discharge of the molten metal leaves voids inside the voids, resulting in material defects and a reduction in bonding strength.

本発明では、溶融金属の吐出によって空所内に残された空隙が材料欠陥となって接合強度を低下させるメカニズムを断ち切る有効な方法として、溶融金属閉じ込めリングの載置による溶融金属の閉じ込め方法を提供する。溶融金属が空所の外部に吐出することを防止出来れば、摩擦によって生成された溶融金属を空所と接合金属の側周面間の空隙に密実に充填させることができ、空所の側周面と接合金属の側周面とが完全に一体化した接合組織が実現される。
なお、「表面」とは、挿入される接合金属の基端部側の面とし、「裏面」とは、挿入される接合金属の先端部側の面とする。「側周面」とは、回転対称体における母線の生成する面を意味する。「容易に空所に挿入されうる」とは、接合金属の側周面と空所の側周面との間に適度の隙間を有して挿入が容易なことを意味する。
The present invention provides a method for confining a molten metal by placing a molten metal confinement ring as an effective method for cutting off a mechanism in which a gap left in a space due to discharge of a molten metal becomes a material defect and lowers bonding strength. I do. If the molten metal can be prevented from being discharged to the outside of the void, the molten metal generated by friction can be filled in the void between the void and the side peripheral surface of the joining metal in a solid manner. A joint structure in which the surface and the side peripheral surface of the joint metal are completely integrated is realized.
The "front surface" is a surface on the base end side of the joining metal to be inserted, and the "back surface" is a surface on the tip end side of the joining metal to be inserted. “Side peripheral surface” means a surface of a rotationally symmetric body where a generating line is generated. "Easily insertable into the cavity" means that the insertion is easy with a suitable gap between the side peripheral surface of the joint metal and the side peripheral surface of the cavity.

請求項1の発明では、
回転摩擦によって第1の鋼材と第2の鋼材とを接合金属を介して接合する接合方法であって、前記第1の鋼材と前記第2の鋼材とを隣接した位置に配置すると共に前記第1の鋼材の端面と前記第2の鋼材の端面とを対向させて配置し、前記第1の鋼材の端面と前記第2の鋼材の端面とに跨り前記第1の鋼材の表面と前記第2の鋼材の表面とに垂直もしくは略垂直な直線を回転軸とする回転対称形状で側周面と底部を有する空所を加工し、前記接合金属は容易に前記空所に挿入されうる形状の回転対称体であって、前記接合金属を前記空所に挿入し、前記接合金属の先端部と前記空所の前記底部との接触部に押圧力を加えた状態で前記接合金属を回転軸周りに回転させて摩擦を生ぜしめ、前記摩擦による摩擦熱を利用して前記接触部近傍の材料組織を溶融させて溶融金属を生成し、液体化した前記溶融金属を前記接合金属の先端部に生じる押圧力と回転運動を利用して前記接合金属の前記側周面と前記空所の前記側周面との隙間に充填させ、ついで回転運動を停止させて前記溶融金属を凝固させ前記隙間近傍の組織と一体化させることによる前記接合金属を介しての前記第1の鋼材と前記第2の鋼材との接合において、前記接合金属の基端部に前記空所の表面側を覆う鍔部を備え、溶融金属閉じ込めリングと前記回転軸の方向に変形可能な加圧機構と前記第1の鋼材および第2の鋼材の表面と前記接合金属との間で生じる相対回転運動を遮断する回転遮断機構とからなる溶融金属閉じ込め装置を前記空所の表面側と前記鍔部の裏面側との間に設け、前記溶融金属閉じ込めリングはリング部内側面と前記接合金属の前記側周面との間に僅かな隙間を介して装着し、リング部裏面を前記第1の鋼材の表面と前記第2の鋼材の表面とに載置することにより、前記溶融金属が前記空所から吐出することを防止し前記空所内に閉じ込めて密実に充填する。
ここで、第1の鋼材および第2の鋼材の材質は、任意の構造用鋼材であって、接合金属の材質は、摩擦により溶融して、第1の鋼材と接合金属および第2の鋼材と接合金属とを一体化することが可能な金属である限り任意である。例えば、鋼材、合金鋼材、アルミニウム材、アルミニウム合金材などが挙げられる。空所の形状および接合金属の形状は、接合金属を空所に押し付けつつ回転することが容易な回転対称形状とする。回転対称形状の母線は任意の単調変化する曲線である。ここで、「側周面」とは、回転対称体における母線の生成する面を意味する。「容易に空所に挿入されうる」とは、接合金属の側周面と空所の側周面との間に適度の隙間を有して挿入が容易なことを意味する。
In the invention of claim 1,
A joining method for joining a first steel material and a second steel material via a joining metal by rotational friction, wherein the first steel material and the second steel material are arranged at adjacent positions and the first steel material is joined to the first steel material. The end face of the steel material and the end face of the second steel material are arranged to face each other, and the end face of the first steel material and the end face of the second steel material are straddled, and the surface of the first steel material and the second A cavity having a side peripheral surface and a bottom is machined in a rotationally symmetric shape having a straight line perpendicular or substantially perpendicular to the surface of the steel material as a rotation axis, and the joint metal has a rotationally symmetric shape that can be easily inserted into the cavity. A body, wherein the joining metal is inserted into the space, and the joining metal is rotated around a rotation axis in a state where a pressing force is applied to a contact portion between a tip portion of the joining metal and the bottom portion of the space. Causing friction, and utilizing the frictional heat generated by the friction, the material near the contact portion. A molten metal is produced by melting a weave, and the molten metal that has been liquefied utilizes the pressing force and the rotational motion generated at the tip of the joining metal to form the side peripheral surface of the joining metal and the side of the void. The first steel material and the second steel through the joining metal by filling the gap with the peripheral surface, then stopping the rotational movement to solidify the molten metal and integrate it with the structure near the gap. In joining with a steel material, a base portion of the joining metal is provided with a flange portion covering a surface side of the space, a molten metal confinement ring, a pressurizing mechanism deformable in a direction of the rotation axis, and the first steel material. And a rotation blocking mechanism for blocking a relative rotation movement generated between the surface of the second steel material and the joining metal, between the front side of the cavity and the back side of the flange portion. The molten metal confinement ring is By mounting with a slight gap between the inner side surface and the side peripheral surface of the joining metal, and placing the back surface of the ring portion on the surface of the first steel material and the surface of the second steel material In addition, the molten metal is prevented from being discharged from the space, and is confined in the space to fill the space.
Here, the material of the first steel material and the second steel material may be any structural steel material, and the material of the joining metal may be melted by friction to form the first steel material with the joining metal and the second steel material. Any metal can be used as long as the metal can be integrated with the joining metal. For example, a steel material, an alloy steel material, an aluminum material, an aluminum alloy material, and the like can be given. The shape of the cavity and the shape of the joining metal are rotationally symmetrical shapes that can easily rotate while pressing the joining metal against the cavity. The rotationally symmetric bus is an arbitrary monotonically changing curve. Here, the “side peripheral surface” means a surface of the rotationally symmetric body where the generating line is generated. "Easily insertable into the cavity" means that the insertion is easy with a suitable gap between the side peripheral surface of the joint metal and the side peripheral surface of the cavity.

請求項2の発明では、
回転摩擦によって第1の鋼材と第2の鋼材とを接合金属を介して接合する接合方法であって、前記第1の鋼材と前記第2の鋼材とを重ねた位置に配置すると共に前記第1の鋼材の裏面と前記第2の鋼材の表面を対向させて配置し、前記第1の鋼材の裏面と前記第2の鋼材の表面とを貫く直線を回転軸とする回転対称形状で側周面と底部を有する空所を加工し、前記接合金属は、容易に前記空所に挿入されうる形状の回転対称体であって、前記接合金属を前記空所に挿入し、前記接合金属の先端部と前記空所の前記底部との接触部に押圧力を加えた状態で前記接合金属を回転軸周りに回転させて摩擦を生ぜしめ、前記摩擦による摩擦熱を利用して前記接触部近傍の材料組織を溶融させて溶融金属を生成し、液体化した前記溶融金属を前記接合金属の先端部に生じる押圧力と回転運動を利用して前記接合金属の前記側周面と前記空所の前記側周面との隙間に充填させ、ついで回転運動を停止させて前記溶融金属を凝固させ前記隙間近傍の組織と一体化させることによる前記接合金属を介しての前記第1の鋼材と前記第2の鋼材との接合において、前記接合金属の基端部に前記空所の表面側を覆う鍔部を備え、溶融金属閉じ込めリングと前記回転軸の方向に変形可能な加圧機構と前記第1の鋼材の表面と前記接合金属との間で生じる相対回転運動を遮断する回転遮断機構とからなる溶融金属閉じ込め装置を前記空所の表面側と前記鍔部の裏面側との間に設け、前記溶融金属閉じ込めリングはリング部内側面と前記接合金属の前記側周面との間に僅かな隙間を介して装着し、リング部裏面を前記第1の鋼材の表面に載置することにより、前記溶融金属が前記空所から吐出することを防止し前記空所内に閉じ込めて密実に充填する。
ここで、第1の鋼材および第2の鋼材の材質は、任意の構造用鋼材であって、接合金属の材質は、摩擦により溶融して、第1の鋼材と接合金属および第2の鋼材と接合金属とを一体化することが可能な金属である限り任意である。例えば、鋼材、合金鋼材、アルミニウム材、アルミニウム合金材などが挙げられる。空所の形状および接合金属の形状は、接合金属を空所に押し付けつつ回転することが容易な回転対称形状とする。回転対称形状の母線は任意の単調変化する曲線である。ここで、「側周面」とは、回転対称体における母線の生成する面を意味する。「容易に空所に挿入されうる」とは、接合金属の側周面と空所の側周面との間に適度の隙間を有して挿入が容易なことを意味する。
In the invention of claim 2,
A joining method for joining a first steel material and a second steel material via a joining metal by rotational friction, wherein the first steel material and the second steel material are arranged at a position where the first steel material and the second steel material overlap with each other, and The rear peripheral surface of the second steel member and the rear surface of the second steel member are arranged so as to face each other, and the side peripheral surface has a rotationally symmetric shape having a straight line passing through the rear surface of the first steel member and the front surface of the second steel member as a rotation axis. And a cavity having a bottom portion, wherein the joining metal is a rotationally symmetric body having a shape that can be easily inserted into the cavity, wherein the joining metal is inserted into the cavity, and a tip end of the joining metal is formed. The joint metal is rotated around a rotation axis in a state where a pressing force is applied to a contact portion between the contact metal and the bottom portion of the space to generate friction, and a material near the contact portion is used by utilizing frictional heat due to the friction. The molten metal is produced by melting the tissue, and the The gap between the side peripheral surface of the joint metal and the side peripheral surface of the void is filled using the pressing force and the rotational movement generated at the tip of the metal, and then the rotational movement is stopped to solidify the molten metal. In joining the first steel material and the second steel material via the joining metal by integrating the structure with the structure near the gap, the surface side of the space is provided at the base end of the joining metal. A covering mechanism, a molten metal confinement ring, a pressurizing mechanism deformable in the direction of the rotation axis, a rotation blocking mechanism for blocking relative rotation generated between the surface of the first steel material and the joining metal, Is provided between the front side of the cavity and the back side of the flange, and the molten metal confinement ring is slightly spaced between the inner surface of the ring and the side peripheral surface of the joining metal. Attach it through the gap, and By placing the serial first surface of the steel material, the molten metal is closely indeed filled confined to the cavity and prevent the discharged from said cavity.
Here, the material of the first steel material and the second steel material may be any structural steel material, and the material of the joining metal may be melted by friction to form the first steel material with the joining metal and the second steel material. Any metal can be used as long as the metal can be integrated with the joining metal. For example, a steel material, an alloy steel material, an aluminum material, an aluminum alloy material, and the like can be given. The shape of the cavity and the shape of the joining metal are rotationally symmetrical shapes that can easily rotate while pressing the joining metal against the cavity. The rotationally symmetric bus is an arbitrary monotonically changing curve. Here, the “side peripheral surface” means a surface of the rotationally symmetric body where the generating line is generated. "Easily insertable into the cavity" means that the insertion is easy with a suitable gap between the side peripheral surface of the joint metal and the side peripheral surface of the cavity.

