JP2020004060A - プログラム、情報処理装置および方法 - Google Patents

プログラム、情報処理装置および方法 Download PDF

Info

Publication number
JP2020004060A
JP2020004060A JP2018122535A JP2018122535A JP2020004060A JP 2020004060 A JP2020004060 A JP 2020004060A JP 2018122535 A JP2018122535 A JP 2018122535A JP 2018122535 A JP2018122535 A JP 2018122535A JP 2020004060 A JP2020004060 A JP 2020004060A
Authority
JP
Japan
Prior art keywords
user
hmd
movement
head
virtual space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018122535A
Other languages
English (en)
Inventor
友輝 高野
Yuki Takano
友輝 高野
篤 猪俣
Atsushi Inomata
篤 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colopl Inc
Original Assignee
Colopl Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colopl Inc filed Critical Colopl Inc
Priority to JP2018122535A priority Critical patent/JP2020004060A/ja
Publication of JP2020004060A publication Critical patent/JP2020004060A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

【課題】より豊かな仮想体験を実現するための技術を提供すること。【解決手段】プログラムは、コンピュータに、HMDのモニタに視界画像を表示して当該HMDを装着したユーザに仮想空間における視点からの視界を提供するステップ(S1820)と、HMDの動きを検出するステップ(S1840)と、動きに連動して視点の向きを制御するステップ(S1850)と、視点と連動する移動体オブジェクトを仮想空間に配置するステップ(S1810)と、ユーザの頭部以外の動きに基づく入力に従い移動体オブジェクトの移動方向を決定するステップ(S1860)と、頭部の動きに基づいて移動方向を補正するステップ(S1870)と、補正された移動方向に移動体オブジェクトを移動させるステップ(S1880)とを実行させる。【選択図】図18

