JP2020005475A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2020005475A
JP2020005475A JP2018125806A JP2018125806A JP2020005475A JP 2020005475 A JP2020005475 A JP 2020005475A JP 2018125806 A JP2018125806 A JP 2018125806A JP 2018125806 A JP2018125806 A JP 2018125806A JP 2020005475 A JP2020005475 A JP 2020005475A
Authority
JP
Japan
Prior art keywords
voltage
current sensor
smoothing capacitor
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018125806A
Other languages
Japanese (ja)
Other versions
JP6522211B1 (en
Inventor
一洋 富士岡
Kazuhiro Fujioka
一洋 富士岡
伸浩 木原
Nobuhiro Kihara
伸浩 木原
麻衣 中田
Mai Nakata
麻衣 中田
竹島 由浩
Yoshihiro Takeshima
由浩 竹島
祐次郎 中田
Yujiro Nakata
祐次郎 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018125806A priority Critical patent/JP6522211B1/en
Priority to US16/411,800 priority patent/US10554120B2/en
Application granted granted Critical
Publication of JP6522211B1 publication Critical patent/JP6522211B1/en
Priority to CN201910567676.1A priority patent/CN110677038B/en
Publication of JP2020005475A publication Critical patent/JP2020005475A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

To provide a power conversion device capable of continuing an operation using only normal switching elements without using a switching element in an abnormal state.SOLUTION: A power conversion device 100 comprises a failure determination unit 300 that detects a voltage value of a smoothing capacitor 6 connected in parallel to a load 10 connected with a power conversion device 100, and a current flowing in a switching element 5a1 of a plurality of voltage converters by a first current sensor 3a, sequentially switches switching elements to determine abnormalities of the switching element 5a1, specifies the abnormalities of the switching element 5a1, and in a case where the switching element 5a1 has no abnormality, specifies that the first current sensor 3a has abnormalities.SELECTED DRAWING: Figure 1

Description

本願は、電力変換装置に関するものである。   The present application relates to a power converter.

従来の電力変換装置は、入力電圧を昇圧または降圧する電圧変換部を備え、入力電源および蓄電装置を含めて電源システムを構成している。電圧変換部は、スイッチング素子、整流素子、およびリアクトルで構成され、スイッチング素子をオンとオフを繰り返し駆動することで直流の入力電圧を昇圧または降圧する。そして、直流の入力電圧を所定の出力電圧に変換するために、電力変換装置においては、電圧変換部を複数並列で構成し、複数並列に接続された電圧変換部に、電流センサおよび電圧センサを用いて、過電流および過電圧が生じることの無いように制御すると共に、電圧変換部の出力が、基準昇降圧電圧値以上に昇降圧しないように制御が行われている。   A conventional power converter includes a voltage converter that steps up or steps down an input voltage, and configures a power supply system including an input power supply and a power storage device. The voltage conversion unit includes a switching element, a rectifying element, and a reactor, and boosts or drops the DC input voltage by repeatedly driving the switching element on and off. Then, in order to convert the DC input voltage to a predetermined output voltage, in the power converter, a plurality of voltage converters are configured in parallel, and a current sensor and a voltage sensor are connected to the plurality of voltage converters connected in parallel. In addition, control is performed so that overcurrent and overvoltage do not occur, and control is performed so that the output of the voltage conversion unit does not step up or step down to a reference step-up / step-down voltage value.

複数の電圧変換部を並列に接続した多相変換部に対して、電圧変換部の動作を停止させる数を次第に増加させる制御を行うことで、電圧変換部が正常であれば多相変換部の出力が切り替え前後で適正に変化し、電圧変換部が異常であれば多相変換部の出力が切り替えの前後で異常な変化を示す特徴を利用して、異常が生じている1つまたは複数の電圧変換部を特定することができる異常検出装置および電源装置が示されている。(特許文献1)   For a polyphase converter in which a plurality of voltage converters are connected in parallel, by performing control to gradually increase the number of times the operation of the voltage converter is stopped, if the voltage converter is normal, If the output changes appropriately before and after switching, and the voltage converter is abnormal, one or more abnormalities occur using the feature that the output of the polyphase converter shows abnormal changes before and after switching. An abnormality detection device and a power supply device capable of specifying a voltage conversion unit are shown. (Patent Document 1)

特開2017−212770号公報JP 2017-21770A

しかしながら、前記特許文献1に記載された異常検出装置および電源装置では電圧変換部の異常状態のスイッチング素子までは特定できず、異常状態と特定された1つまたは複数の電圧変換部を停止させるため、正常動作の継続ができない。さらに、電流センサの故障を想定しておらず、電流センサが異常状態に陥った場合、電流値に基づいて1つまたは複数の電圧変換部が異常状態に陥っていると判断するため、正確に異常状態の箇所を特定できず、前記異常状態のスイッチング素子を特定することができない。また、異常状態と特定された1つまたは複数の電圧変換部を停止させるため、正常動作継続ができない。
本願は前述の問題点を解決するためになされたものであり、電圧変換部の異常状態のスイッチング素子を特定することで、異常状態のスイッチング素子を使用せず、正常なスイッチング素子だけを使用した動作継続を可能とする。また、電流センサの異常状態を特定することで、正確な異常状態の箇所の特定でき、更に異常状態の電流センサを使用しない動作継続を可能とした電力変換装置を得ることを目的とするものである。
However, in the abnormality detection device and the power supply device described in Patent Literature 1, it is not possible to specify even the switching element in the abnormal state of the voltage converter, and to stop one or more voltage converters identified as the abnormal state. , Normal operation cannot be continued. Further, when the current sensor does not assume a failure and the current sensor falls into an abnormal state, one or more voltage conversion units are determined to be in an abnormal state based on the current value. The location of the abnormal state cannot be specified, and the switching element in the abnormal state cannot be specified. In addition, since one or a plurality of voltage conversion units specified as an abnormal state are stopped, normal operation cannot be continued.
The present application has been made in order to solve the above-described problem.By specifying an abnormal state switching element of the voltage conversion unit, the abnormal state switching element was not used, and only the normal switching element was used. Operation can be continued. It is another object of the present invention to obtain a power converter capable of accurately identifying a location of an abnormal state by identifying an abnormal state of the current sensor and further enabling operation continuation without using the abnormal state current sensor. is there.

本願に開示される電力変換装置は、入力電源と負荷との間に設けられる電力変換装置であって、前記入力電源に並列接続された第1の平滑コンデンサと、前記負荷に並列に接続され、負極が前記第1の平滑コンデンサの負極に接続された第2の平滑コンデンサと、前記第1の平滑コンデンサと前記第2の平滑コンデンサの間に設けられ、スイッチング素子の動作によって電圧を変換する複数の電圧変換部と、前記電圧変換部のスイッチング素子に流れる電流を検出する第1の電流センサと、前記第2の平滑コンデンサの電圧を検出する第1の電圧センサと、前記スイッチング素子を駆動制御する制御信号部と、前記第1の電流センサの検出値を基に算出される値が所定値から乖離する場合に、前記第1の電圧センサの値に基づいて、前記第1の電流センサが故障であると判定する故障判定部とを備えたものである。   The power conversion device disclosed in the present application is a power conversion device provided between an input power supply and a load, and a first smoothing capacitor connected in parallel to the input power supply, and connected in parallel to the load, A second smoothing capacitor having a negative electrode connected to the negative electrode of the first smoothing capacitor; and a plurality of negative electrodes provided between the first smoothing capacitor and the second smoothing capacitor for converting a voltage by an operation of a switching element. A voltage converter, a first current sensor for detecting a current flowing through a switching element of the voltage converter, a first voltage sensor for detecting a voltage of the second smoothing capacitor, and drive control of the switching element The control signal unit performs the first signal based on the value of the first voltage sensor when the value calculated based on the detection value of the first current sensor deviates from a predetermined value. In which a current sensor and a determining failure determination unit to be faulty.

本願の電力変換装置によれば、複数の電圧変換部のスイッチング素子と、各電圧変換部のスイッチング素子に流れる電流値を検出する第1の電流センサとの中から、異常状態になっているスイッチング素子または第1の電流センサを特定することによって、正常な動作状態を継続することができる。   According to the power converter of the present application, the switching element in the abnormal state is selected from the switching elements of the plurality of voltage conversion sections and the first current sensor that detects the value of the current flowing through the switching element of each voltage conversion section. By specifying the element or the first current sensor, a normal operating state can be continued.

本願の実施の形態1による電力変換装置を示す回路図である。FIG. 1 is a circuit diagram showing a power conversion device according to a first embodiment of the present application. 本願の実施の形態1による力行動作時の動作モードを示す回路図である。FIG. 4 is a circuit diagram illustrating an operation mode during a power running operation according to the first embodiment of the present application. 本願の実施の形態1による力行動作時の動作モードの理想動作波形を示す波形図である。FIG. 5 is a waveform chart showing an ideal operation waveform in an operation mode during a power running operation according to the first embodiment of the present application. 本願の実施の形態1による第1のIGBT素子にオフ固着異常が発生した場合の力行動作の動作モードを示す回路図である。FIG. 5 is a circuit diagram showing an operation mode of a power running operation when an off-fixation abnormality occurs in the first IGBT element according to the first embodiment of the present invention. 本願の実施の形態1による第1のIGBT素子にオフ固着異常が発生した場合の力行動作の動作モードの理想動作波形を示す波形図である。FIG. 5 is a waveform chart showing an ideal operation waveform in an operation mode of a power running operation when an off-fixation abnormality occurs in the first IGBT element according to the first embodiment of the present invention. 本願の実施の形態1による故障判定のフローチャートを示す図である。FIG. 3 is a diagram showing a flowchart of failure determination according to the first embodiment of the present application. 本願の実施の形態1による故障判定時の動作モードを示す回路図である。FIG. 4 is a circuit diagram showing an operation mode at the time of failure determination according to the first embodiment of the present application. 本願の実施の形態1による第1のIGBT素子を駆動させた場合の理想動作波形を示す波形図である。FIG. 5 is a waveform chart showing an ideal operation waveform when the first IGBT element according to the first embodiment of the present application is driven. 本願の実施の形態1による第2のIGBT素子を駆動させた場合の理想動作波形を示す波形図である。FIG. 7 is a waveform chart showing an ideal operation waveform when the second IGBT element according to the first embodiment of the present application is driven. 本願の実施の形態1による第3のIGBT素子を駆動させた場合の理想動作波形を示す波形図である。FIG. 5 is a waveform chart showing an ideal operation waveform when a third IGBT element according to the first embodiment of the present application is driven. 本願の実施の形態1による第4のIGBT素子を駆動させた場合の理想動作波形を示す波形図である。FIG. 7 is a waveform chart showing an ideal operation waveform when a fourth IGBT element according to the first embodiment of the present application is driven. 本願の実施の形態2による電力変換装置を示す回路図である。FIG. 7 is a circuit diagram showing a power conversion device according to a second embodiment of the present application. 本願の実施の形態3による電力変換装置を示す回路図である。FIG. 9 is a circuit diagram illustrating a power conversion device according to a third embodiment of the present application. 本願の実施の形態4による電力変換装置を示す回路図である。FIG. 13 is a circuit diagram illustrating a power conversion device according to a fourth embodiment of the present application. 本願の故障判定部のハードウエアの構成を示す構成図である。FIG. 3 is a configuration diagram illustrating a hardware configuration of a failure determination unit according to the present application.

