JP2020013714A - Planar luminaire - Google Patents

Planar luminaire Download PDF

Info

Publication number
JP2020013714A
JP2020013714A JP2018135737A JP2018135737A JP2020013714A JP 2020013714 A JP2020013714 A JP 2020013714A JP 2018135737 A JP2018135737 A JP 2018135737A JP 2018135737 A JP2018135737 A JP 2018135737A JP 2020013714 A JP2020013714 A JP 2020013714A
Authority
JP
Japan
Prior art keywords
light
light source
guide plate
light guide
reflecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018135737A
Other languages
Japanese (ja)
Inventor
貴志 枝光
Takashi Edamitsu
貴志 枝光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2018135737A priority Critical patent/JP2020013714A/en
Publication of JP2020013714A publication Critical patent/JP2020013714A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Planar Illumination Modules (AREA)

Abstract

To provide a planar luminaire which improves uniformity in luminance.SOLUTION: A planar luminaire includes a substrate, a light guide plate and a light reflection member. On the substrate, a plurality of light sources are arrayed on a mounting surface. The light guide plate is formed on one main surface opposing to the mounting surface and has recesses for storing a plurality of light sources individually. Light from the light sources enters from the recess, and the light emits from an emission surface which is the other main surface. The light reflection member is provided on the emission surface side with respect to the light source inside the recess, and it becomes thinner as it is separated from the light source in the creepage surface direction of the emission surface.SELECTED DRAWING: Figure 3

Description

本発明は、面状照明装置に関する。   The present invention relates to a planar lighting device.

従来、バックライトとも呼ばれ、液晶表示装置の表示パネルを背面側から照明する面状照明装置が知られている。バックライトとしての面状照明装置には、例えば、導光板の直下に複数の光源が配置される直下型の面状照明装置がある。   2. Description of the Related Art Conventionally, a planar illumination device that is also called a backlight and illuminates a display panel of a liquid crystal display device from the back side has been known. As a planar illumination device as a backlight, for example, there is a direct illumination type planar illumination device in which a plurality of light sources are arranged immediately below a light guide plate.

直下型の面状照明装置は、複数の光源を個別に独立して制御することで発光面の光量をエリア毎に制御する、いわゆるローカルディミングを可能とする。また、直下型の面状照明装置では、各光源と導光板との間に反射部材を配置することで、光源直上の輝度を抑え、エリアの輝度を均一化する技術がある(例えば、特許文献1参照)。   The direct-type planar illumination device enables so-called local dimming in which the light amount of the light emitting surface is controlled for each area by individually controlling a plurality of light sources independently. Further, in a direct-type planar lighting device, there is a technique in which a reflective member is disposed between each light source and a light guide plate to suppress the luminance immediately above the light source and make the luminance of an area uniform (for example, see Patent Document 1). 1).

特開2011−210674号公報JP 2011-210675 A

しかしながら、従来の技術は、各エリアにおける輝度の均一性を向上させる点で更なる改善の余地があった。   However, the conventional technique has room for further improvement in improving the uniformity of luminance in each area.

本発明は、上記に鑑みてなされたものであって、輝度の均一性を向上させることができる面状照明装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a spread illuminating apparatus capable of improving the uniformity of luminance.

上述した課題を解決し、目的を達成するために、本発明の一態様に係る面状照明装置は、基板と、導光板と、光反射部材とを備える。前記基板は、複数の光源が実装面に配列される。前記導光板は、前記実装面と対向する一方の主面に形成され、前記複数の光源を個別に収容する凹部を有し、当該凹部から前記光源の光が入射し、他方の主面である出射面から前記光が出射する。前記光反射部材は、前記凹部の内部において前記光源に対して前記出射面側に設けられ、前記出射面の沿面方向で前記光源から離れるほど肉薄となる。   In order to solve the above-described problem and achieve the object, a planar lighting device according to one embodiment of the present invention includes a substrate, a light guide plate, and a light reflecting member. The substrate has a plurality of light sources arranged on a mounting surface. The light guide plate is formed on one main surface facing the mounting surface, has a concave portion for individually accommodating the plurality of light sources, and the light of the light source enters from the concave portion, and is the other main surface. The light exits from the exit surface. The light reflecting member is provided on the emission surface side with respect to the light source inside the concave portion, and becomes thinner in a direction along a surface of the emission surface, away from the light source.

本発明の一態様によれば、輝度の均一性を向上することができる。   According to one embodiment of the present invention, luminance uniformity can be improved.

図1は、実施形態に係る面状照明装置の正面図である。FIG. 1 is a front view of the spread illuminating apparatus according to the embodiment. 図2は、実施形態に係る面状照明装置の分解斜視図である。FIG. 2 is an exploded perspective view of the spread illuminating apparatus according to the embodiment. 図3は、実施形態に係る面状照明装置の断面図である。FIG. 3 is a cross-sectional view of the planar lighting device according to the embodiment. 図4は、実施形態に係る面状照明装置の断面図である。FIG. 4 is a cross-sectional view of the planar lighting device according to the embodiment. 図5は、実施形態に係る導光板の断面図である。FIG. 5 is a cross-sectional view of the light guide plate according to the embodiment. 図6は、実施形態に係る導光板の上面図である。FIG. 6 is a top view of the light guide plate according to the embodiment. 図7は、変形例に係る面状照明装置の断面図である。FIG. 7 is a cross-sectional view of a planar lighting device according to a modification. 図8は、変形例に係る面状照明装置の断面図である。FIG. 8 is a cross-sectional view of a planar lighting device according to a modification. 図9は、変形例に係る面状照明装置の断面図である。FIG. 9 is a cross-sectional view of a planar lighting device according to a modification. 図10は、変形例に係る面状照明装置の断面図である。FIG. 10 is a cross-sectional view of a planar lighting device according to a modification.

以下、実施形態に係る面状照明装置について図面を参照して説明する。なお、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、各図面において、説明を分かりやすくするために、面状照明装置の光の出射方向をZ軸正方向とする3次元の直交座標系を図示する場合がある。   Hereinafter, a planar lighting device according to an embodiment will be described with reference to the drawings. Note that the relationship between dimensions of each element in the drawings, the ratio of each element, and the like may be different from reality. Even in the drawings, there may be cases where portions having different dimensional relationships and ratios are included. In addition, in each drawing, a three-dimensional orthogonal coordinate system in which the light emission direction of the planar illumination device is set to the positive direction of the Z-axis may be illustrated for easy understanding.

まず、図1〜図3を用いて、実施形態に係る面状照明装置の概要について説明する。図1は、実施形態に係る面状照明装置1の正面図である。図2は、実施形態に係る面状照明装置1の分解斜視図である。図3は、実施形態に係る面状照明装置1の断面図である。   First, an outline of a spread illuminating apparatus according to an embodiment will be described with reference to FIGS. FIG. 1 is a front view of a spread illuminating apparatus 1 according to the embodiment. FIG. 2 is an exploded perspective view of the planar lighting device 1 according to the embodiment. FIG. 3 is a cross-sectional view of the planar lighting device 1 according to the embodiment.