Description

この開示は、プログラム、情報処理装置および方法に関する。
近年、コンピュータ上に作られた仮想的な世界を体感するためのバーチャルリアリティ(VR)の技術開発が盛んに行なわれている。例えば、特開2017−188827号公報(特許文献1)は「操作部材43、44のスイング操作や足台45、46のエッジング操作による操作情報に基づいて、仮想ユーザ(スキーヤ)の移動方向や移動速度が制御されて、当該仮想ユーザが仮想空間内において移動する」技術を開示している(段落[0171]参照)。
特開2017−188827号公報
しかしながら、上述したような技術において、仮想空間内を旋回する場合、小回りが利かず、ユーザの思い描く軌道で移動できないことがあり得る。
例えば、特許文献1に開示される技術によれば、操作部材や足台の制約によって、ユーザの思い描く軌道で移動できない場合があり得る。係る場合、ユーザは、仮想体験に対して不満を抱き得る。
本開示は、上記のような問題を解決するためになされたものであって、ある局面における目的は、より豊かな仮想体験を実現するための技術を提供することである。
ある実施形態に従うと、仮想現実を提供するためにコンピュータで実行されるプログラムが提供される。プログラムはコンピュータに、仮想視点を含む仮想空間を定義するステップと、ヘッドマウントデバイスが関連付けられたユーザの頭部の動きを検出するステップと、前記ユーザの身体の少なくとも一部の動きを検出するステップと、前記身体の少なくとも一部の動きに応じて、前記仮想視点の移動方向を第1方向に決定するステップと、前記頭部の動きに応じて、前記仮想視点からの視界を制御するステップと、前記頭部の動きに応じて、前記第1方向を第2方向に補正するステップと、前記視界に対応する視界画像を前記ヘッドマウントデバイスに表示するステップと、前記第2方向に前記仮想視点を移動させるステップと、を実行させる。
開示された技術的特徴の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
ある実施の形態に従うHMDシステムの構成の概略を表す図である。 ある実施の形態に従うコンピュータのハードウェア構成の一例を表すブロック図である。 ある実施の形態に従うHMDに設定されるuvw視野座標系を概念的に表す図である。 ある実施の形態に従う仮想空間を表現する一態様を概念的に表す図である。 ある実施の形態に従うHMDを装着するユーザの頭部を上から表した図である。 仮想空間において視界領域をX方向から見たYZ断面を表す図である。 仮想空間において視界領域をY方向から見たXZ断面を表す図である。 ある実施の形態に従うコントローラの概略構成を表す図である。 ある実施の形態に従うユーザの右手に対して規定されるヨー、ロール、ピッチの各方向の一例を示す図である。 ある実施の形態に従うサーバのハードウェア構成の一例を表すブロック図である。 ある実施の形態に従うコンピュータをモジュール構成として表わすブロック図である。 ある実施の形態に従うHMDセットにおいて実行される処理の一部を表すシーケンスチャートである。 ネットワークにおいて、各HMDがユーザに仮想空間を提供する状況を表す模式図である。 図12(A)におけるユーザ5Aの視界画像を示す図である。 ある実施の形態に従うHMDシステムにおいて実行する処理を示すシーケンス図である。 ある実施の形態に従うコンピュータのモジュールの詳細構成を表わすブロック図である。 ある実施形態において仮想空間の中を移動するために供されるデバイスの構成例を表す図である。 図15に示されるユーザに提供されている視界画像を表す図である。 移動体オブジェクトの移動方向について説明するための図である。 移動体オブジェクトの移動方向を補正する処理の一例を表すフローチャートである。 移動体オブジェクトの移動方向を決定および補正する処理を説明するための図である。 移動体オブジェクトの移動方向と、仮想カメラの向きとの関係を説明するための図である。
以下、この技術的思想の実施の形態について図面を参照しながら詳細に説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。本開示において示される1以上の実施形態において、各実施形態が含む要素を互いに組み合わせることができ、かつ、当該組み合わせられた結果物も本開示が示す実施形態の一部をなすものとする。
[HMDシステムの構成]
図1を参照して、HMD(Head-Mounted Device)システム100の構成について説明する。図1は、本実施の形態に従うHMDシステム100の構成の概略を表す図である。HMDシステム100は、家庭用のシステムとしてあるいは業務用のシステムとして提供される。
HMDシステム100は、サーバ600と、HMDセット110A,110B,110C,110Dと、外部機器700と、ネットワーク2とを含む。HMDセット110A,110B,110C,110Dの各々は、ネットワーク2を介してサーバ600や外部機器700と通信可能に構成される。以下、HMDセット110A,110B,110C,110Dを総称して、HMDセット110とも言う。HMDシステム100を構成するHMDセット110の数は、4つに限られず、3つ以下でも、5つ以上でもよい。HMDセット110は、HMD120と、コンピュータ200と、HMDセンサ410と、ディスプレイ430と、コントローラ300とを備える。HMD120は、モニタ130と、注視センサ140と、第1カメラ150と、第2カメラ160と、マイク170と、スピーカ180とを含む。コントローラ300は、モーションセンサ420を含み得る。
ある局面において、コンピュータ200は、インターネットその他のネットワーク2に接続可能であり、ネットワーク2に接続されているサーバ600その他のコンピュータと通信可能である。その他のコンピュータとしては、例えば、他のHMDセット110のコンピュータや外部機器700が挙げられる。別の局面において、HMD120は、HMDセンサ410の代わりに、センサ190を含み得る。
HMD120は、ユーザ5の頭部に装着され、動作中に仮想空間をユーザ5に提供し得る。より具体的には、HMD120は、右目用の画像および左目用の画像をモニタ130にそれぞれ表示する。ユーザ5の各目がそれぞれの画像を視認すると、ユーザ5は、両目の視差に基づき当該画像を3次元画像として認識し得る。HMD120は、モニタを備える所謂ヘッドマウントディスプレイと、スマートフォンその他のモニタを有する端末を装着可能なヘッドマウント機器のいずれをも含み得る。
モニタ130は、例えば、非透過型の表示装置として実現される。ある局面において、モニタ130は、ユーザ5の両目の前方に位置するようにHMD120の本体に配置されている。したがって、ユーザ5は、モニタ130に表示される3次元画像を視認すると、仮想空間に没入することができる。ある局面において、仮想空間は、例えば、背景、ユーザ5が操作可能なオブジェクト、ユーザ5が選択可能なメニューの画像を含む。ある局面において、モニタ130は、所謂スマートフォンその他の情報表示端末が備える液晶モニタまたは有機EL(Electro Luminescence)モニタとして実現され得る。
別の局面において、モニタ130は、透過型の表示装置として実現され得る。この場合、HMD120は、図1に示されるようにユーザ5の目を覆う密閉型ではなく、メガネ型のような開放型であり得る。透過型のモニタ130は、その透過率を調整することにより、一時的に非透過型の表示装置として構成可能であってもよい。モニタ130は、仮想空間を構成する画像の一部と、現実空間とを同時に表示する構成を含んでいてもよい。例えば、モニタ130は、HMD120に搭載されたカメラで撮影した現実空間の画像を表示してもよいし、一部の透過率を高く設定することにより現実空間を視認可能にしてもよい。
ある局面において、モニタ130は、右目用の画像を表示するためのサブモニタと、左目用の画像を表示するためのサブモニタとを含み得る。別の局面において、モニタ130は、右目用の画像と左目用の画像とを一体として表示する構成であってもよい。この場合、モニタ130は、高速シャッタを含む。高速シャッタは、画像がいずれか一方の目にのみ認識されるように、右目用の画像と左目用の画像とを交互に表示可能に作動する。
ある局面において、HMD120は、図示せぬ複数の光源を含む。各光源は例えば、赤外線を発するLED(Light Emitting Diode)により実現される。HMDセンサ410は、HMD120の動きを検出するためのポジショントラッキング機能を有する。より具体的には、HMDセンサ410は、HMD120が発する複数の赤外線を読み取り、現実空間内におけるHMD120の位置および傾きを検出する。
別の局面において、HMDセンサ410は、カメラにより実現されてもよい。この場合、HMDセンサ410は、カメラから出力されるHMD120の画像情報を用いて、画像解析処理を実行することにより、HMD120の位置および傾きを検出することができる。
別の局面において、HMD120は、位置検出器として、HMDセンサ410の代わりに、あるいはHMDセンサ410に加えてセンサ190を備えてもよい。HMD120は、センサ190を用いて、HMD120自身の位置および傾きを検出し得る。例えば、センサ190が角速度センサ、地磁気センサ、あるいは加速度センサである場合、HMD120は、HMDセンサ410の代わりに、これらの各センサのいずれかを用いて、自身の位置および傾きを検出し得る。一例として、センサ190が角速度センサである場合、角速度センサは、現実空間におけるHMD120の3軸周りの角速度を経時的に検出する。HMD120は、各角速度に基づいて、HMD120の3軸周りの角度の時間的変化を算出し、さらに、角度の時間的変化に基づいて、HMD120の傾きを算出する。
注視センサ140は、ユーザ5の右目および左目の視線が向けられる方向を検出する。つまり、注視センサ140は、ユーザ5の視線を検出する。視線の方向の検出は、例えば、公知のアイトラッキング機能によって実現される。注視センサ140は、当該アイトラッキング機能を有するセンサにより実現される。ある局面において、注視センサ140は、右目用のセンサおよび左目用のセンサを含むことが好ましい。注視センサ140は、例えば、ユーザ5の右目および左目に赤外光を照射するとともに、照射光に対する角膜および虹彩からの反射光を受けることにより各眼球の回転角を検出するセンサであってもよい。注視センサ140は、検出した各回転角に基づいて、ユーザ5の視線を検知することができる。
第1カメラ150は、ユーザ5の顔の下部を撮影する。より具体的には、第1カメラ150は、ユーザ5の鼻および口などを撮影する。第2カメラ160は、ユーザ5の目および眉などを撮影する。HMD120のユーザ5側の筐体をHMD120の内側、HMD120のユーザ5とは逆側の筐体をHMD120の外側と定義する。ある局面において、第1カメラ150は、HMD120の外側に配置され、第2カメラ160は、HMD120の内側に配置され得る。第1カメラ150および第2カメラ160が生成した画像は、コンピュータ200に入力される。別の局面において、第1カメラ150と第2カメラ160とを1台のカメラとして実現し、この1台のカメラでユーザ5の顔を撮影するようにしてもよい。
マイク170は、ユーザ5の発話を音声信号(電気信号)に変換してコンピュータ200に出力する。スピーカ180は、音声信号を音声に変換してユーザ5に出力する。別の局面において、HMD120は、スピーカ180に替えてイヤホンを含み得る。
コントローラ300は、有線または無線によりコンピュータ200に接続されている。コントローラ300は、ユーザ5からコンピュータ200への命令の入力を受け付ける。ある局面において、コントローラ300は、ユーザ5によって把持可能に構成される。別の局面において、コントローラ300は、ユーザ5の身体あるいは衣類の一部に装着可能に構成される。さらに別の局面において、コントローラ300は、コンピュータ200から送信される信号に基づいて、振動、音、光のうちの少なくともいずれかを出力するように構成されてもよい。さらに別の局面において、コントローラ300は、ユーザ5から、仮想空間に配置されるオブジェクトの位置や動きを制御するための操作を受け付ける。
ある局面において、コントローラ300は、複数の光源を含む。各光源は例えば、赤外線を発するLEDにより実現される。HMDセンサ410は、ポジショントラッキング機能を有する。この場合、HMDセンサ410は、コントローラ300が発する複数の赤外線を読み取り、現実空間内におけるコントローラ300の位置および傾きを検出する。別の局面において、HMDセンサ410は、カメラにより実現されてもよい。この場合、HMDセンサ410は、カメラから出力されるコントローラ300の画像情報を用いて、画像解析処理を実行することにより、コントローラ300の位置および傾きを検出することができる。
モーションセンサ420は、ある局面において、ユーザ5の手に取り付けられて、ユーザ5の手の動きを検出する。例えば、モーションセンサ420は、手の回転速度、回転数等を検出する。検出された信号は、コンピュータ200に送られる。モーションセンサ420は、例えば、コントローラ300に設けられている。ある局面において、モーションセンサ420は、例えば、ユーザ5に把持可能に構成されたコントローラ300に設けられている。別の局面において、現実空間における安全のため、コントローラ300は、手袋型のようにユーザ5の手に装着されることにより容易に飛んで行かないものに装着される。さらに別の局面において、ユーザ5に装着されないセンサがユーザ5の手の動きを検出してもよい。例えば、ユーザ5を撮影するカメラの信号が、ユーザ5の動作を表わす信号として、コンピュータ200に入力されてもよい。モーションセンサ420とコンピュータ200とは、一例として、無線により互いに接続される。無線の場合、通信形態は特に限られず、例えば、Bluetooth(登録商標)その他の公知の通信手法が用いられる。
ディスプレイ430は、モニタ130に表示されている画像と同様の画像を表示する。これにより、HMD120を装着しているユーザ5以外のユーザにも当該ユーザ5と同様の画像を視聴させることができる。ディスプレイ430に表示される画像は、3次元画像である必要はなく、右目用の画像や左目用の画像であってもよい。ディスプレイ430としては、例えば、液晶ディスプレイや有機ELモニタなどが挙げられる。
サーバ600は、コンピュータ200にプログラムを送信し得る。別の局面において、サーバ600は、他のユーザによって使用されるHMD120に仮想現実を提供するための他のコンピュータ200と通信し得る。例えば、アミューズメント施設において、複数のユーザが参加型のゲームを行なう場合、各コンピュータ200は、各ユーザの動作に基づく信号をサーバ600を介して他のコンピュータ200と通信して、同じ仮想空間において複数のユーザが共通のゲームを楽しむことを可能にする。各コンピュータ200は、各ユーザの動作に基づく信号をサーバ600を介さずに他のコンピュータ200と通信するようにしてもよい。
外部機器700は、コンピュータ200と通信可能な機器であればどのような機器であってもよい。外部機器700は、例えば、ネットワーク2を介してコンピュータ200と通信可能な機器であってもよいし、近距離無線通信や有線接続によりコンピュータ200と直接通信可能な機器であってもよい。外部機器700としては、例えば、スマートデバイス、PC(Personal Computer)、及びコンピュータ200の周辺機器などが挙げられるが、これらに限定されるものではない。
[コンピュータのハードウェア構成]
図2を参照して、本実施の形態に係るコンピュータ200について説明する。図2は、本実施の形態に従うコンピュータ200のハードウェア構成の一例を表すブロック図である。コンピュータ200は、主たる構成要素として、プロセッサ210と、メモリ220と、ストレージ230と、入出力インターフェイス240と、通信インターフェイス250とを備える。各構成要素は、それぞれ、バス260に接続されている。
プロセッサ210は、コンピュータ200に与えられる信号に基づいて、あるいは、予め定められた条件が成立したことに基づいて、メモリ220またはストレージ230に格納されているプログラムに含まれる一連の命令を実行する。ある局面において、プロセッサ210は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、MPU(Micro Processor Unit)、FPGA(Field-Programmable Gate Array)その他のデバイスとして実現される。
メモリ220は、プログラムおよびデータを一時的に保存する。プログラムは、例えば、ストレージ230からロードされる。データは、コンピュータ200に入力されたデータと、プロセッサ210によって生成されたデータとを含む。ある局面において、メモリ220は、RAM(Random Access Memory)その他の揮発メモリとして実現される。
ストレージ230は、プログラムおよびデータを永続的に保持する。ストレージ230は、例えば、ROM(Read-Only Memory)、ハードディスク装置、フラッシュメモリ、その他の不揮発記憶装置として実現される。ストレージ230に格納されるプログラムは、HMDシステム100において仮想空間を提供するためのプログラム、シミュレーションプログラム、ゲームプログラム、ユーザ認証プログラム、他のコンピュータ200との通信を実現するためのプログラムを含む。ストレージ230に格納されるデータは、仮想空間を規定するためのデータおよびオブジェクト等を含む。
別の局面において、ストレージ230は、メモリカードのように着脱可能な記憶装置として実現されてもよい。さらに別の局面において、コンピュータ200に内蔵されたストレージ230の代わりに、外部の記憶装置に保存されているプログラムおよびデータを使用する構成が使用されてもよい。このような構成によれば、例えば、アミューズメント施設のように複数のHMDシステム100が使用される場面において、プログラムやデータの更新を一括して行なうことが可能になる。
入出力インターフェイス240は、HMD120、HMDセンサ410、モーションセンサ420およびディスプレイ430との間で信号を通信する。HMD120に含まれるモニタ130,注視センサ140,第1カメラ150,第2カメラ160,マイク170およびスピーカ180は、HMD120の入出力インターフェイス240を介してコンピュータ200との通信を行ない得る。ある局面において、入出力インターフェイス240は、USB(Universal Serial Bus)、DVI(Digital Visual Interface)、HDMI(登録商標)(High-Definition Multimedia Interface)その他の端子を用いて実現される。入出力インターフェイス240は上述のものに限られない。
ある局面において、入出力インターフェイス240は、さらに、コントローラ300と通信し得る。例えば、入出力インターフェイス240は、コントローラ300およびモーションセンサ420から出力された信号の入力を受ける。別の局面において、入出力インターフェイス240は、プロセッサ210から出力された命令を、コントローラ300に送る。当該命令は、振動、音声出力、発光等をコントローラ300に指示する。コントローラ300は、当該命令を受信すると、その命令に応じて、振動、音声出力または発光のいずれかを実行する。