請求項3の発明では、
前記溶融金属閉じ込めリングは、前記リング部内側面が前記接合金属の側周面との間に僅かな隙間を介して対向する形状であり、前記リング部裏面が前記第1の鋼材および/または前記第2の鋼材の表面に重なり合う形状である。
In the invention of claim 3,
The molten metal confinement ring has a shape in which the inner surface of the ring portion is opposed to a side peripheral surface of the joining metal via a slight gap, and the back surface of the ring portion is the first steel material and / or the The shape overlaps the surface of the second steel material.

請求項4の発明では、
前記溶融金属閉じ込めリングは、鋼材、非鉄金属、セラミックス、合成樹脂、または木材のいずれかからなる。
In the invention of claim 4,
The molten metal confinement ring is made of any one of steel, non-ferrous metal, ceramics, synthetic resin, and wood.

請求項5の発明では、
前記加圧機構は、前記リング部表面と前記鍔部の裏面との間に設け、前記溶融金属の溶融の進行により前記リング部表面と前記鍔部の裏面との距離が接近し前記加圧機構が前記回転軸の方向に変形するのに伴って増加する押し付け力の一部が前記リング部表面に加わることにより、前記リング部裏面を前記第1の鋼材および/または前記第2の鋼材の表面に定着させる。
In the invention of claim 5,
The pressurizing mechanism is provided between the surface of the ring portion and the back surface of the flange portion, and the distance between the surface of the ring portion and the back surface of the flange portion decreases as the melting of the molten metal progresses. Is applied to the surface of the ring portion as a part of the pressing force that increases with the deformation of the ring portion in the direction of the rotation axis causes the back surface of the ring portion to face the first steel material and / or the surface of the second steel material. To be established.

請求項6の発明では、
前記加圧機構は、前記回転軸の方向に変形可能な材料である木材、ゴム、天然樹脂、または合成樹脂のいずれかからからなる。
In the invention of claim 6,
The pressing mechanism is made of any of wood, rubber, natural resin, and synthetic resin, which are materials that can be deformed in the direction of the rotation axis.

請求項7の発明では、
前記加圧機構は、前記回転軸の方向に変形可能な機構であるコイルばねまたは皿ばねのいずれかからからなる。
In the invention of claim 7,
The pressurizing mechanism is composed of either a coil spring or a disc spring, which is a mechanism that can be deformed in the direction of the rotation axis.

請求項8の発明では、
前記加圧機構は、磁性を有する材料からなる一対のリングを同一極が対面するように前記回転軸の方向に変形可能に構成され、前記溶融金属閉じ込めリングを前記第1の鋼材および/または前記第2の鋼材の表面に磁力により定着させる。
In the invention of claim 8,
The pressurizing mechanism is configured so that a pair of rings made of a magnetic material can be deformed in the direction of the rotation axis so that the same pole faces each other. It is fixed on the surface of the second steel material by magnetic force.

請求項9の発明では、
前記回転遮断機構は、前記加圧機構の表面と前記鍔部の裏面との間または前記加圧機構の裏面と前記溶融金属閉じ込めリングのリング部表面との間に設け、前記第1の鋼材および/または前記第2の鋼材の表面と前記接合金属との間で生じる相対回転運動を遮断する。
In the invention of claim 9,
The rotation blocking mechanism is provided between a front surface of the pressurizing mechanism and a back surface of the flange portion or between a back surface of the pressurizing mechanism and a ring portion surface of the molten metal confinement ring. And / or block relative rotational movement occurring between the surface of the second steel material and the joining metal.

請求項10の発明では、
前記回転遮断機構は、低摩擦すべり面方式により構成される。
In the invention of claim 10,
The rotation blocking mechanism is configured by a low friction slip surface method.

請求項11の発明では、
前記回転遮断機構は、転がり機構方式により構成される。
In the invention of claim 11,
The rotation blocking mechanism is configured by a rolling mechanism.

請求項12の発明では、
前記回転遮断機構は、磁性を有する材料からなる一対のリングを同一極が対面するように構成される。
In the invention of claim 12,
The rotation blocking mechanism is configured such that the same pole faces a pair of rings made of a magnetic material.

請求項13の発明では、
前記第1の鋼材と前記第2の鋼材とが請求項1乃至12のいずれかに記載の方法により接合される。
本発明で提供した回転摩擦による接合方法を用いて接合された鋼構造であって、建築鋼構造のみならず、土木鋼構造、機械鋼構造、容器鋼構造、生活機材鋼構造などあらゆる用途の鋼構造の接合構造に適用できる。

In the invention of claim 13,
The first steel material and the second steel material are joined by the method according to any one of claims 1 to 12.
A steel structure joined using the joining method by rotational friction provided by the present invention, which is not only a building steel structure, but also a steel for all uses such as a civil steel structure, a mechanical steel structure, a container steel structure, a steel structure for a living machine, etc. Applicable to joint structure.

建築鋼構造の柱や梁などの鋼構造骨組を構成する鋼材の接合のため、比較的小さな機構で、好ましくは携帯可能なサイズの工具で、大規模な鋼材の接合に適用できる回転摩擦による接合方法および接合構造を提供した。特に、大きな押し付け力を必要とせず回転のみの簡易な機構を用いた回転摩擦による接合を実現する方法を提供した。
本発明では、接合金属の先端部と空所の底部との接触部での摩擦により溶融金属を発生させ接合金属と空所の空隙を充填し、次いで溶融金属を凝固させ近傍の組織を一体化させることで接合が完了するため次の効果を生じ技術的に有用なものとなる。
(1) 回転を与えるモーターのトルクや仕事率を大きく低減できる。すなわち、エネルギー効率が高まる。
(2) 装置が小型化でき、操作性を高められる。
(3) 接合金属と空所の形状は「円筒」でも成立するため、加工が容易になる。これによってもたらされる量産化、コスト・メリットは、実用化にとって極めて重要である。
For joining steel materials that make up the steel structural framework such as columns and beams of building steel structures, using a relatively small mechanism, preferably a tool with a portable size, and joining by rotary friction applicable to joining large-scale steel materials A method and joint structure are provided. In particular, the present invention provides a method for realizing joining by rotational friction using a simple mechanism that only requires rotation without requiring a large pressing force.
In the present invention, a molten metal is generated by friction at a contact portion between a tip portion of a joining metal and a bottom portion of a void, filling a gap between the joining metal and the void, and then solidifying the molten metal to integrate a nearby structure. By doing so, the joining is completed, and the following effects are produced, which is technically useful.
(1) The torque and power of the motor that gives rotation can be greatly reduced. That is, energy efficiency is improved.
(2) The size of the device can be reduced and operability can be improved.
(3) Since the shape of the joint metal and the void is also established in a “cylindrical” shape, processing becomes easy. The mass production and cost benefits brought by this are extremely important for practical use.

接合金属を空所内に挿入し、押し付け力を加えながら同時に接合金属を回転軸周りに回転させる。接合金属の先端部と空所の底部との接触部で摩擦が生じ、摩擦熱が摩擦面近傍にある金属組織の一部を溶融化せしめる。溶融流体化したすなわち溶融金属は押圧の作用によって押し出され、接合金属の側周面と空所の側周面の間の空隙に侵入していく。接合金属の側周面と空所の側周面とは接合金属の回転による相対速度を有しているので、粘性抵抗を有する溶融金属は絶えず撹拌され、力学的エネルギーから変換された熱エネルギーの供給を受けて高温の液体状態を保ち続けることができ、すぐには凝固せず接合金属と空所の間の空隙に浸透し続けることが可能である。空隙に侵入した溶融金属は、回転停止とともに空所周囲からの抜熱による温度低下によって固体化し溶接金属としての機能を果たす作用を起こし接合金属と空所周囲が一体組織となる。
なお、上記方法では、従来の摩擦圧接法のように接合部材の接触部界面で発生した溶融金属を無用な凝固物であるバリとして吐出するものではなく、被接合鋼材と接合金属とを接合する溶接金属として有効に利用する新しい技術である。溶融金属は流体であるため固体に比べて格段に小さい粘性抵抗だけによって容易に空隙に浸透せしめることが可能である。さらに摩擦は接合金属の先端部と空所の底部との接触部のみで生じさせるため、接合金属に加える押し付け力、及び、回転を与えるモーターのトルクは共に小さくて済む。すなわち、簡易な機構を用いた回転摩擦による接合が可能となる。
The joining metal is inserted into the space, and the joining metal is simultaneously rotated around the rotation axis while applying a pressing force. Friction occurs at the contact portion between the tip of the joining metal and the bottom of the cavity, and the frictional heat causes a portion of the metal structure near the friction surface to melt. The molten fluid, that is, the molten metal is extruded by the action of the pressing, and penetrates into the gap between the side peripheral surface of the joint metal and the side peripheral surface of the void. Since the side peripheral surface of the joining metal and the side peripheral surface of the void have a relative speed due to the rotation of the joining metal, the molten metal having viscous resistance is constantly stirred, and the thermal energy converted from mechanical energy is reduced. It is possible to keep the high-temperature liquid state by receiving the supply, and not to solidify immediately, but to continue to penetrate into the gap between the joining metal and the void. The molten metal that has entered the gap is solidified due to a decrease in temperature due to heat removal from the periphery of the cavity when the rotation stops, causing an effect to function as a weld metal, and the joining metal and the periphery of the cavity become an integrated structure.
Note that, in the above method, the molten metal generated at the interface of the contact portion of the joining member is not discharged as unnecessary solidified burrs as in the conventional friction welding method, but the steel material to be joined and the joining metal are joined. This is a new technology that can be effectively used as weld metal. Since molten metal is a fluid, it can be easily penetrated into voids only by viscous resistance which is much smaller than solid. Further, since the friction is generated only at the contact portion between the front end portion of the joint metal and the bottom of the space, both the pressing force applied to the joint metal and the torque of the motor for applying rotation can be small. That is, joining by rotational friction using a simple mechanism becomes possible.

溶融金属が空所の外部に吐出することを防止し、摩擦によって生成された溶融金属を空所と接合金属の側周面間の空隙に密実に充填させることによって、接合部の強度低下の原因となる空隙が空所内に残存すること防止でき、所要の接合強度を確保することが可能となる。
Prevents the molten metal from being discharged to the outside of the cavity, and causes the molten metal generated by friction to fill the gap between the cavity and the side peripheral surface of the joining metal tightly, causing a decrease in the strength of the joint. Can be prevented from remaining in the space, and required bonding strength can be secured.

本発明の実施形態で用いられる溶融金属閉じ込め装置の構成図である。It is a lineblock diagram of a molten metal confinement device used in an embodiment of the present invention. 第1実施形態を説明するアイソメ図である。It is an isometric view explaining 1st Embodiment. 第1実施形態を説明する平面図および縦断面図である。It is the top view and longitudinal section explaining 1st Embodiment. 溶融金属閉じ込めリングを使用しないときの回転摩擦溶接の接合状態を示す図である。It is a figure which shows the joining state of rotary friction welding when a molten metal confinement ring is not used. 溶融金属閉じ込めリングを使用するときの回転摩擦溶接の接合状態を示す図である。It is a figure which shows the joining state of rotational friction welding when using a molten metal confinement ring. 溶融金属閉じ込め装置による溶融金属の閉じ込め方法を説明する図である。It is a figure explaining the confinement method of the molten metal by the molten metal confinement device. 回転ベアリングを用いた回転遮断機構を説明する図である。It is a figure explaining a rotation interception mechanism using a rotating bearing. 一対のリング状磁石で構成される加圧機構を説明する図である。It is a figure explaining the pressurization mechanism constituted by a pair of ring-shaped magnets. 第2実施形態を説明する平面図および縦断面図である。It is the top view and longitudinal section explaining 2nd Embodiment. 第2実施形態の実施手順を説明する図である。It is a figure explaining an implementation procedure of a 2nd embodiment. 接合ユニットを説明する図である。It is a figure explaining a joining unit. 第2実施形態の変形例を説明するアイソメ図である。It is an isometric view explaining the modification of 2nd Embodiment. 第3実施形態を説明する縦断面図である。It is a longitudinal section explaining a 3rd embodiment. 第3実施形態の応用例を説明する図である。It is a figure explaining the example of application of a 3rd embodiment. 第3実施形態のスプライスプレートへの適用例を説明する図である。It is a figure explaining the example of application to the splice plate of a 3rd embodiment. 第4実施形態を説明する図である。It is a figure explaining a 4th embodiment. 従来技術を説明する図である。FIG. 4 is a diagram illustrating a conventional technique. 出願人らによる従前の出願の技術を説明する図である。FIG. 2 is a diagram illustrating a technique of a previous application by the applicants. 出願人らによる従前の出願の技術を説明する図である。FIG. 2 is a diagram illustrating a technique of a previous application by the applicants.