図1〜図3に示す面状照明装置1は、例えば、液晶表示装置のバックライトとして用いられる。かかる液晶表示装置は、例えば、車載装置(ナビゲーション装置や、デジタルメータ、インジケータ等)や、スマートフォン等の端末装置である。また、実施形態に係る面状照明装置1は、後述の光源2が液晶表示装置の直下に配置される、いわゆる直下型の面状照明装置である。   The spread illuminating device 1 shown in FIGS. 1 to 3 is used, for example, as a backlight of a liquid crystal display device. Such a liquid crystal display device is, for example, a vehicle-mounted device (a navigation device, a digital meter, an indicator, or the like), or a terminal device such as a smartphone. Further, the spread illuminating device 1 according to the embodiment is a so-called direct type spread illuminating device in which a light source 2 to be described later is disposed directly below the liquid crystal display device.

図1〜図3に示すように、実施形態に係る面状照明装置1は、光源2と、基板部3と、フレーム4と、導光板5と、波長変換部材6と、拡散部材7と、光学部材8と、光反射部材9とを備える。また、図1に示すように、実施形態に係る面状照明装置1は、上面視において、フレーム4に囲まれた発光領域Rを有し、かかる発光領域Rから出射方向であるZ軸正方向へ光を出射することで、図示しない液晶表示装置のバックライトとして機能する。   As shown in FIGS. 1 to 3, the spread illuminating apparatus 1 according to the embodiment includes a light source 2, a substrate unit 3, a frame 4, a light guide plate 5, a wavelength conversion member 6, a diffusion member 7, An optical member 8 and a light reflecting member 9 are provided. As shown in FIG. 1, the spread illuminating apparatus 1 according to the embodiment has a light emitting region R surrounded by a frame 4 when viewed from above, and a positive Z-axis direction that is an emission direction from the light emitting region R. By emitting light, the light functions as a backlight of a liquid crystal display device (not shown).

光源2は、例えば、LED(Light Emitting Diode)である。LEDとしての光源2は、例えば、青色光の波長帯を含む光を発する。あるいは、LEDとしての光源2は、白色光を発する光源であってもよい。具体的には、光源2は、青色光を発するLEDと、青色光を励起光として赤色光および緑色光を発する蛍光体とに構成され、青色、赤色および緑色の波長を含む疑似的な白色光を発する。なお、蛍光体は、青色光を励起光として黄色光を発する蛍光体であってもよく、他の色の光を発する蛍光体であってもよい。また、光源2が白色光を発する構成の場合、後述の波長変換部材6は、省略されてもよい。   The light source 2 is, for example, an LED (Light Emitting Diode). The light source 2 as an LED emits light including a blue light wavelength band, for example. Alternatively, the light source 2 as an LED may be a light source that emits white light. Specifically, the light source 2 is composed of an LED that emits blue light and a phosphor that emits red light and green light using blue light as excitation light, and a pseudo white light including blue, red, and green wavelengths. Emits. The phosphor may be a phosphor that emits yellow light using blue light as excitation light, or a phosphor that emits light of another color. When the light source 2 emits white light, a wavelength conversion member 6 described later may be omitted.

また、図1〜図3に示すように、光源2は、後述の導光板5の主面5a側(Z軸負方向側)に設けられる。つまり、光源2が上記した液晶表示装置の直下(Z軸負方向側)に配置される、すなわち、実施形態に係る面状照明装置1は、いわゆる直下型である。   In addition, as shown in FIGS. 1 to 3, the light source 2 is provided on the main surface 5 a side (the negative side in the Z-axis direction) of the light guide plate 5 described later. That is, the light source 2 is disposed immediately below the liquid crystal display device (on the negative side of the Z axis), that is, the planar lighting device 1 according to the embodiment is a so-called direct type.

また、図1に示すように、複数の光源2は、Z軸正方向側から見た正面視において、例えば、格子状に配列される。具体的には、複数の光源2は、面状照明装置1の正面視における長手方向(X軸方向)および短手方向(Y軸方向)それぞれに沿って2次元で配列される。なお、複数の光源2は、格子状に配列される場合に限定されるものではなく、任意の配列であってよい。つまり、複数の光源2は、格子状のように一定の規則性をもった格子状以外の他の配列であってもよく、あるいは、不規則な配列であってもよい。   In addition, as shown in FIG. 1, the plurality of light sources 2 are arranged in, for example, a lattice shape when viewed from the front in the Z-axis positive direction. Specifically, the plurality of light sources 2 are two-dimensionally arranged along each of the longitudinal direction (X-axis direction) and the lateral direction (Y-axis direction) of the planar lighting device 1 in a front view. Note that the plurality of light sources 2 is not limited to the case where they are arranged in a lattice, and may be in any arrangement. That is, the plurality of light sources 2 may be arranged other than a lattice having a certain regularity such as a lattice, or may be an irregular arrangement.

基板部3は、複数の光源2が設けられる部材であり、基板3aと、反射部材3bとが積層される部材である。基板3aは、例えば、フレキシブル基板(FPC:Flexible Printed Circuit)であり、図示しない外部電源から供給される電力を光源2へ供給する。つまり、基板3aの主面3a1は、光源2が実装される実装面(以下、実装面3a1と記載する)である。   The substrate unit 3 is a member on which the plurality of light sources 2 are provided, and is a member on which the substrate 3a and the reflecting member 3b are stacked. The substrate 3 a is, for example, a flexible substrate (FPC: Flexible Printed Circuit), and supplies power supplied from an external power supply (not shown) to the light source 2. That is, the main surface 3a1 of the substrate 3a is a mounting surface on which the light source 2 is mounted (hereinafter, referred to as a mounting surface 3a1).

反射部材3bは、基板3aおよび光源2の間において、実装面3a1を覆うようにして設けられる。反射部材3bは、後述の導光板5からZ軸負方向側である反射部材3b側へ漏れ出た光を反射して導光板5へ戻す。例えば、反射部材3bは、白色部材を採用可能である。   The reflection member 3b is provided between the substrate 3a and the light source 2 so as to cover the mounting surface 3a1. The reflecting member 3b reflects light leaked from the light guide plate 5 described later to the side of the reflective member 3b which is the negative side of the Z-axis and returns the light to the light guide plate 5. For example, a white member can be adopted as the reflection member 3b.

