JP2019510638A - Rolling roll and rolling system including the same - Google Patents

Rolling roll and rolling system including the same Download PDF

Info

Publication number
JP2019510638A
JP2019510638A JP2018550379A JP2018550379A JP2019510638A JP 2019510638 A JP2019510638 A JP 2019510638A JP 2018550379 A JP2018550379 A JP 2018550379A JP 2018550379 A JP2018550379 A JP 2018550379A JP 2019510638 A JP2019510638 A JP 2019510638A
Authority
JP
Japan
Prior art keywords
rolling
curved surface
rolled
roll
pressing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018550379A
Other languages
Japanese (ja)
Inventor
ホ ムン,チャン
ホ ムン,チャン
ムン カン,ジョン
ムン カン,ジョン
パン カン,ギ
パン カン,ギ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019510638A publication Critical patent/JP2019510638A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/021Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • B21B1/34Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/021Rolls for sheets or strips
    • B21B2027/022Rolls having tapered ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2203/00Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
    • B21B2203/18Rolls or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/02Roll dimensions
    • B21B2267/06Roll diameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

【課題】圧延機の制限された設備能力下で、さらに大きい強圧下量を与え、被圧延材の幅の変化とは関係なく、被圧延材の厚さ中央部まで変形の浸透が可能になるように改善された圧延ロール、及びこれを含む圧延システムを提供する。
【解決手段】本発明の圧延ロールは、ロール側部でバレルに沿って直径が異なる構造からなり、バレルの中央部に形成され、被圧延材の中央部と接触する第1加圧部と、第1加圧部の両側で第1傾斜曲線面を成して連続的に直径が減少し、第1加圧部より小さい直径に形成されて段差部を形成する第2加圧部と、第2加圧部の両側で第2傾斜曲線面を成して連続的に直径が減少し、バレルの縁部まで第2加圧部より小さい直径に形成されて段差部を形成する第3加圧部と、を含むことを特徴とする。
【選択図】図3
An object of the present invention is to provide a larger amount of strong reduction under a limited capacity of a rolling mill, and allow the penetration of deformation to the thickness center of the material to be rolled regardless of the change in the width of the material to be rolled. Provided is an improved rolling roll, and a rolling system including the same.
The rolling roll according to the present invention has a structure in which the diameter is different along the barrel at the roll side, and is formed at the central part of the barrel and is in contact with the central part of the material to be rolled. A second pressure part which has a first inclined curved surface on both sides of the first pressure part so as to continuously decrease in diameter and which is smaller in diameter than the first pressure part to form a step; A second pressure curve is formed on both sides of the second pressure section so as to continuously decrease in diameter, and a diameter smaller than that of the second pressure section to the edge of the barrel is formed to form a stepped section And a section.
[Selected figure] Figure 3

Description

本発明は、圧延ロール及びこれを含む圧延システムに係り、より詳しくは、極厚鋼板材の圧延の加工性を改善した圧延ロール及びこれを含む圧延システムに関する。   The present invention relates to a rolling roll and a rolling system including the same, and more particularly, to a rolling roll having improved workability of rolling of extremely thick steel plate material and a rolling system including the same.

一般的に、厚鋼板工程における圧延鋼板は、加熱、圧延、冷却、矯正という過程を経て生産されており、圧延鋼板の厚さにより、薄鋼板(厚さ:〜15mm)、中鋼板(厚さ:15〜40mm)、厚鋼板(厚さ:40mm以上)に大別される。
厚鋼板圧延法(Reverse rolling)は、高温のスラブを幅圧延し、圧延機で圧延する工程を経る。
このような厚鋼板圧延法においては、被圧延材を加工する前に、スラブの寸法、製品の寸法、及び圧延機の設備制限値(設備荷重、モーターの設備トルク)から、各圧延パスの圧下量と総パス数を決定した後、ロールギャップ及び圧延速度などを計算して被圧延材を圧延する。こうした過程は、毎パス圧延後、最終パスまで繰り返される。
Generally, rolled steel sheets in the thick steel plate process are produced through the processes of heating, rolling, cooling, and straightening, and depending on the thickness of the rolled steel sheets, thin steel plates (thickness: ~ 15 mm), medium steel plates (thickness : 15 to 40 mm), thick steel plate (thickness: 40 mm or more).
The thick steel plate rolling method (reverse rolling) involves the steps of width rolling a high-temperature slab and rolling with a rolling mill.
In such a thick steel plate rolling method, before processing the material to be rolled, the reduction of each rolling pass is performed from the dimensions of the slab, the dimensions of the product, and the equipment limit value of the rolling mill (equipment load, motor equipment torque). After the amount and the total number of passes are determined, the roll gap, the rolling speed and the like are calculated to roll the material to be rolled. Such a process is repeated to the final pass after each pass rolling.

最近、厚鋼板の世界的な供給過剰により、厚鋼板材の輸出市場での競争が激化する中で、相対的に製造技術のレベルの高いエネルギー鋼材中心の極厚鋼板材(厚さ≧100mm)の需要が次第に増加している。このような極厚鋼板材の場合、使用環境の変化(例えば、深海底化)及び海洋プラント産業の発展に伴い、高強度、高靱性への機械的特性の向上が要求される。
このような極厚鋼板の要求特性は、粗圧延工程中のパス当たりの強圧延による結晶粒の微細化及び均一化により、強度及び靱性の向上が可能であることが知られている。即ち、再加熱中に形成された粗大な結晶粒は、粗圧延工程を経て、パスとパスの間の時間に、静的再結晶が進行し、微細化される。また、再結晶停止温度(TNR)より低い温度で仕上げ圧延工程を行う際、再結晶無しに、圧延方向に長く伸びた結晶粒内部で、転位密度の増加が現れる。微細化された結晶粒内の転位密度が高いほど、仕上げ圧延後、強冷却による相変態過程により新たな相の核の生成が容易になるため、最終的な要求特性を満たすようになる。
Recently, with the global oversupply of thick steel plate, competition in the export market of thick steel plate material is intensified, and extremely thick steel plate material with a relatively high level of manufacturing technology (thickness 100 100 mm) Demand is gradually increasing. In the case of such an extremely thick steel plate material, improvement of mechanical properties to high strength and high toughness is required with the change of the use environment (for example, deep sea bottoming) and the development of the marine plant industry.
It is known that the required properties of such an extremely thick steel plate can be improved in strength and toughness by refining and homogenizing the crystal grains by strong rolling per pass in the rough rolling process. That is, the coarse crystal grains formed during reheating undergo a rough rolling process, and static recrystallization proceeds and is refined in the time between passes. In addition, when the finish rolling process is performed at a temperature lower than the recrystallization stop temperature (TNR), an increase in dislocation density appears inside crystal grains elongated in the rolling direction without recrystallization. As the dislocation density in the refined grains is higher, it is easier to form new phase nuclei by the phase transformation process by strong cooling after finish rolling, so that the final required characteristics are satisfied.