実施の形態1.
本願の実施の形態1を、図1を用いて説明する。図1は、本願の実施の形態1を説明するための電力変換装置100の回路図である。
なお、各図において、同一符号は各々同一または相当部分を示すものである。
Embodiment 1 FIG.
Embodiment 1 of the present application will be described with reference to FIG. FIG. 1 is a circuit diagram of a power conversion device 100 for describing Embodiment 1 of the present application.
In each drawing, the same reference numerals indicate the same or corresponding parts.

図1に示すように、電力変換装置100は、直流電源1aと負荷10との間に設けられ、第1の平滑コンデンサ2、第2の平滑コンデンサ6、第1のリアクトル4a、第2のリアクトル4b、第1のリアクトル4aに流れる電流を検出する第1の電流センサ3a、第2のリアクトル4bに流れる電流を検出する第2の電流センサ3bが設けられ、第1の電圧変換部として、第1のIGBT素子5a1、第1のIGBT素子5a1に逆並列接続されている第1のダイオード5a2、第2の電圧変換部として、第2のIGBT素子5b1、第2のIGBT素子5b1に逆並列接続されている第2のダイオード5b2、第3の電圧変換部として、第3のIGBT素子5c1、第3のIGBT素子5c1に逆並列接続されている第3のダイオード5c2、第4の電圧変換部として、第4のIGBT素子5d1、第4のIGBT素子5d1に逆並列接続されている第4のダイオード5d2が設けられ、第2の平滑コンデンサ6の両端電圧を検出する第1の電圧センサ7a、制御信号部200、および故障判定部300から構成されている。   As shown in FIG. 1, a power conversion device 100 is provided between a DC power supply 1a and a load 10, and includes a first smoothing capacitor 2, a second smoothing capacitor 6, a first reactor 4a, a second reactor 4b, a first current sensor 3a for detecting a current flowing in the first reactor 4a, and a second current sensor 3b for detecting a current flowing in the second reactor 4b are provided. 1 IGBT element 5a1, a first diode 5a2 connected in anti-parallel to the first IGBT element 5a1, and a second voltage conversion unit connected in anti-parallel to the second IGBT element 5b1 and the second IGBT element 5b1 A second diode 5b2, a third voltage converter, a third IGBT element 5c1, and a third diode 5c connected in anti-parallel to the third IGBT element 5c1. A fourth IGBT element 5d1 and a fourth diode 5d2 connected in anti-parallel to the fourth IGBT element 5d1 as a fourth voltage conversion unit, and detect a voltage across the second smoothing capacitor 6. It comprises a first voltage sensor 7a, a control signal unit 200, and a failure determination unit 300.

制御信号部200は、第1から第4のIGBT素子5a1〜5d1のゲート信号を生成し、第1から第4のIGBT素子5a1〜5d1をスイッチング周波数fsw(スイッチング周期Tsw)にてオン、オフ動作させる。故障判定部300は、第1の電流センサ3aと第2の電流センサ3bと第1の電圧センサ7aの検出値に基づいて故障判定を行う。   The control signal unit 200 generates gate signals for the first to fourth IGBT elements 5a1 to 5d1, and turns on and off the first to fourth IGBT elements 5a1 to 5d1 at a switching frequency fsw (switching cycle Tsw). Let it. The failure determination unit 300 makes a failure determination based on the detection values of the first current sensor 3a, the second current sensor 3b, and the first voltage sensor 7a.

第1の平滑コンデンサ2は、直流電源1aに対して並列に接続されている。第1の電流センサ3aの一方の端子3a1は、第1の平滑コンデンサ2の正極と第2の電流センサ3bの一方の端子3b1に接続され、第1の電流センサ3aの他方の端子3a2は、第1のリアクトル4aを介して、第1のIGBT素子5a1のコレクタ端子と第2のIGBT素子5b1のエミッタ端子に接続されている。第2の電流センサ3bの他方の端子3b2は、第2のリアクトル4bを介して、第3のIGBT素子5c1のコレクタ端子と第4のIGBT素子5d1のエミッタ端子に接続されている。   The first smoothing capacitor 2 is connected in parallel to the DC power supply 1a. One terminal 3a1 of the first current sensor 3a is connected to the positive electrode of the first smoothing capacitor 2 and one terminal 3b1 of the second current sensor 3b, and the other terminal 3a2 of the first current sensor 3a is It is connected to the collector terminal of the first IGBT element 5a1 and the emitter terminal of the second IGBT element 5b1 via the first reactor 4a. The other terminal 3b2 of the second current sensor 3b is connected to the collector terminal of the third IGBT element 5c1 and the emitter terminal of the fourth IGBT element 5d1 via the second reactor 4b.

第1のIGBT素子5a1のエミッタ端子と第3のIGBT素子5c1のエミッタ端子は、第1の平滑コンデンサ2の負極と第2の平滑コンデンサ6の負極に接続されている。第2のIGBT素子5b1のコレクタ端子と第4のIGBT素子5d1のコレクタ端子は、第2の平滑コンデンサ6の正極に接続されている。第1の電圧センサ7aの一方の端子7a1は、第2の平滑コンデンサ6の正極に接続され、他方の端子7a2は、負極に接続されている。負荷10は、第2の平滑コンデンサ6と並列接続されている。   The emitter terminal of the first IGBT element 5a1 and the emitter terminal of the third IGBT element 5c1 are connected to the negative electrode of the first smoothing capacitor 2 and the negative electrode of the second smoothing capacitor 6. The collector terminal of the second IGBT element 5b1 and the collector terminal of the fourth IGBT element 5d1 are connected to the positive terminal of the second smoothing capacitor 6. One terminal 7a1 of the first voltage sensor 7a is connected to the positive electrode of the second smoothing capacitor 6, and the other terminal 7a2 is connected to the negative electrode. The load 10 is connected in parallel with the second smoothing capacitor 6.

制御信号部200の第1の出力端子201aは、第1のIGBT素子5a1のゲート端子に接続され、第2の出力端子201bは、第2のIGBT素子5b1のゲート端子に接続され、第3の出力端子201cは、第3のIGBT素子5c1のゲート端子に接続され、第4の出力端子201dは、第4のIGBT素子5d1のゲート端子に接続されている。故障判定部300の第1の入力端子301aは、第1の電流センサ3aの出力端子3a3に接続され、第2の入力端子301bは、第2の電流センサ3bの出力端子3b3に接続され、第3の入力端子302aは、第1の電圧センサ7aの出力端子7a3に接続されている。制御信号部200の入力端子202は、故障判定部300の出力端子303に接続されている。   The first output terminal 201a of the control signal unit 200 is connected to the gate terminal of the first IGBT element 5a1, the second output terminal 201b is connected to the gate terminal of the second IGBT element 5b1, The output terminal 201c is connected to the gate terminal of the third IGBT element 5c1, and the fourth output terminal 201d is connected to the gate terminal of the fourth IGBT element 5d1. The first input terminal 301a of the failure determination unit 300 is connected to the output terminal 3a3 of the first current sensor 3a, the second input terminal 301b is connected to the output terminal 3b3 of the second current sensor 3b, The third input terminal 302a is connected to the output terminal 7a3 of the first voltage sensor 7a. The input terminal 202 of the control signal unit 200 is connected to the output terminal 303 of the failure determination unit 300.

定常状態における電力変換装置100の動作状態として、第1の平滑コンデンサ2から第2の平滑コンデンサ6に電力を供給する状態(以降、力行動作と称する)と、図1に示す直流電源1aと負荷10の配置を入れ替えて第2の平滑コンデンサ6から第1の平滑コンデンサ2に電力を供給する状態(以降、回生動作と称する)の2つの状態が存在する。   As the operation state of the power conversion device 100 in the steady state, a state in which power is supplied from the first smoothing capacitor 2 to the second smoothing capacitor 6 (hereinafter, referred to as a power running operation), the DC power supply 1a shown in FIG. There are two states in which the arrangement of 10 is switched and power is supplied from the second smoothing capacitor 6 to the first smoothing capacitor 2 (hereinafter referred to as a regenerative operation).

図2(a)、図2(b)、図2(c)は、本願の実施の形態1の力行動作時の動作モードを説明するための回路図であり、図3は、本願の実施の形態1の力行動作時の理想動作波形である。図2(a)〜(c)の点線は、電流経路を表しており、図3では動作モードにおける第1から第4のIGBT素子5a1〜5d1のゲート信号G5a、G5b、G5c、G5d、第1のリアクトル4aの両端電圧V4a、第2のリアクトル4bの両端電圧V4b、第1のリアクトル4aに流れる電流I4a、第2のリアクトル4bに流れる電流I4b、第2の平滑コンデンサ6の電圧V2の関係を表している。図3に示すように、初めの動作モードは、図2(a)に示す第1動作モードである。第1動作モードでは第1のIGBT素子5a1がオン、第2のIGBT素子5b1と第3のIGBT素子5c1と第4のIGBT素子5d1がオフとなり、電流経路は、第1の平滑コンデンサ2、第1のリアクトル4a、第1のIGBT素子5a1、第1の平滑コンデンサ2を通る経路と、第1の平滑コンデンサ2、第2のリアクトル4b、第4のダイオード5d2、第2の平滑コンデンサ6、第1の平滑コンデンサ2を通る経路であり、第1のリアクトル4aの両端には、電圧V1が印加され、第2のリアクトル4bの両端には電圧(V1−V2)が印加されている。電流の向きは力行動作時の方向を正とする。   2 (a), 2 (b), and 2 (c) are circuit diagrams for explaining an operation mode at the time of a power running operation according to the first embodiment of the present invention, and FIG. It is an ideal operation | movement waveform at the time of the power running operation | movement of form 1. The dotted lines in FIGS. 2A to 2C represent current paths, and in FIG. 3, the gate signals G5a, G5b, G5c, G5d, and the first signal of the first to fourth IGBT elements 5a1 to 5d1 in the operation mode. , The relationship between the voltage V4a across the reactor 4a, the voltage V4b across the second reactor 4b, the current I4a flowing through the first reactor 4a, the current I4b flowing through the second reactor 4b, and the voltage V2 of the second smoothing capacitor 6. Represents. As shown in FIG. 3, the first operation mode is the first operation mode shown in FIG. In the first operation mode, the first IGBT element 5a1 is turned on, the second IGBT element 5b1, the third IGBT element 5c1, and the fourth IGBT element 5d1 are turned off, and the current path is the first smoothing capacitor 2, A path passing through the first reactor 4a, the first IGBT element 5a1, the first smoothing capacitor 2, the first smoothing capacitor 2, the second reactor 4b, the fourth diode 5d2, the second smoothing capacitor 6, This is a path that passes through one smoothing capacitor 2, and a voltage V1 is applied to both ends of the first reactor 4a, and a voltage (V1-V2) is applied to both ends of the second reactor 4b. The direction of the current is positive when the powering operation is performed.