フレーム4は、例えば、樹脂製あるいは金属製の枠部材であり、反射部材3b、導光板5、波長変換部材6、拡散部材7、光学部材8および光反射部材9を囲む。また、フレーム4は、Z軸負方向側である基板3a側の端部が、図示しない絶縁部材を介して基板3aに設けられる。具体的には、フレーム4の端部は、基板3aの主面のうち、反射部材3bが設けられる主面の周端に設けられる。   The frame 4 is, for example, a frame member made of resin or metal, and surrounds the reflection member 3b, the light guide plate 5, the wavelength conversion member 6, the diffusion member 7, the optical member 8, and the light reflection member 9. In addition, the end of the frame 4 on the substrate 3a side, which is the Z-axis negative direction side, is provided on the substrate 3a via an insulating member (not shown). Specifically, the end of the frame 4 is provided at the peripheral end of the main surface of the substrate 3a on which the reflecting member 3b is provided.

導光板5は、例えば、透明材料(例えば、ポリカーボネート樹脂)からなる板状部材であり、光源2から発せられる光を内部に取り込んで、面状光に変換して発光する部材である。具体的には、導光板5は、基板3aの実装面3a1と対向する一方の主面5a側から光源2の光が入射し、主面5aとは反対側の他方の主面5b(以下、出射面5bと記載する)から光を出射する。   The light guide plate 5 is a plate-shaped member made of, for example, a transparent material (for example, a polycarbonate resin), and is a member that takes in light emitted from the light source 2, converts the light into planar light, and emits light. Specifically, light from the light source 2 is incident on the light guide plate 5 from the one main surface 5a facing the mounting surface 3a1 of the substrate 3a, and the other main surface 5b opposite to the main surface 5a (hereinafter, referred to as the main surface 5b). The light exits from the exit surface 5b).

より具体的には、図3に示すように、導光板5の主面5aには、複数の光源2それぞれを個別に収容する凹部5a1が形成され、光源2の光は、凹部5a1から導光板5の内部へ入射する。なお、光源2のZ軸正方向側である直上へ発せられた光は、光反射部材9によって反射するが、かかる点については後述する。また、導光板5の主面5aは、凹部5a1を中心に傾斜したスロープ状となっているが、かかる点についても後述する。   More specifically, as shown in FIG. 3, a concave portion 5a1 for individually accommodating each of the plurality of light sources 2 is formed on the main surface 5a of the light guide plate 5, and light from the light source 2 is transmitted from the concave portion 5a1 to the light guide plate. 5 is incident. In addition, the light emitted right above the light source 2 on the positive side of the Z axis is reflected by the light reflecting member 9, which will be described later. The main surface 5a of the light guide plate 5 has a slope shape inclined about the concave portion 5a1, and such a point will be described later.

波長変換部材6は、例えば、青色光である光源2の光によって励起されることで、赤色光および緑色光を発する蛍光体を有する波長変換部材である。具体的には、波長変換部材6は、導光板5の出射面5bから出射された青色光と、青色光によって励起された赤色光および緑色光との波長を含む疑似的な白色光を出射する。   The wavelength conversion member 6 is a wavelength conversion member having a phosphor that emits red light and green light when excited by the light of the light source 2 that is blue light, for example. Specifically, the wavelength conversion member 6 emits pseudo white light including the wavelengths of the blue light emitted from the emission surface 5b of the light guide plate 5 and the red light and the green light excited by the blue light. .

なお、波長変換部材6は、青色光によって黄色の光が励起されて白色を出射する構成であってもよく、あるいは、他の色の光が励起された光を出射する構成であってもよい。また、波長変換部材6は、量子ドットで構成されてもよい。   The wavelength conversion member 6 may have a configuration in which yellow light is excited by blue light to emit white light, or may have a configuration in which light of another color is excited to emit light. . Further, the wavelength conversion member 6 may be made of quantum dots.

拡散部材7は、波長変換部材6から出射された光を拡散する。拡散部材7は、拡散した光をZ軸正方向側である光学部材8へ出射する。   The diffusion member 7 diffuses light emitted from the wavelength conversion member 6. The diffusing member 7 emits the diffused light to the optical member 8 on the positive side of the Z axis.

光学部材8は、拡散部材7によって拡散された光に対して均一化や集光化等といった配光制御等の光学的な調整を行う部材である。具体的には、光学部材8は、第1プリズムシート8aと、第2プリズムシート8bとを備える。例えば、第1プリズムシート8aには、第1プリズムが形成され、第2プリズムシート8bには、第2プリズムが形成される。具体的には、第1プリズムは、Y軸方向である第1延在方向に延在し、X軸方向である第1並列方向で並列される。また、第2プリズムは、X軸方向である第2延在方向に延在し、Y軸方向である第2並列方向で並列される。   The optical member 8 is a member that performs optical adjustment such as light distribution control such as uniformizing and condensing the light diffused by the diffusion member 7. Specifically, the optical member 8 includes a first prism sheet 8a and a second prism sheet 8b. For example, a first prism is formed on the first prism sheet 8a, and a second prism is formed on the second prism sheet 8b. Specifically, the first prisms extend in a first extending direction that is the Y-axis direction, and are arranged in parallel in a first parallel direction that is the X-axis direction. The second prisms extend in a second extending direction that is the X-axis direction, and are arranged in a second parallel direction that is the Y-axis direction.

つまり、第1プリズムの第1延在方向および第2プリズムの第2延在方向は、互いに直交する。第1プリズムは、出射する光をX軸方向に集光する。また、第2プリズムは、第1プリズムから出射された光をY軸方向に集光する。すなわち、第1プリズムおよび第2プリズムを経て出射される光は、特定方向に集光される。   That is, the first extending direction of the first prism and the second extending direction of the second prism are orthogonal to each other. The first prism condenses the emitted light in the X-axis direction. The second prism condenses the light emitted from the first prism in the Y-axis direction. That is, light emitted through the first prism and the second prism is collected in a specific direction.

また、第1プリズムおよび第2プリズムは、Z軸正方向側である光の出射方向に向かって凸状であり、換言すれば、断面視で略三角形状であり、拡散部材7から入射した光が反射および屈折することで、所定の範囲内に集約された光が出射される。   Further, the first prism and the second prism are convex toward the light emission direction on the positive side of the Z axis, in other words, are substantially triangular in cross-sectional view, and the light incident from the diffusing member 7. Are reflected and refracted, so that light concentrated within a predetermined range is emitted.

光反射部材9は、例えば、白色の樹脂部材で構成される。光反射部材9は、導光板5の凹部5a1の内部に設けられ、光源2の光を反射する。具体的には、光反射部材9は、凹部5a1の内部において光源2に対してZ軸正方向である出射面5b側に設けられ、出射面5bの沿面方向であるX軸方向で光源2から離れるほど肉薄となる。なお、後述するが、光反射部材9は、光源2の光を反射するとともに、一部の光を透過させてもよい。   The light reflecting member 9 is made of, for example, a white resin member. The light reflecting member 9 is provided inside the concave portion 5a1 of the light guide plate 5 and reflects light from the light source 2. Specifically, the light reflecting member 9 is provided inside the concave portion 5a1 on the emission surface 5b side that is the positive direction of the Z-axis with respect to the light source 2, and extends from the light source 2 in the X-axis direction that is the surface direction of the emission surface 5b. The further away, the thinner. As described later, the light reflecting member 9 may reflect light from the light source 2 and transmit some light.