図1には、従来技術による薄鋼板材と極厚鋼板材の変形特性を示した。図1に示したとおり、(a)に示した薄鋼板材10は、圧延ロールRの間を通過する過程で、圧延中、全体的に変形領域B1が発生する。 一方、(b)に示した極厚鋼板材20の場合、圧延中、変形領域B2が広くなり、薄鋼板材10と同一の圧下量を与えるためには、さらに大きい力(圧延荷重)とエネルギー(動力)を必要とする。
しかしながら、一般的に各パスの圧下量は、圧延機の設備能力(設備荷重、モーター動力)より決定された値を上回ってはならない。また、薄鋼板材10に比べ厚さが厚い場合、圧延変形が厚さ中央部まで浸透することが困難であるため、厚さ方向の内部品質の均一化の可能性が顕著に減少する。
FIG. 1 shows the deformation characteristics of the thin steel plate material and the extra thick steel plate material according to the prior art. As shown in FIG. 1, in the process of passing between the rolling rolls R, the thin steel plate material 10 shown in (a) generates a deformation region B1 as a whole during rolling. On the other hand, in the case of the extremely thick steel plate 20 shown in (b), the deformation area B2 becomes wider during rolling, and in order to give the same reduction as the thin steel plate 10, a larger force (rolling load) and energy It requires (power).
However, in general, the reduction amount of each pass should not exceed the value determined by the equipment capacity (equipment load, motor power) of the rolling mill. In addition, when the thickness is thicker than the thin steel plate material 10, it is difficult for the rolling deformation to penetrate to the central portion of the thickness, so the possibility of uniforming the internal quality in the thickness direction is significantly reduced.

このような極厚鋼板材20の変形特性は、設備能力が制限された圧延機において、顧客から要求される機械的物性が満たされる極厚鋼板材20の最大製造厚さを制限する原因であり、圧延機の物理的限界として圧下比(スラブ厚さと該スラブを用いて生産が可能な製品の厚さとの比)を制限する原因となっている。
従って、制限された設備能力を有する厚鋼板圧延機を用いて、極厚鋼板材の結晶粒の微細化及び均一化を達成するために、厚さ中央部まで表面変形量の浸透が可能な圧延ロール及びこれを含む圧延システムについての技術開発が求められている。
Such deformation characteristics of the extra thick steel plate material 20 are the cause of limiting the maximum production thickness of the extra thick steel plate material 20 in which the mechanical properties required by the customer are satisfied in a rolling mill with limited equipment capacity. As a physical limit of the rolling mill, it is a factor that limits the reduction ratio (the ratio between the slab thickness and the thickness of a product that can be produced using the slab).
Therefore, in order to achieve grain refinement and homogenization of extremely thick steel plate material by using a thick steel plate rolling machine having a limited equipment capacity, it is possible to achieve penetration of the amount of surface deformation up to the central part of the thickness. There is a need for technological development on rolls and rolling systems including this.

本発明の目的とするところは、圧延機の制限された設備能力下において、さらに大きい圧下量を与え、被圧延材の幅変化とは関係なく、被圧延材の厚さ中央部まで変形の浸透が可能となるように改善された圧延ロール及びこれを含む圧延システムを提供することにある。   The object of the present invention is to provide a further reduction of pressure under the limited equipment capacity of a rolling mill and to penetrate the deformation to the thickness center of the material to be rolled regardless of the change in width of the material to be rolled. It is an object of the present invention to provide an improved rolling roll and a rolling system including the same.

本発明の一側面による圧延ロールは、ロール側部でバレルに沿って直径の異なる構造からなり、バレルの中央部に形成され、被圧延材の中央部と接触する第1加圧部と、第1加圧部の両側で第1傾斜曲線面を成して連続的に直径が減少し、第1加圧部より小さい直径に形成されて段差部を形成する第2加圧部と、第2加圧部の両側で第2傾斜曲線面を成して連続的に直径が減少し、バレルの縁部まで第2加圧部より小さい直径に形成されて段差部を形成する第3加圧部と、を含むことを特徴とする。   The rolling roll according to one aspect of the present invention has a structure with different diameters along the barrel at the side of the roll, and is formed at the center of the barrel and is in contact with the center of the material to be rolled. (2) A second pressure part which has a first inclined curved surface on both sides of the first pressure part so as to continuously decrease in diameter and which is smaller in diameter than the first pressure part to form a stepped part; A third pressure part which has a second inclined curved surface on both sides of the pressure part so as to continuously decrease in diameter and is formed to a diameter smaller than the second pressure part to the edge of the barrel to form a stepped part And.

ここで、第1加圧部の半分の長さL1は、被圧延材の最小幅Wminの0.2倍より小さく形成され(L1<0.2Wmin)、第2加圧部の長さL2は、第1加圧部の半分の長さL1と同一であり(L2=L1)、第1加圧部と第2加圧部との段差ds1は、第1加圧部の直径R1の0.4倍より小さく形成(ds1<0.4R1)されることができる。
また、第1傾斜曲線面の長さLs1及び第2傾斜曲線面の長さLs2は、第1加圧部の半分の長さL1の0.4倍より小さく形成(Ls1<0.4L1、Ls2<0.4L1)されることが好ましい。
また、第1傾斜曲線面は、第1加圧部と連結される端部、及び第2加圧部と連結される端部が、ラウンドを成すように形成されることができる。
また、第2傾斜曲線面は、第2加圧部と連結される端部、及び第3加圧部と連結される端部が、ラウンドを成すように形成されることがよい。
Here, the half length L1 of the first pressing portion is smaller than 0.2 times the minimum width Wmin of the material to be rolled (L1 <0.2 Wmin), and the length L2 of the second pressing portion is And the half length L1 of the first pressure part (L2 = L1), and the difference ds1 between the first pressure part and the second pressure part corresponds to 0. It can be made smaller than 4 times (ds1 <0.4R1).
Further, the length Ls1 of the first inclined curved surface and the length Ls2 of the second inclined curved surface are smaller than 0.4 times the half length L1 of the first pressing portion (Ls1 <0.4L1, Ls2 <0.4 L1) is preferable.
In addition, the first inclined curved surface may be formed such that an end connected to the first pressing part and an end connected to the second pressing part form a round.
The second inclined curved surface may be formed such that an end connected to the second pressure part and an end connected to the third pressure part form a round.