次の動作モードは、図2(c)に示す第3動作モードである。第3動作モードは、図2(c)に示すように、第1から第4のIGBT素子5a1〜5d1がオフとなり、電流経路は、第1の平滑コンデンサ2、第1のリアクトル4a、第2のダイオード5b2、第2の平滑コンデンサ6、第1の平滑コンデンサ2を通る経路と、第1の平滑コンデンサ2、第2のリアクトル4b、第4のダイオード5d2、第2の平滑コンデンサ6、第1の平滑コンデンサ2を通る経路であり、第1のリアクトル4aの両端と第2のリアクトル4bの両端には電圧(V1−V2)が印加されている。   The next operation mode is the third operation mode shown in FIG. In the third operation mode, as shown in FIG. 2C, the first to fourth IGBT elements 5a1 to 5d1 are turned off, and the current path includes the first smoothing capacitor 2, the first reactor 4a, and the second Path through the diode 5b2, the second smoothing capacitor 6, the first smoothing capacitor 2, the first smoothing capacitor 2, the second reactor 4b, the fourth diode 5d2, the second smoothing capacitor 6, the first The voltage (V1-V2) is applied to both ends of the first reactor 4a and both ends of the second reactor 4b.

次の動作モードは、図2(b)に示す第2動作モードである。第2動作モードは、図2(b)に示すように、第3のIGBT素子5c1がオン、第1のIGBT素子5a1と第2のIGBT素子5b1と第4のIGBT素子5d1がオフとなり、電流経路は、第1の平滑コンデンサ2、第1のリアクトル4a、第2のダイオード5b2、第2の平滑コンデンサ6、第1の平滑コンデンサ2を通る経路と、第1の平滑コンデンサ2、第2のリアクトル4b、第3のIGBT素子5c1、第1の平滑コンデンサ2を通る経路であり、第1のリアクトル4aの両端には電圧(V1−V2)が印加され、第2のリアクトル4bの両端には電圧V1が印加されている。   The next operation mode is the second operation mode shown in FIG. In the second operation mode, as shown in FIG. 2B, the third IGBT element 5c1 is turned on, the first IGBT element 5a1, the second IGBT element 5b1, and the fourth IGBT element 5d1 are turned off. The path includes a path passing through the first smoothing capacitor 2, the first reactor 4a, the second diode 5b2, the second smoothing capacitor 6, the first smoothing capacitor 2, and a path passing through the first smoothing capacitor 2, the second smoothing capacitor 2, This is a path that passes through the reactor 4b, the third IGBT element 5c1, and the first smoothing capacitor 2. A voltage (V1-V2) is applied to both ends of the first reactor 4a, and a voltage is applied to both ends of the second reactor 4b. Voltage V1 is applied.

次の動作モードは、図2(c)に示す第3動作モードである。前述した第3動作モードと同様の動作となるため、説明を割愛する。
以上の一連の「第1動作モードから、第3動作モード、第2動作モード、第3動作モード」の繰り返しにより、第1の平滑コンデンサ2の電圧V1を任意の電圧に昇圧して、第2の平滑コンデンサ6の電圧V2として出力させることができる。
The next operation mode is the third operation mode shown in FIG. Since the operation is similar to that of the third operation mode described above, the description is omitted.
By repeating the series of “first operation mode, third operation mode, second operation mode, and third operation mode”, the voltage V1 of the first smoothing capacitor 2 is boosted to an arbitrary voltage, Can be output as the voltage V2 of the smoothing capacitor 6.

回生動作の場合、力行動作と異なる点は、第1から第4のIGBT素子5a1〜5d1を流れる電流の向きと第1のIGBT素子5a1のゲート信号G5aと第2のIGBT素子5b1のゲート信号G5bを入れ替え、第3のIGBT素子5c1のゲート信号G5cと第4のIGBT素子5d1のゲート信号G5dを入れ替え、電圧V2を降圧することのみであり、電流経路が両者で同じであるため、以降の説明においても回生動作の説明を割愛する。   In the case of the regenerative operation, the points different from the power running operation are the directions of the currents flowing through the first to fourth IGBT elements 5a1 to 5d1, the gate signal G5a of the first IGBT element 5a1, and the gate signal G5b of the second IGBT element 5b1. , The gate signal G5c of the third IGBT element 5c1 and the gate signal G5d of the fourth IGBT element 5d1 are only replaced, and the voltage V2 is reduced. Since the current paths are the same for both, the following description will be made. Also, the description of the regenerative operation is omitted.

電力変換装置100では、V2検出値とV2目標値が一致するように第1から第4のIGBT素子5a1〜5d1をオンオフさせることで制御している。第1から第4のIGBT素子5a1〜5d1のいずれか1つに異常が発生した場合、第1のリアクトル4aの電流値I4a、または第2のリアクトル4bの電流値I4bが異常値となり、2経路の電流値がアンバランスとなり、電流値I4aまたは電流値I4bが増大することで損失も増大し、第1から第4のIGBT素子5a1〜5d1のいずれかが耐熱温度を超過してしまうこと、および過電流が流れてしまうことによって、正常動作が不可能となる。   In the power converter 100, control is performed by turning on and off the first to fourth IGBT elements 5a1 to 5d1 so that the V2 detection value matches the V2 target value. When an abnormality occurs in any one of the first to fourth IGBT elements 5a1 to 5d1, the current value I4a of the first reactor 4a or the current value I4b of the second reactor 4b becomes an abnormal value, and the two paths Current value becomes unbalanced, the current value I4a or the current value I4b increases, the loss also increases, and one of the first to fourth IGBT elements 5a1 to 5d1 exceeds the heat-resistant temperature, and When an overcurrent flows, normal operation becomes impossible.

前記異常の例として、第1から第4のIGBT素子5a1〜5d1のいずれかがオープン故障となる電流を通さない異常(以降、オフ固着異常と称する)を挙げる。
図4(a)、図4(b)は、本願の実施の形態1の第1のIGBT素子5a1にオフ固着異常が発生した場合の力行動作の動作モードを説明するための回路図である。それぞれの動作モードでの電流経路は、実施の形態1の図2(a)、図2(b)、図2(c)と同様のため説明を割愛する。
As an example of the abnormality, there is an abnormality in which one of the first to fourth IGBT elements 5a1 to 5d1 does not pass a current that causes an open failure (hereinafter, referred to as an off-fix abnormality).
FIGS. 4A and 4B are circuit diagrams for explaining the operation mode of the power running operation when the off-fixation abnormality occurs in the first IGBT element 5a1 according to the first embodiment of the present invention. The current paths in the respective operation modes are the same as those in FIG. 2A, FIG. 2B, and FIG.

図5は、第1のIGBT素子5a1にオフ固着異常が発生した場合の理想動作波形である。図5に示すように、第1のIGBT素子5a1にオフ固着異常が発生した場合は、第1のIGBT素子5a1がオンせず、電流値I4aが0Aのため、電流値I4aと電流値I4bの間でアンバランスが生じ、正常動作が不可能となる。第2のIGBT素子5b1のオフ固着異常時は、回生動作時に同様の状態となり、第3のIGBT素子5c1と第4のIGBT素子5d1の各オフ固着異常時は、第1のIGBT素子5a1と第2のIGBT素子5b1の各オフ固着異常時に対して、電流値I4aと電流値I4bが変わり、電圧値V4aと電圧値V4bが変わるのみであり、動作は、第1のIGBT素子5a1と第2のIGBT素子5b1の各オフ固着異常時と同様であるため説明を割愛する。   FIG. 5 shows an ideal operation waveform when an off-fixation abnormality occurs in the first IGBT element 5a1. As shown in FIG. 5, when the OFF fixation abnormality occurs in the first IGBT element 5a1, the first IGBT element 5a1 does not turn on and the current value I4a is 0A. Imbalance occurs between them, making normal operation impossible. When the second IGBT element 5b1 is off-fixed abnormally, the same state occurs during the regenerative operation. When the third IGBT element 5c1 and the fourth IGBT element 5d1 are off-fixed abnormally, the first IGBT element 5a1 and the fourth The current value I4a and the current value I4b are changed and only the voltage value V4a and the voltage value V4b are changed with respect to each off fixation abnormality of the IGBT element 5b1 of the second IGBT element 5b1. The description is omitted because it is the same as that at the time of the abnormal OFF fixation of the IGBT element 5b1.

また、第1の電流センサ3a、または第2の電流センサ3bに異常が発生した場合は、2並列間の電流値がアンバランスとなることを基に、電流センサの故障判定を行うことができる。第1から第4のIGBT素子5a1〜5d1にオフ固着異常が発生した場合も、前述の通り、2並列間の電流値がアンバランスとなり、電流センサに異常が発生した場合と同様の挙動となってしまい、電流センサの故障判定と誤判定してしまう。したがって、電流センサの異常とIGBT素子の異常を区別して故障判定を行う必要がある。   Further, when an abnormality occurs in the first current sensor 3a or the second current sensor 3b, the failure determination of the current sensor can be performed based on the unbalanced current value between the two parallel sensors. . As described above, when the first to fourth IGBT elements 5a1 to 5d1 have an off-fixed abnormality, the current value between the two parallels is unbalanced, and the behavior is the same as that when an abnormality occurs in the current sensor. As a result, the current sensor is erroneously determined as a failure determination. Therefore, it is necessary to determine the failure while distinguishing between the abnormality of the current sensor and the abnormality of the IGBT element.

図6は、本願の実施の形態1に用いられる故障判定のフローチャート図である。図7(a)〜(h)は、本願の実施の形態1に用いられる故障判定時の動作モードを説明するための回路図である。図7(a)〜(h)の点線は、電流経路を表している。
図6に示すように、ステップST0の通常制御を継続し、ステップST1において、2並列間の電流値にアンバランスが生じないことを確認し、アンバランスが生じていなければ、制御を繰り返し、電流値および電圧値の検出を継続する。2並列間の電流値にアンバランスが生じた場合には、ステップST2において、第1のIGBT素子5a1を駆動させ、ステップST3において、第2の平滑コンデンサ6の電圧V2が変動した場合には、第1のIGBT素子5a1は正常であり、電圧V2が変動しない場合は、ステップST4において、第1のIGBT素子5a1のオフ固着異常と判定する。この判定方法は、IGBT素子にオフ固着異常が発生した場合に、前述した通り、電流が流れないため、電圧V2が変動しないことを利用している。
FIG. 6 is a flowchart of the failure determination used in the first embodiment of the present application. FIGS. 7A to 7H are circuit diagrams for explaining the operation mode at the time of failure determination used in the first embodiment of the present application. The dotted lines in FIGS. 7A to 7H represent current paths.
As shown in FIG. 6, the normal control in step ST0 is continued, and in step ST1, it is confirmed that there is no imbalance in the current value between the two parallel circuits. If no imbalance has occurred, the control is repeated. The detection of the value and the voltage value is continued. When the imbalance occurs in the current value between the two parallels, the first IGBT element 5a1 is driven in step ST2, and when the voltage V2 of the second smoothing capacitor 6 fluctuates in step ST3, If the first IGBT element 5a1 is normal and the voltage V2 does not fluctuate, it is determined in step ST4 that the first IGBT element 5a1 is off-fixed. This determination method utilizes the fact that the current does not flow when the IGBT element has the off-fixed abnormality, as described above, so that the voltage V2 does not fluctuate.