ここで、従来の面状照明装置について説明する。従来の面状照明装置では、導光板の凹部に設けられた光反射部材の厚み(Z軸方向の長さ)は一定であった。従って、従来は、光源2の直上と直上周辺とで光反射部材の反射率が変わらないため、直上周辺に比べて直上の輝度が高くなってしまい、その結果、輝度の均一性が低下するおそれがあった。このように、従来は、輝度の均一性を向上させる点で更なる改善の余地があった。   Here, a conventional planar lighting device will be described. In the conventional planar lighting device, the thickness (length in the Z-axis direction) of the light reflecting member provided in the concave portion of the light guide plate was constant. Therefore, in the related art, since the reflectance of the light reflecting member does not change between immediately above the light source 2 and immediately above the light source 2, the brightness immediately above the light reflecting member becomes higher than that immediately above the light source 2, and as a result, the uniformity of the brightness may be reduced. was there. As described above, conventionally, there is room for further improvement in improving the uniformity of luminance.

そこで、実施形態に係る面状照明装置1では、光源2の直上に近いほど光反射部材9の厚みを厚くした。具体的には、実施形態に係る光反射部材9は、出射面5bの沿面方向であるX軸方向で光源2から離れるほど厚みを薄くする。   Therefore, in the planar lighting device 1 according to the embodiment, the thickness of the light reflecting member 9 is increased as the position is closer to the position directly above the light source 2. Specifically, the thickness of the light reflecting member 9 according to the embodiment decreases as the distance from the light source 2 increases in the X-axis direction that is the surface direction of the emission surface 5b.

これにより、光反射部材9は、光源2の直上に近い光ほど多く反射することができる。すなわち、光源2の直上へ出射される光量を抑えることができるため、輝度の均一性を向上させることができる。このように、光源2の直上へ出射される光量を、光反射部材9の厚みで制御することができるため、実施形態に係る面状照明装置1によれば、輝度の均一性を向上させることができる。   Thereby, the light reflecting member 9 can reflect more light nearer to the light source 2. That is, since the amount of light emitted directly above the light source 2 can be suppressed, the uniformity of luminance can be improved. As described above, since the amount of light emitted directly above the light source 2 can be controlled by the thickness of the light reflecting member 9, according to the surface illumination device 1 according to the embodiment, the uniformity of luminance can be improved. Can be.

次に、図4を用いて、光反射部材9についてさらに説明する。図4に示すように、光反射部材9は、例えば、Z軸正方向である光の出射方向へ向かって尖る錐状(例えば、円錐や多角錐)の形状を有する。なお、光反射部材9は、錐状に限らず、半球状等であってもよい。つまり、光反射部材9の形状は、光源2の直上に近いほど光反射部材9の厚みが厚ければ任意の形状であってよい。   Next, the light reflecting member 9 will be further described with reference to FIG. As shown in FIG. 4, the light reflecting member 9 has, for example, a conical shape (for example, a cone or a polygonal pyramid) that is pointed toward the light emission direction that is the positive direction of the Z-axis. The light reflecting member 9 is not limited to a cone, and may be a hemisphere or the like. That is, the shape of the light reflecting member 9 may be any shape as long as the thickness of the light reflecting member 9 increases as it approaches the position directly above the light source 2.

なお、上記では光反射部材9の厚みを変えることで光の反射率を制御したが、光反射部材9は、光の反射率が一様でなくともよい。例えば、光反射部材9は、厚みが厚い部分(すなわち、光源2の直上部)については、光の反射率を高くし、厚みが薄い部分については、光の透過率を高くしてもよい。   In the above description, the light reflectivity is controlled by changing the thickness of the light reflecting member 9, but the light reflecting member 9 may not have a uniform light reflectivity. For example, the light reflecting member 9 may increase the light reflectance at a thick portion (that is, immediately above the light source 2) and may increase the light transmittance at a thin portion.

つまり、光反射部材9は、出射面5bの沿面方向であるX軸方向で光源2へ近づくほど光の反射率を高くし、出射面5bの沿面方向であるX軸方向で光源2から離れるほど光の透過率を高くする。これにより、光源2の直上部では輝度を抑えつつ、直上部周辺では輝度を向上させることができるため、輝度の均一性を向上させることができる。   That is, the light reflecting member 9 increases the light reflectance as it approaches the light source 2 in the X-axis direction, which is the creeping direction of the emission surface 5b, and increases as the distance from the light source 2 increases in the X-axis direction, which is the creeping direction of the emission surface 5b. Increase the light transmittance. This makes it possible to suppress the luminance immediately above the light source 2 and to improve the luminance immediately above the light source 2, thereby improving the uniformity of the luminance.

また、図4に示すように、光反射部材9の形状は、凹部5a1の底面の形状に由来する。図4に示す例では、凹部5a1の底面は錐状に凹んだ形状となっている。つまり、光反射部材9は、凹部5a1の底面に嵌る形状で形成される。   Further, as shown in FIG. 4, the shape of the light reflecting member 9 is derived from the shape of the bottom surface of the concave portion 5a1. In the example shown in FIG. 4, the bottom surface of the concave portion 5a1 has a conical shape. That is, the light reflecting member 9 is formed in a shape that fits on the bottom surface of the concave portion 5a1.

また、図4に示すように、導光板5は、凹部5a1を中心とする楔状となっている。具体的には、導光板5の主面5aは、凹部5a1から沿面方向(X軸方向)へ離れるほど導光板5が肉薄となる傾斜面となっている。なお、主面5a全体が傾斜面となっている場合に限らず、主面5aの一部が傾斜面となっていてもよい。   Further, as shown in FIG. 4, the light guide plate 5 has a wedge shape centered on the concave portion 5a1. Specifically, the main surface 5a of the light guide plate 5 is an inclined surface in which the light guide plate 5 becomes thinner as the distance from the concave portion 5a1 in the creeping direction (X-axis direction) increases. Note that the entire main surface 5a is not limited to the inclined surface, and a part of the main surface 5a may be an inclined surface.

そして、光源2から出た光は、傾斜面である主面5aにより、出射面5b側へ反射される。このように、導光板5を楔状とすることで、出射面5bへ効率良く光を反射できるとともに、隣接する光源2の領域へ光が漏れることを防ぐことができる。   Then, the light emitted from the light source 2 is reflected by the main surface 5a, which is an inclined surface, toward the emission surface 5b. By forming the light guide plate 5 in a wedge shape in this manner, light can be efficiently reflected to the emission surface 5b, and light can be prevented from leaking to the region of the adjacent light source 2.