本発明の実施形態を、図面を参照しつつ説明する。なお、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
An embodiment of the present invention will be described with reference to the drawings. Note that the same components are denoted by the same reference numerals, and description thereof will be omitted or simplified.

本発明の実施形態で用いられる溶融金属閉じ込め装置300を、図1に示す。溶融金属閉じ込め装置300は、溶融金属閉じ込めリング390と加圧機構350と回転遮断機構310とからなり、図1に示すように、溶融金属閉じ込めリング390、加圧機構350、回転遮断機構310の順に配置されている。このうち、溶融金属閉じ込めリング390が、溶融金属閉じ込めの主要部品であり第1の鋼材および第2の鋼材の表面に載置されて溶融金属の閉じ込めに寄与する。加圧機構350は、溶融金属閉じ込めリング390を鋼材の表面12、22に定着させる手段である。回転遮断機構310は、溶融金属閉じ込めリング390の共回りを防止するために接合金属40の回転を遮断する手段である。溶融金属閉じ込めリング390は、リング部391と孔部396からなり、リング部391は、リング部391の表裏面のうち接合金属40の基端部48側の面であるリング部表面392、リング部391の表裏面のうち接合金属40の先端部47側の面であるリング部裏面393、孔部396を形成するリング部内側面394およびリング部外側面395で構成される。溶融金属閉じ込めリング390は、リング部内側面394が前記接合金属の側周面42との間に僅かな隙間を介して対向する円筒形であり、リング部裏面393が第1の鋼材10および/または第2の鋼材20の表面12、22に重なり合う平面形である。溶融金属閉じ込めリング390は、鋼材、非鉄金属、セラミックス、合成樹脂または木材のいずれかからなる。加圧機構350は、溶融金属閉じ込めリング390と同様のリング形状であり、回転軸71の方向である厚さ方向に変形可能な材料であるゴム、合成樹脂または木材等からなる。回転遮断機構310は、溶融金属閉じ込めリング390と同様のリング形状であり、低摩擦すべり面を持つ材料であるテフロン(登録商標)等からなる。なお、溶融金属閉じ込め装置300については、上述以外の機構も可能であり、(段落29)乃至(段落31)にて詳述する。
FIG. 1 shows a molten metal confinement device 300 used in an embodiment of the present invention. The molten metal confinement device 300 includes a molten metal confinement ring 390, a pressing mechanism 350, and a rotation blocking mechanism 310. As shown in FIG. 1, the molten metal confinement ring 390, the pressing mechanism 350, and the rotation blocking mechanism 310 are arranged in this order. Are located. Among these, the molten metal confinement ring 390 is a main component of the molten metal confinement and is placed on the surfaces of the first steel material and the second steel material to contribute to the confinement of the molten metal. The pressing mechanism 350 is a means for fixing the molten metal confinement ring 390 to the steel surfaces 12 and 22. The rotation blocking mechanism 310 is means for blocking rotation of the joining metal 40 in order to prevent the molten metal confinement ring 390 from rotating together. The molten metal confinement ring 390 includes a ring portion 391 and a hole 396, and the ring portion 391 has a ring surface 392, which is a surface of the front and back surfaces of the ring portion 391 on the base end 48 side of the bonding metal 40, and a ring portion 391. Of the front and back surfaces 391, a ring back surface 393, which is a surface on the front end portion 47 side of the joining metal 40, a ring inner side surface 394 forming a hole 396, and a ring outer surface 395. The molten metal confinement ring 390 has a cylindrical shape in which the inner surface 394 of the ring portion is opposed to the side peripheral surface 42 of the joining metal via a slight gap, and the back surface 393 of the ring portion has the first steel material 10 and / or It is a planar shape that overlaps the surfaces 12, 22 of the second steel material 20. The molten metal confinement ring 390 is made of any of steel, non-ferrous metal, ceramics, synthetic resin, or wood. The pressing mechanism 350 has a ring shape similar to that of the molten metal confinement ring 390, and is made of rubber, synthetic resin, wood, or the like, which is a material that can be deformed in the thickness direction that is the direction of the rotation shaft 71. The rotation blocking mechanism 310 has a ring shape similar to the molten metal confinement ring 390 and is made of Teflon (registered trademark), which is a material having a low friction sliding surface. The molten metal confinement device 300 can have a mechanism other than those described above, and will be described in detail in (Paragraph 29) to (Paragraph 31).

本発明の第1実施形態を、図2、図3を参照して説明する。第1の鋼材10および第2の鋼材20は、端面を持つ鋼材である。端面を持つ鋼材とは、例えば鋼板、H形鋼を構成するフランジおよびウェブ、角形鋼管や円形鋼管など閉鎖断面部材の管鋼板本体などが挙げられる。端面同士を対向させて配置した接合とは、具体的には突き合わせ接合である。第1の鋼材10と第2の鋼材20とを隣接した位置に配置すると共に第1の鋼材10の端面11と第2の鋼材20の端面21とを対向させて配置する。このとき、第1の鋼材10の端面11と第2の鋼材20の端面21とは、面接触(メタルタッチ)状に配置されることが望ましいが、不可避の建方誤差等に伴う微小のズレは許容される。空所50として、第1の鋼材10の端面11と第2の鋼材20の端面21とに跨り、第1の鋼材10の表面12と前記第2の鋼材20の表面22とに垂直な直線を回転軸71とし単調変化する曲線を母線とする回転対称形状の側周面52と、側周面52に連続する円錐体形状の底部51を加工する。
一方、接合金属40は、回転軸71からの距離が基端部48から先端部47に向かって単調減少する母線によって形成される回転対称形状の側周面42を有する接合金属本体41と、接合金属本体41に連続する円錐体形状の先端面47aを有する先端部47とからなり、空所50に容易に挿入されうる大きさとする。接合金属本体41は基端部48側に半径が一定である円筒形の側周面42aを有し、基端部48には鍔部48aを設ける。鍔部48aの裏面側と空所50の表面側との間に溶融金属閉じ込め装置300を、接合金属40の側周面42との間に僅かな隙間を介して装着し、接合金属40をその先端60が空所50の底部に達するまで挿入する。この挿入過程で溶融金属閉じ込めリング390のリング部裏面393は、第1の鋼材10の表面12と第2の鋼材20の表面22とに載置される。回転遮断機構310は、加圧機構350と溶融金属閉じ込めリング390とが接合金属40の回転に共回りしないように機能し、加圧機構350は、溶融金属閉じ込めリング390を鋼材の表面12、22に定着させる手段として機能して、溶融金属80の吐出の防止効果を確実にする。
次いで、図3bに示すように、接合金属40に押し付け力Pを作用させながら回転軸71回りに回転ωを与えることにより接合金属40の先端部47と空所50の底部51との間の回転摩擦面62に摩擦を生じさせる。このとき定着させる手段としての加圧機構350が、溶融金属閉じ込めリング390と接合金属40の鍔部48aとの間の距離が近づけられることによって加圧機構350の厚さが減少し、厚さの減少に対応して押し付け力Pの一部が、溶融金属閉じ込めリング390を第1の鋼材10および第2の鋼材20の表面12、22に定着させる。摩擦熱によって液体化した溶融金属80は、押し付け力Pによる押圧力と溶融金属80に作用する浮力と接合金属40の回転運動による遠心力の作用によって接合金属40の側周面42と空所50の側周面52との隙間61に侵入して行く。溶融金属80は溶融金属閉じ込めリング390によって空所50からの吐出が防止されているため、空所50の全域を密実に充填させることができる。溶融金属80の充填が完了したとき接合金属40の回転運動を停止させる。その後生じる温度低下によって溶融金属80は凝固し、隙間61近傍の組織と一体化することにより接合が完了する。
A first embodiment of the present invention will be described with reference to FIGS. The first steel material 10 and the second steel material 20 are steel materials having end faces. Examples of the steel material having an end surface include a steel plate, a flange and a web constituting an H-section steel, a tubular steel plate body of a closed section member such as a square steel pipe and a circular steel pipe, and the like. The joint in which the end faces are arranged to face each other is specifically a butt joint. The first steel material 10 and the second steel material 20 are arranged at adjacent positions, and the end surface 11 of the first steel material 10 and the end surface 21 of the second steel material 20 are arranged to face each other. At this time, it is desirable that the end face 11 of the first steel material 10 and the end face 21 of the second steel material 20 are arranged in a surface contact (metal touch) shape, but a minute displacement due to an unavoidable construction error or the like. Is acceptable. As the space 50, a straight line extending across the end face 11 of the first steel material 10 and the end face 21 of the second steel material 20 and perpendicular to the surface 12 of the first steel material 10 and the surface 22 of the second steel material 20 is formed. A rotationally symmetric side peripheral surface 52 having a rotating line 71 as a monotonically changing curve as a generating line, and a conical bottom 51 continuous with the side peripheral surface 52 are processed.
On the other hand, the joining metal 40 is joined to a joining metal main body 41 having a rotationally symmetric side peripheral surface 42 formed by a generating line whose distance from the rotation shaft 71 monotonically decreases from the base end 48 to the tip end 47. It has a tip portion 47 having a cone-shaped tip surface 47a continuous with the metal main body 41, and has a size that can be easily inserted into the cavity 50. The joint metal body 41 has a cylindrical side peripheral surface 42a having a constant radius on the base end portion 48 side, and the base end portion 48 is provided with a flange portion 48a. The molten metal confinement device 300 is mounted between the rear surface side of the flange portion 48a and the front surface side of the cavity 50 with a slight gap between the molten metal confinement device 300 and the side peripheral surface 42 of the joining metal 40, and the joining metal 40 is Insert until the tip 60 reaches the bottom of the cavity 50. In this insertion process, the ring back surface 393 of the molten metal confinement ring 390 is placed on the front surface 12 of the first steel material 10 and the front surface 22 of the second steel material 20. The rotation blocking mechanism 310 functions so that the pressurizing mechanism 350 and the molten metal confinement ring 390 do not rotate together with the rotation of the joining metal 40, and the pressurizing mechanism 350 moves the molten metal confinement ring 390 to the steel surfaces 12, 22. This function as a means for fixing the molten metal 80 ensures the effect of preventing the discharge of the molten metal 80.
Next, as shown in FIG. 3B, a rotation ω is applied around the rotation axis 71 while applying a pressing force P to the joining metal 40, thereby rotating the tip 47 of the joining metal 40 and the bottom 51 of the cavity 50. The friction is generated on the friction surface 62. At this time, the pressing mechanism 350 as a fixing unit reduces the thickness of the pressing mechanism 350 by reducing the distance between the molten metal confinement ring 390 and the flange 48a of the joining metal 40, thereby reducing the thickness. A part of the pressing force P corresponding to the decrease fixes the molten metal confinement ring 390 to the surfaces 12, 22 of the first steel material 10 and the second steel material 20. The molten metal 80 liquefied by the frictional heat is pressed by the pressing force P, the buoyancy acting on the molten metal 80, and the centrifugal force caused by the rotational movement of the bonding metal 40 to form the side peripheral surface 42 and the cavity 50 of the bonding metal 40. Into the gap 61 with the side peripheral surface 52. Since the molten metal 80 is prevented from being discharged from the cavity 50 by the molten metal confinement ring 390, the entire region of the cavity 50 can be filled densely. When the filling of the molten metal 80 is completed, the rotational movement of the joining metal 40 is stopped. The molten metal 80 solidifies due to the temperature drop that occurs thereafter, and is integrated with the structure near the gap 61 to complete the joining.