本発明の他の側面による圧延システムは、被圧延材の幅中央部を中心に圧延する圧延ロールを有する第1圧延機と、第1圧延機に連続して配置され、第1圧延機により圧延された被圧延材の幅方向両側で、幅エッジ部を加圧する側面圧延ロールを有する第2圧延機と、第2圧延機に連続して配置され、第1圧延機により圧延された被圧延材が全体的に一定の厚さを有するように被圧延材の幅中央部の外部を圧延する二重圧延ロールを有する第3圧延機を含むことを特徴とする。   A rolling system according to another aspect of the present invention is a first rolling mill having rolling rolls that roll around a width center of a material to be rolled, and a first rolling mill, and the rolling system is continuously arranged and rolled by the first rolling mill. A second rolling mill having side rolling rolls that press the width edge portion on both sides in the width direction of the rolled material, and a rolled material that is continuously arranged in the second rolling mill and rolled by the first rolling mill , And a third rolling mill having double rolling rolls for rolling the outside of the width center of the material to be rolled so that the thickness of the rolling mill has a constant thickness as a whole.

また、二重圧延ロールは、平ロール、またはバレルの中央から両端に行くほど直径が減少する形状ロールであることがよい。
また、形状ロールは、バレルの中央から両端に行くほど減少する直径が1mm以下であることが好ましい。
Also, the double rolling roll may be a flat roll, or a shape roll whose diameter decreases from the center to both ends of the barrel.
The shape roll preferably has a diameter of 1 mm or less which decreases from the center of the barrel toward both ends.

本発明の一実施例によると、被圧延材の厚さから製品の厚さまで、全体の厚さ範囲に亘り、素材の厚さ方向中央部への圧延変形の浸透が容易に発生することができ、これにより、内部品質が均一且つ優秀な極厚鋼板材の製造が可能であり、従来の連続鋳造設備及び圧延設備の極厚鋼板材を製造する際、圧下比の制約を克服することができ、さらに、設備能力が制限された圧延機において、顧客から要求される機械的物性を満たすことができる極厚鋼板材の最大製造厚さを増加させることができる。   According to an embodiment of the present invention, penetration of rolling deformation to the central portion in the thickness direction of the material can easily occur over the entire thickness range from the thickness of the material to be rolled to the thickness of the product. By this, it is possible to manufacture an extremely thick steel plate material with uniform internal quality and excellent quality, and to overcome the restriction of the reduction ratio when manufacturing the very thick steel plate material of the conventional continuous casting equipment and rolling equipment. Furthermore, in a rolling mill with limited equipment capacity, it is possible to increase the maximum production thickness of the extra thick steel plate material that can satisfy the mechanical properties required by the customer.

従来技術による圧延中の変形特性を示す概略図であり、(a)が薄鋼板材、(b)が極厚鋼板材の変形特性を示す。It is the schematic which shows the deformation | transformation characteristic during rolling by the prior art, (a) shows a thin steel plate material, (b) shows the deformation | transformation characteristic of an extra-thick steel plate material. 本発明の一実施例による圧延システムの構成図である。FIG. 1 is a block diagram of a rolling system according to an embodiment of the present invention. 本発明の一実施例による圧延ロールの正面図である。1 is a front view of a rolling roll according to an embodiment of the present invention. 本発明の一実施例による圧延ロールの構造を示す摸式図である。It is a schematic diagram which shows the structure of the rolling roll by one Example of this invention. 本発明の一実施例による圧延ロールにより圧延された被圧延材を示した斜視図である。It is the perspective view which showed the to-be-rolled material rolled by the rolling roll by one Example of this invention. 図5の圧延位置別応力状態を示した構成図であり、(a)は第1加圧部接続部応力状態、(b)は第2加圧部接続部応力状態、(c)は第1傾斜曲線面接続部応力状態、(d)は第2傾斜曲線面接続部応力状態、(e)は第3加圧部接続部応力状態を示す。It is the block diagram which showed the stress state according to rolling position of FIG. 5, (a) is a 1st pressure part connection part stress state, (b) is a 2nd pressure part connection part stress state, (c) is the 1st The inclined curved surface connection portion stress state, (d) shows the second inclined curved surface connection portion stressed state, and (e) shows the third pressure portion connection portion stressed state. 従来技術と本実施例による圧延システムにより圧延された被圧延材の長さ方向の延び量を示す図面であり、(a)は従来の圧延システムにより圧延した薄鋼板〜中鋼板、(b)は従来のチャンファー型作業ロールを有する圧延機、及び平ロール型作業ロールを有する圧延機を順次通過する他の圧延システムにより圧延した厚鋼板、(c)は本実施例の圧延システムにより圧延した被圧延材を示す。It is a figure which shows the extension amount of the to-be-rolled material length direction rolled with the rolling system by a prior art and a present Example, (a) is thin steel plate-medium steel plate rolled by the conventional rolling system, (b) is A thick steel plate rolled by another rolling system sequentially passing through a rolling mill having a conventional chamfer type work roll and a rolling mill having a flat roll type work roll, (c) Indicates a rolled material. 従来技術と本実施例による圧延システムにより圧延された被圧延材の幅中央位置での厚さ方向の変形率を示したグラフであり、A1は一般的な従来の圧延機を通過した被圧延材、B1は従来のチャンファー型作業ロールを有する圧延機を通過した被圧延材、B2は従来のチャンファー型作業ロールを有する圧延機と平ロール型作業ロールを有する圧延機を順次通過した被圧延材、C1は本実施例の多数の段差部を有する圧延ロール(第1圧延ロール)を有する圧延機を通過した被圧延材、C2は第1圧延ロールを有する圧延機と二重圧延ロール(第3圧延ロール)を有する圧延機を順次通過した被圧延材を示す。It is the graph which showed the deformation ratio of the thickness direction in the width center position of the to-be-rolled material rolled by the rolling system by a prior art and a present Example, and A1 is a to-be-rolled material which passed the common conventional rolling mill , B1 is a material to be rolled which has passed through a rolling mill having a conventional chamfer type work roll, B2 is a rolled material which has sequentially passed a rolling mill having a conventional chamfer type work roll and a rolling mill having flat roll type work rolls Material, C1 is a material to be rolled which has passed through a rolling mill having a rolling roll (first rolling roll) having a large number of stepped portions in this embodiment, C2 is a rolling mill having a first rolling roll and a double rolling roll (first 1 shows a material to be rolled which has sequentially passed through a rolling mill having three rolling rolls). 従来技術と本実施例による圧延システムのトルク比を示したグラフである。It is the graph which showed the torque ratio of the rolling system by a prior art and a present Example. 従来技術と本実施例による圧延システムにより圧延された被圧延材の幅中央位置での厚さ方向の結晶粒度を示したグラフであり、X1線は従来の一般的な圧延システムにより圧延された後の平均結晶粒度、Y1線は従来のチャンファー型作業ロールを有する圧延機を含む圧延システムにより圧延された後の平均結晶粒度、Z1線は本実施例における多段の段差部を有する圧延機を含む圧延システムにより圧延された後の平均結晶粒度を示す。It is the graph which showed the grain size of the thickness direction in the width center position of the rolled material rolled by the rolling system by a prior art and a present example, and after X1 line is rolled by the conventional common rolling system Average grain size of Y, average grain size after rolling by a rolling system including a rolling mill having a conventional chamfer type work roll, Z1 line includes a rolling mill having a multi-step difference portion in this embodiment The average grain size after rolling by the rolling system is shown. 従来技術と本実施例による圧延システムにより圧延された被圧延材の幅中央位置での厚さ方向の変形率を示したグラフであり、X2線は従来の一般的な圧延システムの場合の圧下率Y2線は従来のチャンファー型作業ロールを有する圧延機を含む圧延システムの場合の圧下率、Z2線は本実施例の多段の段差部を有する圧延ロール(第1圧延ロール)を含む圧延システムの場合の圧下率を示す。It is the graph which showed the deformation ratio of the thickness direction in the width center position of the rolled material rolled by the rolling system by a prior art and a present example, and X2 line is the rolling reduction in the case of the conventional common rolling system The Y2 line is a rolling reduction in the case of a rolling system including a rolling mill having a conventional chamfer type work roll, and the Z2 line is a rolling system including rolling rolls (first rolling rolls) having stepped portions of multiple stages of this embodiment. The rolling reduction of the case is shown.