通信インターフェイス250は、ネットワーク2に接続されて、ネットワーク2に接続されている他のコンピュータ(例えば、サーバ600)と通信する。ある局面において、通信インターフェイス250は、例えば、LAN(Local Area Network)その他の有線通信インターフェイス、あるいは、WiFi(Wireless Fidelity)、Bluetooth(登録商標)、NFC(Near Field Communication)その他の無線通信インターフェイスとして実現される。通信インターフェイス250は上述のものに限られない。
ある局面において、プロセッサ210は、ストレージ230にアクセスし、ストレージ230に格納されている1つ以上のプログラムをメモリ220にロードし、当該プログラムに含まれる一連の命令を実行する。当該1つ以上のプログラムは、コンピュータ200のオペレーティングシステム、仮想空間を提供するためのアプリケーションプログラム、仮想空間で実行可能なゲームソフトウェア等を含み得る。プロセッサ210は、入出力インターフェイス240を介して、仮想空間を提供するための信号をHMD120に送る。HMD120は、その信号に基づいてモニタ130に映像を表示する。
図2に示される例では、コンピュータ200は、HMD120の外部に設けられる構成が示されているが、別の局面において、コンピュータ200は、HMD120に内蔵されてもよい。一例として、モニタ130を含む携帯型の情報通信端末(例えば、スマートフォン)がコンピュータ200として機能してもよい。
コンピュータ200は、複数のHMD120に共通して用いられる構成であってもよい。このような構成によれば、例えば、複数のユーザに同一の仮想空間を提供することもできるので、各ユーザは同一の仮想空間で他のユーザと同一のアプリケーションを楽しむことができる。
ある実施の形態において、HMDシステム100では、現実空間における座標系である実座標系が予め設定されている。実座標系は、現実空間における鉛直方向、鉛直方向に直交する水平方向、並びに、鉛直方向および水平方向の双方に直交する前後方向にそれぞれ平行な、3つの基準方向(軸)を有する。実座標系における水平方向、鉛直方向(上下方向)、および前後方向は、それぞれ、x軸、y軸、z軸と規定される。より具体的には、実座標系において、x軸は現実空間の水平方向に平行である。y軸は、現実空間の鉛直方向に平行である。z軸は現実空間の前後方向に平行である。
ある局面において、HMDセンサ410は、赤外線センサを含む。赤外線センサが、HMD120の各光源から発せられた赤外線をそれぞれ検出すると、HMD120の存在を検出する。HMDセンサ410は、さらに、各点の値(実座標系における各座標値)に基づいて、HMD120を装着したユーザ5の動きに応じた、現実空間内におけるHMD120の位置および傾き(向き)を検出する。より詳しくは、HMDセンサ410は、経時的に検出された各値を用いて、HMD120の位置および傾きの時間的変化を検出できる。
HMDセンサ410によって検出されたHMD120の各傾きは、実座標系におけるHMD120の3軸周りの各傾きに相当する。HMDセンサ410は、実座標系におけるHMD120の傾きに基づき、uvw視野座標系をHMD120に設定する。HMD120に設定されるuvw視野座標系は、HMD120を装着したユーザ5が仮想空間において物体を見る際の視点座標系に対応する。
[uvw視野座標系]
図3を参照して、uvw視野座標系について説明する。図3は、ある実施の形態に従うHMD120に設定されるuvw視野座標系を概念的に表す図である。HMDセンサ410は、HMD120の起動時に、実座標系におけるHMD120の位置および傾きを検出する。プロセッサ210は、検出された値に基づいて、uvw視野座標系をHMD120に設定する。
図3に示されるように、HMD120は、HMD120を装着したユーザ5の頭部を中心(原点)とした3次元のuvw視野座標系を設定する。より具体的には、HMD120は、実座標系を規定する水平方向、鉛直方向、および前後方向(x軸、y軸、z軸)を、実座標系内においてHMD120の各軸周りの傾きだけ各軸周りにそれぞれ傾けることによって新たに得られる3つの方向を、HMD120におけるuvw視野座標系のピッチ軸(u軸)、ヨー軸(v軸)、およびロール軸(w軸)として設定する。
ある局面において、HMD120を装着したユーザ5が直立し、かつ、正面を視認している場合、プロセッサ210は、実座標系に平行なuvw視野座標系をHMD120に設定する。この場合、実座標系における水平方向(x軸)、鉛直方向(y軸)、および前後方向(z軸)は、HMD120におけるuvw視野座標系のピッチ軸(u軸)、ヨー軸(v軸)、およびロール軸(w軸)に一致する。
uvw視野座標系がHMD120に設定された後、HMDセンサ410は、HMD120の動きに基づいて、設定されたuvw視野座標系におけるHMD120の傾きを検出できる。この場合、HMDセンサ410は、HMD120の傾きとして、uvw視野座標系におけるHMD120のピッチ角(θu)、ヨー角(θv)、およびロール角(θw)をそれぞれ検出する。ピッチ角(θu)は、uvw視野座標系におけるピッチ軸周りのHMD120の傾き角度を表す。ヨー角(θv)は、uvw視野座標系におけるヨー軸周りのHMD120の傾き角度を表す。ロール角(θw)は、uvw視野座標系におけるロール軸周りのHMD120の傾き角度を表す。
HMDセンサ410は、検出されたHMD120の傾きに基づいて、HMD120が動いた後のHMD120におけるuvw視野座標系を、HMD120に設定する。HMD120と、HMD120のuvw視野座標系との関係は、HMD120の位置および傾きに関わらず、常に一定である。HMD120の位置および傾きが変わると、当該位置および傾きの変化に連動して、実座標系におけるHMD120のuvw視野座標系の位置および傾きが変化する。
ある局面において、HMDセンサ410は、赤外線センサからの出力に基づいて取得される赤外線の光強度および複数の点間の相対的な位置関係(例えば、各点間の距離など)に基づいて、HMD120の現実空間内における位置を、HMDセンサ410に対する相対位置として特定してもよい。プロセッサ210は、特定された相対位置に基づいて、現実空間内(実座標系)におけるHMD120のuvw視野座標系の原点を決定してもよい。
[仮想空間]
図4を参照して、仮想空間についてさらに説明する。図4は、ある実施の形態に従う仮想空間11を表現する一態様を概念的に表す図である。仮想空間11は、中心12の360度方向の全体を覆う全天球状の構造を有する。図4では、説明を複雑にしないために、仮想空間11のうちの上半分の天球が例示されている。仮想空間11では各メッシュが規定される。各メッシュの位置は、仮想空間11に規定されるグローバル座標系であるXYZ座標系における座標値として予め規定されている。コンピュータ200は、仮想空間11に展開可能なパノラマ画像13(静止画、動画等)を構成する各部分画像を、仮想空間11において対応する各メッシュにそれぞれ対応付ける。
ある局面において、仮想空間11では、中心12を原点とするXYZ座標系が規定される。XYZ座標系は、例えば、実座標系に平行である。XYZ座標系における水平方向、鉛直方向(上下方向)、および前後方向は、それぞれX軸、Y軸、Z軸として規定される。したがって、XYZ座標系のX軸(水平方向)が実座標系のx軸と平行であり、XYZ座標系のY軸(鉛直方向)が実座標系のy軸と平行であり、XYZ座標系のZ軸(前後方向)が実座標系のz軸と平行である。
HMD120の起動時、すなわちHMD120の初期状態において、仮想カメラ14が、仮想空間11の中心12に配置される。ある局面において、プロセッサ210は、仮想カメラ14が撮影する画像をHMD120のモニタ130に表示する。仮想カメラ14は、現実空間におけるHMD120の動きに連動して、仮想空間11を同様に移動する。これにより、現実空間におけるHMD120の位置および傾きの変化が、仮想空間11において同様に再現され得る。
仮想カメラ14には、HMD120の場合と同様に、uvw視野座標系が規定される。仮想空間11における仮想カメラ14のuvw視野座標系は、現実空間(実座標系)におけるHMD120のuvw視野座標系に連動するように規定されている。したがって、HMD120の傾きが変化すると、それに応じて、仮想カメラ14の傾きも変化する。仮想カメラ14は、HMD120を装着したユーザ5の現実空間における移動に連動して、仮想空間11において移動することもできる。
コンピュータ200のプロセッサ210は、仮想カメラ14の位置と傾き(基準視線16)とに基づいて、仮想空間11における視界領域15を規定する。視界領域15は、仮想空間11のうち、HMD120を装着したユーザ5が視認する領域に対応する。つまり、仮想カメラ14の位置は、仮想空間11におけるユーザ5の視点と言える。
注視センサ140によって検出されるユーザ5の視線は、ユーザ5が物体を視認する際の視点座標系における方向である。HMD120のuvw視野座標系は、ユーザ5がモニタ130を視認する際の視点座標系に等しい。仮想カメラ14のuvw視野座標系は、HMD120のuvw視野座標系に連動している。したがって、ある局面に従うHMDシステム100は、注視センサ140によって検出されたユーザ5の視線を、仮想カメラ14のuvw視野座標系におけるユーザ5の視線とみなすことができる。
[ユーザの視線]
図5を参照して、ユーザ5の視線の決定について説明する。図5は、ある実施の形態に従うHMD120を装着するユーザ5の頭部を上から表した図である。
ある局面において、注視センサ140は、ユーザ5の右目および左目の各視線を検出する。ある局面において、ユーザ5が近くを見ている場合、注視センサ140は、視線R1およびL1を検出する。別の局面において、ユーザ5が遠くを見ている場合、注視センサ140は、視線R2およびL2を検出する。この場合、ロール軸wに対して視線R2およびL2が成す角度は、ロール軸wに対して視線R1およびL1が成す角度よりも小さい。注視センサ140は、検出結果をコンピュータ200に送信する。
コンピュータ200が、視線の検出結果として、視線R1およびL1の検出値を注視センサ140から受信した場合には、その検出値に基づいて、視線R1およびL1の交点である注視点N1を特定する。一方、コンピュータ200は、視線R2およびL2の検出値を注視センサ140から受信した場合には、視線R2およびL2の交点を注視点として特定する。コンピュータ200は、特定した注視点N1の位置に基づき、ユーザ5の視線N0を特定する。コンピュータ200は、例えば、ユーザ5の右目Rと左目Lとを結ぶ直線の中点と、注視点N1とを通る直線の延びる方向を、視線N0として検出する。視線N0は、ユーザ5が両目により実際に視線を向けている方向である。視線N0は、視界領域15に対してユーザ5が実際に視線を向けている方向に相当する。
別の局面において、HMDシステム100は、テレビジョン放送受信チューナを備えてもよい。このような構成によれば、HMDシステム100は、仮想空間11においてテレビ番組を表示することができる。
さらに別の局面において、HMDシステム100は、インターネットに接続するための通信回路、あるいは、電話回線に接続するための通話機能を備えていてもよい。
[視界領域]
図6および図7を参照して、視界領域15について説明する。図6は、仮想空間11において視界領域15をX方向から見たYZ断面を表す図である。図7は、仮想空間11において視界領域15をY方向から見たXZ断面を表す図である。
図6に示されるように、YZ断面における視界領域15は、領域18を含む。領域18は、仮想カメラ14の位置と基準視線16と仮想空間11のYZ断面とによって定義される。プロセッサ210は、仮想空間における基準視線16を中心として極角αを含む範囲を、領域18として規定する。
図7に示されるように、XZ断面における視界領域15は、領域19を含む。領域19は、仮想カメラ14の位置と基準視線16と仮想空間11のXZ断面とによって定義される。プロセッサ210は、仮想空間11における基準視線16を中心とした方位角βを含む範囲を、領域19として規定する。極角αおよびβは、仮想カメラ14の位置と仮想カメラ14の傾き(向き)とに応じて定まる。
ある局面において、HMDシステム100は、コンピュータ200からの信号に基づいて、視界画像17をモニタ130に表示させることにより、ユーザ5に仮想空間11における視界を提供する。視界画像17は、パノラマ画像13のうち視界領域15に対応する部分に相当する画像である。ユーザ5が、頭に装着したHMD120を動かすと、その動きに連動して仮想カメラ14も動く。その結果、仮想空間11における視界領域15の位置が変化する。これにより、モニタ130に表示される視界画像17は、パノラマ画像13のうち、仮想空間11においてユーザ5が向いた方向の視界領域15に重畳する画像に更新される。ユーザ5は、仮想空間11における所望の方向を視認することができる。
このように、仮想カメラ14の傾きは仮想空間11におけるユーザ5の視線(基準視線16)に相当し、仮想カメラ14が配置される位置は、仮想空間11におけるユーザ5の視点に相当する。したがって、仮想カメラ14の位置または傾きを変更することにより、モニタ130に表示される画像が更新され、ユーザ5の視界が移動される。
ユーザ5は、HMD120を装着している間、現実世界を視認することなく、仮想空間11に展開されるパノラマ画像13のみを視認できる。そのため、HMDシステム100は、仮想空間11への高い没入感覚をユーザ5に与えることができる。
ある局面において、プロセッサ210は、HMD120を装着したユーザ5の現実空間における移動に連動して、仮想空間11において仮想カメラ14を移動し得る。この場合、プロセッサ210は、仮想空間11における仮想カメラ14の位置および傾きに基づいて、HMD120のモニタ130に投影される画像領域(視界領域15)を特定する。
ある局面において、仮想カメラ14は、2つの仮想カメラ、すなわち、右目用の画像を提供するための仮想カメラと、左目用の画像を提供するための仮想カメラとを含み得る。ユーザ5が3次元の仮想空間11を認識できるように、適切な視差が、2つの仮想カメラに設定される。別の局面において、仮想カメラ14を1つの仮想カメラにより実現してもよい。この場合、1つの仮想カメラにより得られた画像から、右目用の画像と左目用の画像とを生成するようにしてもよい。本実施の形態においては、仮想カメラ14が2つの仮想カメラを含み、2つの仮想カメラのロール軸が合成されることによって生成されるロール軸(w)がHMD120のロール軸(w)に適合されるように構成されているものとして、本開示に係る技術思想を例示する。
[コントローラ]
図8を参照して、コントローラ300の一例について説明する。図8は、ある実施の形態に従うコントローラ300の概略構成を表す図である。
図8に示されるように、ある局面において、コントローラ300は、右コントローラ300Rと図示せぬ左コントローラとを含み得る。右コントローラ300Rは、ユーザ5の右手で操作される。左コントローラは、ユーザ5の左手で操作される。ある局面において、右コントローラ300Rと左コントローラとは、別個の装置として対称に構成される。したがって、ユーザ5は、右コントローラ300Rを把持した右手と、左コントローラを把持した左手とをそれぞれ自由に動かすことができる。別の局面において、コントローラ300は両手の操作を受け付ける一体型のコントローラであってもよい。以下、右コントローラ300Rについて説明する。
右コントローラ300Rは、グリップ310と、フレーム320と、天面330とを備える。グリップ310は、ユーザ5の右手によって把持されるように構成されている。たとえば、グリップ310は、ユーザ5の右手の掌と3本の指(中指、薬指、小指)とによって保持され得る。
グリップ310は、ボタン340,350と、モーションセンサ420とを含む。ボタン340は、グリップ310の側面に配置され、右手の中指による操作を受け付ける。ボタン350は、グリップ310の前面に配置され、右手の人差し指による操作を受け付ける。ある局面において、ボタン340,350は、トリガー式のボタンとして構成される。モーションセンサ420は、グリップ310の筐体に内蔵されている。ユーザ5の動作がカメラその他の装置によってユーザ5の周りから検出可能である場合には、グリップ310は、モーションセンサ420を備えなくてもよい。
フレーム320は、その円周方向に沿って配置された複数の赤外線LED360を含む。赤外線LED360は、コントローラ300を使用するプログラムの実行中に、当該プログラムの進行に合わせて赤外線を発光する。赤外線LED360から発せられた赤外線は、右コントローラ300Rと左コントローラとの各位置や姿勢(傾き、向き)を検出するために使用され得る。図8に示される例では、二列に配置された赤外線LED360が示されているが、配列の数は図8に示されるものに限られない。一列あるいは3列以上の配列が使用されてもよい。
天面330は、ボタン370,380と、アナログスティック390とを備える。ボタン370,380は、プッシュ式ボタンとして構成される。ボタン370,380は、ユーザ5の右手の親指による操作を受け付ける。アナログスティック390は、ある局面において、初期位置(ニュートラルの位置)から360度任意の方向への操作を受け付ける。当該操作は、たとえば、仮想空間11に配置されるオブジェクトを移動するための操作を含む。
ある局面において、右コントローラ300Rおよび左コントローラは、赤外線LED360その他の部材を駆動するための電池を含む。電池は、充電式、ボタン型、乾電池型などを含むが、これらに限定されない。別の局面において、右コントローラ300Rと左コントローラは、たとえば、コンピュータ200のUSBインターフェースに接続され得る。この場合、右コントローラ300Rおよび左コントローラは、電池を必要としない。
図8の状態(A)および状態(B)に示されるように、例えば、ユーザ5の右手に対して、ヨー、ロール、ピッチの各方向が規定される。ユーザ5が親指と人差し指とを伸ばした場合に、親指の伸びる方向がヨー方向、人差し指の伸びる方向がロール方向、ヨー方向の軸およびロール方向の軸によって規定される平面に垂直な方向がピッチ方向として規定される。
[サーバのハードウェア構成]
図9を参照して、本実施の形態に係るサーバ10について説明する。図9は、ある実施の形態に従うサーバ600のハードウェア構成の一例を表すブロック図である。サーバ600は、主たる構成要素として、プロセッサ610と、メモリ620と、ストレージ630と、入出力インターフェイス640と、通信インターフェイス650とを備える。各構成要素は、それぞれ、バス660に接続されている。
プロセッサ610は、サーバ600に与えられる信号に基づいて、あるいは、予め定められた条件が成立したことに基づいて、メモリ620またはストレージ630に格納されているプログラムに含まれる一連の命令を実行する。ある局面において、プロセッサ610は、CPU、GPU、MPU、FPGAその他のデバイスとして実現される。
メモリ620は、プログラムおよびデータを一時的に保存する。プログラムは、例えば、ストレージ630からロードされる。データは、サーバ600に入力されたデータと、プロセッサ610によって生成されたデータとを含む。ある局面において、メモリ620は、RAMその他の揮発メモリとして実現される。