本発明における溶融金属の閉じ込め方法を、図4、図5を参照して詳細に説明する。図4は溶融金属閉じ込めリング390を使用しないときの回転摩擦溶接の接合状況を示し、図5溶融金属閉じ込めリング390を使用するときの回転摩擦溶接の接合状況を示す。
接合金属40の先端部47と空所50の底部51との間での摩擦によって生成された溶融金属80は、押し付け力Pによる押圧力と溶融金属80に作用する浮力と接合金属40の回転運動による遠心力の作用によって接合金属40の側周面42と空所50の側周面52との隙間61に侵入して行く。図4に示すように溶融金属閉じ込めリング390が無ければ、溶融金属80は前記隙間61の外部空間へ通じる出口61aから吐出し、周囲への熱伝導で熱が失われることにより凝固してバリ81となるかまたは接合金属40の回転による遠心力が働いて飛散する。吐出した溶融金属が吐出前に空所内に存在していた箇所には空隙399が形成され、前記空隙399は接合部の強度を低下させる。一方、図5に示すように溶融金属閉じ込めリング390が溶融金属80の吐出を防止すれば、溶融金属80は前記空隙399を形成することなく前記隙間61の全域を密実に充填でき良好な接合が実現できる。
図5bに示すように溶融金属が空所の外部に吐出する可能性がある経路は、溶融金属閉じ込めリング390のリング部内側面394と接合金属40の側周面42との間の境界397と、溶融金属閉じ込めリング390の裏面393と鋼材の表面12および/または22との間の境界398の2か所である。
前者の吐出経路である境界397には、接合金属に押付力Pを作用させ軸回りの回転ωを生ぜしめる回転摩擦溶接の過程において有意な圧力は生じない。よって、境界397を経由して溶融金属80が吐出しない程度に溶融金属閉じ込めリング390のリング部内側面394と接合金属40の側周面42との間の間隔を十分に小さく保てば、溶融金属80がその粘性作用により境界397を通過することは無く溶融金属80の吐出は防止される。さらに、前記境界397に有意な圧力は生じないので接触部での摩擦力は小さく接合金属40の回転を妨げることは無く、また摩擦熱によって境界397の近傍組織が溶解して新たな溶融金属吐出経路が形成されることは無い。
一方、後者の吐出経路である境界398においては、溶融金属80による圧力が溶融金属閉じ込めリング390のリング部裏面393を鋼材の表面12および/または22から離反させるように作用する。接触面が離反すればその隙間から溶融金属80が吐出する可能性が生じるため、溶融金属80の圧力を打ち消して離反を生じさせない大きさの押付圧または吸着力が必要である。ここでは溶融金属閉じ込めリング390には加圧機構350を介して押し付け力Pの一部がリング部裏面393と鋼材の表面12および/または22との間に定着させる力として働いており溶融金属80の内圧による溶融金属閉じ込めリング390のリング部裏面393が鋼材の表面12および/または22からの離反が防止される。また、溶融金属80が境界398の隙間に侵入しても、その隙間は静止した溶融金属閉じ込めリング390のリング部裏面393と静止した第1の鋼材の表面12および/または第2の鋼材の22で囲まれているため熱伝導によって溶融金属80の温度は急激に低下して凝固するため外部への吐出は防止される。
The method for confining molten metal in the present invention will be described in detail with reference to FIGS. FIG. 4 shows a joining state of rotary friction welding when the molten metal confinement ring 390 is not used, and FIG. 5 shows a joining state of rotary friction welding when the molten metal confinement ring 390 is used.
The molten metal 80 generated by the friction between the tip 47 of the joining metal 40 and the bottom 51 of the cavity 50 is pressed by the pressing force P, the buoyancy acting on the molten metal 80, and the rotational motion of the joining metal 40. Of the joining metal 40 and the side peripheral surface 52 of the cavity 50 due to the action of the centrifugal force by the force. As shown in FIG. 4, if the molten metal confinement ring 390 is not provided, the molten metal 80 is discharged from the outlet 61a leading to the external space of the gap 61, and solidifies due to loss of heat due to heat conduction to the surroundings to form the burr 81. Or the particles are scattered by the centrifugal force caused by the rotation of the joining metal 40. A void 399 is formed at a location where the discharged molten metal was present in the void before the discharge, and the void 399 reduces the strength of the joint. On the other hand, if the molten metal confinement ring 390 prevents the discharge of the molten metal 80 as shown in FIG. 5, the molten metal 80 can fill the entire area of the gap 61 tightly without forming the gap 399, and good joining can be achieved. realizable.
As shown in FIG. 5 b, the path through which the molten metal may be discharged to the outside of the space includes a boundary 397 between the ring inner surface 394 of the molten metal confinement ring 390 and the side peripheral surface 42 of the joining metal 40, Two locations at the boundary 398 between the back surface 393 of the molten metal confinement ring 390 and the steel surface 12 and / or 22.
No significant pressure is generated at the boundary 397, which is the former discharge path, in the process of rotary friction welding in which the pressing force P is applied to the joint metal to generate rotation ω around the axis. Accordingly, if the distance between the inner surface 394 of the ring portion of the molten metal confinement ring 390 and the side peripheral surface 42 of the joining metal 40 is kept small enough that the molten metal 80 is not discharged through the boundary 397, the molten metal Due to its viscous action, the 80 does not pass through the boundary 397 and the discharge of the molten metal 80 is prevented. Further, since no significant pressure is generated at the boundary 397, the frictional force at the contact portion is small and the rotation of the joining metal 40 is not hindered, and the structure near the boundary 397 is melted by the frictional heat to discharge a new molten metal. No path is formed.
On the other hand, at the boundary 398 which is the latter discharge path, the pressure by the molten metal 80 acts to separate the ring back surface 393 of the molten metal confinement ring 390 from the front surface 12 and / or 22 of the steel material. If the contact surface separates, there is a possibility that the molten metal 80 will be discharged from the gap. Therefore, a pressing pressure or a suction force that cancels the pressure of the molten metal 80 and does not cause separation is required. Here, a part of the pressing force P acts on the molten metal confinement ring 390 via the pressurizing mechanism 350 as a force for fixing between the ring portion back surface 393 and the steel surface 12 and / or 22, and the molten metal 80 The ring back surface 393 of the molten metal confinement ring 390 due to the internal pressure of the steel material is prevented from separating from the front surface 12 and / or 22 of the steel material. Further, even if the molten metal 80 enters the gap at the boundary 398, the gap is formed between the ring portion rear surface 393 of the stationary molten metal confinement ring 390 and the stationary first steel surface 12 and / or the second steel 22. , The temperature of the molten metal 80 sharply drops due to heat conduction and solidifies, so that discharge to the outside is prevented.

溶融金属閉じ込め装置300について、図6を参照して詳細に説明する。
図6は、図1に示す溶融金属閉じ込めリング390と加圧機構350と回転遮断機構310とからなる溶融金属閉じ込め装置300を、接合金属40の接合金属本体41の円筒形側周面42aに僅かな隙間を介して装着し、接合金属40の鍔部48aと第1の鋼材10および/または第2の鋼材20の表面12、22との間に載置し、接合金属40を回転装置70に取り付けて空所50に挿入し、接合金属40に押し付け力Pを作用させながら回転軸71回りに回転ωを与える工程を示す図である。押し付け力Pを増加させるに従って、接合金属40の先端部47に作用する押圧力p1は接合金属を溶融させ、押し付け力Pの一部p2は加圧機構350を加圧して回転軸方向に変形させ、押圧力p3として溶融金属閉じ込めリング390に伝達される。押圧力p3により、溶融金属閉じ込めリング390は、第1の鋼材10および/または第2の鋼材20の表面12、22に定着される。回転遮断機構310は、溶融金属閉じ込めリング390と加圧機構350との間、または、加圧機構350と接合金属40の鍔部48aとの間に配置されて、第1の鋼材10および第2の鋼材20と接合金属40との間で生じる相対回転運動を遮断して押し付け力Pを受けつつ滑らかな摺動を可能とする。
加圧機構350と回転遮断機構310とにより、溶融金属閉じ込めリング390は、接合金属40の回転に共回りせず、鋼材の表面12、22に定着されて、溶融金属80の吐出の防止効果を確実にする。
加圧機構350は、溶融金属閉じ込めリング390と同様のリング形状であり、回転軸71の方向である厚さ方向に変形可能な材料であるゴム、合成樹脂または木材等からなる。また、皿ばねなどの機械式ばねによる方法、一対の反発磁力による方法などが考えられる。
回転遮断機構は、回転ベアリング装置を挟み込む方法や、テフロン(登録商標)など摩擦係数を小さくできる適宜の表面加工を施す方法、磁石の反発力を利用して相対回転を滑らかに生ぜしめる機構などが考えられる。
The molten metal confinement device 300 will be described in detail with reference to FIG.
FIG. 6 shows that the molten metal confinement device 300 including the molten metal confinement ring 390, the pressurizing mechanism 350, and the rotation blocking mechanism 310 shown in FIG. 1 is slightly attached to the cylindrical side surface 42a of the joint metal body 41 of the joint metal 40. Is mounted between the flange portion 48a of the joining metal 40 and the surfaces 12, 22 of the first steel material 10 and / or the second steel material 20, and the joining metal 40 is attached to the rotating device 70. It is a figure which shows the process of attaching and inserting in the space 50, and giving rotation (omega) around the rotation axis 71, applying the pressing force P to the joining metal 40. As the pressing force P increases, the pressing force p1 acting on the distal end portion 47 of the bonding metal 40 melts the bonding metal, and a part p2 of the pressing force P presses the pressing mechanism 350 to deform the pressing mechanism 350 in the rotation axis direction. , And the pressing force p3 are transmitted to the molten metal confinement ring 390. Due to the pressing force p3, the molten metal confinement ring 390 is fixed to the surfaces 12, 22 of the first steel material 10 and / or the second steel material 20. The rotation blocking mechanism 310 is disposed between the molten metal confinement ring 390 and the pressing mechanism 350 or between the pressing mechanism 350 and the flange 48 a of the joining metal 40, and the first steel 10 and the second steel To block the relative rotational movement generated between the steel material 20 and the joining metal 40, thereby enabling smooth sliding while receiving the pressing force P.
Due to the pressurizing mechanism 350 and the rotation blocking mechanism 310, the molten metal confinement ring 390 does not rotate with the rotation of the joining metal 40 but is fixed to the surfaces 12 and 22 of the steel material, thereby preventing the molten metal 80 from being discharged. to be certain.
The pressing mechanism 350 has a ring shape similar to that of the molten metal confinement ring 390, and is made of rubber, synthetic resin, wood, or the like, which is a material that can be deformed in the thickness direction that is the direction of the rotation shaft 71. Further, a method using a mechanical spring such as a disc spring, a method using a pair of repulsive magnetic forces, and the like can be considered.
The rotation blocking mechanism includes a method of sandwiching a rotating bearing device, a method of performing appropriate surface treatment such as Teflon (registered trademark) that can reduce the coefficient of friction, and a mechanism of smoothly generating relative rotation using the repulsive force of a magnet. Conceivable.

図7には、加圧機構350と接合金属40の鍔部48aとの間に回転遮断機構310として回転ベアリング312を挟み込んで相対回転を遮断する方法を示している。また、加圧機構350と溶融金属閉じ込めリング390との間に回転ベアリング312を挟み込んでも同様の回転遮断効果を得ることができる。 FIG. 7 shows a method of interposing a rotary bearing 312 as a rotation interrupting mechanism 310 between the pressurizing mechanism 350 and the flange 48a of the joint metal 40 to interrupt relative rotation. Further, even if the rotary bearing 312 is interposed between the pressurizing mechanism 350 and the molten metal confinement ring 390, the same rotation blocking effect can be obtained.