なお、図4では、導光板5の主面5aが傾斜面となっている場合を示したが、例えば、出射面5bが傾斜面となってもよく、あるいは、主面5aおよび出射面5bそれぞれが傾斜面となってもよい。つまり、導光板5の主面5aおよび出射面5bのうち、少なくとも一方が楔部であればよい。   Although FIG. 4 shows the case where the main surface 5a of the light guide plate 5 is an inclined surface, for example, the emission surface 5b may be an inclined surface, or each of the main surface 5a and the emission surface 5b. May be an inclined surface. That is, at least one of the main surface 5a and the emission surface 5b of the light guide plate 5 may be a wedge portion.

次に、図5および図6を用いて、導光板5についてさらに説明する。図5は、導光板5の断面図である。図6は、導光板5の上面図である。図5では、隣接する複数の凹部5a1を含む導光板5を示している。また、図5では、ローカルディミングにおける各発光領域Rと、発光領域Rの境界BDを破線で仮想的に示している。   Next, the light guide plate 5 will be further described with reference to FIGS. FIG. 5 is a sectional view of the light guide plate 5. FIG. 6 is a top view of the light guide plate 5. FIG. 5 shows the light guide plate 5 including a plurality of adjacent concave portions 5a1. In FIG. 5, each light emitting region R in local dimming and a boundary BD between the light emitting regions R are virtually shown by broken lines.

図5に示すように、導光板5の主面5aは、発光領域Rの境界BDに向かって上り傾斜となっており、発光領域Rの境界BDにおいて、隣接する主面5aと連続する。つまり、導光板5は、発光領域Rの境界BDが最も肉薄となる。   As shown in FIG. 5, the main surface 5a of the light guide plate 5 is inclined upward toward the boundary BD of the light emitting region R, and is continuous with the adjacent main surface 5a at the boundary BD of the light emitting region R. That is, the light guide plate 5 has the thinnest boundary BD of the light emitting region R.

これにより、各光源2の光は、各発光領域Rの範囲内に出射されるため、隣接する発光領域Rへ光が漏れることなく、光源2の光を出射できるため、ローカルディミング時における各発光領域R間のコントラストを向上させることができる。   Thereby, since the light of each light source 2 is emitted within the range of each light emitting region R, the light of the light source 2 can be emitted without light leaking to the adjacent light emitting region R. The contrast between the regions R can be improved.

また、図6に示すように、光源2は、上面視で発光領域Rの略中心に配置される。また、各発光領域Rは、上面視で略矩形状であり、凹部5a1も上面視で略矩形状である。そして、主面5aは、凹部5a1の4つの辺それぞれから発光領域Rの4つの辺(境界BD)それぞれへ向かって延在している。これにより、各主面5aから反射した光を発光領域Rの領域全体へ導くことができるため、発光領域Rにおける輝度の均一性を向上させることができる。   Further, as shown in FIG. 6, the light source 2 is disposed substantially at the center of the light emitting region R when viewed from above. Each light emitting region R has a substantially rectangular shape in a top view, and the concave portion 5a1 also has a substantially rectangular shape in a top view. The main surface 5a extends from each of the four sides of the concave portion 5a1 toward each of the four sides (boundary BD) of the light emitting region R. Thereby, the light reflected from each main surface 5a can be guided to the entire area of the light emitting region R, so that the uniformity of luminance in the light emitting region R can be improved.

なお、図6では、発光領域Rおよび凹部5a1がともに上面視で矩形状である場合を示したが、例えば、発光領域Rおよび凹部5a1がともに上面視で円状あるいは多角形状であってもよい。つまり、導光板5における楔状の形状が上面視で円状あるいは多角形状であってもよい。   Although FIG. 6 shows the case where both the light emitting region R and the concave portion 5a1 are rectangular in a top view, for example, both the light emitting region R and the concave portion 5a1 may be circular or polygonal in a top view. . That is, the wedge-shaped shape of the light guide plate 5 may be circular or polygonal when viewed from above.

また、発光領域Rおよび凹部5a1が上面視で異なる形状であってもよい。例えば、発光領域Rが多角形状で凹部5a1が円状であってもよい。換言すれば、導光板5における楔状の形状が上面視で円状から多角形状に変化する形状であってもよい。   Further, the light emitting region R and the concave portion 5a1 may have different shapes when viewed from above. For example, the light emitting region R may have a polygonal shape and the concave portion 5a1 may have a circular shape. In other words, the wedge-shaped shape of the light guide plate 5 may be changed from a circle to a polygon when viewed from above.

また、図5に示すように、導光板5の出射面5bには、複数の光学素子100が形成される。具体的には、光学素子100は、導光板5の厚み方向であるZ軸正方向へ向かって突出するドットである。なお、本実施形態では、光学素子100はドットだが、これに限定されない。例えば、ドットに代えて、導光板5の厚み方向であるZ軸正方向へ向かって突出する複数のプリズムを設けてもよい。また、プリズムは、例えば、三角錐や四角錐などの角錐状のプリズムや、円錐状のプリズムを用いることができるが、形状は特に限定されない。   Further, as shown in FIG. 5, a plurality of optical elements 100 are formed on the emission surface 5b of the light guide plate 5. Specifically, the optical element 100 is a dot that protrudes in the positive Z-axis direction, which is the thickness direction of the light guide plate 5. In the present embodiment, the optical element 100 is a dot, but is not limited to this. For example, a plurality of prisms protruding in the positive Z-axis direction, which is the thickness direction of the light guide plate 5, may be provided instead of the dots. Further, as the prism, for example, a pyramid-shaped prism such as a triangular pyramid or a quadrangular pyramid or a conical prism can be used, but the shape is not particularly limited.

また、複数の光学素子100は、沿面方向(X軸方向)で光源2から離れるほど間隔が密となる。具体的には、複数の光学素子100は、境界BDに近づくほど間隔が密となる。つまり、光源2の直上には、光学素子100がわずかに形成される、あるいは、光学素子100が形成されない。   Further, the distance between the plurality of optical elements 100 becomes closer as the distance from the light source 2 increases in the creeping direction (X-axis direction). Specifically, the intervals between the plurality of optical elements 100 become closer as they approach the boundary BD. That is, the optical element 100 is slightly formed or the optical element 100 is not formed directly above the light source 2.

これにより、光源2の直上では、導光板5から出る光は、光学素子100に当たらないため、出射面5bで反射して導光板5内へ戻りやすく、一方で、境界BD周辺から出る光は、光学素子100に当たって透過する。このため、発光領域R全体の輝度の均一性を向上させることができる。   As a result, the light emitted from the light guide plate 5 immediately above the light source 2 does not hit the optical element 100, so that the light is easily reflected by the emission surface 5b and returned to the inside of the light guide plate 5, while the light emitted from around the boundary BD is Impinging on the optical element 100 and transmitting. For this reason, the uniformity of the luminance of the entire light emitting region R can be improved.