以下、本発明の一実施例について、添付した図面を基にして詳しく説明する。本発明の実施形態は、様々な形態に変形されることができ、本発明の範囲が、以下で説明する実施形態に限定されるものではない。図面における要素の形状及び大きさなどは、より明確な説明のために誇張されることがあり、図面上の同一の符号で表示される要素は、同一の要素である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the attached drawings. The embodiments of the present invention can be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. The shapes, sizes, etc. of the elements in the drawings may be exaggerated for clearer explanation, and the elements denoted by the same reference numerals in the drawings are the same elements.

図2は本発明の一実施例による圧延システムの構成図である。
図2に示したとおり、本実施例の圧延システム100は、厚さの厚い被圧延材110、例えば、極厚鋼板の圧延のために、多数の圧延機を含んで構成される。
本実施例の圧延システム100は、総厚さ変形量の増加無しに、機械的物性が増加された被圧延材110、例えば、極厚鋼板材を製造するために厚鋼板の圧延工程の1圧延パスの厚さ減少量を2つの連続式圧延機を用いて被圧延材110と圧延ロールの接触幅分割方式で圧延する。
FIG. 2 is a block diagram of a rolling system according to an embodiment of the present invention.
As shown in FIG. 2, the rolling system 100 of the present embodiment is configured to include a large number of rolling mills for rolling a thick material to be rolled 110, for example, a very thick steel plate.
The rolling system 100 of the present embodiment is a rolling process of rolling a thick steel plate in order to manufacture a rolled material 110 having increased mechanical properties, for example, an extremely thick steel plate material, without increasing the total thickness deformation amount. The thickness reduction amount of the pass is rolled by the contact width division method of the material to be rolled 110 and the rolling rolls using two continuous rolling mills.

具体的には、本実施例の圧延システム100は、被圧延材110を移送するための多数の移送ロール120を含み、該移送ロール120の間には、被圧延材110の幅中央部を中心に被圧延材110を圧延する圧延ロール(例えば、「第1圧延ロール」)132を有する第1圧延機130と、第1圧延機130に連続して配置され、第1圧延機130により圧延された被圧延材110の幅方向両側で幅エッジ部を加圧する側面圧延ロール(例えば、「第2圧延ロール」)142を有する第2圧延機140、及び第2圧延機140に連続して配置され、第1圧延機130により圧延された被圧延材110が全体的に一定の厚さを有するように被圧延材110の幅中央部の外部を圧延する二重圧延ロール(例えば、「第3圧延ロール」)152を有する第3圧延機150を含む。   Specifically, the rolling system 100 of the present embodiment includes a plurality of transfer rolls 120 for transferring the material to be rolled 110, and between the transfer rolls 120, the central width of the material to be rolled 110 is centered. First rolling mill 130 having rolling rolls (for example, “first rolling rolls”) 132 for rolling the material to be rolled 110, and the first rolling mill 130, and the rolling is performed by the first rolling mill 130. The second rolling mill 140 having side rolling rolls (for example, "second rolling rolls") 142 for pressing the width edge portion on both sides in the width direction of the rolled material 110 and the second rolling mill 140 are continuously arranged. A double rolling roll that rolls the outside of the width center of the material to be rolled 110 so that the material to be rolled 110 rolled by the first rolling mill 130 has a constant thickness as a whole (for example, Roll ") 152 A third rolling mill 150.

被圧延材110は、第1圧延機130により圧延されて厚さ中央部まで変形の浸透が行われ、その後、素材の幅中央部の過度な伸びにより被圧延材110の平面が鼓状になることを防ぐため、第2圧延機140により被圧延材110の幅エッジ部の伸び量を増加させることができる。また、被圧延材110は、第3圧延機150により圧延され、第1圧延機130により圧延されない素材の端部までさらに圧延され、このような過程を経て全体的に幅方向に均一な機械的物性を有するように圧延される。   The material to be rolled 110 is rolled by the first rolling mill 130, and the deformation is infiltrated to the thickness center, and thereafter, the flat surface of the material to be rolled 110 becomes an hour due to excessive elongation at the width center of the material. In order to prevent this, the second rolling mill 140 can increase the amount of elongation of the width edge portion of the material to be rolled 110. Also, the material to be rolled 110 is rolled by the third rolling mill 150 and further rolled to the end of the material not rolled by the first rolling mill 130, and through such a process, the entire machine is uniformly uniform in the width direction It is rolled to have physical properties.