第2の平滑コンデンサ6の電圧V2が変動した場合には、ステップST5において、第2のIGBT素子5b1を駆動させる。そしてステップST6において、第2の平滑コンデンサ6の電圧V2が変動するか否かを判定し、変動した場合には、第2のIGBT素子5b1は正常であり、電圧V2が変動しない場合には、ステップST7において、第2のIGBT素子5b1のオフ固着異常と判定する。第2のIGBT素子5b1が正常の場合には、ステップST8において、第3のIGBT素子5c1を駆動させ、ステップST9において、第2の平滑コンデンサ6の電圧V2が変動するか否かを確認し、電圧V2が変動した場合には、第3のIGBT素子5c1は正常であり、電圧V2が変動しない場合には、ステップST10において、第3のIGBT素子5c1のオフ固着異常と判定する。第3のIGBT素子5c1までに異常がなければ、続いて、ステップST11において、第4のIGBT素子5d1を駆動させ、ステップST12において、第2の平滑コンデンサ6の電圧の変動が生じるか否かを確認する。電圧V2が変動した場合には、第4のIGBT素子5d1は正常であり、電圧V2が変動しない場合には、ステップST13において、第4のIGBT素子5d1のオフ固着異常と判定する。第1から第4のIGBT素子5a1〜5d1が正常と判定されれば、ステップST14において、電流センサの異常と故障判定する。
以上より、電流センサの異常と第1から第4のIGBT素子5a1〜5d1の異常を区別することが可能となる。
When the voltage V2 of the second smoothing capacitor 6 fluctuates, the second IGBT element 5b1 is driven in step ST5. In step ST6, it is determined whether or not the voltage V2 of the second smoothing capacitor 6 fluctuates. If the voltage V2 fluctuates, the second IGBT element 5b1 is normal, and if the voltage V2 does not fluctuate, In step ST7, it is determined that the second IGBT element 5b1 is abnormally stuck off. If the second IGBT element 5b1 is normal, the third IGBT element 5c1 is driven in step ST8, and in step ST9, it is checked whether or not the voltage V2 of the second smoothing capacitor 6 fluctuates. When the voltage V2 fluctuates, the third IGBT element 5c1 is normal, and when the voltage V2 does not fluctuate, it is determined in step ST10 that the third IGBT element 5c1 is off-fixed. If there is no abnormality up to the third IGBT element 5c1, subsequently, in step ST11, the fourth IGBT element 5d1 is driven, and in step ST12, it is determined whether or not the voltage of the second smoothing capacitor 6 fluctuates. Confirm. When the voltage V2 fluctuates, the fourth IGBT element 5d1 is normal, and when the voltage V2 does not fluctuate, it is determined in step ST13 that the fourth IGBT element 5d1 is abnormally fixed off. If it is determined that the first to fourth IGBT elements 5a1 to 5d1 are normal, in step ST14, it is determined that the current sensor is abnormal and faulty.
As described above, it is possible to distinguish the abnormality of the current sensor from the abnormality of the first to fourth IGBT elements 5a1 to 5d1.

図8は、第1のIGBT素子5a1のみを駆動させた場合の理想動作波形であり、第1から第4のIGBT素子5a1〜5d1のゲート信号、リアクトル電流、リアクトル電圧およびコンデンサ電圧の関係を表している。
図8に示すように、初めの動作モードは、図7(a)に示す第6動作モードである。この場合、第1のIGBT素子5a1がオン、第2のIGBT素子5b1、第3のIGBT素子5c1および第4のIGBT素子5d1がオフであって、電流経路は、図7(a)に示すように第1の平滑コンデンサ2、第1のリアクトル4a、第1のIGBT素子5a1、第1の平滑コンデンサ2を通る経路であり、第1のリアクトル4aの両端には電圧V1が印加される。
FIG. 8 is an ideal operation waveform when only the first IGBT element 5a1 is driven, and shows the relationship among the gate signals, the reactor current, the reactor voltage, and the capacitor voltage of the first to fourth IGBT elements 5a1 to 5d1. ing.
As shown in FIG. 8, the first operation mode is the sixth operation mode shown in FIG. In this case, the first IGBT element 5a1 is on, the second IGBT element 5b1, the third IGBT element 5c1, and the fourth IGBT element 5d1 are off, and the current path is as shown in FIG. Is a path passing through the first smoothing capacitor 2, the first reactor 4a, the first IGBT element 5a1, and the first smoothing capacitor 2, and a voltage V1 is applied to both ends of the first reactor 4a.

次の動作モードは、図7(b)に示す第7動作モードである。この場合、第1から第4のIGBT素子5a1〜5d1がオフし、電流経路は、図7(b)に示すように第1の平滑コンデンサ2、第1のリアクトル4a、第2のダイオード5b2、第2の平滑コンデンサ6、第1の平滑コンデンサ2を通る経路であり、第1のリアクトル4aの両端には電圧(V1−V2)が印加される。第1のIGBT素子5a1が正常であれば、電圧V4a、電流I4a、電圧V2は、図8の実線グラフ(A)のように変動する。第1のIGBT素子5a1がオフ固着異常であればオンしないため、電圧V4a、電流I4a、電圧V2は、図8の点線グラフ(B)のように変動しない。したがって、電圧V2の変動の有無により第1のIGBT素子5a1の故障判定が可能となる。   The next operation mode is the seventh operation mode shown in FIG. In this case, the first to fourth IGBT elements 5a1 to 5d1 are turned off, and the current path is, as shown in FIG. 7B, a first smoothing capacitor 2, a first reactor 4a, a second diode 5b2, This is a path passing through the second smoothing capacitor 6 and the first smoothing capacitor 2, and a voltage (V1-V2) is applied to both ends of the first reactor 4a. If the first IGBT element 5a1 is normal, the voltage V4a, the current I4a, and the voltage V2 fluctuate as shown by the solid line graph (A) in FIG. Since the first IGBT element 5a1 is not turned on if the first IGBT element 5a1 is off-fixed, the voltage V4a, the current I4a, and the voltage V2 do not fluctuate as shown by the dotted line graph (B) in FIG. Therefore, it is possible to determine the failure of the first IGBT element 5a1 based on whether or not the voltage V2 fluctuates.

図9は、第2のIGBT素子5b1のみを駆動させた場合の理想動作波形を示しており、ゲート信号、リアクトル電流、リアクトル電圧およびコンデンサ電圧の関係を表している。
図9に示すように、初期状態の電圧V2は、電圧V1よりも大きい値とする。また、初めの動作モードは、図7(e)に示す第10動作モードである。この場合、第2のIGBT素子5b1がオンし、第1のIGBT素子5a1と第3のIGBT素子5c1と第4のIGBT素子5d1は、オフし、電流経路は、第2の平滑コンデンサ6、第2のIGBT素子5b1、第1のリアクトル4a、第1の平滑コンデンサ2、第2の平滑コンデンサ6を通る経路であり、第1のリアクトル4aの両端には電圧(V1―V2)が印加される。
FIG. 9 shows an ideal operation waveform when only the second IGBT element 5b1 is driven, and shows a relationship among a gate signal, a reactor current, a reactor voltage, and a capacitor voltage.
As shown in FIG. 9, the voltage V2 in the initial state is set to a value higher than the voltage V1. The first operation mode is the tenth operation mode shown in FIG. In this case, the second IGBT element 5b1 is turned on, the first IGBT element 5a1, the third IGBT element 5c1, and the fourth IGBT element 5d1 are turned off, and the current path is the second smoothing capacitor 6, This is a path passing through the second IGBT element 5b1, the first reactor 4a, the first smoothing capacitor 2, and the second smoothing capacitor 6, and a voltage (V1-V2) is applied to both ends of the first reactor 4a. .

次の動作モードは、図7(f)に示す第11動作モードである。この場合、第1から第4のIGBT素子5a1〜5d1がオフし、電流経路は、第1のリアクトル4a、第1の平滑コンデンサ2、第1のダイオード5a2、第1のリアクトル4aを通る経路であり、第1のリアクトル4aの両端には電圧V1が印加される。第2のIGBT素子5b1が正常であれば、電圧V4a、電流I4a、電圧V2は、図9の実線グラフ(A)のように変動する。第2のIGBT素子5b1がオフ固着異常であれば、オンしないため、電圧V4a、電流I4a、電圧V2は、図9の点線グラフ(B)のように変動しない。したがって、電圧V2の変動の有無により第2のIGBT素子5b1の故障判定が可能となる。   The next operation mode is the eleventh operation mode shown in FIG. In this case, the first to fourth IGBT elements 5a1 to 5d1 are turned off, and the current path is a path passing through the first reactor 4a, the first smoothing capacitor 2, the first diode 5a2, and the first reactor 4a. The voltage V1 is applied to both ends of the first reactor 4a. If the second IGBT element 5b1 is normal, the voltage V4a, the current I4a, and the voltage V2 fluctuate as shown by the solid line graph (A) in FIG. If the second IGBT element 5b1 is in the off-fixed abnormality, the second IGBT element 5b1 does not turn on, so that the voltage V4a, the current I4a, and the voltage V2 do not fluctuate as shown by the dotted line graph (B) in FIG. Therefore, it is possible to determine the failure of the second IGBT element 5b1 based on whether or not the voltage V2 fluctuates.

図10は、第3のIGBT素子5c1のみを駆動させた場合の理想動作波形であり、ゲート信号、リアクトル電流、リアクトル電圧およびコンデンサ電圧の関係を表している。
図10に示すように、初めの動作モードは、図7(c)に示す第8動作モードである。この場合、第3のIGBT素子5c1がオン、第1のIGBT素子5a1と第2のIGBT素子5b1と第4のIGBT素子5d1がオフし、電流経路は、第1の平滑コンデンサ2、第2のリアクトル4b、第3のIGBT素子5c1、第1の平滑コンデンサ2を通る経路であり、第2のリアクトル4bの両端には電圧V1が印加される。
FIG. 10 shows an ideal operation waveform when only the third IGBT element 5c1 is driven, and shows a relationship among a gate signal, a reactor current, a reactor voltage, and a capacitor voltage.
As shown in FIG. 10, the first operation mode is the eighth operation mode shown in FIG. In this case, the third IGBT element 5c1 is turned on, the first IGBT element 5a1, the second IGBT element 5b1, and the fourth IGBT element 5d1 are turned off, and the current paths are the first smoothing capacitor 2 and the second This is a path passing through the reactor 4b, the third IGBT element 5c1, and the first smoothing capacitor 2, and a voltage V1 is applied to both ends of the second reactor 4b.