ストレージ630は、プログラムおよびデータを永続的に保持する。ストレージ630は、例えば、ROM、ハードディスク装置、フラッシュメモリ、その他の不揮発記憶装置として実現される。ストレージ630に格納されるプログラムは、HMDシステム100において仮想空間を提供するためのプログラム、シミュレーションプログラム、ゲームプログラム、ユーザ認証プログラム、コンピュータ200との通信を実現するためのプログラムを含んでもよい。ストレージ630に格納されるデータは、仮想空間を規定するためのデータおよびオブジェクト等を含んでもよい。
別の局面において、ストレージ630は、メモリカードのように着脱可能な記憶装置として実現されてもよい。さらに別の局面において、サーバ600に内蔵されたストレージ630の代わりに、外部の記憶装置に保存されているプログラムおよびデータを使用する構成が使用されてもよい。このような構成によれば、例えば、アミューズメント施設のように複数のHMDシステム100が使用される場面において、プログラムやデータの更新を一括して行なうことが可能になる。
入出力インターフェイス640は、入出力機器との間で信号を通信する。ある局面において、入出力インターフェイス640は、USB、DVI、HDMIその他の端子を用いて実現される。入出力インターフェイス640は上述のものに限られない。
通信インターフェイス650は、ネットワーク2に接続されて、ネットワーク2に接続されているコンピュータ200と通信する。ある局面において、通信インターフェイス650は、例えば、LANその他の有線通信インターフェイス、あるいは、WiFi、Bluetooth、NFCその他の無線通信インターフェイスとして実現される。通信インターフェイス650は上述のものに限られない。
ある局面において、プロセッサ610は、ストレージ630にアクセスし、ストレージ630に格納されている1つ以上のプログラムをメモリ620にロードし、当該プログラムに含まれる一連の命令を実行する。当該1つ以上のプログラムは、サーバ600のオペレーティングシステム、仮想空間を提供するためのアプリケーションプログラム、仮想空間で実行可能なゲームソフトウェア等を含み得る。プロセッサ610は、入出力インターフェイス640を介して、仮想空間を提供するための信号をコンピュータ200に送ってもよい。
[HMDの制御装置]
図10を参照して、HMD21の制御装置について説明する。ある実施の形態において、制御装置は周知の構成を有するコンピュータ200によって実現される。図10は、ある実施の形態に従うコンピュータ200をモジュール構成として表わすブロック図である。
図10に示されるように、コンピュータ200は、コントロールモジュール510と、レンダリングモジュール520と、メモリモジュール530と、通信制御モジュール540とを備える。ある局面において、コントロールモジュール510とレンダリングモジュール520とは、プロセッサ210によって実現される。別の局面において、複数のプロセッサ210がコントロールモジュール510とレンダリングモジュール520として作動してもよい。メモリモジュール530は、メモリ220またはストレージ230によって実現される。通信制御モジュール540は、通信インターフェイス250によって実現される。
コントロールモジュール510は、ユーザ5に提供される仮想空間11を制御する。コントロールモジュール510は、仮想空間11を表す仮想空間データを用いて、HMDシステム100における仮想空間11を規定する。仮想空間データは、例えば、メモリモジュール530に記憶されている。コントロールモジュール510が、仮想空間データを生成したり、サーバ600などから仮想空間データを取得するようにしたりしてもよい。
コントロールモジュール510は、オブジェクトを表すオブジェクトデータを用いて、仮想空間11にオブジェクトを配置する。オブジェクトデータは、例えば、メモリモジュール530に記憶されている。コントロールモジュール510が、オブジェクトデータを生成したり、サーバ600などからオブジェクトデータを取得するようにしたりしてもよい。オブジェクトは、例えば、ユーザ5の分身であるアバターオブジェクト、キャラクタオブジェクト、コントローラ300によって操作される仮想手などの操作オブジェクト、ゲームのストーリーの進行に従って配置される森、山その他を含む風景、街並み、動物等を含み得る。
コントロールモジュール510は、ネットワーク2を介して接続される他のコンピュータ200のユーザ5のアバターオブジェクトを仮想空間11に配置する。ある局面において、コントロールモジュール510は、ユーザ5のアバターオブジェクトを仮想空間11に配置する。ある局面において、コントロールモジュール510は、ユーザ5を含む画像に基づいて、ユーザ5を模したアバターオブジェクトを仮想空間11に配置する。別の局面において、コントロールモジュール510は、複数種類のアバターオブジェクト(例えば、動物を模したオブジェクトや、デフォルメされた人のオブジェクト)の中からユーザ5による選択を受け付けたアバターオブジェクトを仮想空間11に配置する。
コントロールモジュール510は、HMDセンサ410の出力に基づいてHMD120の傾きを特定する。別の局面において、コントロールモジュール510は、モーションセンサとして機能するセンサ190の出力に基づいてHMD120の傾きを特定する。コントロールモジュール510は、第1カメラ150および第2カメラ160が生成するユーザ5の顔の画像から、ユーザ5の顔を構成する器官(例えば、口,目,眉)を検出する。コントロールモジュール510は、検出した各器官の動き(形状)を検出する。
コントロールモジュール510は、注視センサ140からの信号に基づいて、ユーザ5の仮想空間11における視線を検出する。コントロールモジュール510は、検出したユーザ5の視線と仮想空間11の天球とが交わる視点位置(XYZ座標系における座標値)を検出する。より具体的には、コントロールモジュール510は、uvw座標系で規定されるユーザ5の視線と、仮想カメラ14の位置および傾きとに基づいて、視点位置を検出する。コントロールモジュール510は、検出した視点位置をサーバ600に送信する。別の局面において、コントロールモジュール510は、ユーザ5の視線を表す視線情報をサーバ600に送信するように構成されてもよい。係る場合、サーバ600が受信した視線情報に基づいて視点位置を算出し得る。
コントロールモジュール510は、HMDセンサ410が検出するHMD120の動きをアバターオブジェクトに反映する。例えば、コントロールモジュール510は、HMD120が傾いたことを検知して、アバターオブジェクトを傾けて配置する。コントロールモジュール510は、検出した顔器官の動作を、仮想空間11に配置されるアバターオブジェクトの顔に反映させる。コントロールモジュール510は、サーバ600から他のユーザ5の視線情報を受信し、当該他のユーザ5のアバターオブジェクトの視線に反映させる。ある局面において、コントロールモジュール510は、コントローラ300の動きをアバターオブジェクトや操作オブジェクトに反映する。この場合、コントローラ300は、コントローラ300の動きを検知するためのモーションセンサ、加速度センサ、または複数の発光素子(例えば、赤外線LED)などを備える。
コントロールモジュール510は、仮想空間11においてユーザ5の操作を受け付けるための操作オブジェクトを仮想空間11に配置する。ユーザ5は、操作オブジェクトを操作することにより、例えば、仮想空間11に配置されるオブジェクトを操作する。ある局面において、操作オブジェクトは、例えば、ユーザ5の手に相当する仮想手である手オブジェクト等を含み得る。ある局面において、コントロールモジュール510は、モーションセンサ420の出力に基づいて現実空間におけるユーザ5の手の動きに連動するように仮想空間11において手オブジェクトを動かす。ある局面において、操作オブジェクトは、アバターオブジェクトの手の部分に相当し得る。
コントロールモジュール510は、仮想空間11に配置されるオブジェクトのそれぞれが、他のオブジェクトと衝突した場合に、当該衝突を検出する。コントロールモジュール510は、例えば、あるオブジェクトのコリジョンエリアと、別のオブジェクトのコリジョンエリアとが触れたタイミングを検出することができ、当該検出がされたときに、予め定められた処理を行なう。コントロールモジュール510は、オブジェクトとオブジェクトとが触れている状態から離れたタイミングを検出することができ、当該検出がされたときに、予め定められた処理を行なう。コントロールモジュール510は、オブジェクトとオブジェクトとが触れている状態であることを検出することができる。例えば、コントロールモジュール510は、操作オブジェクトと、他のオブジェクトとが触れたときに、これら操作オブジェクトと他のオブジェクトとが触れたことを検出して、予め定められた処理を行なう。
ある局面において、コントロールモジュール510は、HMD120のモニタ130における画像表示を制御する。例えば、コントロールモジュール510は、仮想空間11に仮想カメラ14を配置する。コントロールモジュール510は、仮想空間11における仮想カメラ14の位置と、仮想カメラ14の傾き(向き)を制御する。コントロールモジュール510は、HMD120を装着したユーザ5の頭の傾きと、仮想カメラ14の位置に応じて、視界領域15を規定する。レンダリングモジュール520は、決定された視界領域15に基づいて、モニタ130に表示される視界画像17を生成する。レンダリングモジュール520により生成された視界画像17は、通信制御モジュール540によってHMD120に出力される。
コントロールモジュール510は、HMD120から、ユーザ5のマイク170を用いた発話を検出すると、当該発話に対応する音声データの送信対象のコンピュータ200を特定する。音声データは、コントロールモジュール510によって特定されたコンピュータ200に送信される。コントロールモジュール510は、ネットワーク2を介して他のユーザのコンピュータ200から音声データを受信すると、当該音声データに対応する音声(発話)をスピーカ180から出力する。
メモリモジュール530は、コンピュータ200が仮想空間11をユーザ5に提供するために使用されるデータを保持している。ある局面において、メモリモジュール530は、空間情報と、オブジェクト情報と、ユーザ情報とを保持している。
空間情報は、仮想空間11を提供するために規定された1つ以上のテンプレートを保持している。
オブジェクト情報は、仮想空間11を構成する複数のパノラマ画像13、仮想空間11にオブジェクトを配置するためのオブジェクトデータを含む。パノラマ画像13は、静止画像および動画像を含み得る。パノラマ画像13は、非現実空間の画像と現実空間の画像とを含み得る。非現実空間の画像としては、例えば、コンピュータグラフィックスで生成された画像が挙げられる。
ユーザ情報は、ユーザ5を識別するユーザIDを保持する。ユーザIDは、例えば、ユーザが使用するコンピュータ200に設定されるIP(Internet Protocol)アドレスまたはMAC(Media Access Control)アドレスであり得る。別の局面において、ユーザIDはユーザによって設定され得る。ユーザ情報は、HMDシステム100の制御装置としてコンピュータ200を機能させるためのプログラム等を含む。
メモリモジュール530に格納されているデータおよびプログラムは、HMD120のユーザ5によって入力される。あるいは、プロセッサ210が、当該コンテンツを提供する事業者が運営するコンピュータ(例えば、サーバ600)からプログラムあるいはデータをダウンロードして、ダウンロードされたプログラムあるいはデータをメモリモジュール530に格納する。
通信制御モジュール540は、ネットワーク2を介して、サーバ600その他の情報通信装置と通信し得る。
ある局面において、コントロールモジュール510及びレンダリングモジュール520は、例えば、ユニティテクノロジーズ社によって提供されるUnity(登録商標)を用いて実現され得る。別の局面において、コントロールモジュール510及びレンダリングモジュール520は、各処理を実現する回路素子の組み合わせとしても実現され得る。
コンピュータ200における処理は、ハードウェアと、プロセッサ210により実行されるソフトウェアとによって実現される。このようなソフトウェアは、ハードディスクその他のメモリモジュール530に予め格納されている場合がある。ソフトウェアは、CD−ROMその他のコンピュータ読み取り可能な不揮発性のデータ記録媒体に格納されて、プログラム製品として流通している場合もある。あるいは、当該ソフトウェアは、インターネットその他のネットワークに接続されている情報提供事業者によってダウンロード可能なプログラム製品として提供される場合もある。このようなソフトウェアは、光ディスク駆動装置その他のデータ読取装置によってデータ記録媒体から読み取られて、あるいは、通信制御モジュール540を介してサーバ600その他のコンピュータからダウンロードされた後、記憶モジュールに一旦格納される。そのソフトウェアは、プロセッサ210によって記憶モジュールから読み出され、実行可能なプログラムの形式でRAMに格納される。プロセッサ210は、そのプログラムを実行する。
[HMDシステムの制御構造]
図11を参照して、HMDセット110の制御構造について説明する。図11は、ある実施の形態に従うHMDセット110において実行される処理の一部を表すシーケンスチャートである。
図11に示されるように、ステップS1110にて、コンピュータ200のプロセッサ210は、コントロールモジュール510として、仮想空間データを特定し、仮想空間11を定義する。
ステップS1120にて、プロセッサ210は、仮想カメラ14を初期化する。たとえば、プロセッサ210は、メモリのワーク領域において、仮想カメラ14を仮想空間11において予め規定された中心12に配置し、仮想カメラ14の視線をユーザ5が向いている方向に向ける。
ステップS1130にて、プロセッサ210は、レンダリングモジュール520として、初期の視界画像を表示するための視界画像データを生成する。生成された視界画像データは、通信制御モジュール540によってHMD120に出力される。
ステップS1132にて、HMD120のモニタ130は、コンピュータ200から受信した視界画像データに基づいて、視界画像を表示する。HMD120を装着したユーザ5は、視界画像を視認すると仮想空間11を認識し得る。
ステップS1134にて、HMDセンサ410は、HMD120から発信される複数の赤外線光に基づいて、HMD120の位置と傾きを検知する。検知結果は、動き検知データとして、コンピュータ200に出力される。
ステップS1140にて、プロセッサ210は、HMD120の動き検知データに含まれる位置と傾きとに基づいて、HMD120を装着したユーザ5の視界方向を特定する。
ステップS1150にて、プロセッサ210は、アプリケーションプログラムを実行し、アプリケーションプログラムに含まれる命令に基づいて、仮想空間11にオブジェクトを配置する。
ステップS1160にて、コントローラ300は、モーションセンサ420から出力される信号に基づいて、ユーザ5の操作を検出し、その検出された操作を表す検出データをコンピュータ200に出力する。別の局面において、ユーザ5によるコントローラ300の操作は、ユーザ5の周囲に配置されたカメラからの画像に基づいて検出されてもよい。
ステップS1170にて、プロセッサ210は、コントローラ300から取得した検出データに基づいて、ユーザ5によるコントローラ300の操作を検出する。
ステップS1180にて、プロセッサ210は、ユーザ5によるコントローラ300の操作に基づく視界画像データを生成する。生成された視界画像データは、通信制御モジュール540によってHMD120に出力される。
ステップS1190にて、HMD120は、受信した視界画像データに基づいて視界画像を更新し、更新後の視界画像をモニタ130に表示する。
[アバターオブジェクト]
図12(A)、(B)を参照して、本実施の形態に従うアバターオブジェクトについて説明する。以下、HMDセット110A,110Bの各ユーザ5のアバターオブジェクトを説明する。以下、HMDセット110Aのユーザをユーザ5A、HMDセット110Bのユーザをユーザ5B、HMDセット110Cのユーザをユーザ5C、HMDセット110Dのユーザをユーザ5Dと表す。HMDセット110Aに関する各構成要素の参照符号にAが付され、HMDセット110Bに関する各構成要素の参照符号にBが付され、HMDセット110Cに関する各構成要素の参照符号にCが付され、HMDセット110Dに関する各構成要素の参照符号にDが付される。例えば、HMD120Aは、HMDセット110Aに含まれる。
図12(A)は、ネットワーク2において、各HMD120がユーザ5に仮想空間11を提供する状況を表す模式図である。コンピュータ200A〜200Dは、HMD120A〜120Dを介して、ユーザ5A〜5Dに、仮想空間11A〜11Dをそれぞれ提供する。図12(A)に示される例において、仮想空間11Aおよび仮想空間11Bは同じデータによって構成されている。換言すれば、コンピュータ200Aとコンピュータ200Bとは同じ仮想空間を共有していることになる。仮想空間11Aおよび仮想空間11Bには、ユーザ5Aのアバターオブジェクト6Aと、ユーザ5Bのアバターオブジェクト6Bとが存在する。仮想空間11Aにおけるアバターオブジェクト6Aおよび仮想空間11Bにおけるアバターオブジェクト6BがそれぞれHMD120を装着しているが、これは説明を分かりやすくするためのものであって、実際にはこれらのオブジェクトはHMD120を装着していない。
ある局面において、プロセッサ210Aは、ユーザ5Aの視界画像17Aを撮影する仮想カメラ14Aを、アバターオブジェクト6Aの目の位置に配置し得る。
図12(B)は、図12(A)におけるユーザ5Aの視界画像17Aを示す図である。視界画像17Aは、HMD120Aのモニタ130Aに表示される画像である。この視界画像17Aは、仮想カメラ14Aにより生成された画像である。視界画像17Aには、ユーザ5Bのアバターオブジェクト6Bが表示されている。特に図示はしていないが、ユーザ5Bの視界画像にも同様に、ユーザ5Aのアバターオブジェクト6Aが表示されている。
図12(B)の状態において、ユーザ5Aは仮想空間11Aを介してユーザ5Bと対話による通信(コミュニケーション)を図ることができる。より具体的には、マイク170Aにより取得されたユーザ5Aの音声は、サーバ600を介してユーザ5BのHMD17120Bに送信され、HMD120Bに設けられたスピーカ180Bから出力される。ユーザ5Bの音声は、サーバ600を介してユーザ5AのHMD120Aに送信され、HMD120Aに設けられたスピーカ180Aから出力される。
ユーザ5Bの動作(HMD120Bの動作およびコントローラ300Bの動作)は、プロセッサ210Aにより仮想空間11Aに配置されるアバターオブジェクト6Bに反映される。これにより、ユーザ5Aは、ユーザ5Bの動作を、アバターオブジェクト6Bを通じて認識できる。
図13は、本実施の形態に従うHMDシステム100において実行される処理の一部を表すシーケンスチャートである。図13においては、HMDセット110Dを図示していないが、HMDセット110Dについても、HMDセット110A、110B、110Cと同様に動作する。以下の説明でも、HMDセット110Aに関する各構成要素の参照符号にAが付され、HMDセット110Bに関する各構成要素の参照符号にBが付され、HMDセット110Cに関する各構成要素の参照符号にCが付され、HMDセット110Dに関する各構成要素の参照符号にDが付されるものとする。