図8は、一対のリング状磁石352で構成される加圧機構350を示している。一対のリング状磁石352は同極の面が対向するように配置され、反発磁力が弾性加圧効果を生み出す。また、一対のリング状磁石352の対向面352aは反発磁力の作用により非接触状態が保たれるため、相対回転が滑らかに生じる。すなわち、図8の一対のリング状磁石352で構成される加圧機構350は、加圧機構350と回転遮断機構310を共に具備している。
FIG. 8 shows a pressing mechanism 350 composed of a pair of ring-shaped magnets 352. The pair of ring-shaped magnets 352 are arranged such that the surfaces of the same polarity face each other, and the repulsive magnetic force produces an elastic pressing effect. Further, the opposing surfaces 352a of the pair of ring-shaped magnets 352 are kept in a non-contact state by the action of the repulsive magnetic force, so that relative rotation occurs smoothly. That is, the pressing mechanism 350 including the pair of ring-shaped magnets 352 in FIG. 8 includes both the pressing mechanism 350 and the rotation blocking mechanism 310.

本発明の第2実施形態を、図9を参照して説明する。本実施形態は、第1実施形態と同様の突き合わせ接合であるが、具体的な寸法と材質を付して詳細に説明する。第1の鋼材10および第2の鋼材20は、それぞれSN400厚さ22mmの鋼板であり、第1の鋼材10の端面11には半径15mmの半円筒形状の空所50aを加工し、第2の鋼材20の端面21には半径15mmの半円筒形状の空所50bを加工する。半円筒形状の空所50aおよび半円筒形状の空所50bは、それぞれ頂点での開き角が122°の円錐体形状の底部51a、底部51bを有する有底空所であって、空所50a、空所50bの最深部の深さは17mmである。第1の鋼材10と第2の鋼材20とを隣接した位置に配置すると共に第1の鋼材10の端面11と第2の鋼材20の端面21とを対向させて配置すると、第1の鋼材10の端面11と第2の鋼材20の端面21とに跨る直径30mm、深さ17mmの円筒形状の側周面52、底部51を有する空所50が形成される。このとき、第1の鋼材10の端面11と第2の鋼材20の端面21とは、面接触(メタルタッチ)状に配置されることが望ましいが、不可避の建方誤差等に伴う微小のズレは許容される。
一方、接合金属40は、SN400鋼材である直径29.5mmの円柱体の接合金属本体41と、先端部47で構成される。先端部47は頂点での開き角が120°の円錐体形状の先端面47aを有する。接合金属本体41の基端部48には、鍔部48aを設ける。なお、本実施形態では、接合金属40の側周面42に凹凸を設けていない。鍔部48aの裏面側と空所50の表面側との間に溶融金属閉じ込め装置300を、接合金属40の側周面42との間に僅かな隙間を介して装着し、接合金属40をその先端60が空所50の底部に達するまで挿入する。この挿入過程で溶融金属閉じ込めリング390のリング部裏面393は、第1の鋼材10の表面12と第2の鋼材20の表面22とに載置される。回転遮断機構310は、加圧機構350と溶融金属閉じ込めリング390とが接合金属40の回転に共回りしないように機能し、加圧機構350は、溶融金属閉じ込めリング390を鋼材の表面12、22に定着させる手段として機能して、溶融金属80の吐出の防止効果を確実にする。
次いで、図9bに示すように、接合金属40に押し付け力Pを作用させながら回転軸71回りに回転ωを与えることにより接合金属40の先端部47と空所50の底部51との間の回転摩擦面62にて摩擦を生ぜしめる。回転数は3000rpmで押し付け力は7000Nである。このとき定着させる手段としての加圧機構350が、溶融金属閉じ込めリング390と接合金属40の鍔部48aとの間の距離が近づけられることによって加圧機構350の厚さが減少し、厚さの減少に対応して押し付け力Pの一部が、溶融金属閉じ込めリング390を第1の鋼材10および第2の鋼材20の表面12、22に定着させる。摩擦熱によって液体化した溶融金属80は押し付け力Pによる押圧力と溶融金属80に作用する浮力と接合金属40の回転運動による遠心力の作用によって接合金属40の側周面42と空所50の側周面52との隙間61に侵入していく。溶融金属80は溶融金属閉じ込めリング90によって空所50からの吐出が防止されているため、空所50の全域を密実に充填させることができる。溶融金属80が隙間61の全域にわたって密実に充填されたとき回転運動を停止させる。その後の温度低下に伴って溶融金属80は凝固し、隙間61近傍の組織と一体化することにより接合が完了する。ところで、本実施形態では、空所の底部51および接合金属40の先端部47をそれぞれ円錐体形状としたが、それぞれ平坦面形状であってもよい。
A second embodiment of the present invention will be described with reference to FIG. This embodiment is a butt joint similar to the first embodiment, but will be described in detail with specific dimensions and materials. The first steel material 10 and the second steel material 20 are each a steel plate having a SN of 22 mm and a thickness of 22 mm, and the end surface 11 of the first steel material 10 is formed with a semi-cylindrical cavity 50 a having a radius of 15 mm. A semi-cylindrical cavity 50b having a radius of 15 mm is formed in the end surface 21 of the steel material 20. The semi-cylindrical void 50a and the semi-cylindrical void 50b are bottomed voids having a cone-shaped bottom 51a and a bottom 51b each having an opening angle of 122 ° at the apex. The depth of the deepest portion of the void 50b is 17 mm. When the first steel material 10 and the second steel material 20 are arranged at adjacent positions and the end surface 11 of the first steel material 10 and the end surface 21 of the second steel material 20 are arranged to face each other, the first steel material 10 A void 50 having a cylindrical side peripheral surface 52 having a diameter of 30 mm and a depth of 17 mm, and a bottom portion 51, is formed across the end surface 11 of the second steel material 20 and the end surface 21 of the second steel material 20. At this time, it is desirable that the end face 11 of the first steel material 10 and the end face 21 of the second steel material 20 are arranged in a surface contact (metal touch) shape, but a minute displacement due to an unavoidable construction error or the like. Is acceptable.
On the other hand, the joining metal 40 is composed of a cylindrical joining metal body 41 having a diameter of 29.5 mm, which is a SN400 steel material, and a tip 47. The tip portion 47 has a cone-shaped tip surface 47a having an opening angle at the vertex of 120 °. A flange 48a is provided at the base end 48 of the joined metal body 41. In the present embodiment, no irregularities are provided on the side peripheral surface 42 of the joining metal 40. The molten metal confinement device 300 is mounted between the rear surface side of the flange portion 48a and the front surface side of the cavity 50 with a slight gap between the molten metal confinement device 300 and the side peripheral surface 42 of the joining metal 40, and the joining metal 40 is Insert until the tip 60 reaches the bottom of the cavity 50. In this insertion process, the ring back surface 393 of the molten metal confinement ring 390 is placed on the front surface 12 of the first steel material 10 and the front surface 22 of the second steel material 20. The rotation blocking mechanism 310 functions so that the pressurizing mechanism 350 and the molten metal confinement ring 390 do not rotate together with the rotation of the joining metal 40, and the pressurizing mechanism 350 moves the molten metal confinement ring 390 to the steel surfaces 12, 22. This function as a means for fixing the molten metal 80 ensures the effect of preventing the discharge of the molten metal 80.
Next, as shown in FIG. 9B, rotation between the tip 47 of the joining metal 40 and the bottom 51 of the cavity 50 is given by applying a rotation ω about the rotation axis 71 while applying a pressing force P to the joining metal 40. The friction is generated at the friction surface 62. The rotation speed is 3000 rpm and the pressing force is 7000 N. At this time, the pressing mechanism 350 as a fixing unit reduces the thickness of the pressing mechanism 350 by reducing the distance between the molten metal confinement ring 390 and the flange 48a of the joining metal 40, thereby reducing the thickness. A part of the pressing force P corresponding to the decrease fixes the molten metal confinement ring 390 to the surfaces 12, 22 of the first steel material 10 and the second steel material 20. The molten metal 80 liquefied by the frictional heat is pressed by the pressing force P, the buoyancy acting on the molten metal 80, and the centrifugal force caused by the rotational motion of the bonding metal 40, thereby forming the side peripheral surface 42 of the bonding metal 40 and the void 50. It enters the gap 61 between the side peripheral surface 52. Since the molten metal 80 is prevented from being discharged from the cavity 50 by the molten metal confinement ring 90, the entire region of the cavity 50 can be densely filled. When the molten metal 80 is densely filled over the entire area of the gap 61, the rotation is stopped. With the subsequent temperature decrease, the molten metal 80 solidifies, and is integrated with the structure near the gap 61 to complete the joining. By the way, in the present embodiment, the bottom 51 of the cavity and the tip 47 of the joining metal 40 are each formed into a cone, but may be formed into a flat surface.

図10は、第2実施形態における鋼材の接合方法の実施手順を段階的に示す。
(手順1)図10aは、隣接した位置に配置した鋼板である第1の鋼材10と第2の鋼材20の突き合わせ面に跨る円筒形状の空所50に、溶融金属閉じ込め装置300を円柱形状の接合金属本体41に装着した接合金属40を回転装置70に取り付けて挿入し、接合金属40の先端部47と空所50の底部51との間に接触部60が生じた状態を示す。
(手順2)図10bは、接合中の状態を示す。接合金属40に押し付け力Pを作用させ、押し付け力Pを一定に保持しながら接合金属40を回転軸71回りに回転速度ωで回転を与えることにより接合金属40の先端部47と空所50の底部51との間の回転摩擦面62にて摩擦を生じさせる。摩擦熱によって液体化した溶融金属80は、押し付け力Pによる押圧力と溶融金属80に作用する浮力と接合金属40の回転運動による遠心力の作用によって接合金属40の側周面42と空所50の側周面52との隙間61に侵入していく。このとき溶融金属閉じ込めリング390は、溶融金属80が空所50から外部に吐出することを防止する。
(手順3)図10cは、接合後の状態を示す。接合金属40の先端部47と空所50の底部51との間の回転摩擦面62(図10b参照)における摩擦によって生成された溶融金属80(図10b参照)が、接合金属40の側周面42と空所50の側周面52との隙間61の全域に充填されたときに接合金属40の回転運動を停止させ、その後の温度低下に伴って隙間内部に残留して凝固した溶融金属80aが近傍の組織と一体化することにより接合が完了する。なお、図10c中の62aは、接合完了時における接合金属の先端部47と空所の底部51との間の回転摩擦面を表す。
FIG. 10 shows a step-by-step procedure of the method of joining steel materials according to the second embodiment.
(Procedure 1) FIG. 10A shows that the molten metal confinement device 300 is formed into a cylindrical shape in a cylindrical space 50 straddling the abutting surface of the first steel material 10 and the second steel material 20 which are steel plates arranged at adjacent positions. This shows a state in which the joining metal 40 attached to the joining metal main body 41 is attached to the rotating device 70 and inserted, and the contact portion 60 is formed between the front end portion 47 of the joining metal 40 and the bottom portion 51 of the cavity 50.
(Procedure 2) FIG. 10B shows a state during joining. The pressing force P is applied to the joining metal 40, and the joining metal 40 is rotated at a rotation speed ω around the rotation axis 71 while keeping the pressing force P constant, so that the distal end portion 47 of the joining metal 40 and the space 50 are formed. The friction is generated at the rotational friction surface 62 between the bottom portion 51 and the bottom portion 51. The molten metal 80 liquefied by the frictional heat is pressed by the pressing force P, the buoyancy acting on the molten metal 80, and the centrifugal force caused by the rotational movement of the bonding metal 40 to form the side peripheral surface 42 and the cavity 50 of the bonding metal 40. Into the gap 61 with the side peripheral surface 52. At this time, the molten metal confinement ring 390 prevents the molten metal 80 from being discharged from the space 50 to the outside.
(Procedure 3) FIG. 10C shows a state after the joining. The molten metal 80 (see FIG. 10 b) generated by the friction on the rotational friction surface 62 (see FIG. 10 b) between the front end portion 47 of the joining metal 40 and the bottom 51 of the space 50 forms a side peripheral surface of the joining metal 40. When the entire space of the gap 61 between the inner peripheral surface 42 and the side peripheral surface 52 of the cavity 50 is filled, the rotational movement of the joining metal 40 is stopped, and the molten metal 80a remaining in the clearance and solidified with the subsequent decrease in temperature is solidified. Is integrated with the nearby tissue to complete the joining. In addition, 62a in FIG. 10c represents a rotational friction surface between the front end portion 47 of the joining metal and the bottom portion 51 of the empty space when the joining is completed.