次の動作モードは、図7(d)に示す第9動作モードである。この場合、第1から第4のIGBT素子5a1〜5d1がオフし、電流経路は、第1の平滑コンデンサ2、第2のリアクトル4b、第4のダイオード5d2、第2の平滑コンデンサ6、第1の平滑コンデンサ2を通る経路であり、第2のリアクトル4bの両端には電圧(V1−V2)が印加される。第3のIGBT素子5c1が正常であれば、電圧V4b、電流I4b、電圧V2は、図10の実線グラフ(A)のように変動する。第3のIGBT素子5c1がオフ固着異常であれば、オンしないため、電圧V4b、電流I4b、電圧V2は、図10の点線グラフ(B)のように変動しない。したがって、電圧V2の変動の有無により、第3のIGBT素子5c1の故障判定が可能となる。   The next operation mode is the ninth operation mode shown in FIG. In this case, the first to fourth IGBT elements 5a1 to 5d1 are turned off, and the current path includes the first smoothing capacitor 2, the second reactor 4b, the fourth diode 5d2, the second smoothing capacitor 6, and the first smoothing capacitor. And a voltage (V1-V2) is applied to both ends of the second reactor 4b. If the third IGBT element 5c1 is normal, the voltage V4b, the current I4b, and the voltage V2 fluctuate as shown by the solid line graph (A) in FIG. If the third IGBT element 5c1 is off-fixed abnormally, it does not turn on, so that the voltage V4b, the current I4b, and the voltage V2 do not fluctuate as shown by the dotted line graph (B) in FIG. Therefore, it is possible to determine the failure of the third IGBT element 5c1 depending on whether or not the voltage V2 fluctuates.

図11は、第4のIGBT素子5d1のみを駆動させた場合の理想動作波形を示しており、ゲート信号、リアクトル電流、リアクトル電圧およびコンデンサ電圧の関係を表している。
図11に示すように、初期状態の電圧V2は、電圧V1よりも大きい値とする。また、初めの動作モードは、図7(g)に示す第12動作モードである。この場合、第4のIGBT素子5d1がオンし、第1から第3のIGBT素子5a1〜5c1がオフし、電流経路は、第2の平滑コンデンサ6、第4のIGBT素子5d1、第2のリアクトル4b、第1の平滑コンデンサ2、第2の平滑コンデンサ6を通る経路であり、第2のリアクトル4bの両端には電圧(V1―V2)が印加される。
FIG. 11 shows an ideal operation waveform when only the fourth IGBT element 5d1 is driven, and shows a relationship among a gate signal, a reactor current, a reactor voltage, and a capacitor voltage.
As shown in FIG. 11, the voltage V2 in the initial state is set to a value higher than the voltage V1. The first operation mode is the twelfth operation mode shown in FIG. In this case, the fourth IGBT element 5d1 turns on, the first to third IGBT elements 5a1 to 5c1 turn off, and the current path includes the second smoothing capacitor 6, the fourth IGBT element 5d1, and the second reactor. 4b, a path passing through the first smoothing capacitor 2 and the second smoothing capacitor 6, and a voltage (V1-V2) is applied to both ends of the second reactor 4b.

次の動作モードは、図7(h)に示す第13動作モードである。この場合、第1から第4のIGBT素子5a1〜5d1がオフし、電流経路は、第2のリアクトル4b、第1の平滑コンデンサ2、第3のダイオード5c2、第2のリアクトル4bを通る経路であり、第2のリアクトル4bの両端には電圧V1が印加される。第4のIGBT素子5d1が正常であれば、電圧V4b、電流I4b、電圧V2は、図11の実線グラフ(A)のように変動する。第4のIGBT素子5d1がオフ固着異常であれば、オンしないため、電圧V4b、電流I4b、電圧V2は、図11の点線グラフ(B)のように変動しない。したがって、電圧V2の変動の有無により、第4のIGBT素子5d1の故障判定が可能となる。   The next operation mode is the thirteenth operation mode shown in FIG. In this case, the first to fourth IGBT elements 5a1 to 5d1 are turned off, and the current path is a path passing through the second reactor 4b, the first smoothing capacitor 2, the third diode 5c2, and the second reactor 4b. The voltage V1 is applied to both ends of the second reactor 4b. If the fourth IGBT element 5d1 is normal, the voltage V4b, the current I4b, and the voltage V2 fluctuate as shown by the solid line graph (A) in FIG. If the fourth IGBT element 5d1 is off-fixed abnormally, it does not turn on, so that the voltage V4b, the current I4b, and the voltage V2 do not fluctuate as shown by the dotted line graph (B) in FIG. Therefore, the failure of the fourth IGBT element 5d1 can be determined based on the presence or absence of the change in the voltage V2.

第1のIGBT素子5a1、または第3のIGBT素子5c1にオフ固着異常が生じた場合は、力行動作において第1のリアクトル4a、または第2のリアクトル4bに電流が流れず、正常動作できないが、回生動作においては第1のIGBT素子5a1と第3のIGBT素子5c1を使用しないため、正常動作が可能となる。力行動作において、第2のIGBT素子5b1と第4のIGBT素子5d1を使用しないため、第2のIGBT素子5b1、または第4のIGBT素子5d1にオフ固着異常が生じた場合でも正常動作が可能となる。   When the OFF fixation abnormality occurs in the first IGBT element 5a1 or the third IGBT element 5c1, current does not flow through the first reactor 4a or the second reactor 4b in the power running operation, and normal operation cannot be performed. In the regenerative operation, since the first IGBT element 5a1 and the third IGBT element 5c1 are not used, normal operation can be performed. In the power running operation, since the second IGBT element 5b1 and the fourth IGBT element 5d1 are not used, normal operation is possible even when the second IGBT element 5b1 or the fourth IGBT element 5d1 has an off-fixed abnormality. Become.

したがって、前記の動作を行うことで第1から第4のIGBT素子5a1〜5d1のオフ固着異常が生じた箇所を特定することができ、正常なIGBT素子を用いて電力を伝送し続けることが可能となる。   Therefore, by performing the above-described operation, it is possible to identify a portion where the first to fourth IGBT elements 5a1 to 5d1 have an off-fixed abnormality, and it is possible to continuously transmit power using a normal IGBT element. It becomes.

なお、実施の形態1の電力変換装置100には、第1から第4のIGBT素子5a1〜5d1として、IGBT(Insulated Gate Bipolar Transistor)を使用した場合について説明しているが、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のスイッチング素子を用いても実施の形態1と同様の効果が得られる。   In the power conversion device 100 of the first embodiment, a case is described in which IGBTs (Insulated Gate Bipolar Transistors) are used as the first to fourth IGBT elements 5a1 to 5d1, but a MOSFET (Metal Oxide Semiconductor) is used. The same effect as in the first embodiment can be obtained by using a switching element of a Field Effect Transistor.

また、実施の形態1では、電力変換装置100のリアクトルとして非結合型のリアクトルを用いた場合の説明を行ったが、結合型のリアクトルを用いても実施の形態1と同様の効果が得られる。   Further, in the first embodiment, the case where a non-coupled reactor is used as the reactor of power conversion device 100 has been described. However, the same effect as in the first embodiment can be obtained by using the coupled reactor. .

また、実施の形態1では、電流センサとIGBT素子の故障判定においては、2並列間の電流値にアンバランスが生じた場合に、第1のIGBT素子5a1から駆動させているが、どのIGBT素子から駆動させてもよく、どの順番でIGBT素子を駆動させてもよい。
また、実施の形態1では、電流センサをリアクトルと第1の平滑コンデンサ2の正極の間に接続している場合を示しているが、第1と第2のリアクトル4a、4bに流れる電流をそれぞれ検出できる場所に接続しても実施の形態1と同様の効果が得られる。
Further, in the first embodiment, in the failure determination of the current sensor and the IGBT element, the first IGBT element 5a1 is driven when the current value between the two parallels is unbalanced. IGBT elements may be driven in any order.
In the first embodiment, the case where the current sensor is connected between the reactor and the positive electrode of the first smoothing capacitor 2 is shown. However, the currents flowing through the first and second reactors 4a and 4b are respectively The same effect as in the first embodiment can be obtained even if the terminal is connected to a place where detection is possible.

実施の形態2.
図1〜図11においては、第1の平滑コンデンサ2から第2の平滑コンデンサ6までの構成が2並列構成であったが、3並列構成の場合を実施の形態2で説明する。
Embodiment 2 FIG.
1 to 11, the configuration from the first smoothing capacitor 2 to the second smoothing capacitor 6 is a two-parallel configuration. However, a case of a three-parallel configuration will be described in a second embodiment.

図12は、実施の形態2を説明するための3並列構成の電力変換装置101の回路図である。3並列構成の場合、2並列構成と異なる構成部品として、第3の電流センサ3c、第3のリアクトル4c、および第5の電圧変換部として、第5のIGBT素子5e1、第5のIGBT素子5e1に逆並列接続されている第5のダイオード5e2、第6の電圧変換部として、第6のIGBT素子5f1、および第6のIGBT素子5f1に逆並列接続されている第6のダイオード5f2が追加されている。すなわち、3つの電流センサが接続されている状態になる。   FIG. 12 is a circuit diagram of a power conversion device 101 having a three-parallel configuration for explaining the second embodiment. In the case of the three-parallel configuration, the third current sensor 3c, the third reactor 4c, and the fifth IGBT element 5e1, the fifth IGBT element 5e1 as the fifth voltage conversion unit are different from the two-parallel configuration. A fifth diode 5e2 connected in anti-parallel to the second circuit, a sixth IGBT element 5f1, and a sixth diode 5f2 connected in anti-parallel to the sixth IGBT element 5f1 are added as a sixth voltage converter. ing. That is, three current sensors are connected.

追加された第3の電流センサ3c、第3のリアクトル4c、第5のIGBT素子5e1、および第6のIGBT素子5f1は、2並列構成の部品と同様の機能を果たす。   The added third current sensor 3c, third reactor 4c, fifth IGBT element 5e1, and sixth IGBT element 5f1 perform the same function as the components of the two-parallel configuration.

以下に、追加された部品の接続について説明する。第3の電流センサ3cは、端子3c1が第1の平滑コンデンサ2の正極と第1の電流センサ3aの端子3a1に接続され、端子3c2が第3のリアクトル4cを介して、第5のIGBT素子5e1のコレクタ端子と第6のIGBT素子5f1のエミッタ端子に接続されている。第5のIGBT素子5e1のエミッタ端子は、第1の平滑コンデンサ2の負極に接続され、第6のIGBT素子5f1のコレクタ端子は、第2の平滑コンデンサ6の正極に接続されている。制御信号部200の端子201eは、第5のIGBT素子5e1のゲート端子に接続され、制御信号部200の端子201fは、第6のIGBT素子5f1のゲート端子に接続されている。故障判定部300の端子301cは、第3の電流センサ3cの端子3c3に接続されている。   The connection of the added components will be described below. The third current sensor 3c has a terminal 3c1 connected to the positive electrode of the first smoothing capacitor 2 and the terminal 3a1 of the first current sensor 3a, and a terminal 3c2 connected to the fifth IGBT element via the third reactor 4c. It is connected to the collector terminal of 5e1 and the emitter terminal of the sixth IGBT element 5f1. The emitter terminal of the fifth IGBT element 5e1 is connected to the negative electrode of the first smoothing capacitor 2, and the collector terminal of the sixth IGBT element 5f1 is connected to the positive electrode of the second smoothing capacitor 6. The terminal 201e of the control signal section 200 is connected to the gate terminal of the fifth IGBT element 5e1, and the terminal 201f of the control signal section 200 is connected to the gate terminal of the sixth IGBT element 5f1. The terminal 301c of the failure determination unit 300 is connected to the terminal 3c3 of the third current sensor 3c.