ステップS1310Aにおいて、HMDセット110Aにおけるプロセッサ210Aは、仮想空間11Aにおけるアバターオブジェクト6Aの動作を決定するためのアバター情報を取得する。このアバター情報は、例えば、動き情報、フェイストラッキングデータ、および音声データ等のアバターに関する情報を含む。動き情報は、HMD120Aの位置および傾きの時間的変化を示す情報や、モーションセンサ420A等により検出されたユーザ5Aの手の動きを示す情報などを含む。フェイストラッキングデータは、ユーザ5Aの顔の各パーツの位置および大きさを特定するデータが挙げられる。フェイストラッキングデータは、ユーザ5Aの顔を構成する各器官の動きを示すデータや視線データが挙げられる。音声データは、HMD120Aのマイク170Aによって取得されたユーザ5Aの音声を示すデータが挙げられる。アバター情報には、アバターオブジェクト6A、あるいはアバターオブジェクト6Aに関連付けられるユーザ5Aを特定する情報や、アバターオブジェクト6Aが存在する仮想空間11Aを特定する情報等が含まれてもよい。アバターオブジェクト6Aやユーザ5Aを特定する情報としては、ユーザIDが挙げられる。アバターオブジェクト6Aが存在する仮想空間11Aを特定する情報としては、ルームIDが挙げられる。プロセッサ210Aは、上述のように取得されたアバター情報を、ネットワーク2を介してサーバ600に送信する。
ステップS1310Bにおいて、HMDセット110Bにおけるプロセッサ210Bは、ステップS1310Aにおける処理と同様に、仮想空間11Bにおけるアバターオブジェクト6Bの動作を決定するためのアバター情報を取得し、サーバ600に送信する。同様に、ステップS1310Cにおいて、HMDセット110Bにおけるプロセッサ210Bは、仮想空間11Cにおけるアバターオブジェクト6Cの動作を決定するためのアバター情報を取得し、サーバ600に送信する。
ステップS1320において、サーバ600は、HMDセット110A、HMDセット110B、およびHMDセット110Cのそれぞれから受信したプレイヤ情報を一旦記憶する。サーバ600は、各アバター情報に含まれるユーザIDおよびルームID等に基づいて、共通の仮想空間11に関連付けられた全ユーザ(この例では、ユーザ5A〜5C)のアバター情報を統合する。そして、サーバ600は、予め定められたタイミングで、統合したアバター情報を当該仮想空間11に関連付けられた全ユーザに送信する。これにより、同期処理が実行される。このような同期処理により、HMDセット110A、HMDセット110B、およびHMD11020Cは、互いのアバター情報をほぼ同じタイミングで共有することができる。
続いて、サーバ600から各HMDセット110A〜110Cに送信されたアバター情報に基づいて、各HMDセット110A〜110Cは、ステップS1330A〜S1330Cの処理を実行する。ステップS1330Aの処理は、図11におけるステップS1180の処理に相当する。
ステップS1330Aにおいて、HMDセット110Aにおけるプロセッサ210Aは、仮想空間11Aにおける他のユーザ5B,5Cのアバターオブジェクト6B、アバターオブジェクト6Cの情報を更新する。具体的には、プロセッサ210Aは、HMDセット110Bから送信されたアバター情報に含まれる動き情報に基づいて、仮想空間11におけるアバターオブジェクト6Bの位置および向き等を更新する。例えば、プロセッサ210Aは、メモリモジュール540に格納されたオブジェクト情報に含まれるアバターオブジェクト6Bの情報(位置および向き等)を更新する。同様に、プロセッサ210Aは、HMDセット110Cから送信されたアバター情報に含まれる動き情報に基づいて、仮想空間11におけるアバターオブジェクト6Cの情報(位置および向き等)を更新する。
ステップS1330Bにおいて、HMDセット110Bにおけるプロセッサ210Bは、ステップS1330Aにおける処理と同様に、仮想空間11Bにおけるユーザ5A,5Cのアバターオブジェクト6A,6Cの情報を更新する。同様に、ステップS1330Cにおいて、HMDセット110Cにおけるプロセッサ210Cは、仮想空間11Cにおけるユーザ5A,5Bのアバターオブジェクト6A,6Bの情報を更新する。
[モジュールの詳細構成]
図14を参照して、コンピュータ200のモジュール構成の詳細について説明する。図14は、ある実施の形態に従うコンピュータ200のモジュールの詳細構成を表わすブロック図である。
図14に示されるように、コントロールモジュール510は、仮想カメラ制御モジュール1421と、視界領域決定モジュール1422と、基準視線特定モジュール1423と、仮想空間定義モジュール1426と、仮想オブジェクト生成モジュール1427と、操作オブジェクト制御モジュール1428と、アバター制御モジュール1429と、方向決定モジュール1441と、方向補正モジュール1442と、を備える。レンダリングモジュール520は、視界画像生成モジュール1438を備える。メモリモジュール530は、空間情報1431と、オブジェクト情報1432と、ユーザ情報1433と、を保持している。
仮想カメラ制御モジュール1421は、仮想空間11に仮想カメラ14を配置する。仮想カメラ14は、仮想視点の一例である。仮想カメラ制御モジュール1421は、仮想空間11における仮想カメラ14の配置位置と、仮想カメラ14の向き(傾き)を制御する。視界領域決定モジュール1422は、HMD120を装着したユーザの頭の向きと、仮想カメラ14の配置位置に応じて、視界領域15を規定する。視界画像生成モジュール1438は、決定された視界領域15に基づいて、モニタ130に表示される視界画像17を生成する。
基準視線特定モジュール1423は、センサ190またはHMDセンサ410の出力に基づいて、基準視線16を特定する。基準視線特定モジュール1423はさらに、注視センサ140からの信号に基づいて、ユーザ5の視線を特定する。
仮想空間定義モジュール1426は、仮想空間11を表わす仮想空間データを生成することにより、HMDシステム100における仮想空間11を定義する。
仮想オブジェクト生成モジュール1427は、仮想空間11に配置されるオブジェクトを生成する。オブジェクトは、例えば、ゲームのストーリーの進行に従って配置される森、山その他を含む風景、動物等を含み得る。
操作オブジェクト制御モジュール1428は、仮想空間11においてユーザの操作を受け付けるための操作オブジェクトを仮想空間11に配置する。ユーザは、操作オブジェクトを操作することにより、例えば、仮想空間11に配置されるオブジェクトを操作する。ある局面において、操作オブジェクトは、例えば、HMD120を装着したユーザの手に相当する手オブジェクト等を含み得る。ある局面において、操作オブジェクトは、アバターオブジェクト6の手の部分に相当し得る。
アバター制御モジュール1429は、ネットワーク2を介して接続される他のコンピュータ200のユーザのアバターオブジェクトを仮想空間11に配置するためのデータを生成する。ある局面において、アバター制御モジュール1429は、ユーザ5のアバターオブジェクトを仮想空間11に配置するためのデータを生成する。ある局面において、アバター制御モジュール1429は、ユーザ5を含む画像に基づいて、ユーザ5を模したアバターオブジェクトを生成する。別の局面において、アバター制御モジュール1429は、複数種類のアバターオブジェクト(例えば、動物を模したオブジェクトや、デフォルメされた人のオブジェクト)の中からユーザ5による選択を受け付けたアバターオブジェクトを仮想空間11に配置するためのデータを生成する。
アバター制御モジュール1429は、HMDセンサ410が検出するHMD120の動きをアバターオブジェクトに反映する。例えば、アバター制御モジュール1429は、HMD120が傾いたことを検知して、アバターオブジェクトを傾けて配置するためのデータを生成する。ある局面において、アバター制御モジュール1429は、コントローラ300の動きをアバターオブジェクトに反映する。この場合、コントローラ300は、コントローラ300の動きを検知するためのモーションセンサ、加速度センサ、または複数の発光素子(例えば、赤外線LED)などを備える。
方向決定モジュール1441は、後述する移動体オブジェクトの移動方向を決定する。方向補正モジュール1442は、方向決定モジュール1441によって決定された移動方向を補正する。方向決定モジュール1441および方向補正モジュール1442の詳細は後述する。
空間情報1431は、仮想空間11を提供するために規定された1つ以上のテンプレートを保持している。
オブジェクト情報1432は、仮想空間11において再生されるコンテンツ、当該コンテンツで使用されるオブジェクト、およびオブジェクトを仮想空間11に配置するための情報(たとえば、位置)を保持している。当該コンテンツは、例えば、ゲーム、現実社会と同様の風景を表したコンテンツ等を含み得る。
ユーザ情報1433は、HMDシステム100の制御装置としてコンピュータ200を機能させるためのプログラム、オブジェクト情報1432に保持される各コンテンツを使用するアプリケーションプログラム等を保持している。
[仮想空間の中を移動するためのデバイス]
図15は、ある実施形態において仮想空間の中を移動するために供されるデバイスの構成例を表す図である。
図15を参照して、ある局面においてユーザ5は、ボード1521に乗っている。ボード1521は、平板1523,1525と、バネ1527,1529と、4組のキャスター1531と、傾きセンサ1533とを備える。
平板1523と平板1525とは、バネ1527およびバネ1529によって連結されている。ユーザ5は、平板1523の上に乗っている。平板1523は、乗用部の一例である。平板1525のバネ1527,1529とは反対側の面の4隅にはキャスター1531が取り付けられている。傾きセンサ1533は、平板1523に取り付けられている。
ユーザ5は、筐体1541に囲まれている空間1551内でボード1521を動かす。具体的には、ユーザ5は、主として、脚部等の下半身で平板1523に荷重を加える。これにより、平板1523の傾き(姿勢)が変化する。筐体1541は、ボード1521の動きを制限するように構成されている。その理由は、仮にボード1521の動きが制限されない場合、ユーザ5がボード1521の動きを制御しきれず転倒するなどの危険を伴うためである。
筐体1541は、バー1543を含む。ユーザ5は、ボード1521に乗っている間、不安定な状態である。そこで、ユーザ5はバー1543を掴むことによって自身の状態を安定させる。
傾きセンサ1533は、ユーザ5の身体の少なくとも一部の動きを検出する。具体的には、傾きセンサ1533は、ユーザ5が乗っている平板1523の向き(傾き)、つまり、ピッチ軸(u軸)、ヨー軸(v軸)、およびロール軸(w軸)のそれぞれの回転角を検出し、検出結果をコンピュータ200に送信するように構成されている。一例として、傾きセンサ1533は、ジャイロセンサにより実現される。傾きセンサ1533に代えて、赤外光などのHMDセンサ410により検出可能な光を発する媒体を用いて、平板1523の向き(傾き)を検出するようにしてもよい。具体的には、HMDセンサ410が、この媒体から発する複数の赤外線を読み取り、この媒体の位置および傾きを検出するようにしてもよい。
[移動方向の決定]
図16は、図15に示されるユーザ5に提供されている視界画像1617を表す図である。図16に示される視界画像1617は、街の上空から見える風景を表わす。図16に示された例では、コンピュータ200は、ユーザ5に対して、街の上空をボードに乗って飛行するような仮想体験を提供する。視界画像1617は、ユーザ5が乗っているボードに対応する移動体オブジェクト1621を含む。視界画像1617がボードの先端のみを表示することは、ボードに乗っているユーザ5の視界に入るのは、通常、当該ボードの先端のみであることに対応する。
上述の通り、仮想空間11におけるユーザ5の視点は仮想カメラ14の位置に対応する。ある局面においてコントロールモジュール510は、仮想カメラ14と移動体オブジェクト1621とを互いに関連付ける。例えば、コントロールモジュール510は、仮想カメラ14の位置が移動体オブジェクト1621によって占められる空間の表面またはその内部に配置されたことに応じて、移動体オブジェクト1621と仮想カメラ14とを互いに関連付ける。これにより、コントロールモジュール510は、移動体オブジェクト1621に対する仮想カメラ14の相対的な位置を一定に保つ。
図17は、移動体オブジェクト1621の移動方向について説明するための図である。図17に示される例においてボード1521は正面方向1721を向いている。このとき、コントロールモジュール510は、仮想空間11に配置されている移動体オブジェクト1621を正面方向1731に移動させる。
方向決定モジュール1441は、傾きセンサ1533の検出結果に基づいて移動体オブジェクト1621の移動方向を決定する。例えば、方向決定モジュール1441は、ボード1521(平板1523)がヨー軸を基準として時計回りに角度θ2傾いていることを検出すると、移動体オブジェクト1621の移動方向を正面方向1731から右方向に角度θ2傾いた方向1733に決定する。方向1733は、第1方向の一例であり、平板1523の姿勢に対応する方向である。
他の例として、方向決定モジュール1441は、ボード1521がロール軸を基準として時計回りに角度θ3傾いていることを検出すると、移動体オブジェクト1621の移動方向を、現在の移動方向から右方向に角度θ4傾いた方向に決定する。角度θ4は、角度θ3に所定の係数をかけた値に設定され得る。方向決定モジュール1441は、ボード1521のロール軸を基準とした回転に応じて、移動体オブジェクト1621を、仮想空間内の鉛直面内で回転させてもよい。現実空間では、ユーザが鉛直面内での回転を体験し得る状況は稀である。本実施形態において提供される仮想体験では、ユーザ5は、ボード1521に対して、ロール軸周りの方向に回転を加える(たとえば、ボード1521上で左または右に重心を移動する)だけで、鉛直面内を回転する体験を得ることができる。
ボード1521がヨー軸を基準として所定角度で傾いている間、移動体オブジェクト1621は曲がりながら進むようにしてもよいし、ボード1521がロール軸を基準として所定角度で傾いている間、移動体オブジェクト1621は曲がりながら進むようにしてもよい。例えば、ボード1521がヨー軸を基準として時計回りに角度θ2傾いている状態からさらにロール軸を基準として時計回りに傾いている場合、方向決定モジュール1441は、移動体オブジェクト1621の移動方向を方向1735に決定する。
コントロールモジュール510は、決定された移動方向に沿って仮想カメラ14及び移動体オブジェクト1621を移動させる。すなわち、コントロールモジュール510は、仮想カメラ14に連動させて移動体オブジェクト1621を連動させる。
コントロールモジュール510は、ボード1521がピッチ軸を基準として時計まわりに傾いていることを検出すると、移動体オブジェクト1621の移動速度を減速し得る。コントロールモジュール510はさらに、ボード1521がピッチ軸を基準として反時計回りに傾いていることを検出すると、移動体オブジェクト1621の移動速度を増加し得る。
[移動方向の補正]
ボード1521の移動範囲は、筐体1541に囲まれた空間1551に限られる。そのため、ボード1521(平板1523)はヨー軸を基準として±θv1しか傾かないように構成されている。また、安全上および構造上の理由から、ボード1521はロール軸を基準として±θw1しか傾かないように構成されている。同様に、ボード1521はピッチ軸を基準として±θu1しか傾かないように構成されている。以下、これらθv1,θw1,θu1を総称して「制限角度」とも言う。
ある局面において、ユーザ5は、移動体オブジェクト1621を急旋回したいと考え、ボード1521をヨー軸およびロール軸を基準として傾ける。しかしながら、ボード1521が制限角度の範囲内でしか動かないことに起因して、ユーザ5が思い描く軌道の曲率よりも、実際の移動体オブジェクト1621の軌道の曲率が小さくなり得る。係る場合、ユーザ5は、自身の思い描く体験を実現することができないため、ストレスを感じ得る。
そこで、方向補正モジュール1442は、方向決定モジュール1441によって決定された移動方向(つまり、ボード1521の傾きによって決定された移動方向)をユーザ5の頭部の動きに基づいて補正する。つまり、方向補正モジュール1442は、ユーザ5の頭部の動きに応じて、移動方向を第1方向から第2方向に補正する。
ある局面において、方向決定モジュール1441は、傾きセンサ1533の出力に基づいて移動体オブジェクト1621の移動方向を方向1735に決定する。ユーザ5は、正面方向1721を基準として右斜め後ろの方向1723を向いている。方向補正モジュール1442は、HMD120に設けられたセンサ190の出力により、ユーザ5の頭部がヨー軸を基準として時計回り(右回り)に傾いていることを検出する。方向補正モジュール1442は、頭部のヨー軸まわりの回転角に基づいて、決定された移動方向1735をさらに右方向側の方向1737に補正する。その結果、方向1735に従う軌道の曲率よりも方向1737に従う軌道の曲率が大きくなり、移動体オブジェクト1621はユーザ5の思い描く軌道で移動し得る。
当該構成によれば、コンピュータ200は、ユーザ5の頭部の動き(傾き)に基づいて移動体オブジェクト1621の移動方向を補正できるため、ボード1521の移動範囲が制限されている場合であっても、ユーザ5の思い描く軌道を実現し得る。
ある実施形態において、方向補正モジュール1442は、センサ190によって検出されるユーザ5の頭部の向きに基づいて、補正値を算出する。方向補正モジュール1442は、傾きセンサ1533によって検出されたヨー角θvまたはロール角θwに補正値を加算する。コントロールモジュール510は、加算された値に基づいて移動体オブジェクト1621を移動させる。
ある実施形態において、方向補正モジュール1442は、予め定められた向きと、センサ190によって検出されるユーザ5の頭部の向きとが成す、ヨー軸を基準とした角度(以下、「第1角度」とも言う)に基づいて、決定された移動方向を補正するように構成される。ある局面において、予め定められた向きは、所定タイミング(例えば較正時)においてセンサ190によって検出されるユーザ5の頭部の向きに設定される。つまり、予め定められた向きは、ユーザ5の頭部の正面方向に設定される。この場合、第1角度は、頭部のヨー角となる。他の局面において、予め定められた向きは、ボード1521の向きに設定される。この場合、第1角度は、頭部のヨー角と乗用部のヨー角との角度差となる。図17に示される例では、ボード1521は正面方向1721を向いている。そのため、方向補正モジュール1442は、正面方向1721と頭の向いている方向1723とが成すヨー角θv2に基づいて決定された移動方向を補正する。
例えば、方向補正モジュール1442は、第1角度が大きいほど移動体オブジェクト1621の移動経路の曲率が大きくなるように、補正前の移動方向である第1方向を、補正後の移動方向である第2方向に補正する。第2方向は、例えば、第1方向におけるヨー角を補正した方向である。第1方向のヨー角を第1ヨー角、第2方向のヨー角を第2ヨー角とすると、第2ヨー角は、第1ヨー角よりも絶対値が大きい。第1角度の絶対値が大きいほど、第2ヨー角の絶対値が大きくなることが好ましい。
方向補正モジュール1442は、頭部のヨー角が第1閾値(例えば45度)以上である場合に、センサ190によって検出されるユーザ5の頭部の向きを用いて、決定された移動体オブジェクト1621の移動方向を補正するようにしてもよい。さらに他の局面において、方向補正モジュール1442は、頭部のヨー角が第1閾値である期間が所定時間以上継続された場合に、決定された移動方向を補正してもよい。当該構成によれば、コンピュータ200は、ユーザ5の意思に反して移動方向が補正される事態を抑制し得る。