なお、回転軸71方向の押し付け力Pを加える方法、回転軸71回りの回転を加える方法は任意である。 The method of applying the pressing force P in the direction of the rotating shaft 71 and the method of applying the rotation about the rotating shaft 71 are arbitrary.

本発明の第2実施形態の空所50と接合金属40による接合は、空所50と接合金属40とを接合ユニット72として、図11に示すように複数の接合ユニット72を第1の鋼材10の端面11と第2の鋼材20の端面21の境界に沿って適宜間隔で並設する。複数の接合ユニット72を並設することにより必要な接合強度を確保する。このような第1の鋼材10の端面11と第2の鋼材20の端面21とに跨る空所50を加工するに際しては、図11に示すように空所50の回転軸71が端面11、21内に存在し、端面11、21の短辺方向である鋼材断面の厚さ方向を向くように空所50を加工する。 In the second embodiment of the present invention, the joint 50 and the joint metal 40 are joined by using the joint 50 with the joint 50 and the plurality of joint units 72 as shown in FIG. Are arranged in parallel at appropriate intervals along the boundary between the end face 11 of the second steel member 20 and the end face 21 of the second steel material 20. The necessary joining strength is ensured by arranging a plurality of joining units 72 in parallel. When machining such a space 50 that straddles the end face 11 of the first steel material 10 and the end face 21 of the second steel material 20, as shown in FIG. The cavity 50 is machined so as to face the thickness direction of the cross section of the steel material, which is the short side direction of the end surfaces 11 and 21.

本発明の第2実施形態の第1の鋼材10の端面11と第2の鋼材20の端面21とに跨る空所50を加工するに際しては、図12に示すように空所50の回転軸71が端面11、21内に存在し、端面11、21の長辺方向である鋼材断面の幅方向を向くように空所50を加工してもよい。 In processing the cavity 50 that straddles the end face 11 of the first steel material 10 and the end face 21 of the second steel material 20 according to the second embodiment of the present invention, as shown in FIG. May exist in the end faces 11 and 21, and the cavity 50 may be machined so as to face the width direction of the steel material cross section that is the long side direction of the end faces 11 and 21.

本発明の第3実施形態を、図13を参照して説明する。第1の鋼材10および第2の鋼材20は、表面と裏面とを持つ鋼材である。表面と裏面とを持つ鋼材とは、例えば鋼板、スプライスプレートなどの接合用鋼板、H形鋼を構成するフランジおよびウェブなどが挙げられる。裏面と表面とを対向させて配置した接合とは、具体的には重ね合わせ接合である。
本実施形態では、第1の鋼材10および第2の鋼材20は、それぞれSN400厚さ22mmの鋼板であり、第1の鋼材10には表面12から裏面13に貫く直径30mmの円筒形状の空所50cを加工し、第2の鋼材20には表面22から裏面23に貫く直径30mmの円筒形状の空所50dを加工し、第1の鋼材10と第2の鋼材20とを重ねた位置に配置すると共に第1の鋼材10の裏面13と第2の鋼材20の表面22を対向させ、且つ第1の鋼材10に加工した円筒形状の空所50cの中心と、第2の鋼材20に加工した円筒形状の空所50dの中心が回転軸71として一致するように配置すると、第1の鋼材10と第2の鋼材20とを貫く直線を回転軸71とする回転対称形状の空所50が形成される。さらに、第2の鋼材20の裏面23に空所50を塞ぐように裏当板55を付接して空所50の底部51を形成する。このとき、第1の鋼材10の裏面13と第2の鋼材20の表面22とは、面接触(メタルタッチ)状に配置されることが望ましいが、不可避の建方誤差等に伴う微小のズレは許容される。
一方、接合金属40は、SN400鋼材であり接合金属本体41が直径29.5mmの円柱体であり、先端部47には先端直径29mm傾斜角度60°のテーパ部46を設ける。接合金属本体41の基端部48には、鍔部48aを設ける。なお、本実施形態では、接合金属40の側周面42に凹凸を設けていない。鍔部48aの裏面側と空所50の表面側との間に溶融金属閉じ込め装置300を、接合金属40の側周面42との間に僅かな隙間を介して装着し、接合金属40をその先端60が空所50の底部に達するまで挿入する。この挿入過程で溶融金属閉じ込めリング390のリング部裏面393は、第1の鋼材10の表面12に載置される。回転遮断機構310は、加圧機構350と溶融金属閉じ込めリング390とが接合金属40の回転に共回りしないように機能し、加圧機構350は、溶融金属閉じ込めリング390を鋼材の表面12に定着させる手段として機能して、溶融金属80の吐出の防止効果を確実にする。
接合金属40に押し付け力Pを作用させながら回転軸71回りに回転を与えて摩擦を生じさせる。ここで回転数は3000rpmで押し付け力は7000Nである。このとき定着させる手段としての加圧機構350が、溶融金属閉じ込めリング390と接合金属40の鍔部48aとの間の距離が近づけられることによって加圧機構350の厚さが減少し、厚さの減少に対応して押し付け力Pの一部が、溶融金属閉じ込めリング390を第1の鋼材10の表面12に定着させる。摩擦熱によって液体化した溶融金属80は押し付け力Pによる押圧力と溶融金属80に作用する浮力と接合金属40の回転運動による遠心力の作用によって接合金属40の側周面42と空所50の側周面52との隙間61に侵入していく。溶融金属80は溶融金属閉じ込めリング390によって空所50からの吐出が防止されているため、空所50の全域を密実に充填させることができる。溶融金属80が隙間61の全域にわたって密実に充填されたとき回転運動を停止させる。その後の温度低下に伴って溶融金属80は凝固して組織が一体化し、接合金属40を介して第1の鋼材10と第2の鋼材20とを接合する。ところで、本実施形態では、空所50および接合金属40をそれぞれ円筒形状、円柱体としたが、図2、図3に示した第1実施形態のように、単調変化する曲線部を持つ母線によって形成される回転対称形状の側周面52、42を有するものとしてもよい。
A third embodiment of the present invention will be described with reference to FIG. The first steel material 10 and the second steel material 20 are steel materials having a front surface and a back surface. Examples of the steel material having a front surface and a back surface include a steel plate for joining such as a steel plate and a splice plate, and a flange and a web constituting an H-section steel. The bonding in which the back surface and the front surface are arranged to face each other is, specifically, lap bonding.
In the present embodiment, each of the first steel material 10 and the second steel material 20 is a steel plate having a SN of 22 mm and a thickness of 22 mm, and the first steel material 10 has a cylindrical space having a diameter of 30 mm penetrating from the front surface 12 to the back surface 13. 50c is machined, and a cylindrical cavity 50d having a diameter of 30 mm penetrating from the front surface 22 to the back surface 23 is machined in the second steel material 20, and is arranged at a position where the first steel material 10 and the second steel material 20 are overlapped. At the same time, the back surface 13 of the first steel member 10 and the front surface 22 of the second steel member 20 are opposed to each other, and the center of the cylindrical cavity 50c formed in the first steel member 10 and the second steel member 20 are processed. When the center of the cylindrical space 50d is arranged so as to coincide with the rotation axis 71, the rotation symmetric space 50 having the rotation axis 71 as a straight line passing through the first steel material 10 and the second steel material 20 is formed. Is done. Further, a backing plate 55 is attached to the back surface 23 of the second steel material 20 so as to close the space 50, thereby forming the bottom 51 of the space 50. At this time, it is desirable that the back surface 13 of the first steel material 10 and the front surface 22 of the second steel material 20 are arranged in a surface contact (metal touch) shape, but a minute displacement due to an unavoidable construction error or the like. Is acceptable.
On the other hand, the joining metal 40 is a SN400 steel material, the joining metal main body 41 is a cylindrical body having a diameter of 29.5 mm, and a tip portion 47 is provided with a taper portion 46 having a tip diameter of 29 mm and an inclination angle of 60 °. A flange 48a is provided at the base end 48 of the joined metal body 41. In the present embodiment, no irregularities are provided on the side peripheral surface 42 of the joining metal 40. The molten metal confinement device 300 is mounted between the rear surface side of the flange portion 48a and the front surface side of the cavity 50 with a slight gap between the molten metal confinement device 300 and the side peripheral surface 42 of the joining metal 40, and the joining metal 40 is Insert until the tip 60 reaches the bottom of the cavity 50. In this insertion process, the ring back surface 393 of the molten metal confinement ring 390 is placed on the front surface 12 of the first steel material 10. The rotation blocking mechanism 310 functions so that the pressurizing mechanism 350 and the molten metal confinement ring 390 do not rotate together with the rotation of the joining metal 40, and the pressurizing mechanism 350 fixes the molten metal confinement ring 390 to the steel surface 12. It functions as a means for causing the molten metal 80 to be prevented from being discharged.
Rotation is applied around the rotation shaft 71 while applying a pressing force P to the joining metal 40 to generate friction. Here, the rotation speed is 3000 rpm and the pressing force is 7000 N. At this time, the pressing mechanism 350 as a fixing unit reduces the thickness of the pressing mechanism 350 by reducing the distance between the molten metal confinement ring 390 and the flange portion 48a of the joining metal 40, thereby reducing the thickness. A part of the pressing force P corresponding to the decrease fixes the molten metal confinement ring 390 to the surface 12 of the first steel material 10. The molten metal 80 liquefied by the frictional heat is pressed by the pressing force P, the buoyancy acting on the molten metal 80, and the centrifugal force caused by the rotational movement of the bonding metal 40, and the side peripheral surface 42 of the bonding metal 40 and the void 50 are formed. It enters the gap 61 between the side peripheral surface 52. Since the molten metal 80 is prevented from being discharged from the cavity 50 by the molten metal confinement ring 390, the entire region of the cavity 50 can be filled densely. When the molten metal 80 is densely filled over the entire area of the gap 61, the rotation is stopped. As the temperature decreases thereafter, the molten metal 80 solidifies and the structure is integrated, and the first steel material 10 and the second steel material 20 are bonded via the bonding metal 40. By the way, in the present embodiment, the cavity 50 and the joining metal 40 are respectively cylindrical and columnar. However, as in the first embodiment shown in FIGS. It is also possible to have the rotationally symmetric side peripheral surfaces 52, 42 formed.

第3実施形態の方法を応用すると、図14に示すように3以上の鋼材を重ね合わせて接合することができる。すなわち、第1の鋼材10、第2の鋼材20および第3の鋼材30の裏面と表面をそれぞれ重ね合わせて配置し、接合金属40を介して接合する。 When the method of the third embodiment is applied, three or more steel materials can be overlapped and joined as shown in FIG. That is, the back surface and the front surface of the first steel material 10, the second steel material 20, and the third steel material 30 are respectively overlapped and arranged, and are bonded via the bonding metal 40.

更に、図15に示すように建築鋼構造のスプライスプレートによる接合部に応用することができる。ここで、第1の鋼材10、第2の鋼材20および第3の鋼材30は、それぞれ上スプライスプレート34、H形鋼のフランジプレート35、35および下スプライスプレート36であって、接合金属40を介して接合する。 Further, as shown in FIG. 15, the present invention can be applied to a joint of a building steel structure with a splice plate. Here, the first steel material 10, the second steel material 20, and the third steel material 30 are an upper splice plate 34, flange plates 35, 35, and a lower splice plate 36 of an H-section steel, respectively. Join through.

本発明の第4実施形態は、図16に示すように建築鋼構造の接合構造で多用されるH形鋼37、38への適用を表している。すなわち、H形鋼37、38のそれぞれのフランジプレートおよびウェブプレートの端面を突き合わせて、本発明の接合ユニット72を並列することによって、H形鋼37、38同士を接合することができる。角型鋼管や円形鋼管のような閉鎖断面鋼材に対しても本発明の接合方法が適用できる。
As shown in FIG. 16, the fourth embodiment of the present invention represents an application to H-shaped steels 37 and 38 which are frequently used in a joint structure of a building steel structure. That is, the end faces of the flange plates and the web plates of the H-shaped steel members 37 and 38 are abutted with each other, and the H-shaped steel members 37 and 38 can be joined together by juxtaposing the joining unit 72 of the present invention. The joining method of the present invention can be applied to a steel material having a closed cross section such as a square steel pipe or a circular steel pipe.