実施の形態2の電力変換装置101において、定常状態では力行動作と回生動作の2つが存在する。実施の形態2の電力変換装置101は、実施の形態1の電力変換装置100に比べて1回路の並列接続が増えたのみで、定常状態における動作とオフ固着異常時の挙動は、実施の形態1の電力変換装置100と同様のため、説明を割愛する。   In the power conversion device 101 according to the second embodiment, there are two power running operations and regenerative operations in a steady state. The power converter 101 according to the second embodiment differs from the power converter 100 according to the first embodiment only in that the number of parallel connections of one circuit is increased. The description is omitted because it is the same as that of the first power conversion device 100.

実施の形態2の電力変換装置101では、並列間の電流値にアンバランスが生じた場合、第1から第6のIGBT素子5a1〜5f1と電流センサの故障判定を行い、更に第1から第3の電流センサ3a〜3cの中から故障状態にある電流センサを特定することが可能となる。   In the power converter 101 according to the second embodiment, when an imbalance occurs in the current value between the parallels, the first to sixth IGBT elements 5a1 to 5f1 and the current sensor are determined to be faulty, and the first to third IGBT elements 5a1 to 5f1 are further determined. Out of the current sensors 3a to 3c can be specified.

以下に第1から第3の電流センサ3a〜3cの中から故障状態にある電流センサを特定する方法を述べる。第1から第3の電流センサ3a〜3cの電流値I3a〜I3c同士で差分を取り、式(1)〜(3)のように表される。
|I3a−I3b|=I3ab ・・・(1)
|I3a−I3c|=I3ac ・・・(2)
|I3b−I3c|=I3bc ・・・(3)
Hereinafter, a method for specifying a current sensor in a failure state from among the first to third current sensors 3a to 3c will be described. Differences are obtained between the current values I3a to I3c of the first to third current sensors 3a to 3c, and are expressed as Expressions (1) to (3).
| I3a-I3b | = I3ab (1)
| I3a-I3c | = I3ac (2)
| I3b-I3c | = I3bc (3)

第1から第3の電流センサ3a〜3cのうちいずれかが故障状態にある電流センサは、他の正常な電流センサと値が異なる。例えば第1の電流センサ3aが故障状態である場合、電流値I3aが他の電流値と異なるため、差分I3abと差分I3acが差分I3bcよりも大きい値となる。   The current sensor in which one of the first to third current sensors 3a to 3c is in a failure state has a different value from the other normal current sensors. For example, when the first current sensor 3a is in a failure state, the current value I3a is different from the other current values, so that the difference I3ab and the difference I3ac are larger than the difference I3bc.

なお、第2の電流センサ3bまたは第3の電流センサ3cが故障状態にある場合でも同様に説明ができる。
また、実施の形態2の電力変換装置101の第1から第6のIGBT素子5a1〜5f1に、MOSFETのスイッチング素子を用いても実施の形態2と同様の効果が得られる。
Note that the same description can be applied to a case where the second current sensor 3b or the third current sensor 3c is in a failure state.
Further, the same effect as in the second embodiment can be obtained even if MOSFET switching elements are used for the first to sixth IGBT elements 5a1 to 5f1 of the power conversion device 101 of the second embodiment.

また、実施の形態2では電力変換装置101のリアクトルに非結合型のリアクトルを用いた場合を示したが、結合型のリアクトルを用いても同様の効果を得ることができる。
また、実施の形態2の電流センサを、リアクトルと第1の平滑コンデンサ2の正極の間に接続している場合を示したが、第1から第3の各リアクトル4a〜4cに流れる電流をそれぞれ検出できる場所に接続しても同様の効果を得ることができる。
また、実施の形態2では3並列構成の電力変換装置101の説明を行ったが、3以上の自然数をNとして、N並列構成の電力変換装置でも同様の効果を得ることができる。すなわち、3つ以上の電流センサが接続されていて、スイッチング素子が正常と判定された場合、他の第1の電流センサの値と乖離した1つの第1の電流センサを異常であると特定することができることになる。
Further, in the second embodiment, the case where a non-coupled reactor is used as the reactor of power conversion device 101 has been described. However, a similar effect can be obtained by using a coupled reactor.
Further, the case where the current sensor of the second embodiment is connected between the reactor and the positive electrode of the first smoothing capacitor 2 has been described, but the current flowing through each of the first to third reactors 4a to 4c is The same effect can be obtained by connecting to a place where detection is possible.
In the second embodiment, the description has been given of the power converter 101 having the three-parallel configuration. However, the same effect can be obtained with the power converter having the N-parallel configuration, where N is a natural number of 3 or more. That is, when three or more current sensors are connected and the switching element is determined to be normal, one of the first current sensors that is different from the value of the other first current sensor is identified as abnormal. You can do it.

実施の形態3.
次に、実施の形態3について説明する。図13は、実施の形態3の電力変換装置102の回路図である。
図13に示すように、実施の形態3の電力変換装置102は、実施の形態1の電力変換装置100の構成部品に加え、第1の平滑コンデンサ2の両端の電圧V1を検出する第2の電圧センサ7bと、双方向電源1bと、双方向電源1bに流れる電流I1bを検出する第4の電流センサ8aとを追加している。ここで、双方向電源1bとは、1台で力行動作を行う際には電源装置として機能し、回生動作を行う際には負荷として機能する電源装置である。
Embodiment 3 FIG.
Next, a third embodiment will be described. FIG. 13 is a circuit diagram of the power converter 102 according to the third embodiment.
As shown in FIG. 13, the power conversion device 102 according to the third embodiment includes a second component that detects the voltage V1 across the first smoothing capacitor 2 in addition to the components of the power conversion device 100 according to the first embodiment. A voltage sensor 7b, a bidirectional power supply 1b, and a fourth current sensor 8a for detecting a current I1b flowing through the bidirectional power supply 1b are added. Here, the bidirectional power supply 1b is a power supply device that functions as a power supply device when performing a power running operation with one unit and functions as a load when performing a regenerative operation.

追加された構成部品の接続について説明する。第2の電圧センサ7bの端子7b1は、第1の平滑コンデンサ2の正極に接続され、端子7b2は、負極に接続されている。双方向電源1bの一端は、第4の電流センサ8aの端子8a2に接続され、他端は、第2の平滑コンデンサ6の負極に接続されている。第4の電流センサ8aの端子8a1は、第2の平滑コンデンサ6の正極に接続されている。故障判定部300の入力端子301dは、第4の電流センサ8aの出力端子8a3に接続され、第2の電圧センサ7bの出力端子7b3は、故障判定部の入力端子302bに接続されている。   The connection of the added components will be described. The terminal 7b1 of the second voltage sensor 7b is connected to the positive electrode of the first smoothing capacitor 2, and the terminal 7b2 is connected to the negative electrode. One end of the bidirectional power supply 1b is connected to the terminal 8a2 of the fourth current sensor 8a, and the other end is connected to the negative electrode of the second smoothing capacitor 6. The terminal 8a1 of the fourth current sensor 8a is connected to the positive electrode of the second smoothing capacitor 6. The input terminal 301d of the failure determination unit 300 is connected to the output terminal 8a3 of the fourth current sensor 8a, and the output terminal 7b3 of the second voltage sensor 7b is connected to the input terminal 302b of the failure determination unit.

実施の形態3では、電流センサの故障と第1から第4のIGBT素子5a1〜5d1の故障を区別し、更に各種センサの値に基づいて、第1の電流センサ3aの故障と第2の電流センサ3bの故障を区別することができる。   In the third embodiment, the failure of the current sensor and the failure of the first to fourth IGBT elements 5a1 to 5d1 are distinguished, and the failure of the first current sensor 3a and the failure of the second current are determined based on the values of various sensors. The failure of the sensor 3b can be distinguished.

第1の電流センサ3aの故障と第2の電流センサ3bの故障を区別する方法を次に説明する。第1の平滑コンデンサ2からの電力をW1、第2の電圧センサ7bの検出値をV1、第1の電流センサ3aの検出値をI3a、第2の電流センサ3bの検出値をI3bとすると、第1の平滑コンデンサ2からの電力W1は、式(4)のように表される。   Next, a method for distinguishing the failure of the first current sensor 3a from the failure of the second current sensor 3b will be described. Assuming that the power from the first smoothing capacitor 2 is W1, the detection value of the second voltage sensor 7b is V1, the detection value of the first current sensor 3a is I3a, and the detection value of the second current sensor 3b is I3b. The power W1 from the first smoothing capacitor 2 is represented by Expression (4).

W1=V1×(I3a+I3b) ・・・(4)
また、第2の平滑コンデンサ6への電力をW2、第1の電圧センサ7aの検出値をV2、第4の電流センサ8aの検出値をI8aとすると、第2の平滑コンデンサ6への電力W2は、式(5)のように表される。
W2=V2×I8a ・・・(5)
W1 = V1 × (I3a + I3b) (4)
Further, assuming that the power to the second smoothing capacitor 6 is W2, the detected value of the first voltage sensor 7a is V2, and the detected value of the fourth current sensor 8a is I8a, the power W2 to the second smoothing capacitor 6 is obtained. Is represented as in equation (5).
W2 = V2 × I8a (5)

第1の平滑コンデンサ2からの電力W1と双方向電源1bへの電力W2は同値となるため、式(6)のように表される。
(I3a+I3b)=V2×I8a÷V1 ・・・(6)
Since the power W1 from the first smoothing capacitor 2 and the power W2 to the bidirectional power supply 1b have the same value, they are expressed as Expression (6).
(I3a + I3b) = V2 × I8a ÷ V1 (6)

電流I3aと電流I3bの割合が想定できる場合には、係数yを用いて、式(7)と表される。
I3a=y×I3b ・・・(7)
式(6)と式(7)より、I3aは式(8)で、I3bは式(9)で表される。
I3a=V2×I8a÷V1×y÷(1+y) ・・・(8)
I3b=V2×I8a÷V1÷(1+y) ・・・(9)
When the ratio between the current I3a and the current I3b can be assumed, it is expressed by Expression (7) using the coefficient y.
I3a = y × I3b (7)
From Expressions (6) and (7), I3a is expressed by Expression (8), and I3b is expressed by Expression (9).
I3a = V2 × I8a {V1 × y} (1 + y) (8)
I3b = V2 × I8a {V1} (1 + y) (9)

式(8)より算出されるI3a推定値と第1の電流センサ3aの検出値I3aの値に乖離があれば第1の電流センサ3aが故障しており、式(9)より算出されるI3b推定値と第2の電流センサ3bの検出値I3bの値に乖離があれば第2の電流センサ3bが故障していることが分かる。すなわち、第1から第4のIGBT素子5a1〜5d1が正常と判定された場合、第1の平滑コンデンサ2から供給される電力W1と、双方向電源1bへの電力W2とを計測し、計測値に基づいて想定される電流値に対して、電流センサによって検出された電流値の乖離の程度によって1つまたは複数の電流センサを異常であると特定できることになる。なお、電力を計測することに代えて、前記式(5)に示したように、電圧センサによって検出された電圧値と電流センサによって検出された電流値に基づいて電力値を算出し、この算出された電力値に基づいて異常状態となった電流センサを特定することができる。   If there is a divergence between the estimated value I3a calculated from the equation (8) and the value I3a detected by the first current sensor 3a, the first current sensor 3a has failed and I3b calculated from the equation (9) If there is a difference between the estimated value and the value of the detection value I3b of the second current sensor 3b, it is understood that the second current sensor 3b has failed. That is, when it is determined that the first to fourth IGBT elements 5a1 to 5d1 are normal, the power W1 supplied from the first smoothing capacitor 2 and the power W2 to the bidirectional power supply 1b are measured, and the measured values are measured. It is possible to identify one or more current sensors as abnormal depending on the degree of deviation of the current value detected by the current sensor from the current value assumed based on the current value. Note that instead of measuring the power, a power value is calculated based on the voltage value detected by the voltage sensor and the current value detected by the current sensor, as shown in the above equation (5). The current sensor in the abnormal state can be specified based on the obtained power value.