図3は本発明の一実施例による圧延ロールの正面図であり、図4は、本発明の一実施例による圧延ロールの構造を示す摸式図である。
また、図5は本発明の一実施例による圧延ロールにより圧延された被圧延材を図示した斜視図であり、図6の(a)から(e)は図5の圧延位置別応力状態を示した構成図である。
FIG. 3 is a front view of a rolling roll according to one embodiment of the present invention, and FIG. 4 is a schematic view showing the structure of the rolling roll according to one embodiment of the present invention.
5 is a perspective view illustrating a material to be rolled by a rolling roll according to an embodiment of the present invention, and (a) to (e) of FIG. 6 show stress conditions according to the rolling position of FIG. FIG.

図3から図6に示したとおり、本実施例で、第1圧延機130に使用される圧延ロール(第1圧延ロール)132は、ロール側部でバレルに沿って直径が異なる構造からなる。
このような圧延ロール132は、圧延加工中の素材の幅中央部においては、大きい圧延方向の圧縮応力を発生させ、素材の厚さ中央部への表面変形量の浸透性に優れるように形成されており、このように中央部の表面変形量を増加させるために、両側部に行くほど、直径が小さくなるように形成される。
例えば、圧延ロール132は、直径が異なる3つの段差を有する部分を含み、各段差を有する部分との間は、急激な傾きを有し、連続的に連結される2つの傾斜曲面により連結される。
As shown in FIGS. 3 to 6, in the present embodiment, the rolling rolls (first rolling rolls) 132 used in the first rolling mill 130 have a structure in which the diameters differ along the barrel at the roll side.
Such a rolling roll 132 is formed so as to generate a large compressive stress in the rolling direction at the width center of the material during rolling processing and to be excellent in the permeability of the surface deformation to the thickness center of the material. Thus, in order to increase the amount of surface deformation of the central portion, the diameter is formed to be smaller as it goes to both sides.
For example, the rolling roll 132 includes portions having three steps with different diameters, and the portions having respective steps are connected by two inclined curved surfaces that have steep inclination and are connected continuously. .

具体的に、圧延ロール132は、バレルの中央部に被圧延材110の中央部と接触する第1加圧部133が形成され、第1加圧部133の両側で第1傾斜曲線面134を成して連続的に直径が減少し、第1加圧部133より小さい直径に形成されて段差部を形成する第2加圧部135と、第2加圧部135の両側で第2傾斜曲線面136を成して連続的に直径が減少し、バレルの縁部まで第2加圧部135より小さい直径に形成されて段差部を形成する第3加圧部137と、を含む。
ここで、第1加圧部133は、被圧延材110の幅方向の中央部と接触して素材の厚さ方向に大きい厚さ変形量(圧下量)を与えるための直径R1を有する。
Specifically, in the rolling roll 132, a first pressing portion 133 in contact with the central portion of the material to be rolled 110 is formed at the central portion of the barrel, and the first inclined curved surface 134 is formed on both sides of the first pressing portion 133. And the second sloped curve on both sides of the second pressure portion 135 and the second pressure portion 135 formed to have a diameter smaller than that of the first pressure portion 133 to form a stepped portion. And a third pressure portion 137 formed to have a diameter smaller than that of the second pressure portion 135 continuously to the edge of the barrel to form a surface 136 and a step portion.
Here, the first pressing portion 133 has a diameter R1 for contacting a central portion in the width direction of the material to be rolled 110 to give a large thickness deformation amount (a reduction amount) in the thickness direction of the material.

バレルの中央を基準に、一方向に延長した長さ、即ち、第1加圧部133の半分の長さL1は、厚鋼板材である被圧延材110の最小幅Wminにより決定される。
好ましくは、第1加圧部133の半分の長さL1は、厚鋼板材である被圧延材110の最小幅Wminの0.2倍より小さく形成(L1<0.2Wmin)される。
また、第2加圧部135は、第1加圧部133よりは小さい厚さ変形量(圧下量)を与え、第1加圧部133と接触した被圧延材110の長さ方向(圧延方向)の伸び変形を制限し、第1加圧部133と接触する被圧延材110の圧延方向の圧縮応力を発生させるように、第1加圧部133に比べて小さい直径R2を有する。
The length extending in one direction based on the center of the barrel, that is, the half length L1 of the first pressing portion 133 is determined by the minimum width Wmin of the material to be rolled 110 which is a thick steel plate material.
Preferably, the half length L1 of the first pressing portion 133 is formed smaller than 0.2 times the minimum width Wmin of the material to be rolled 110 which is a thick steel plate material (L1 <0.2 Wmin).
In addition, the second pressing unit 135 gives a smaller thickness deformation amount (reduction amount) than the first pressing unit 133, and the length direction of the material to be rolled 110 in contact with the first pressing unit 133 (rolling direction And has a smaller diameter R2 than the first pressing portion 133 so as to limit the expansion deformation of the first pressing portion 133 and generate a compressive stress in the rolling direction of the material to be rolled 110 in contact with the first pressing portion 133.

ここで、第2加圧部135の長さL2は、第1加圧部133の半分の長さL1と同一であることが好ましい(L2=L1)。
また、第1加圧部133と第2加圧部135との段差、即ち、第1加圧部133の直径R1と第2加圧部135の直径R2との差(ds1=R1−R2)は、第1加圧部133の直径R1の0.4倍より小さく形成(ds1<0.4R1)される。
Here, it is preferable that the length L2 of the second pressing unit 135 be equal to the half length L1 of the first pressing unit 133 (L2 = L1).
In addition, the difference in level between the first pressing portion 133 and the second pressing portion 135, that is, the difference between the diameter R1 of the first pressing portion 133 and the diameter R2 of the second pressing portion 135 (ds1 = R1-R2) Is smaller than 0.4 times the diameter R1 of the first pressure part 133 (ds1 <0.4R1).