なお、図5では、光学素子100は、導光板5の出射面5bに形成されたが、導光板5の主面5aに形成されてもよく、あるいは、主面5aおよび出射面5bそれぞれに形成されてもよい。   In FIG. 5, the optical element 100 is formed on the emission surface 5b of the light guide plate 5, but may be formed on the main surface 5a of the light guide plate 5, or may be formed on each of the main surface 5a and the emission surface 5b. May be done.

また、図5では、光学素子100は、導光板5の厚み方向に突出する部位である場合を示したが、光学素子100は、導光板5の厚み方向に凹む部位であってもよい。さらに、本実施形態では光学素子100を光源から離れるに従って密になるように形成したが、これに限定されない。例えば、複数の光学素子100を、導光板5の出射面5bに均一に設けてもよい。   FIG. 5 shows a case where the optical element 100 is a part that protrudes in the thickness direction of the light guide plate 5, but the optical element 100 may be a part that is recessed in the thickness direction of the light guide plate 5. Furthermore, in the present embodiment, the optical element 100 is formed so as to be denser as the distance from the light source increases, but the present invention is not limited to this. For example, a plurality of optical elements 100 may be provided uniformly on the light exit surface 5b of the light guide plate 5.

また、図5では、1つの導光板5に複数の凹部5a1が形成される場合を示したが、導光板5は、1つの凹部5a1毎に分割された構成であってもよい。つまり、複数の導光板5それぞれに凹部5a1が形成される構成であってもよい。   FIG. 5 shows a case in which a plurality of recesses 5a1 are formed in one light guide plate 5, but the light guide plate 5 may be configured to be divided for each one recess 5a1. That is, a configuration in which the concave portion 5a1 is formed in each of the plurality of light guide plates 5 may be employed.

上述したように、実施形態に係る面状照明装置1は、基板3aと、導光板5と、光反射部材9とを備える。基板3aは、複数の光源2が実装面に配列される。導光板5は、実装面と対向する一方の主面5aに形成され、複数の光源2を個別に収容する凹部5a1を有し、凹部5a1から光源2の光が入射し、他方の主面である出射面5bから光が出射する。光反射部材9は、凹部5a1の内部において光源2に対して出射面5b側に設けられ、出射面5bの沿面方向で光源2から離れるほど肉薄となる。これにより、光反射部材9は、光源2の直上に近い光ほど多く反射することができる。すなわち、光源2の直上へ出射される光量を抑えることができるため、輝度の均一性を向上させることができる。   As described above, the surface illumination device 1 according to the embodiment includes the substrate 3a, the light guide plate 5, and the light reflection member 9. The substrate 3a has a plurality of light sources 2 arranged on a mounting surface. The light guide plate 5 is formed on one main surface 5a facing the mounting surface, has a concave portion 5a1 for individually accommodating a plurality of light sources 2, and the light of the light source 2 is incident from the concave portion 5a1, and the other main surface. Light exits from an exit surface 5b. The light reflecting member 9 is provided on the emission surface 5b side with respect to the light source 2 inside the concave portion 5a1, and becomes thinner as the distance from the light source 2 increases in the surface direction of the emission surface 5b. Thereby, the light reflecting member 9 can reflect more light nearer to the light source 2. That is, since the amount of light emitted directly above the light source 2 can be suppressed, the uniformity of luminance can be improved.

なお、上述した実施形態では、光反射部材9が錐状である場合を示したが、光反射部材9の形状は錐状に限定されるものではない。ここで、図7〜図9を用いて、光反射部材9の他の形状例について説明する。   In the above-described embodiment, the case where the light reflecting member 9 has a conical shape has been described, but the shape of the light reflecting member 9 is not limited to the conical shape. Here, another example of the shape of the light reflecting member 9 will be described with reference to FIGS. 7 to 9.

図7〜図9は、変形例に係る光反射部材9を示す図である。図7に示すように、光反射部材9は、例えば、半球状に形成される。また、導光板5の凹部5a1も同様に、底面の形状が半球状に形成される。つまり、凹部5a1の底面は、円弧状である。   7 to 9 are views showing a light reflecting member 9 according to a modification. As shown in FIG. 7, the light reflecting member 9 is formed, for example, in a hemispherical shape. Similarly, the concave portion 5a1 of the light guide plate 5 also has a hemispherical bottom surface. That is, the bottom surface of the concave portion 5a1 has an arc shape.

これにより、半球状に形成された光反射部材9は、光源2の直上に近い光ほど多く反射することができるため、光源2の直上へ出射される光量を抑えることができ、輝度の均一性を向上させることができる。   As a result, the light reflecting member 9 formed in a hemispherical shape can reflect more light as it comes closer to directly above the light source 2, so that the amount of light emitted directly above the light source 2 can be suppressed, and the uniformity of luminance can be reduced. Can be improved.

また、図8に示すように、光反射部材9は、断面視で三日月状であってもよい。具体的には、光反射部材9は、光源2と対向する面90が曲面形状で構成される。換言すれば、光反射部材9は、面90のうち、光源2の直上に対応する位置が凹んだ形状である。これにより、曲面形状の面90で反射した光Lは、導光板5側へ導かれやすくなるため、光Lの出射効率をより高めることができる。   As shown in FIG. 8, the light reflecting member 9 may have a crescent shape in a sectional view. Specifically, the light reflecting member 9 has a surface 90 facing the light source 2 having a curved shape. In other words, the light reflecting member 9 has a concave shape at a position on the surface 90 corresponding to a position directly above the light source 2. Accordingly, the light L reflected by the curved surface 90 is easily guided to the light guide plate 5 side, so that the emission efficiency of the light L can be further increased.

また、上記では、光反射部材9は、Z軸正方向である光の出射方向に向かって尖る錐状である場合(図4参照)を示したが、例えば、図9に示すように、光反射部材9は、Z軸負方向である光源2に向かって尖る錐状であってもよい。   In the above description, the light reflecting member 9 has a conical shape that is pointed toward the light emission direction that is the positive direction of the Z-axis (see FIG. 4). For example, as shown in FIG. The reflecting member 9 may have a conical shape that points toward the light source 2 in the negative direction of the Z axis.

これにより、光源2から出た光は、光反射部材9の側面で反射するため、導光板5側へ導かれやすくなり、光の出射効率を高めることができる。   Accordingly, the light emitted from the light source 2 is reflected on the side surface of the light reflecting member 9 and is easily guided to the light guide plate 5 side, so that the light emission efficiency can be increased.