なお、実施の形態3では2並列構成の電力変換装置102の説明を行ったが、2以上の自然数をNとして、N並列構成の電力変換装置でも実施の形態3と同様の効果が得られる。
また、実施の形態3の電力変換装置102では、2並列全てに電流センサが接続されるよう説明を行ったが、電流センサは、少なくとも1つ接続されていても実施の形態3と同様の効果を得ることができる。
また、実施の形態3の電力変換装置102には第1から第4のIGBT素子5a1〜5d1を記載しているが、MOSFETのスイッチング素子を用いても同様の効果を得ることができる。
また、実施の形態3では、電力変換装置102のリアクトルに非結合型のリアクトルを用いた場合を示したが、結合型のリアクトルを用いても同様の効果を得ることができる。
また、実施の形態3の電流センサは、リアクトルと第1の平滑コンデンサ2の正極の間に接続されるよう説明を行ったが、第1と第2の各リアクトル4a、4bに流れる電流をそれぞれ検出できる場所に接続されても同様の効果を得ることができる。
In the third embodiment, the description has been given of the power converter 102 having the two-parallel configuration. However, N is a natural number of 2 or more, and the same effect as that of the third embodiment can be obtained with the power converter having the N-parallel configuration.
Further, in the power conversion device 102 according to the third embodiment, the description has been made such that the current sensors are connected to all two parallel circuits. However, even if at least one current sensor is connected, the same effect as in the third embodiment is obtained. Can be obtained.
Although the first to fourth IGBT elements 5a1 to 5d1 are described in the power conversion device 102 of the third embodiment, the same effect can be obtained by using a MOSFET switching element.
Further, in the third embodiment, the case where a non-coupled reactor is used as the reactor of power conversion device 102 has been described. However, a similar effect can be obtained by using a coupled reactor.
Further, the current sensor according to the third embodiment has been described as being connected between the reactor and the positive electrode of the first smoothing capacitor 2. However, the current flowing through each of the first and second reactors 4a and 4b is The same effect can be obtained even if it is connected to a place where it can be detected.

実施の形態4.
次に実施の形態4について説明する。図14は、実施の形態4の電力変換装置103の回路図である。
Embodiment 4 FIG.
Next, a fourth embodiment will be described. FIG. 14 is a circuit diagram of a power conversion device 103 according to the fourth embodiment.

図14に示すように、実施の形態4の電力変換装置103は、実施の形態3の電力変換装置102に対して第4の電流センサ8aを削減し、双方向電源1bへの電力情報を双方向電源1bの端子1b3から故障判定部300の端子301eへ送ることで、電流の推定値を計算することを可能にしている。   As shown in FIG. 14, the power conversion device 103 according to the fourth embodiment reduces the number of fourth current sensors 8a with respect to the power conversion device 102 according to the third embodiment, and outputs power information to the bidirectional power supply 1b. By transmitting the signal from the terminal 1b3 of the directional power supply 1b to the terminal 301e of the failure determination unit 300, it is possible to calculate an estimated value of the current.

実施の形態4の電力変換装置103は、実施の形態3の電力変換装置102に比べて次のところが異なっている。すなわち、双方向電源1bの端子1b1が第1の電圧センサ7aの端子7a1に接続されているところと、双方向電源1bの端子1b3が故障判定部300の端子301eに接続されているところである。   The power conversion device 103 according to the fourth embodiment differs from the power conversion device 102 according to the third embodiment in the following. That is, the terminal 1b1 of the bidirectional power supply 1b is connected to the terminal 7a1 of the first voltage sensor 7a, and the terminal 1b3 of the bidirectional power supply 1b is connected to the terminal 301e of the failure determination unit 300.

以下に、推定値の算出を説明する。式(2)を式(8)と式(9)に代入すると、電力W2を用いた電流I3aと電流I3bの式(10)、式(11)が表される。
I3a=W2÷V1×y÷(1+y) ・・・(10)
I3b=W2÷V1÷(1+y) ・・・(11)
Hereinafter, the calculation of the estimated value will be described. When the equation (2) is substituted into the equations (8) and (9), the equations (10) and (11) of the current I3a and the current I3b using the power W2 are expressed.
I3a = W2 {V1 × y} (1 + y) (10)
I3b = W2 {V1} (1 + y) (11)

式(10)より算出されるI3a推定値と第1の電流センサ3aの検出値I3aの値に乖離があれば第1の電流センサ3aが故障しており、式(11)より算出されるI3b推定値と第2の電流センサ3bの検出値I3bの値に乖離があれば第2の電流センサ3bが故障していることが分かる。   If there is a difference between the estimated value I3a calculated from Expression (10) and the value of the detection value I3a of the first current sensor 3a, the first current sensor 3a has failed, and I3b calculated from Expression (11) If there is a difference between the estimated value and the value of the detection value I3b of the second current sensor 3b, it is understood that the second current sensor 3b has failed.

なお、実施の形態4では,2並列構成の電力変換装置103の説明を行ったが、2以上の自然数をNとして、N並列構成の電力変換装置でも実施の形態4と同様の効果が得られる。
また、実施の形態4では電力変換装置103は,2並列全てに電流センサが接続されるよう説明を行ったが、電流センサは,少なくとも1つ接続されても同様の効果を得ることができる。
In the fourth embodiment, the power converter 103 having a two-parallel configuration has been described, but the same effect as that of the fourth embodiment can be obtained with a power converter having an N-parallel configuration where N is a natural number of 2 or more. .
Further, in the fourth embodiment, the power converter 103 has been described in which current sensors are connected to all two parallel units. However, the same effect can be obtained even if at least one current sensor is connected.

また、実施の形態4の電力変換装置103には第1から第4のIGBT素子5a1〜5d1を示しているが、MOSFETのスイッチング素子を用いても同様の効果を得ることができる。
また、実施の形態4では、電力変換装置103のリアクトルに非結合型のリアクトルを用いた場合を示したが、結合型のリアクトルを用いても同様の効果を得ることができる。
Although the first to fourth IGBT elements 5a1 to 5d1 are shown in the power converter 103 according to the fourth embodiment, the same effect can be obtained by using a MOSFET switching element.
Further, in the fourth embodiment, a case where a non-coupled reactor is used as the reactor of power conversion device 103 has been described. However, a similar effect can be obtained by using a coupled reactor.

また、実施の形態4では電流センサをリアクトルと第1の平滑コンデンサ2の正極の間に接続される場合を示しているが、第1と第2の各リアクトル4a、4bに流れる電流をそれぞれ検出できる場所に接続されても実施の形態4と同様の効果が得られる。   In the fourth embodiment, the case where the current sensor is connected between the reactor and the positive electrode of the first smoothing capacitor 2 is shown, but the current flowing through each of the first and second reactors 4a and 4b is detected. The same effect as in the fourth embodiment can be obtained even if the connection is made at a place where it can be made.

なお、故障判定部300は、ハードウエアの一例を図15に示すように、プロセッサ310と記憶装置320から構成される。記憶装置320の詳細は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ310は、記憶装置320から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ310にプログラムが入力される。また、プロセッサ310は、演算結果等のデータを記憶装置320の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。   The failure determination unit 300 includes a processor 310 and a storage device 320, as shown in FIG. Although details of the storage device 320 are not shown, the storage device 320 includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. The processor 310 executes a program input from the storage device 320. In this case, a program is input from the auxiliary storage device to the processor 310 via the volatile storage device. Further, the processor 310 may output data such as a calculation result to the volatile storage device of the storage device 320, or may store the data in the auxiliary storage device via the volatile storage device.

本開示は、様々な例示的な実施の形態および実施例が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this disclosure describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiment alone or in various combinations.
Accordingly, innumerable modifications not illustrated are contemplated within the scope of the technology disclosed herein. For example, a case where at least one component is deformed, added or omitted, and a case where at least one component is extracted and combined with a component of another embodiment are included.

1a 直流電源、1b 双方向電源、2 第1の平滑コンデンサ、
3a 第1の電流センサ、4a 第1のリアクトル、4b 第2のリアクトル、
5a1 第1のIGBT素子、5a2 第1のダイオード、
5b1 第2のIGBT素子、5b2 第2のダイオード、
5c1 第3のIGBT素子、5c2 第3のダイオード、
5d1 第4のIGBT素子、5d2 第4のダイオード、
6 第2の平滑コンデンサ、7a 第1の電圧センサ、7b 第2の電圧センサ、
10 負荷、100,101,102,103 電力変換装置、200 制御信号部、
300 故障判定部
1a DC power supply, 1b bidirectional power supply, 2nd smoothing capacitor,
3a first current sensor, 4a first reactor, 4b second reactor,
5a1 first IGBT element, 5a2 first diode,
5b1 second IGBT element, 5b2 second diode,
5c1 third IGBT element, 5c2 third diode,
5d1 fourth IGBT element, 5d2 fourth diode,
6 second smoothing capacitor, 7a first voltage sensor, 7b second voltage sensor,
10 load, 100, 101, 102, 103 power converter, 200 control signal section,
300 Failure judgment unit

本願に開示される電力変換装置は、入力電源と負荷との間に設けられる電力変換装置であって、前記入力電源に並列接続された第1の平滑コンデンサと、前記負荷に並列に接続され、負極が前記第1の平滑コンデンサの負極に接続された第2の平滑コンデンサと、前記第1の平滑コンデンサと前記第2の平滑コンデンサの間に設けられ、スイッチング素子の動作によって電圧を変換する複数の電圧変換部と、各々の前記電圧変換部に備えられ、前記スイッチング素子に流れる電流を検出する第1の電流センサと、前記第2の平滑コンデンサの電圧を検出する第1の電圧センサと、前記スイッチング素子を駆動制御する制御信号部と、前記第1の電流センサの検出値が所定値から乖離する場合に、前記電圧変換部のスイッチング素子を一つずつ駆動させて、前記第2の平滑コンデンサの電圧に変化が無い場合に、駆動の対象となった前記スイッチング素子を異常と判定し、全ての前記電圧変換部の前記スイッチング素子が異常と判定されなければ前記第1の電流センサを異常と判定する故障判定部とを備えたことを特徴とするものである。



The power conversion device disclosed in the present application is a power conversion device provided between an input power supply and a load, and a first smoothing capacitor connected in parallel to the input power supply, and connected in parallel to the load, A second smoothing capacitor having a negative electrode connected to the negative electrode of the first smoothing capacitor; and a plurality of negative electrodes provided between the first smoothing capacitor and the second smoothing capacitor for converting a voltage by an operation of a switching element. A first current sensor that is provided in each of the voltage conversion units and detects a current flowing through the switching element; and a first voltage sensor that detects a voltage of the second smoothing capacitor. when the control signal unit for driving and controlling the switching element, the detection value of the first current sensor deviates from a predetermined value, one by one switching element of the voltage converter Operating, when there is no change in the voltage of the second smoothing capacitor, the switching elements to be driven are determined to be abnormal, and the switching elements of all the voltage conversion units must be determined to be abnormal. For example , a failure determination unit for determining that the first current sensor is abnormal is provided.