他の例として、方向補正モジュール1442は、頭部のヨー角と乗用部のヨー角との角度差が第2閾値(例えば45度)以上である場合に、移動体オブジェクト1621の移動経路の曲率が大きくなるように、決定された移動方向を補正してもよい。ある局面において、方向補正モジュール1442は、頭部のヨー角と乗用部のヨー角との角度差が第2閾値である期間が所定時間以上継続された場合に、決定された移動方向を補正してもよい。当該構成によれば、コンピュータ200は、ユーザ5の意思に反して移動方向が補正される事態を抑制し得る。
さらに他の例として、方向補正モジュール1442は、ボード1521がヨー軸およびロール軸のうち少なくとも一方の軸を基準として制限角度(第3閾値)まで傾いている場合に、決定された移動方向を補正してもよい。当該構成によれば、コンピュータ200は、ユーザ5がより曲率の高い軌道での移動を所望していると推定される場合に、移動方向を補正し得る。
[制御構造]
図18は、移動体オブジェクト1621の移動方向を補正する処理の一例を表すフローチャートである。図18に示される処理は、プロセッサ210がメモリ220またはストレージ230に格納されている制御プログラムを実行することにより実現される。
ステップS1810にて、プロセッサ210は、移動体オブジェクト1621を仮想空間11に配置する。プロセッサ210はさらに、移動体オブジェクト1621を仮想カメラ14に関連付ける。これにより、仮想空間11におけるユーザの視点として機能する仮想カメラ14の位置は、移動体オブジェクト1621の位置に連動する。
ステップS1820にて、プロセッサ210は、仮想カメラ14の撮影範囲に対応する視界画像17(つまり、仮想空間11におけるユーザ5の視点からの視界)をモニタ130に出力する。
ステップS1830にて、プロセッサ210は、センサ190のキャリブレーションを実行する。例えば、プロセッサ210は、ユーザ5に正面を向くよう指示を出力する。プロセッサ210は、正面を向いた状態のセンサ190の出力を初期状態(つまり、ピッチ角、ヨー角、およびロール角が0)として定義する。他の例として、プロセッサ210は、ユーザ5に、傾いていない状態のボード1521と同じ方向を向くように指示を出力し、当該状態におけるセンサ190の出力を初期状態として定義してもよい。
ステップS1840にて、プロセッサ210は、センサ190の出力に基づいて、ボード1521に乗っているユーザ5に装着されたHMD120の動きを検出する。
ステップS1850にて、プロセッサ210は、HMD120の動きに連動して仮想カメラ14の向きを制御する。
ステップS1860にて、プロセッサ210は、傾きセンサ1533の出力に基づいてボード1521の向きを検出する。プロセッサ210は、方向決定モジュール1441として、ボード1521の向きに従い移動体オブジェクト1621の移動方向を決定する。
ステップS1870にて、プロセッサ210は、方向補正モジュール1442として、ユーザ5の頭部(HMD120)の動きに基づいて、決定された移動方向を補正する。例えば、方向補正モジュール1442は、センサ190によって検出されるヨー角(つまり、初期状態に対応する頭部の向きと、センサ190によって検出される頭部の向きとがなす、ヨー軸を基準とした角度)に基づいて移動方向を補正する。
ステップS1880にて、プロセッサ210は、コントロールモジュール510として、補正された移動方向に移動体オブジェクト1621を移動させる。このとき、プロセッサ210は、移動体オブジェクト1621に関連付けられた仮想カメラ14も補正された移動方向に移動させる。
ステップS1890にて、プロセッサ210は、移動後の仮想カメラ14の撮影範囲に対応する視界画像17をモニタ130に出力する。プロセッサ210は、ステップS1840〜S1890の処理を繰り返し実行する。
当該構成によれば、コンピュータ200は、ユーザ5の頭部の動き(傾き)に基づいて移動体オブジェクト1621の移動方向を補正できるため、ボード1521の移動範囲が制限されている場合であっても、ユーザ5の思い描く軌道を実現し得る。
[その他の構成]
(上下方向における移動の補正)
上記の例では、方向補正モジュール1442は、ユーザ5の頭部の動き(傾き)は、ヨー軸を基準としたボード1521の回転方向に基づいて決定された移動方向に対する補正に用いるように構成されている。すなわち、方向補正モジュール1442は、ユーザ5の頭部の動きを仮想カメラ14の左右方向についての移動方向の補正に用いる。
ある局面において、方向補正モジュール1442は、以下に説明されるように、ユーザ5の頭部の動きを、仮想カメラ14の上下方向についての移動方向の補正に用いてもよい。
すなわち、方向決定モジュール1441は、ボード1521がピッチ軸を基準として時計回りに傾いていることを検出すると、移動体オブジェクト1621の移動方向を上方向(Y軸方向)に決定する。一方、方向決定モジュール1441は、ボード1521がピッチ軸を基準として反時計回りに傾いていることを検出すると、移動体オブジェクト1621の移動方向を下方向に決定する。
方向補正モジュール1442は、上述の予め定められた向きと、センサ190によって検出されるユーザ5の頭部の向きとが成す、ピッチ軸を基準とした角度に基づいて、決定された移動方向を補正する。他の実施形態において、方向補正モジュール1442は、ボード1521の向きとユーザ5の頭部の向きとが成す、ピッチ軸を基準とした角度に基づいて、決定された移動方向を補正する。
上記によれば、コンピュータ200は、仮想空間11内の水平面(XZ平面)における移動体オブジェクト1621の移動のみならず、垂直方向(Y軸方向)における移動体オブジェクト1621の移動を、ユーザ5の頭部の動きに基づいて補正できる。その結果、コンピュータ200は、より豊かな仮想体験をユーザ5に提供し得る。
なお、ユーザ5の頭部の動きに基づいた補正の方向は、仮想体験を提供するアプリケーションの種類に従って決定されてもよい。たとえば、アプリケーションが図16を参照して説明されたような、空中を自由に移動する仮想体験を提供するものである場合には、ユーザ5の頭部の動きに基づいた補正は、水平面における移動方向に対する補正および垂直方向における移動に対する補正のいずれにも利用され得る。一方、アプリケーションが、スノーボードで雪面を滑走する仮想体験を提供するものである場合には、ユーザ5の頭部の動きに基づいた補正は、水平面における移動方向に対する補正にのみ利用され得る。雪面を滑走する際、移動体オブジェクト1621が垂直方向に移動する事態が想定されにくいからである。
(移動方向を決定する方法)
上記の例では、方向決定モジュール1441は、ユーザ5が乗っているボード1521の傾きに基づいて移動体オブジェクト1621の移動方向を決定するように構成されているが、他の入力に基づいて移動体オブジェクトの移動方向を決定してもよい。
例えば、方向決定モジュール1441は、ユーザ5によって操作されるハンドル(図示しない)の回転方向に基づいて移動体オブジェクトの移動方向を決定してもよい。係る場合、移動体オブジェクトは車オブジェクトであり得る。
通常、ハンドルの回転範囲は制限されている。そのため、ユーザ5は、思い描く軌道で移動体オブジェクトを動かすことができないことがある。そこで、方向補正モジュール1442は、上述の予め定められた向きと、センサ190によって検出されるユーザ5の頭部の向きとが成す、ヨー軸を基準とした角度に基づいて、決定された移動方向を補正する。
他の例として、方向決定モジュール1441は、現実世界のデバイスではなく、仮想空間11に配置され、ユーザ5によって操作されるオブジェクトに基づいて移動体オブジェクトの移動方向を決定してもよい。
図19は、移動体オブジェクトの移動方向を決定および補正する処理を説明するための図である。図19に示される視界画像1917は、アバターオブジェクト6が、車として機能する移動体オブジェクト1921に乗っている様子を表す。なお、仮想カメラ14は、アバターオブジェクト6の目の位置に配置されている。そのため、視界画像1917には、アバターオブジェクト6の手に想到する手オブジェクト1931が表示されている。
移動体オブジェクト1921は、ハンドルオブジェクト1923を含む。操作オブジェクト制御モジュール1428は、ユーザ5によって操作されるコントローラ300の動きを手オブジェクト1931に反映する。
操作オブジェクト制御モジュール1428は、手オブジェクト1931とハンドルオブジェクト1923とが接触したことに基づいて、これらのオブジェクトを互いに関連付ける。操作オブジェクト制御モジュール1428は、手オブジェクト1931に関連付けられたハンドルオブジェクト1923を、手オブジェクト1931の動きに基づいて回転させる。
方向決定モジュール1441は、ハンドルオブジェクト1931の回転角度に基づいて、移動体オブジェクト1921の移動方向を決定する。ある実施形態において、ハンドルオブジェクト1931の回転範囲は、現実感を向上させるために現実のハンドル同様に制限される。そのため、ユーザ5は、思い描く軌道で移動体オブジェクト1931を動かすことができないことがある。そこで、方向補正モジュール1442は、上述の予め定められた向きと、センサ190によって検出されるユーザ5の頭部の向きとが成す、ヨー軸を基準とした角度に基づいて、決定された移動方向を補正する。このようにして、コンピュータ200は、より曲率の大きい移動経路を実現し得る。
(補正時の処理−その1)
ところで、仮想現実を体験しているユーザ5は、所謂VR酔いを引き起こす場合がある。VR酔いの発生原因としては、仮想体験によって得られる感覚が、ユーザ5が体感や予測している感覚と齟齬することが挙げられる。
方向補正モジュール1442によって補正された移動方向は、ボード1521の傾きから定まる移動方向とは異なる。そのため、ユーザ5は、ボード1521の傾きから予想される移動方向と、実際の移動体オブジェクト1621の移動方向とが異なることに起因して、VR酔いを起こし得る。
そこで、ある実施形態に従うプロセッサ210は、補正された移動方向に移動体オブジェクト1621を移動させている間、モニタ130に表示する画像の情報量を低減させる処理を実行することにより、VR酔いを抑制する。
一例として、プロセッサ210は、仮想カメラ14に関連付けられる設定値を変更することにより、画像の情報量を低減させる。設定値は、たとえば、仮想カメラ14の「被写界深度」や、実際のカメラの「絞り」に相当する仮想カメラ14の機能などを含む。プロセッサ210は、これらの設定値を変更することにより、ボケた視界画像をモニタ130に出力する。これにより、ユーザ5は、視界画像上のオブジェクトを視認しづらくなり、VR酔いを引き起こしにくくなる。
他の例として、プロセッサ210は、仮想空間11に配置される各種オブジェクトに貼り付けられるテクスチャの解像度を低下することにより、画像の情報量を低減してもよい。さらに他の例として、プロセッサ210は、所謂フォグ処理を行ない、仮想空間11上に“もや”を施すことにより、画像の情報量を低減してもよい。これらの構成によっても、ユーザ5は、視界画像上のオブジェクトを視認しづらくなり、VR酔いを引き起こしにくくなる。
(補正時の処理−その2)
図20は、移動体オブジェクト1621の移動方向と、仮想カメラ14の向きとの関係を説明するための図である。ある局面において、ユーザ5は、位置2021においてUターン(急旋回)をしたいと考え、ボード1521を傾けるとともに、自身の所望する移動方向2033を向く。この移動方向2033は、現在の移動体オブジェクト1621の進行方向2031とは逆側の方向2033(つまり、後ろ方向)である。これにより、方向決定モジュール1441が傾きセンサ1533から移動方向を決定し、方向補正モジュール1442が決定された移動方向を、移動経路の曲率が大きくなるように補正する。プロセッサ210は、補正された移動方向に従い、移動体オブジェクト1621を、位置2021から位置2022〜2026を経由して位置2027に移動させる。
移動体オブジェクト1621がUターンしている間、ユーザ5によっては自身の頭を回転させない(つまり、後ろ方向を向いている)。係る場合、図20に示されるように、位置2027において、ユーザ5は、移動体オブジェクト1621の移動方向(つまり、ユーザ5の所望する移動方向2033)とは逆側の方向2035を向いてしまうことになる。その結果、ユーザ5は、位置2027において移動体オブジェクト1621の進行方向の状態がどうなっているか分からないため、移動体オブジェクト1621が障害物等にぶつかり得る。
そこで、ある実施形態に従うプロセッサ210は、補正された移動方向に移動体オブジェクト1621を移動させている間、ユーザ5の頭(HMD120)の動きに連動して仮想カメラ14の向きを制御する処理を中止する。係る場合、位置2027において、仮想カメラ14は、ユーザ5の所望する移動方向2033を向く。その結果、ユーザ5は、移動体オブジェクト1621が障害物等にぶつかることを避け得る。
ある実施形態に従うプロセッサ210は、補正された移動方向に移動体オブジェクト1621を移動させている間、仮想カメラ14の向きを、移動体オブジェクト1621の移動方向に設定してもよい。当該構成によっても、位置2027において、仮想カメラ14は、ユーザ5の所望する移動方向2033を向く。
(移動体オブジェクトの種類)
上記の例では、移動体オブジェクトはスノーボード、車であったが、移動体オブジェクトは、飛翔体(飛行機、ヘリコプタ、ロケット、鳥など)、自転車、船、その他の移動体であってもよい。
[構成]
以上に開示された技術的特徴は、以下のように要約され得る。
(構成1) ある実施形態に従うと、仮想現実を提供するためにコンピュータ200で実行されるプログラムが提供される。このプログラムはコンピュータ200に、コンピュータ200に接続されたHMD120のモニタ130に視界画像を表示して当該HMD120を装着したユーザ5に仮想空間11における視点(仮想カメラ14)からの視界を提供するステップ(S1820)と、HMD120の動きを検出するステップ(S1840)と、動きに連動して視点の向き(仮想カメラ14の向き)を制御するステップ(S1850)と、視点と連動する移動体オブジェクト1621を仮想空間11に配置するステップ(S1810)と、ユーザ5の頭部以外の動きに基づく入力に従い移動体オブジェクトの移動方向を決定するステップ(S1860)と、頭部の動きに基づいて移動方向を補正するステップ(S1870)と、補正された移動方向に移動体オブジェクトを移動させるステップ(S1880)とを実行させる。
(構成2) 決定するステップは、ユーザ5が乗っているボード1521の向きに基づいて移動方向を決定するステップ(S1860)を含む。
(構成3) 補正するステップは、予め定められた向きとユーザ5の頭部の向きとが成す第1角度に基づいて移動方向を補正するステップを含む。予め定めらた向きは、所定タイミング(例えば較正時)においてセンサ190によって検出されるユーザ5の頭部の向きを含む。
(構成4) 補正するステップは、ユーザ5の頭部の向きとボード1521の向きとが成す第2角度に基づいて移動方向を補正するステップを含む。
(構成5) 補正するステップは、角度が大きいほど、移動体オブジェクトの移動経路の曲率が大きくなるように、移動方向を補正するステップを含む。
(構成6) 決定するステップは、ユーザ5が乗っているボード1521の向きに基づいて移動方向を決定するステップを含む。補正するステップは、ボード1521の傾きが第1の閾値以上である場合に移動方向を補正するステップとを含む。
(構成7) ボード1521は制限された角度の範囲で稼働するように構成される。第1の閾値は、制限された角度に設定される。
(構成8) 補正するステップは、角度が第2の閾値以上である場合に、移動方向を補正するステップとを含む。
(構成9) ユーザ5の頭部以外の動きに基づく入力は、ハンドル又は仮想空間11に配置されるハンドルオブジェクト、コントローラに対する入力を含む。
(構成10) プログラムはコンピュータ200に、補正された移動方向に移動体オブジェクトを移動させる間、HMD120に表示する画像の情報量を低減させるステップをさらに実行させる。
(構成11) プログラムはコンピュータ200に、補正された移動方向に移動体オブジェクトを移動させる間、HMD120の動きに連動して視点の向きを制御する処理を中止するステップをさらに実行させる。
上記実施形態においては、HMDによってユーザが没入する仮想空間(VR空間)を例示して説明したが、HMDとして、透過型のHMDを採用してもよい。この場合、透過型のHMDを介してユーザが視認する現実空間に仮想空間を構成する画像の一部を合成した視界画像を出力することにより、拡張現実(AR:Augumented Reality)空間または複合現実(MR:Mixed Reality)空間における仮想体験をユーザに提供してもよい。この場合、操作オブジェクトに代えて、ユーザの手の動きに基づいて、仮想空間内における対象オブジェクトへの作用を生じさせてもよい。具体的には、プロセッサは、現実空間におけるユーザの手の位置の座標情報を特定するとともに、仮想空間内における対象オブジェクトの位置を現実空間における座標情報との関係で定義してもよい。これにより、プロセッサは、現実空間におけるユーザの手と仮想空間における対象オブジェクトとの位置関係を把握し、ユーザの手と対象オブジェクトとの間で上述したコリジョン制御等に対応する処理を実行可能となる。その結果、ユーザの手の動きに基づいて対象オブジェクトに作用を与えることが可能となる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
5 ユーザ、6 アバターオブジェクト、10 サーバ、11 仮想空間、13 パノラマ画像、14 仮想カメラ、15 視界領域、16 基準視線、17 視界画像、100 HMDシステム、110 HMDセット、130 モニタ、140 注視センサ、150 第1カメラ、160 第2カメラ、170 マイク、180 スピーカ、190,410 センサ、200 コンピュータ、210,610 プロセッサ、220,620 メモリ、230,630 ストレージ、240,640 入出力インターフェイス、250,650 通信インターフェイス、260,660 バス、300 コントローラ、420 モーションセンサ、430 ディスプレイ、510 コントロールモジュール、520 レンダリングモジュール、530 メモリモジュール、540 通信制御モジュール、600 サーバ、700 外部機器、1421 仮想カメラ制御モジュール、1422 視界領域決定モジュール、1423 基準視線特定モジュール、1426 仮想空間定義モジュール、1427 仮想オブジェクト生成モジュール、1428 操作オブジェクト制御モジュール、1429 アバター制御モジュール、1431 空間情報、1432 オブジェクト情報、1433 ユーザ情報、1435 口テンプレート、1436 目テンプレート、1437 眉テンプレート、1438 視界画像生成モジュール、1441 方向決定モジュール、1442 方向補正モジュール、1521 ボード、1523,1525 平板、1527,1529 バネ、1531 キャスター、1533 傾きセンサ、1541 筐体、1543 バー、1551 空間、1621,1921,1931 移動体オブジェクト、1931 手オブジェクト。