建築鋼構造の柱や梁などの鋼構造骨組を構成する鋼材の接合のための、溶接または高力ボルト摩擦接合に代わるまたは併用できる新しい接合方法と接合構造を提供した。 A new joining method and a joining structure which can replace or be combined with welding or high-strength bolt friction joining for joining steel materials constituting a steel frame such as columns and beams of building steel structures are provided.

10:第1の鋼材(被接合鋼材)
11:第1の鋼材の端面
12:第1の鋼材の表面
13:第1の鋼材の裏面
20:第2の鋼材(被接合鋼材)
21:第2の鋼材の端面
22:第2の鋼材の表面
23:第2の鋼材の裏面
30:第3の鋼材(被接合鋼材)
32:第3の鋼材の表面
33:第3の鋼材の裏面
34:上スプライスプレート
35:フランジプレート
36:下スプライスプレート
37:第1のH形鋼
38:第2のH形鋼
40:接合金属
41:接合金属本体
42:接合金属の側周面
42a:接合金属の基端部にある円筒形側周面
47:接合金属の先端部
47a:接合金属の先端面
48:接合金属の基端部
48a:接合金属の基端部に設けた鍔部
50:空所
50a:第1の鋼材に設けられる半円筒形状の空所
50b:第2の鋼材に設けられる半円筒形状の空所
50c:第1の鋼材に設けられる円筒形状の空所
50d:第2の鋼材に設けられる円筒形状の空所
51:空所の底部
51a:第1の鋼材に設けられる空所の底部
51b:第2の鋼材に設けられる空所の底部
52:空所の側周面
55:裏当板
60:接合金属の先端部と空所の底部との接触部
61:接合金属の側周面と空所の側周面との隙間
61a:接合金属の側周面と空所の側周面との隙間の出口
62:接合金属の先端部と空所の底部との間の回転摩擦面
62a:接合完了時における接合金属の先端部と空所の底部との間の回転摩擦面
70:回転装置
71:回転対称体の回転軸
72:接合ユニット
80:溶融金属
80a:隙間に充填され凝固した溶融金属
110:従来技術における第1の鋼材
120:従来技術における第2の鋼材
160:従来技術における接触部
181:従来技術におけるバリ
210:従前出願における第1の鋼材
211:従前出願における第1の鋼材の端面
212:従前出願における第1の鋼材の表面
220:従前出願における第2の鋼材
221:従前出願における第2の鋼材の端面
222:従前出願における第2の鋼材の表面
240:従前出願における接合金属
241:従前出願における接合金属本体
242:従前出願における接合金属の側周面
247:従前出願における接合金属の先端部
247a:従前出願における接合金属の先端面
248:従前出願における接合金属の基端部
250:従前出願における空所
251:従前出願における空所の底部
252:従前出願における空所の側周面
260:従前出願における接合金属の側周面と空所の側周面との接触面
261:従前出願における接合金属の側周面と空所の側周面との隙間
271:従前出願における回転対称体の回転軸
300:溶融金属閉じ込め装置
310:回転遮断機構
312:回転ベアリング
350:加圧機構
352:一対のリング状磁石
352a:一対のリング状磁石の対向面
390:溶融金属閉じ込めリング
391:リング部
392:リング部表面(リング部表裏面のうち接合金属の基端部側の面)
393:リング部裏面(リング部表裏面のうち接合金属の先端部側の面)
394:リング部内側面(=孔部外側面)
395:リング部外側面
396:孔部
397:リング部内側面と接合金属の側周面との間の境界
398:リング部裏面と鋼材の表面との間の境界
399:溶融金属の吐出によって空所内に形成された空隙
10: 1st steel material (joined steel material)
11: End surface of first steel material 12: Front surface of first steel material 13: Back surface of first steel material 20: Second steel material (joined steel material)
21: End surface 22 of the second steel material 22: Front surface 23 of the second steel material 23: Back surface 30 of the second steel material 30: Third steel material (joined steel material)
32: Front surface of the third steel material 33: Back surface of the third steel material 34: Upper splice plate 35: Flange plate 36: Lower splice plate 37: First H-shaped steel 38: Second H-shaped steel 40: Joining metal 41: joining metal main body 42: joining metal side peripheral surface 42a: cylindrical side peripheral surface 47 at the base end of joining metal 47: joining metal distal end portion 47a: joining metal distal end surface 48: joining metal base end portion 48a: flange 50 provided at the base end of the joint metal 50: void 50a: semi-cylindrical void 50b provided in the first steel material: semi-cylindrical void 50c provided in the second steel material 50c: Cylindrical void 50d provided in the first steel material: cylindrical void 51 provided in the second steel material: bottom 51a of the void: bottom 51b of the void provided in the first steel material: second steel material Bottom 52 of vacant space provided: Side peripheral surface 55 of vacant space: Back Plate 60: Contact portion 61 between the tip of the joint metal and the bottom of the space 61: Gap 61a between the side peripheral surface of the joint metal and the side peripheral surface of the cavity 61: The side peripheral surface of the joint metal and the side peripheral surface of the cavity Exit 62 of the gap between: the rotational friction surface 62a between the tip of the joint metal and the bottom of the cavity: the rotational friction surface 70 between the tip of the joint metal and the bottom of the cavity at the completion of joining: rotation Apparatus 71: rotational axis of a rotationally symmetric body 72: joining unit 80: molten metal 80a: molten metal 110 filled and solidified in a gap: first steel material 120 in the prior art: second steel material 160 in the prior art: in the prior art Contact part 181: Burr 210 in the prior art: First steel material 211 in the prior application: End surface 212 of the first steel material in the prior application: Surface 220 of the first steel material in the previous application 220: Second steel material 221: Previous application End surface 222 of second steel material in the following: Surface 240 of second steel material in the prior application 240: Joining metal 241 in the earlier application Bonding metal body 242 in the earlier application: Side peripheral surface 247 of joining metal in the earlier application: Joining in the earlier application Metal tip 247a: joining metal tip surface 248 in prior application: joining metal proximal end 250 in prior application: void 251 in prior application: void bottom 252 in prior application: void side in prior application Peripheral surface 260: Contact surface 261 between the side peripheral surface of the joining metal and the side peripheral surface of the space in the prior application 261: Gap 271 between the side peripheral surface of the joining metal and the side peripheral surface of the cavity in the prior application 271: In the prior application The rotational axis 300 of the rotationally symmetric body: the molten metal confinement device 310: the rotation blocking mechanism 312: the rotating bearing 350: the pressing mechanism 352: a pair of ring shapes Magnet 352a: Opposite surfaces 390 of a pair of ring-shaped magnets: Molten metal confinement ring 391: Ring portion 392: Ring portion surface (the surface of the ring metal on the base end side of the joining metal)
393: Back side of the ring portion (the surface on the front end side of the joining metal on the front and back surfaces of the ring portion)
394: Ring inner surface (= hole outer surface)
395: Ring outer surface 396: Hole 397: Boundary between the inner surface of the ring and the peripheral surface of the joint metal 398: Boundary between the back surface of the ring and the surface of the steel material 399: In the cavity due to discharge of molten metal Void formed in

Claims (13)