Claims (6)

入力電源と負荷との間に設けられる電力変換装置であって、前記入力電源に並列接続された第1の平滑コンデンサと、前記負荷に並列に接続され、負極が前記第1の平滑コンデンサの負極に接続された第2の平滑コンデンサと、前記第1の平滑コンデンサと前記第2の平滑コンデンサの間に設けられ、スイッチング素子の動作によって電圧を変換する複数の電圧変換部と、前記電圧変換部のスイッチング素子に流れる電流を検出する第1の電流センサと、前記第2の平滑コンデンサの電圧を検出する第1の電圧センサと、前記スイッチング素子を駆動制御する制御信号部と、前記第1の電流センサの検出値を基に算出される値が所定値から乖離する場合に、前記第1の電圧センサの値に基づいて、前記第1の電流センサが異常であると判定する故障判定部とを備えたことを特徴とする電力変換装置。   A power converter provided between an input power supply and a load, comprising: a first smoothing capacitor connected in parallel to the input power supply; and a negative electrode of the first smoothing capacitor connected in parallel to the load. A second smoothing capacitor connected to the first and second smoothing capacitors, a plurality of voltage converting units provided between the first and second smoothing capacitors and configured to convert a voltage by an operation of a switching element; A first current sensor that detects a current flowing through the switching element, a first voltage sensor that detects a voltage of the second smoothing capacitor, a control signal unit that drives and controls the switching element, When the value calculated based on the detection value of the current sensor deviates from a predetermined value, it is determined that the first current sensor is abnormal based on the value of the first voltage sensor. Power conversion apparatus characterized by comprising a failure judgment section. 前記故障判定部は、前記第1の電流センサの検出値を基に算出される値が所定値から乖離する場合に、前記電圧変換部のスイッチング素子を一つずつ駆動させて、前記第2の平滑コンデンサの電圧に変化が無い場合に、駆動の対象となった前記スイッチング素子を異常と判定し、全ての前記電圧変換部の前記スイッチング素子が異常と判定されなければ前記第1の電流センサを異常と判定することを特徴とする請求項1記載の電力変換装置。   When the value calculated based on the detection value of the first current sensor deviates from a predetermined value, the failure determination unit drives the switching elements of the voltage conversion unit one by one, and When there is no change in the voltage of the smoothing capacitor, the switching element that has been driven is determined to be abnormal, and if the switching elements of all the voltage conversion units are not determined to be abnormal, the first current sensor is turned off. The power converter according to claim 1, wherein the power converter is determined to be abnormal. 前記負荷が、前記第2の平滑コンデンサに並列接続される双方向電源であることを特徴とする請求項1または2に記載の電力変換装置。   The power converter according to claim 1, wherein the load is a bidirectional power supply connected in parallel to the second smoothing capacitor. 前記双方向電源に流れる電流を検出する第2の電流センサと、前記第1の平滑コンデンサの電圧を検出する第2の電圧センサとを備え、前記スイッチング素子が正常と判定された場合、前記故障判定部は、前記第2の電圧センサによる検出値、前記第1の電圧センサによる検出値、および前記第2の電流センサによる検出値に基づいて算出される前記第1の電流センサの推定値に対して乖離した値となった検出値を示した前記第1の電流センサを故障状態と特定することを特徴とする請求項3に記載の電力変換装置。   A second current sensor for detecting a current flowing through the bidirectional power supply; and a second voltage sensor for detecting a voltage of the first smoothing capacitor, wherein when the switching element is determined to be normal, the failure occurs. The determination unit is configured to determine a value detected by the second voltage sensor, a value detected by the first voltage sensor, and an estimated value of the first current sensor calculated based on a value detected by the second current sensor. 4. The power converter according to claim 3, wherein the first current sensor that indicates a detection value that has deviated from the first current sensor is identified as a failure state. 5. 前記故障判定部は、前記双方向電源への電力の計測値と、前記第1の平滑コンデンサから供給される電力の計測値に基づいて推定される電流値に対して、前記第1の電流センサによる検出値の乖離の程度によって前記第1の電流センサが異常であると特定することを特徴とする請求項3に記載の電力変換装置。   The failure determination unit is configured to detect a first current sensor based on a measured value of power to the bidirectional power supply and a current value estimated based on a measured value of power supplied from the first smoothing capacitor. 4. The power converter according to claim 3, wherein the first current sensor is determined to be abnormal based on a degree of deviation of the detection value due to the first current sensor. 5. 前記故障判定部は、前記第1の電流センサが3つ以上接続され、前記スイッチング素子が正常と判定された場合、他の前記第1の電流センサの値と乖離した1つの第1の電流センサを異常であると特定することを特徴とする請求項1から4のいずれか一項に記載の電力変換装置。   When the three or more first current sensors are connected, and the switching element is determined to be normal, the failure determination unit includes one first current sensor deviated from a value of another first current sensor. The power converter according to any one of claims 1 to 4, wherein the power converter is specified as abnormal.
JP2018125806A 2018-07-02 2018-07-02 Power converter Active JP6522211B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018125806A JP6522211B1 (en) 2018-07-02 2018-07-02 Power converter
US16/411,800 US10554120B2 (en) 2018-07-02 2019-05-14 Power conversion device
CN201910567676.1A CN110677038B (en) 2018-07-02 2019-06-27 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125806A JP6522211B1 (en) 2018-07-02 2018-07-02 Power converter

Publications (2)

Publication Number Publication Date
JP6522211B1 JP6522211B1 (en) 2019-05-29
JP2020005475A true JP2020005475A (en) 2020-01-09

Family

ID=66655779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125806A Active JP6522211B1 (en) 2018-07-02 2018-07-02 Power converter

Country Status (3)

Country Link
US (1) US10554120B2 (en)
JP (1) JP6522211B1 (en)
CN (1) CN110677038B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254508A1 (en) * 2021-05-31 2022-12-08 日立Astemo株式会社 Power conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215123A1 (en) * 2020-12-01 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Control device for a DC-DC converter, DC-DC converter device and method for controlling a DC-DC converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213246A (en) * 2008-03-04 2009-09-17 Honda Motor Co Ltd Method for detecting failure of dc/dc converter
JP2013106408A (en) * 2011-11-11 2013-05-30 Toyota Motor Corp Power supply system
JP2016032314A (en) * 2014-07-28 2016-03-07 トヨタ自動車株式会社 Power storage system
JP2016068032A (en) * 2014-09-30 2016-05-09 クラレクラフレックス株式会社 Industrial wiper
JP2016116262A (en) * 2014-12-11 2016-06-23 トヨタ自動車株式会社 Driving device
JP2017229123A (en) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 Abnormality determination method for converter
JP2018068032A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Power conversion system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400792B2 (en) * 2008-08-22 2013-03-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
US8358098B2 (en) * 2009-08-10 2013-01-22 Emerson Climate Technologies, Inc. System and method for power factor correction
CN103053104B (en) * 2010-07-30 2015-04-08 三菱电机株式会社 Dc/dc converter
US8897040B2 (en) * 2011-10-24 2014-11-25 General Electric Company Power converter systems and methods of operating a power converter system
JP2013209017A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp Power circuit
WO2013159306A1 (en) * 2012-04-26 2013-10-31 General Electric Company Power converter system, damping system, and method of operating power converter system
JP5867297B2 (en) * 2012-06-06 2016-02-24 富士電機株式会社 Power conversion system and its voltage detection device
WO2015181987A1 (en) * 2014-05-30 2015-12-03 富士電機株式会社 Charger
JP6677905B2 (en) 2016-05-23 2020-04-08 株式会社オートネットワーク技術研究所 Abnormality detection device and power supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213246A (en) * 2008-03-04 2009-09-17 Honda Motor Co Ltd Method for detecting failure of dc/dc converter
JP2013106408A (en) * 2011-11-11 2013-05-30 Toyota Motor Corp Power supply system
JP2016032314A (en) * 2014-07-28 2016-03-07 トヨタ自動車株式会社 Power storage system
JP2016068032A (en) * 2014-09-30 2016-05-09 クラレクラフレックス株式会社 Industrial wiper
JP2016116262A (en) * 2014-12-11 2016-06-23 トヨタ自動車株式会社 Driving device
JP2017229123A (en) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 Abnormality determination method for converter
JP2018068032A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Power conversion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254508A1 (en) * 2021-05-31 2022-12-08 日立Astemo株式会社 Power conversion device

Also Published As

Publication number Publication date
US10554120B2 (en) 2020-02-04
US20200007027A1 (en) 2020-01-02
JP6522211B1 (en) 2019-05-29
CN110677038A (en) 2020-01-10
CN110677038B (en) 2021-09-17

Similar Documents

Publication Publication Date Title
JP6476318B2 (en) Power converter
JP6506644B2 (en) Drive unit
JP6131197B2 (en) Power converter and failure detection method for power converter
JP6275352B1 (en) Power converter
US10024898B2 (en) System and method for determining inductance in a power converter
JP2012050207A (en) Multiphase dc/dc converter circuit
JP6766506B2 (en) Anomaly detection device and in-vehicle power supply device
KR20200106205A (en) Power unit
CN110677038B (en) Power conversion device
JP4661251B2 (en) Power conversion control system
CN110323934B (en) DC/DC converter
JP2018099020A (en) Secondary battery monitoring device and failure diagnosis method
JP2008187874A (en) Phase interruption detector of three-phase ac power supply
JP2014081669A (en) Power supply system, power supply control device, power supply control method, and program
JP6994673B2 (en) Power conversion system
JP2011055681A (en) Power converter
JP6529040B2 (en) Power converter and control method thereof
JP2006304456A (en) Power converter
JP4599926B2 (en) Power switching circuit, power conversion device, open fault detection method, and module type semiconductor switching element driving method
JP2019213382A (en) Power conversion apparatus
TWI757851B (en) Power switch fault detection method for brake circuit and circuit of detectiing the same
JP2018098836A (en) Electric circuit and control device therefor
JP2019180110A (en) Power conversion device
JP6858834B1 (en) Power converter control device
JP2020043687A (en) Power element diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R151 Written notification of patent or utility model registration

Ref document number: 6522211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250