また、第3加圧部137は、第2加圧部135よりは小さい厚さ変形量(圧下量)を与え、第2加圧部135と接触した被圧延材110の長さ方向(圧延方向)の伸び変形を制限し、第2加圧部135と接触する被圧延材110の圧延方向の圧縮応力を発生させるように、第2加圧部135に比べて小さい直径R3を有する。
また、第2加圧部135と第3加圧部137との段差、即ち、第2加圧部135の直径R2と第3加圧部137の直径R3との差(ds2=R2−R3)は、第2加圧部135の直径R2の0.4倍より小さく形成(ds2<0.4R2)される。
In addition, the third pressing unit 137 gives a smaller thickness deformation amount (reduction amount) than the second pressing unit 135, and the length direction of the material to be rolled 110 in contact with the second pressing unit 135 (rolling direction And has a diameter R3 smaller than that of the second pressing portion 135 so as to limit the expansion deformation of the second pressing portion 135 and generate a compressive stress in the rolling direction of the material to be rolled 110 in contact with the second pressing portion 135.
Further, the difference between the second pressure portion 135 and the third pressure portion 137, that is, the difference between the diameter R2 of the second pressure portion 135 and the diameter R3 of the third pressure portion 137 (ds2 = R2-R3) Is smaller than 0.4 times the diameter R2 of the second pressure part 135 (ds2 <0.4R2).

また、両段差の和、即ち、第1加圧部133と第2加圧部135との段差、及び第2加圧部135と第3加圧部137との段差の和(ds1+ds2)は、厚鋼板材に圧延ロール132を噛み込ませることができる最大厚さ減少量(ΔHmax)より大きくなる(ds1+ds2>ΔHmax(≡μ2R))。
また、第1傾斜曲線面134の長さ(Ls1)及び第2傾斜曲線面136の長さ(Ls2)は、それぞれ第1加圧部133の半分の長さL1の0.4倍より小さく形成(Ls1<0.4L1、Ls2<0.4L1)される。
Further, the sum of both steps, that is, the sum (ds1 + ds2) of the steps between the first pressing unit 133 and the second pressing unit 135 and the steps between the second pressing unit 135 and the third pressing unit 137 is The maximum thickness reduction amount (ΔHmax) that can allow the rolling rolls 132 to be engaged with the thick steel plate material is larger (ds1 + ds2> ΔHmax (≡μ2R)).
The length (Ls1) of the first inclined curved surface 134 and the length (Ls2) of the second inclined curved surface 136 are each smaller than 0.4 times the half length L1 of the first pressing portion 133. (Ls1 <0.4L1, Ls2 <0.4L1).

また、圧延ロール132は、各加圧部133、135、137の直径差による被圧延材110の幅方向の広がりを大きなせん断変形に拘束するために、第1傾斜曲線面134及び第2傾斜曲線面136は、急激に直径が減少する楕円形であってもよい。
例えば、第1傾斜曲線面134は、第1加圧部133と連結される端部、及び第2加圧部135と連結される端部が、ラウンドを成すように形成される。また、第1傾斜曲線面134は、一端が第1加圧部133と連結される第1曲線面、及び一端は第1曲線面の他端に連結され、他端が第2加圧部135の一端に連結される第2曲線面が、それぞれの楕円曲線の1/4領域を有するように連結される。
In addition, the rolling roll 132 has the first inclined curved surface 134 and the second inclined curve in order to restrict the spread in the width direction of the material to be rolled 110 due to the difference in diameter of the pressing portions 133, 135, 137 to a large shear deformation. The surface 136 may be elliptical with a sharp decrease in diameter.
For example, the first inclined curved surface 134 may be formed such that an end connected to the first pressure part 133 and an end connected to the second pressure part 135 form a round. In addition, the first inclined curved surface 134 has a first curved surface whose one end is connected to the first pressing portion 133, and one end is connected to the other end of the first curved surface, and the other end is a second pressing portion 135 A second curved surface connected to one end of is connected to have a 1⁄4 region of each elliptic curve.

好ましくは、第1曲線面C1と第2曲線面C2は、下記数学式1により決定される。
[数1]
C1:(x−L1)/Ls1+(y−r1+ds1/2)/ds1=0.25
C2:(x−L1−Ls1)/Ls1+(y−R1+ds1/2)/ds1=0.25
ここで、L1は第1加圧部133の半分の長さ、Ls1は第1傾斜曲線面134の長さ、Ls2は第2傾斜曲線面136の長さ、R1は第1加圧部133の直径、ds1は第1加圧部133と第2加圧部135との段差である。
また、第2傾斜曲線面136は、第2加圧部135と連結される端部、及び第3加圧部137と連結される端部が、ラウンドを成すように形成されることができる。また、第2傾斜曲線面136は、一端が第2加圧部135と連結される第3曲線面、及び一端は第3曲線面の他端に連結され、他端が第3加圧部137の一端に連結される第4曲線面が、それぞれの楕円曲線の1/4領域を有するように連結される。
Preferably, the first curved surface C1 and the second curved surface C2 are determined by the following mathematical expression 1.
[Equation 1]
C1: (x-L1) 2 / Ls1 2 + (y-r1 + ds1 / 2) 2 / ds1 2 = 0.25
C2: (x-L1-Ls1 ) 2 / Ls1 2 + (y-R1 + ds1 / 2) 2 / ds1 2 = 0.25
Here, L1 is a half length of the first pressing portion 133, Ls1 is a length of the first sloped curved surface 134, Ls2 is a length of the second sloped curved surface 136, and R1 is a length of the first pressing portion 133. The diameter ds1 is a step between the first pressing portion 133 and the second pressing portion 135.
In addition, the second inclined curved surface 136 may be formed such that an end connected to the second pressure unit 135 and an end connected to the third pressure unit 137 form a round. In addition, the second inclined curved surface 136 has a third curved surface whose one end is connected to the second pressing portion 135, and one end is connected to the other end of the third curved surface, and the other end is the third pressing portion 137. A fourth curved surface connected to one end of is connected to have a 1⁄4 region of each elliptic curve.