回転摩擦によって第1の鋼材と第2の鋼材とを接合金属を介して接合する接合方法であって、前記第1の鋼材と前記第2の鋼材とを隣接した位置に配置すると共に前記第1の鋼材の端面と前記第2の鋼材の端面とを対向させて配置し、前記第1の鋼材の端面と前記第2の鋼材の端面とに跨り前記第1の鋼材の表面と前記第2の鋼材の表面とに垂直もしくは略垂直な直線を回転軸とする回転対称形状で側周面と底部を有する空所を加工し、前記接合金属は容易に前記空所に挿入されうる形状の回転対称体であって、前記接合金属を前記空所に挿入し、前記接合金属の先端部と前記空所の前記底部との接触部に押圧力を加えた状態で前記接合金属を回転軸周りに回転させて摩擦を生ぜしめ、前記摩擦による摩擦熱を利用して前記接触部近傍の材料組織を溶融させて溶融金属を生成し、液体化した前記溶融金属を前記接合金属の先端部に生じる押圧力と回転運動を利用して前記接合金属の前記側周面と前記空所の前記側周面との隙間に充填させ、ついで回転運動を停止させて前記溶融金属を凝固させ前記隙間近傍の組織と一体化させることによる前記接合金属を介しての前記第1の鋼材と前記第2の鋼材との接合において、前記接合金属の基端部に前記空所の表面側を覆う鍔部を備え、溶融金属閉じ込めリングと前記回転軸の方向に変形可能な加圧機構と前記第1の鋼材および第2の鋼材の表面と前記接合金属との間で生じる相対回転運動を遮断する回転遮断機構とからなる溶融金属閉じ込め装置を前記空所の表面側と前記鍔部の裏面側との間に設け、前記溶融金属閉じ込めリングはリング部内側面と前記接合金属の前記側周面との間に僅かな隙間を介して装着し、リング部裏面を前記第1の鋼材の表面と前記第2の鋼材の表面とに載置することにより、前記溶融金属が前記空所から吐出することを防止し前記空所内に閉じ込めて密実に充填することを特徴とする回転摩擦による鋼材の接合方法。
A joining method for joining a first steel material and a second steel material via a joining metal by rotational friction, wherein the first steel material and the second steel material are arranged at adjacent positions and the first steel material is joined to the first steel material. The end face of the steel material and the end face of the second steel material are arranged to face each other, and the end face of the first steel material and the end face of the second steel material are straddled, and the surface of the first steel material and the second A cavity having a side peripheral surface and a bottom is machined in a rotationally symmetric shape having a straight line perpendicular or substantially perpendicular to the surface of the steel material as a rotation axis, and the joint metal has a rotationally symmetric shape that can be easily inserted into the cavity. A body, wherein the joining metal is inserted into the space, and the joining metal is rotated around a rotation axis in a state where a pressing force is applied to a contact portion between a tip portion of the joining metal and the bottom portion of the space. Causing friction, and utilizing the frictional heat generated by the friction, the material near the contact portion. A molten metal is produced by melting a weave, and the molten metal that has been liquefied utilizes the pressing force and the rotational motion generated at the tip of the joining metal to form the side peripheral surface of the joining metal and the side of the void. The first steel material and the second steel through the joining metal by filling the gap with the peripheral surface, then stopping the rotational movement to solidify the molten metal and integrate it with the structure near the gap. In joining with a steel material, a base portion of the joining metal is provided with a flange portion covering a surface side of the space, a molten metal confinement ring, a pressurizing mechanism deformable in a direction of the rotation axis, and the first steel material. And a rotation blocking mechanism for blocking a relative rotation movement generated between the surface of the second steel material and the joining metal, between the front side of the cavity and the back side of the flange portion. The molten metal confinement ring is By mounting with a slight gap between the inner side surface and the side peripheral surface of the joining metal, and placing the back surface of the ring portion on the surface of the first steel material and the surface of the second steel material A method for joining steel materials by rotational friction, wherein the molten metal is prevented from being discharged from the space, and is confined and filled tightly in the space.
回転摩擦によって第1の鋼材と第2の鋼材とを接合金属を介して接合する接合方法であって、前記第1の鋼材と前記第2の鋼材とを重ねた位置に配置すると共に前記第1の鋼材の裏面と前記第2の鋼材の表面を対向させて配置し、前記第1の鋼材の裏面と前記第2の鋼材の表面とを貫く直線を回転軸とする回転対称形状で側周面と底部を有する空所を加工し、前記接合金属は、容易に前記空所に挿入されうる形状の回転対称体であって、前記接合金属を前記空所に挿入し、前記接合金属の先端部と前記空所の前記底部との接触部に押圧力を加えた状態で前記接合金属を回転軸周りに回転させて摩擦を生ぜしめ、前記摩擦による摩擦熱を利用して前記接触部近傍の材料組織を溶融させて溶融金属を生成し、液体化した前記溶融金属を前記接合金属の先端部に生じる押圧力と回転運動を利用して前記接合金属の前記側周面と前記空所の前記側周面との隙間に充填させ、ついで回転運動を停止させて前記溶融金属を凝固させ前記隙間近傍の組織と一体化させることによる前記接合金属を介しての前記第1の鋼材と前記第2の鋼材との接合において、前記接合金属の基端部に前記空所の表面側を覆う鍔部を備え、溶融金属閉じ込めリングと前記回転軸の方向に変形可能な加圧機構と前記第1の鋼材の表面と前記接合金属との間で生じる相対回転運動を遮断する回転遮断機構とからなる溶融金属閉じ込め装置を前記空所の表面側と前記鍔部の裏面側との間に設け、前記溶融金属閉じ込めリングはリング部内側面と前記接合金属の前記側周面との間に僅かな隙間を介して装着し、リング部裏面を前記第1の鋼材の表面に載置することにより、前記溶融金属が前記空所から吐出することを防止し前記空所内に閉じ込めて密実に充填することを特徴とする回転摩擦による鋼材の接合方法。
A joining method for joining a first steel material and a second steel material via a joining metal by rotational friction, wherein the first steel material and the second steel material are arranged at a position where the first steel material and the second steel material overlap with each other, and The rear peripheral surface of the second steel member and the rear surface of the second steel member are arranged so as to face each other, and the side peripheral surface has a rotationally symmetric shape having a straight line passing through the rear surface of the first steel member and the front surface of the second steel member as a rotation axis. And a cavity having a bottom portion, wherein the joining metal is a rotationally symmetric body having a shape that can be easily inserted into the cavity, wherein the joining metal is inserted into the cavity, and a tip end of the joining metal is formed. The joint metal is rotated around a rotation axis in a state where a pressing force is applied to a contact portion between the contact metal and the bottom portion of the space to generate friction, and a material near the contact portion is used by utilizing frictional heat due to the friction. The molten metal is produced by melting the tissue, and the The gap between the side peripheral surface of the joint metal and the side peripheral surface of the void is filled using the pressing force and the rotational movement generated at the tip of the metal, and then the rotational movement is stopped to solidify the molten metal. In joining the first steel material and the second steel material via the joining metal by integrating the structure with the structure near the gap, the surface side of the space is provided at the base end of the joining metal. A covering mechanism, a molten metal confinement ring, a pressurizing mechanism deformable in the direction of the rotation axis, a rotation blocking mechanism for blocking relative rotation generated between the surface of the first steel material and the joining metal, Is provided between the front side of the cavity and the back side of the flange, and the molten metal confinement ring is slightly spaced between the inner surface of the ring and the side peripheral surface of the joining metal. Attach it through the gap, and A method for joining steel materials by rotary friction, wherein the molten metal is placed on the surface of the first steel material to prevent the molten metal from being discharged from the space, to be confined and filled tightly in the space. .
前記溶融金属閉じ込めリングは、前記リング部内側面が前記接合金属の側周面との間に僅かな隙間を介して対向する形状であり、前記リング部裏面が前記第1の鋼材および/または前記第2の鋼材の表面に重なり合う形状であることを特徴とする請求項1乃至2のいずれかに記載の回転摩擦による鋼材の接合方法。
The molten metal confinement ring has a shape in which the inner surface of the ring portion is opposed to a side peripheral surface of the joining metal via a slight gap, and the back surface of the ring portion is the first steel material and / or the The method for joining steel materials by rotational friction according to any one of claims 1 to 2, wherein the shape of the steel material overlaps the surface of the second steel material.
前記溶融金属閉じ込めリングは、鋼材、非鉄金属、セラミックス、合成樹脂、または木材のいずれかからなることを特徴とする請求項1乃至3のいずれかに記載の回転摩擦による鋼材の接合方法。
4. The method according to claim 1, wherein the molten metal confinement ring is made of any one of steel, non-ferrous metal, ceramics, synthetic resin, and wood.
前記加圧機構は、前記リング部表面と前記鍔部の裏面との間に設け、前記溶融金属の溶融の進行により前記リング部表面と前記鍔部の裏面との距離が接近し前記加圧機構が前記回転軸の方向に変形するのに伴って増加する押し付け力の一部が前記リング部表面に加わることにより、前記リング部裏面を前記第1の鋼材および/または前記第2の鋼材の表面に定着させることを特徴とする請求項1乃至4に記載の回転摩擦による鋼材の接合方法。
The pressurizing mechanism is provided between the surface of the ring portion and the back surface of the flange portion, and the distance between the surface of the ring portion and the back surface of the flange portion decreases as the melting of the molten metal progresses. Is applied to the surface of the ring portion as a part of the pressing force that increases with the deformation of the ring portion in the direction of the rotation axis causes the back surface of the ring portion to face the first steel material and / or the surface of the second steel material. The method for joining steel materials by rotational friction according to any one of claims 1 to 4, wherein the fixing is performed.
前記加圧機構は、前記回転軸の方向に変形可能な材料である木材、ゴム、天然樹脂、または合成樹脂のいずれかからからなることを特徴とする請求項5に記載の回転摩擦による鋼材の接合方法。
6. The steel material according to claim 5, wherein the pressure mechanism is made of any of wood, rubber, natural resin, and synthetic resin, which are materials deformable in the direction of the rotation axis. Joining method.
前記加圧機構は、前記回転軸の方向に変形可能な機構であるコイルばねまたは皿ばねのいずれかからからなることを特徴とする請求項5に記載の回転摩擦による鋼材の接合方法。
The method according to claim 5, wherein the pressing mechanism is formed of a coil spring or a disc spring that is a mechanism that is deformable in the direction of the rotation axis.
前記加圧機構は、磁性を有する材料からなる一対のリングを同一極が対面するように前記回転軸の方向に変形可能に構成され、前記溶融金属閉じ込めリングを前記第1の鋼材および/または前記第2の鋼材の表面に磁力により定着させることを特徴とする請求項5に記載の回転摩擦による鋼材の接合方法。
The pressurizing mechanism is configured so that a pair of rings made of a magnetic material can be deformed in the direction of the rotation axis so that the same pole faces each other. The method for joining steel materials by rotational friction according to claim 5, wherein the surface of the second steel material is fixed by magnetic force.
前記回転遮断機構は、前記加圧機構の表面と前記鍔部の裏面との間または前記加圧機構の裏面と前記溶融金属閉じ込めリングのリング部表面との間に設け、前記第1の鋼材および/または前記第2の鋼材の表面と前記接合金属との間で生じる相対回転運動を遮断することを特徴とする請求項1乃至8のいずれかに記載の回転摩擦による鋼材の接合方法。
The rotation blocking mechanism is provided between a front surface of the pressurizing mechanism and a back surface of the flange portion or between a back surface of the pressurizing mechanism and a ring portion surface of the molten metal confinement ring. The method for joining steel materials by rotational friction according to any one of claims 1 to 8, wherein a relative rotational movement generated between a surface of the second steel material and the joining metal is blocked.
前記回転遮断機構は、低摩擦すべり面方式により構成されることを特徴とする請求項9に記載の回転摩擦による鋼材の接合方法。
The method according to claim 9, wherein the rotation blocking mechanism is configured by a low friction sliding surface method.
前記回転遮断機構は、転がり機構方式により構成されることを特徴とする請求項9に記載の回転摩擦による鋼材の接合方法。
The method according to claim 9, wherein the rotation blocking mechanism is configured by a rolling mechanism.
前記回転遮断機構は、磁性を有する材料からなる一対のリングを同一極が対面するように構成されることを特徴とする請求項9に記載の回転摩擦による鋼材の接合方法。
The method according to claim 9, wherein the rotation blocking mechanism is configured such that a same pole faces a pair of rings made of a magnetic material.
前記第1の鋼材と前記第2の鋼材とが請求項1乃至12のいずれかに記載の方法により接合されることを特徴とする回転摩擦による鋼材の接合構造。



A structure for joining steel materials by rotational friction, wherein the first steel material and the second steel material are joined by the method according to any one of claims 1 to 12.



JP2018141899A 2018-07-27 2018-07-27 Method of confining molten metal in rotary friction welding Pending JP2020015089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141899A JP2020015089A (en) 2018-07-27 2018-07-27 Method of confining molten metal in rotary friction welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141899A JP2020015089A (en) 2018-07-27 2018-07-27 Method of confining molten metal in rotary friction welding

Publications (1)

Publication Number Publication Date
JP2020015089A true JP2020015089A (en) 2020-01-30

Family

ID=69579839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141899A Pending JP2020015089A (en) 2018-07-27 2018-07-27 Method of confining molten metal in rotary friction welding

Country Status (1)

Country Link
JP (1) JP2020015089A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512164U (en) * 1974-06-21 1976-01-09
JP2005523165A (en) * 2002-04-29 2005-08-04 ザ・ボーイング・カンパニー Connecting structural members by friction plug welding
JP2007301628A (en) * 2006-05-15 2007-11-22 Hino Motors Ltd Method for joining members
JP2008238111A (en) * 2007-03-28 2008-10-09 Iwasaki Seisakusho:Kk Oscillation method, diffusion bonding method, and devices thereof
JP2010509072A (en) * 2006-11-15 2010-03-25 エーヨット ゲーエムベーハー ウント コー カーゲー Friction welding joint of two two-dimensional parts
WO2013054441A1 (en) * 2011-10-14 2013-04-18 日本車輌製造株式会社 Friction stir welding device
JP2018111128A (en) * 2017-01-12 2018-07-19 宏二 上谷 Rotary friction welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512164U (en) * 1974-06-21 1976-01-09
JP2005523165A (en) * 2002-04-29 2005-08-04 ザ・ボーイング・カンパニー Connecting structural members by friction plug welding
JP2007301628A (en) * 2006-05-15 2007-11-22 Hino Motors Ltd Method for joining members
JP2010509072A (en) * 2006-11-15 2010-03-25 エーヨット ゲーエムベーハー ウント コー カーゲー Friction welding joint of two two-dimensional parts
JP2008238111A (en) * 2007-03-28 2008-10-09 Iwasaki Seisakusho:Kk Oscillation method, diffusion bonding method, and devices thereof
WO2013054441A1 (en) * 2011-10-14 2013-04-18 日本車輌製造株式会社 Friction stir welding device
JP2018111128A (en) * 2017-01-12 2018-07-19 宏二 上谷 Rotary friction welding

Similar Documents

Publication Publication Date Title
KR101862972B1 (en) Method and device for friction stir welding
JP5399206B2 (en) Metal member joining method and metal joined body
KR100593372B1 (en) Method of joining structural members by friction plug welding
KR100349811B1 (en) Dual skin composite panel and manufacturing method thereof
KR101234834B1 (en) Method for making the long neck flange
JP5854451B2 (en) Dissimilar metal plate joining method
JP2024019286A (en) Laser welding method
US11273517B2 (en) Rotary friction welding
JP7178531B2 (en) Molten Metal Confinement Method by Molten Metal Confinement Ring in Rotational Friction Welding
CN112077433A (en) Method for improving mechanical bonding strength of FSW joint
JP2020015089A (en) Method of confining molten metal in rotary friction welding
EP2508292A1 (en) Friction stir welding process for large structures
US20020047037A1 (en) Friction filler welding
US6029727A (en) Jointing apparatus of thermo plastic pipes
JP2018111128A (en) Rotary friction welding
JP2003321874A (en) Coupling structure of steel-pipe column
JP6122867B2 (en) Equipment for solid phase bonding of light metals
JP2009039766A (en) Reinforcing bar friction welding method and reinforcing bar friction welding equipment used therefor
JP4593005B2 (en) Rod-like material having different outer diameters in the length direction and method for producing the same
JP2023008532A (en) Bonding method and bonding structure for metal using rotary friction welding
JP2004027740A (en) Joint structure of steel pipe for column member
JP2022074258A (en) Rotation press device for rotary friction welding
JPS6023913B2 (en) Laura
JP2015166515A (en) Steel plate concrete structure and method for welding steel plate and reinforcing steel material of steel concrete structure
JP2004027741A (en) Joint structure of steel pipe for column member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115