次に、図10を用いて、透過反射部材をさらに備えた面状照明装置1について説明する。図10は、変形例に係る面状照明装置1の断面図である。なお、図10に示す変形例に係る面状照明装置1は、上述した実施形態に係る面状照明装置1とは、透過反射部材10を備える点が異なる。なお、透過反射部材10以外の構成については上記と同様であるため記載を省略する。   Next, the spread illuminating device 1 further provided with a transmissive / reflective member will be described with reference to FIG. FIG. 10 is a cross-sectional view of a planar lighting device 1 according to a modification. The planar lighting device 1 according to the modification illustrated in FIG. 10 is different from the planar lighting device 1 according to the above-described embodiment in that a transmissive reflecting member 10 is provided. The configuration other than the transmission / reflection member 10 is the same as that described above, and a description thereof will be omitted.

図10に示すように、透過反射部材10は、導光板5と波長変換部材6との間に設けられる。透過反射部材10は、例えば、誘電体多層膜で構成される。透過反射部材10は、導光板5を出た光の入射角度が透過反射部材10に対して略垂直に近いほど、反射率が高くなり、一方で、入射角度が透過反射部材10に対して略平行に近いほど、反射率が低くなる、すなわち、透過率が高くなるよう構成される。   As shown in FIG. 10, the transmission / reflection member 10 is provided between the light guide plate 5 and the wavelength conversion member 6. The transmission / reflection member 10 is formed of, for example, a dielectric multilayer film. The transmissive / reflective member 10 has a higher reflectance as the incident angle of the light exiting the light guide plate 5 is substantially perpendicular to the transmissive / reflective member 10, while the incident angle is substantially equal to the transmissive / reflective member 10. It is configured such that the closer to the parallel, the lower the reflectance, that is, the higher the transmittance.

この透過反射部材10は、光源2と導光板5との位置ずれの無効化に寄与する。例えば、導光板が出射面5bの沿面方向であるXY方向に位置ずれした場合(例えば、熱膨張や熱収縮等)、光源2の直上部には光反射部材9の肉薄部分が位置することとなる。すなわち、光源2の光が肉薄部分を透過して光源2の直上部に抜けやすくなる。そのため、透過反射部材10を設けることで、光源2の直上部に抜ける光を反射する。従って、透過反射部材10によれば、光源2と導光板5との位置ずれが生じた場合であっても光源2の直上部の輝度が高くなることを防止できる、すなわち、光源2と導光板5との位置ずれを無効化し、輝度を均一化できる。   The transmission / reflection member 10 contributes to invalidating the displacement between the light source 2 and the light guide plate 5. For example, when the light guide plate is displaced in the X and Y directions that are the creepage direction of the emission surface 5b (for example, thermal expansion or thermal contraction), the thin portion of the light reflecting member 9 is located directly above the light source 2. Become. That is, the light of the light source 2 easily passes through the thin portion and is likely to pass right above the light source 2. Therefore, by providing the transmission / reflection member 10, light that passes directly above the light source 2 is reflected. Therefore, according to the transmissive / reflective member 10, it is possible to prevent the luminance immediately above the light source 2 from being increased even when the light source 2 and the light guide plate 5 are misaligned. 5 can be nullified and the luminance can be made uniform.

さらに、透過反射部材10によれば、導光板5の浮きによる位置ずれの無効化にも寄与する。具体的には、導光板5がZ方向正方向に位置ずれ(浮いた)した場合、反射部材3bと導光板5の楔部である主面5aとの間に隙間が生じる。そして、かかる隙間へ入射した光(光源2からXY方向に向かう光)は、垂直方向(Z軸正方向)に立ち上がることで、光源2の直上部に向かいやすくなる。そのため、透過反射部材10を設けることで、光源2の直上部へ向かう光を反射する。従って、透過反射部材10によれば、導光板5が浮いた場合であっても、光源2の直上部の輝度が高くなることを防止できる、すなわち、導光板5の浮きによる光源2と導光板5との位置ずれを無効化し、輝度を均一化できる。   Further, according to the transmission / reflection member 10, it also contributes to invalidating the position shift due to the floating of the light guide plate 5. Specifically, when the light guide plate 5 is displaced (floats) in the positive direction in the Z direction, a gap is generated between the reflection member 3b and the main surface 5a which is a wedge portion of the light guide plate 5. The light (the light traveling from the light source 2 in the XY directions) entering the gap easily rises in the vertical direction (the positive direction of the Z-axis), and thus easily travels directly above the light source 2. Therefore, by providing the transmission / reflection member 10, the light traveling directly above the light source 2 is reflected. Therefore, according to the transmission / reflection member 10, even when the light guide plate 5 floats, it is possible to prevent the brightness directly above the light source 2 from increasing, that is, the light source 2 and the light guide plate caused by the floatation of the light guide plate 5. 5 can be nullified and the luminance can be made uniform.

また、上記実施の形態により本発明が限定されるものではない。上述した各構成素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。   Further, the present invention is not limited by the above embodiments. The present invention also includes a configuration in which the above-described components are appropriately combined. Further, further effects and modified examples can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.

1 面状照明装置、2 光源、3 基板部、3a 基板、3b 反射部材、4 フレーム、5 導光板、5a1 凹部、6 波長変換部材、7 拡散部材、8 光学部材、9 光反射部材、10 透過反射部材、100 光学素子     1 planar illumination device, 2 light sources, 3 substrate portions, 3a substrate, 3b reflection member, 4 frames, 5 light guide plates, 5a1 concave portions, 6 wavelength conversion members, 7 diffusion members, 8 optical members, 9 light reflection members, 10 transmission Reflecting member, 100 optical element

Claims (8)