好ましくは、第3曲線面C3との第4曲線面C4は、下記数学式2により決定される。
[数2]
C3:(x−L1−Ls1−L2)/Ls2+(y−R2+ds2/2)/ds2=0.25
C4:(x−L1−Ls1−L2−Ls2)/Ls2+(y−R2+ds2/2)/ds2=0.25
ここで、L1は第1加圧部133の半分の長さ、Ls1は第1傾斜曲線面134の長さ、Ls2は第2傾斜曲線面136の長さ、L2は第2加圧部135の長さ、R2は第2加圧部135の直径、ds2は第2加圧部135と第3加圧部137との段差である。
Preferably, the fourth curved surface C4 with the third curved surface C3 is determined by the following mathematical formula 2.
[Equation 2]
C3: (x-L1-Ls1 -L2) 2 / Ls2 2 + (y-R2 + ds2 / 2) 2 / ds2 2 = 0.25
C4: (x-L1-Ls1 -L2-Ls2) 2 / Ls2 2 + (y-R2 + ds2 / 2) 2 / ds2 2 = 0.25
Here, L1 is half the length of the first pressing portion 133, Ls1 is the length of the first inclined curved surface 134, Ls2 is the length of the second inclined curved surface 136, and L2 is the second pressing portion 135. The length, R2 is the diameter of the second pressure part 135, and ds2 is the level difference between the second pressure part 135 and the third pressure part 137.

一方、前述の第1圧延ロール132を有する第1圧延機130により圧延された後、第2圧延機140において、幅方向両側で側面圧延ロール142(第2圧延ロール)により幅エッジ部が圧延された被圧延材110は、第3圧延機150に供給されて二重圧延ロール152(第3圧延ロール)により圧延され、全体的に均一の厚さを有するように圧延される。
このために提供される第3圧延機150は、被圧延材110の幅中央部の外部を圧延する二重圧延ロール152(第3圧延ロール)を含む。
On the other hand, after being rolled by the first rolling mill 130 having the first rolling roll 132 described above, in the second rolling mill 140, the width edge portion is rolled by the side rolling rolls 142 (second rolling rolls) on both sides in the width direction. The rolled material 110 is supplied to the third rolling mill 150, rolled by the double rolling roll 152 (third rolling roll), and rolled so as to have a uniform thickness as a whole.
The third rolling mill 150 provided for this purpose includes double rolling rolls 152 (third rolling rolls) for rolling the outside of the width center portion of the material to be rolled 110.

ここで、二重圧延ロール152は、平ロールからなることができる。平ロールは、被圧延材110と接触する時、圧延ロール132により圧延されない幅中央部の外部から接触しながら圧延する。
好ましくは、二重圧延ロール152は、バレルの中央から両端に行くほど、直径が減少する形状ロールとして提供されることができる。この時、形状ロールは、バレルの中央から両端に行くほど減少する直径が1mm以下であってもよい。
このように、二重圧延ロール152は、バレルの中央部が両端に比べ、さらに大きい直径に形成されることにより、被圧延材110を圧延する過程で、1次的に圧延された中央部と連結される部分が段差を形成するのを防止しながら連続して圧延する。
Here, the double rolling roll 152 may be a flat roll. When the flat roll contacts with the material to be rolled 110, it rolls while contacting from the outside of the width center part not rolled by the rolling roll 132.
Preferably, the dual rolling rolls 152 can be provided as shaped rolls of decreasing diameter from the center to the ends of the barrel. At this time, the shape roll may have a diameter of 1 mm or less, which decreases from the center of the barrel toward both ends.
As described above, the double rolling roll 152 is formed to have a larger diameter at the center of the barrel than at both ends, so that the center of the double-rolled roll 152 is primarily rolled in the process of rolling the material to be rolled 110. It rolls continuously, preventing that the part connected is forming a level | step difference.

図7は従来技術と本実施例による圧延システムにより圧延された被圧延材の長さ方向の伸び量を示す図面である。
図7の(a)から(c)は1150℃の温度を有する被圧延材110の厚さが300mm、幅は1500mm、長さは1500mmであり、圧延速度が2.1m/secであり、圧下率が20%であり、且つ作業ロールの最大直径が1200mmという条件において、従来の圧延システム及び本発明の圧延システム100により圧延したものである。
FIG. 7 is a drawing showing the amount of elongation in the longitudinal direction of the rolled material rolled by the rolling system according to the prior art and this embodiment.
7A to 7C show that the thickness of the material to be rolled 110 having a temperature of 1150 ° C. is 300 mm, the width is 1500 mm, the length is 1500 mm, and the rolling speed is 2.1 m / sec. The rolling is performed by the conventional rolling system and the rolling system 100 of the present invention under the condition that the ratio is 20% and the maximum diameter of the work roll is 1200 mm.

先ず、図7の(a)は従来の圧延システムにより圧延したもので、具体的には、一般的な薄鋼板、中鋼板などを圧延したもので、幅方向に圧延する垂直圧延機により40mm幅を減少させた後、水平圧延機を用いて60mm厚さを減少させた上で、長さ方向の伸び量を示したものである。
従来の圧延システムにより圧延された被圧延材110は、中央部の長さ方向の伸び量ΔがΔ367.6mmであり、両端部の長さ方向の伸び量ΔがΔ408mmであることが分かり、長さ方向の伸び量から中央部の伸び量を差し引いた差は40.4mmと測定される。
また、図7の(b)は従来のチャンファー型作業ロールを有する圧延機、及び平ロール型作業ロールを有する圧延機を順次通過する他の圧延システムにより圧延したもので、本実施例のように厚鋼板を圧延したものである。
First, (a) of FIG. 7 is rolled by a conventional rolling system, and specifically, it is obtained by rolling a general thin steel plate, medium steel plate, etc. and is 40 mm wide by a vertical rolling mill rolling in the width direction After reducing the thickness by 60 mm using a horizontal rolling mill and then showing the amount of elongation in the longitudinal direction.
The rolled material 110 rolled by conventional rolling system, elongation amount delta C in the longitudinal direction of the central portion is Deruta367.6Mm, shows that elongation of delta E in the longitudinal direction of the both end portions are Δ408mm The difference between the amount of elongation in the longitudinal direction and the amount of elongation in the central part is measured to be 40.4 mm.
Also, FIG. 7 (b) shows a rolling mill having a conventional chamfer type working roll and another rolling system which sequentially passes through a rolling mill having a flat roll type working roll, as shown in this embodiment. Rolled thick steel plate.