Claims (13)

  1. 仮想現実を提供するためにコンピュータで実行されるプログラムであって、前記プログラムは前記コンピュータに、
    仮想視点を含む仮想空間を定義するステップと、
    ヘッドマウントデバイスが関連付けられたユーザの頭部の動きを検出するステップと、
    前記ユーザの身体の少なくとも一部の動きを検出するステップと、
    前記身体の少なくとも一部の動きに応じて、前記仮想視点の移動方向を第1方向に決定するステップと、
    前記頭部の動きに応じて、前記仮想視点からの視界を制御するステップと、
    前記頭部の動きに応じて、前記第1方向を第2方向に補正するステップと、
    前記視界に対応する視界画像を前記ヘッドマウントデバイスに表示するステップと、
    前記第2方向に前記仮想視点を移動させるステップと、
    を実行させるためのプログラム。
  2. 前記ユーザは、荷重が加えられることにより姿勢が変化する乗用部上に位置し、
    前記身体の少なくとも一部は、前記ユーザの脚部を含み、
    前記身体の少なくとも一部の動きを検出するステップは、前記脚部により荷重が加えられた後の前記乗用部の姿勢を検出することを含む、請求項1に記載のプログラム。
  3. 前記頭部の動きを検出するステップは、前記頭部のヨー角を検出することを含み、
    前記補正するステップは、前記頭部のヨー角に応じて、前記第1方向を前記第2方向に補正し、
    前記第2方向は、前記第1方向における第1ヨー角を第2ヨー角に補正した方向である、請求項2に記載のプログラム。
  4. 前記第2ヨー角は、前記第1ヨー角よりも絶対値が大きく、
    前記頭部のヨー角の絶対値が大きいほど、前記第2ヨー角の絶対値が大きくなる、請求項3に記載のプログラム。
  5. 前記補正するステップは、前記頭部のヨー角が第1閾値以上であることに応じて、前記第1方向を前記第2方向に補正することを含む、請求項3または4に記載のプログラム。
  6. 前記乗用部は、少なくともヨーイング可能であり、
    前記頭部の動きを検出するステップは、前記頭部のヨー角を検出することを含み、
    前記身体の少なくとも一部の動きを検出するステップは、前記乗用部のヨー角を検出することを含み、
    前記プログラムは前記コンピュータに、前記頭部のヨー角と前記乗用部のヨー角との角度差を算出するステップをさらに実行させ、
    前記補正するステップは、前記角度差に応じて、前記第1方向を前記第2方向に補正し、
    前記第2方向は、前記第1方向における第1ヨー角を第2ヨー角に補正した方向である、請求項2に記載のプログラム。
  7. 前記第2ヨー角は、前記第1ヨー角よりも絶対値が大きく、
    前記角度差の絶対値が大きいほど、前記第2ヨー角の絶対値が大きくなる、請求項6に記載のプログラム。
  8. 前記補正するステップは、前記角度差が第2閾値以上であることに応じて、前記第1方向を前記第2方向に補正することを含む、請求項6または7に記載のプログラム。
  9. 前記補正するステップは、前記乗用部の傾きが第3閾値に達していることに応じて、前記第1方向を前記第2方向に補正することを含む、請求項2〜5のいずれか1項に記載のプログラム。
  10. 前記プログラムは前記コンピュータに、前記視界画像を生成するステップをさらに実行させ、
    前記視界画像を生成するステップは、前記第1方向が前記第2方向に補正されている間、前記視界画像の視認性を低下させる、請求項1〜9のいずれか1項に記載のプログラム。
  11. 前記視界を制御するステップは、前記第1方向が前記第2方向に補正されている間、前記頭部の動きに応じた前記視界の制御を中止することを含む、請求項1〜10のいずれか1項に記載のプログラム。
  12. 情報処理装置であって、
    前記情報処理装置は、
    請求項1〜11のいずれか1項に記載のプログラムを記憶する記憶部と、
    該プログラムを実行することにより、前記情報処理装置の動作を制御する制御部と、を備えている、情報処理装置。
  13. コンピュータがプログラムを実行する方法であって、
    前記コンピュータは、プロセッサおよびメモリを備え、
    前記プロセッサが請求項1〜11のいずれか1項に記載の各ステップを実行する方法。
JP2018122535A 2018-06-27 2018-06-27 プログラム、情報処理装置および方法 Pending JP2020004060A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122535A JP2020004060A (ja) 2018-06-27 2018-06-27 プログラム、情報処理装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122535A JP2020004060A (ja) 2018-06-27 2018-06-27 プログラム、情報処理装置および方法