複数の光源が実装面に配列される基板と、
前記実装面と対向する一方の主面に形成され、前記複数の光源を個別に収容する凹部を有し、当該凹部から前記光源の光が入射し、他方の主面である出射面から前記光が出射する導光板と、
前記凹部の内部において前記光源に対して前記出射面側に設けられ、前記出射面の沿面方向で前記光源から離れるほど肉薄となる光反射部材と
を備える、面状照明装置。
A substrate on which a plurality of light sources are arranged on a mounting surface;
A concave portion formed on one main surface opposed to the mounting surface, for individually accommodating the plurality of light sources; light from the light source is incident from the concave portion; A light guide plate from which
A light reflecting member provided on the emission surface side with respect to the light source inside the concave portion, and becoming thinner as the distance from the light source increases in a surface direction of the emission surface.
前記導光板の前記凹部は、
前記光源と対向する底面であって、前記沿面方向で前記光源から離れるほど前記導光板が肉厚となる形状の前記底面を有し、
前記光反射部材は、
前記底面の前記形状に合わせた形状である、
請求項1に記載の面状照明装置。
The concave portion of the light guide plate,
A bottom surface facing the light source, the bottom surface having a shape in which the light guide plate becomes thicker as the distance from the light source in the creeping direction increases,
The light reflecting member,
A shape corresponding to the shape of the bottom surface,
The planar lighting device according to claim 1.
前記凹部の前記底面は、円弧状である、
請求項2に記載の面状照明装置。
The bottom surface of the concave portion is arc-shaped,
The planar lighting device according to claim 2.
前記凹部の前記底面は、錐状である、
請求項2に記載の面状照明装置。
The bottom surface of the recess is conical,
The planar lighting device according to claim 2.
前記光反射部材は、
前記光源に近い側の面において、前記沿面方向で前記光源から離れるほど前記一方の主面に近づく傾斜面を有する、
請求項1〜4のいずれか1つに記載の面状照明装置。
The light reflecting member,
On the surface on the side closer to the light source, having an inclined surface closer to the one main surface as being farther from the light source in the creeping direction,
The planar lighting device according to claim 1.
前記導光板は、
前記一方の主面および前記出射面のうち少なくとも一方に形成され、前記沿面方向で前記凹部から離れるほど前記導光板が肉薄となる傾斜面を有する、
請求項1または2に記載の面状照明装置。
The light guide plate includes:
An inclined surface formed on at least one of the one main surface and the emission surface, wherein the light guide plate becomes thinner as the distance from the recess in the creeping direction,
The planar lighting device according to claim 1.
前記導光板は、
前記一方の主面および前記出射面のうち少なくとも一方に形成され、前記沿面方向で前記光源から離れるほど間隔が密となる複数の光学素子を有する、
請求項1〜6のいずれか1つに記載の面状照明装置。
The light guide plate includes:
Formed on at least one of the one main surface and the emission surface, having a plurality of optical elements whose intervals are denser away from the light source in the creeping direction,
A spread illuminating device according to claim 1.
前記光反射部材は、
前記沿面方向で前記光源へ近づくほど光の反射率を高くし、
前記沿面方向で前記光源から離れるほど光の透過率を高くする、
請求項1〜7のいずれか1つに記載の面状照明装置。
The light reflecting member,
Increase the light reflectance as approaching the light source in the creepage direction,
Increase the light transmittance as the distance from the light source in the creeping direction,
The planar lighting device according to claim 1.
JP2018135737A 2018-07-19 2018-07-19 Planar luminaire Pending JP2020013714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135737A JP2020013714A (en) 2018-07-19 2018-07-19 Planar luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135737A JP2020013714A (en) 2018-07-19 2018-07-19 Planar luminaire

Publications (1)

Publication Number Publication Date
JP2020013714A true JP2020013714A (en) 2020-01-23

Family

ID=69170699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135737A Pending JP2020013714A (en) 2018-07-19 2018-07-19 Planar luminaire

Country Status (1)

Country Link
JP (1) JP2020013714A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204138A (en) * 2020-01-31 2021-08-03 日亚化学工业株式会社 Light emitting module, planar light source, and method for manufacturing light emitting module
WO2021172014A1 (en) * 2020-02-26 2021-09-02 株式会社ジャパンディスプレイ Illumination device and display device
JP2022028018A (en) * 2020-01-31 2022-02-14 日亜化学工業株式会社 Light emitting module and planar light source
US11835748B2 (en) 2021-07-19 2023-12-05 Nichia Corporation Planar light source and display device
US11927795B2 (en) 2021-10-29 2024-03-12 Nichia Corporation Planar light source including a plurality of light-emitting units
US11934003B2 (en) 2021-07-28 2024-03-19 Nichia Corporation Planar light source
US12001047B2 (en) 2021-11-24 2024-06-04 Nichia Corporation Surface light source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299522B2 (en) 2020-01-31 2023-06-28 日亜化学工業株式会社 Light-emitting module and planar light source
JP2021125481A (en) * 2020-01-31 2021-08-30 日亜化学工業株式会社 Light-emitting module, planar light source, and manufacturing method thereof
US11692688B2 (en) 2020-01-31 2023-07-04 Nichia Corporation Light emitting module, surface light source, and a method of manufacturing light emitting module
JP7002714B2 (en) 2020-01-31 2022-02-04 日亜化学工業株式会社 Manufacturing method of light emitting module, planar light source, and light emitting module
JP2022028018A (en) * 2020-01-31 2022-02-14 日亜化学工業株式会社 Light emitting module and planar light source
US11421856B2 (en) 2020-01-31 2022-08-23 Nichia Corporation Light emitting module, surface light source, and a method of manufacturing light emitting module
CN113204138A (en) * 2020-01-31 2021-08-03 日亚化学工业株式会社 Light emitting module, planar light source, and method for manufacturing light emitting module
CN115176198A (en) * 2020-02-26 2022-10-11 株式会社日本显示器 Illumination device and display device
WO2021172014A1 (en) * 2020-02-26 2021-09-02 株式会社ジャパンディスプレイ Illumination device and display device
US11698552B2 (en) 2020-02-26 2023-07-11 Japan Display Inc. Illumination device and display device
CN115176198B (en) * 2020-02-26 2024-03-19 株式会社日本显示器 Lighting device and display device
US11835748B2 (en) 2021-07-19 2023-12-05 Nichia Corporation Planar light source and display device
US11934003B2 (en) 2021-07-28 2024-03-19 Nichia Corporation Planar light source
US11927795B2 (en) 2021-10-29 2024-03-12 Nichia Corporation Planar light source including a plurality of light-emitting units
US12001047B2 (en) 2021-11-24 2024-06-04 Nichia Corporation Surface light source

Similar Documents

Publication Publication Date Title
JP2020013714A (en) Planar luminaire
JP4717494B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP3804795B2 (en) Lighting device for flat panel display element
US20080112156A1 (en) Illumination apparatus
US9274265B2 (en) Surface light source apparatus and display apparatus using same
US20050264716A1 (en) LED package and backlight assembly for LCD comprising the same
JP4702176B2 (en) Backlight and liquid crystal display device
JP2006269364A (en) Led surface light source device
JP2006179494A (en) Backlight system and liquid crystal display device using it
JP2009193892A (en) Surface lighting device and display device
KR101509372B1 (en) Surface light source device and liquid crystal display device
JP2010108947A (en) Lighting device, and display using the same
JP2020009556A (en) Planar lighting device
KR20190021522A (en) Light guide plate and backlight unit having the same
US20190108786A1 (en) Backlight unit
JP2005228535A (en) Planar light source device and liquid crystal display
TWI707162B (en) Light diffusion lens for light emitting device
JP6406220B2 (en) Surface light source device, display device, and electronic device
JP4389529B2 (en) Surface illumination device and light guide plate
JP2007294230A (en) Light guide plate and plane lighting device
JP2009245664A (en) Light-emitting unit, backlight and liquid crystal display apparatus
JP2009231012A (en) Back light unit
JP4799488B2 (en) Light emitting device, linear light emitting device, planar light emitting device, liquid crystal display device, and electronic apparatus
JP2005135815A (en) Planar light source device and display device using the same
CN110542945B (en) Backlight module