Publications (1)

Publication Number Publication Date
JP2020004060A true JP2020004060A (ja) 2020-01-09

Family

ID=69099983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122535A Pending JP2020004060A (ja) 2018-06-27 2018-06-27 プログラム、情報処理装置および方法

Country Status (1)

Country Link
JP (1) JP2020004060A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102309749B1 (ko) * 2020-10-20 2021-10-07 한국수력원자력 주식회사 멀티 콘텐츠의 구현 시스템 및 구현 방법
KR20210148765A (ko) * 2020-06-01 2021-12-08 한국전자통신연구원 실감형 소방훈련 시뮬레이터

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210148765A (ko) * 2020-06-01 2021-12-08 한국전자통신연구원 실감형 소방훈련 시뮬레이터
US11602657B2 (en) 2020-06-01 2023-03-14 Electronics And Telecommunications Research Institute Realistic fire-fighting training simulator
KR102564810B1 (ko) * 2020-06-01 2023-08-09 한국전자통신연구원 실감형 소방훈련 시뮬레이터
KR102309749B1 (ko) * 2020-10-20 2021-10-07 한국수력원자력 주식회사 멀티 콘텐츠의 구현 시스템 및 구현 방법

Similar Documents

Publication Publication Date Title
US10223064B2 (en) Method for providing virtual space, program and apparatus therefor
US10860089B2 (en) Method of suppressing VR sickness, system for executing the method, and information processing device
US20180329487A1 (en) Information processing method, computer and program
JP2020161168A (ja) プログラム、情報処理方法及び情報処理装置
JP6425846B1 (ja) プログラム、情報処理装置、及び情報処理方法
US20190019338A1 (en) Information processing method, program, and computer
JP2019133309A (ja) プログラム、情報処理装置、及び情報処理方法
JP2020004060A (ja) プログラム、情報処理装置および方法
JP6820299B2 (ja) プログラム、情報処理装置、および方法
JP7005406B2 (ja) プログラム、情報処理装置、及び情報処理方法
JP7192151B2 (ja) プログラム、情報処理装置、及び情報処理方法
JP6839046B2 (ja) 情報処理方法、装置、情報処理システム、および当該情報処理方法をコンピュータに実行させるプログラム
JP2020046976A (ja) プログラム、方法および情報処理装置
JP6703578B2 (ja) プログラム、方法及び情報処理装置
JP6965304B2 (ja) プログラム、情報処理装置、及び情報処理方法
JP2022020686A (ja) 情報処理方法、プログラム、およびコンピュータ
JP6441517B1 (ja) プログラム、情報処理装置、および方法
JP6710731B2 (ja) プログラム、情報処理装置、及び情報処理方法
JP7121518B2 (ja) プログラム、情報処理装置、及び情報処理方法
JP6392953B1 (ja) 情報処理方法、装置、および当該情報処理方法をコンピュータに実行させるためのプログラム
JP7386948B2 (ja) プログラム、方法および情報処理装置
JP2020004061A (ja) 仮想体験を提供するためにコンピュータで実行される方法、プログラム、情報処理装置および情報処理システム
JP6659793B1 (ja) プログラム、方法および情報処理装置
JP2019048045A (ja) 情報処理方法、装置、および当該情報処理方法をコンピュータに実行させるためのプログラム
JP7037467B2 (ja) プログラム、情報処理装置、及び情報処理方法