ここで、B1に使用されるチャンファー型作業ロールは、チャンファーの深さが40mmであり、このチャンファーと連結されるラウンドの曲率は200mmであることが好ましい。
このような従来の圧延システムにより圧延された被圧延材110は、中央部の長さ方向の伸び量ΔがΔ360mmであり、両端部の長さ方向の伸び量ΔがΔ248.7mmであることが分かり、長さ方向の伸び量から中央部の伸び量Δを差し引いた差は(−)111.3mmと測定される。
また、図7の(b)を図7の(a)と比較すると、中央部の伸び量Δには大差ないが、両端部の長さ方向の伸び量Δの差が大きいことが分かり、これに基づいて判断すると、一般的な鋼板を圧延する時に比べ、両端部では長さ方向に十分に伸びていないことが分かる。
Here, it is preferable that the chamfer type work roll used for B1 has a depth of chamfer of 40 mm, and the curvature of the round connected with this chamfer is 200 mm.
Such material to be rolled 110 rolled by conventional rolling system, elongation amount delta C in the longitudinal direction of the central portion is Deruta360mm, elongation amount delta E in the longitudinal direction of the both end portions are Δ248.7mm it understand the difference obtained by subtracting the elongation amount delta C of the central portion from the elongation amount of the length direction - is measured to 111.3mm ().
In comparison of FIG. 7 (b) of FIG. 7 and (a), but no significant difference in the elongation amount delta C of the central portion, shows that a large difference in the length direction of the elongation of delta E of both ends Judging based on this, it can be understood that both ends are not sufficiently elongated in the length direction as compared with rolling a general steel plate.

一方、図7の(c)は本実施例の圧延システムにより圧延したもので、本実施例の圧延システム100により圧延された被圧延材110は、中央部の長さ方向の伸び量ΔがΔ362.3mmであり、両端部の長さ方向の伸び量ΔがΔ411.9mmであることが分かり、長さ方向の伸び量から中央部の伸び量を差し引いた差は49.6mmと測定される。
また、図7の(c)を図7の(a)と比較すると、中央部の伸び量Δ及び両端部の長さ方向の伸び量Δの差がほとんどないことが分かり、これに基づいて判断すると、本実施例では、厚鋼板材を圧延しても、薄鋼板、中鋼板などを圧延する時と同一の圧延特性が得られることが分かり、従って、制限された設備能力を有する厚鋼板圧延機を用いて極厚鋼板材を圧延しても、幅方向中央部及び両端部の厚さ中央部まで、表面変形量を浸透させることができ、全体的に均一な品質を維持することができる。
On the other hand, (c) in FIG. 7 is obtained by rolling by rolling system of this embodiment, the material to be rolled 110 rolled using system 100 of this embodiment, elongation of delta C in the longitudinal direction of the central portion a Deruta362.3Mm, shows that the length direction of the elongation of delta E of both ends is Deruta411.9Mm, difference obtained by subtracting the elongation amount of the central portion from the elongation of the longitudinal direction was measured to 49.6mm Ru.
In comparison of FIG. 7 (c) in FIG. 7 and (a), it shows that the difference between the elongation amount delta C and both end portions in the length direction of the elongation of delta E of the central portion is little, based on the Judging from this, it can be seen that in this example, even when rolling thick steel plate material, the same rolling characteristics as when rolling thin steel plate, medium steel plate, etc. can be obtained, and therefore thickness with limited equipment capacity Even if the extremely thick steel plate material is rolled using a steel plate rolling machine, the surface deformation can be permeated to the thickness central portion in the width direction central portion and both end portions, and uniform quality can be maintained as a whole. Can.

図8は従来技術と本実施例による圧延システムにより圧延された被圧延材の幅中央位置での厚さ方向の変形率を示したグラフである。
また、図8のグラフは、1150℃の温度を有する被圧延材110の厚さが300mm、幅は1500mm、長さは1500mmであり、圧延速度が2.1m/secであり、圧下率が20%であり、且つ作業ロールの最大直径が1200mmである条件において、従来の圧延システム及び本発明の圧延システム100により圧延したものである。
FIG. 8 is a graph showing the deformation rate in the thickness direction at the width center position of the rolled material rolled by the rolling system according to the prior art and the present embodiment.
In the graph of FIG. 8, the thickness of the material to be rolled 110 having a temperature of 1150 ° C. is 300 mm, the width is 1500 mm, the length is 1500 mm, the rolling speed is 2.1 m / sec, and the rolling reduction is 20 % And the maximum diameter of the work roll is 1200 mm, it is rolled by the conventional rolling system and the rolling system 100 of the present invention.

A1は、一般的な従来の圧延機を通過した被圧延材110の幅中央位置での厚さ方向の変形率を図示した線である。また、B1は、従来のチャンファー型作業ロールを有する圧延機を通過した被圧延材110の幅中央位置での厚さ方向の変形率を図示した線であり、B2は、従来のチャンファー型作業ロールを有する圧延機及び平ロール型作業ロールを有する圧延機を順次通過した被圧延材110の幅中央位置での厚さ方向の変形率を図示した線である。ここで、B1に使用されるチャンファー型作業ロールは、チャンファーの深さが40mmで、このチャンファーと連結されるラウンドの曲率が200mmである。
また、C1は、本実施例の多数の段差部を有する圧延ロール132を有する圧延機を通過した被圧延材110の幅中央位置での厚さ方向の変形率を図示した線であり、C2は、本実施例の多数の段差部を有する圧延ロール(第1圧延ロール)132を有する圧延機、二重圧延ロール(第3圧延ロール)152を有する圧延機を順次通過した被圧延材110の幅中央位置での厚さ方向の変形率を図示した線である。
ここで、図8のグラフは、幅方向の圧延ロール132を有する圧延機の使用によるロール形状の効果が変化することを考慮し、側面圧延ロール(第2圧延ロール)142は使用しないという仮定で測定されたものである。
A1 is a line illustrating the deformation rate in the thickness direction at the width center position of the material to be rolled 110 which has passed through a general conventional rolling mill. Further, B1 is a line illustrating the deformation ratio in the thickness direction at the width center position of the material to be rolled 110 which has passed through a rolling mill having a conventional chamfer type work roll, and B2 is a conventional chamfer type It is a line illustrating the deformation rate in the thickness direction at the width center position of the material to be rolled 110 which has sequentially passed through a rolling mill having work rolls and a rolling mill having flat roll type work rolls. Here, the chamfer type work roll used for B1 has a depth of chamfer of 40 mm, and the curvature of the round connected with this chamfer is 200 mm.
Further, C1 is a line illustrating the deformation rate in the thickness direction of the material to be rolled 110 which has passed through the rolling mill having the rolling rolls 132 having many stepped portions of this embodiment, and C2 is a line The width of the material to be rolled 110 which has sequentially passed through a rolling mill having rolling rolls (first rolling rolls) 132 having a large number of stepped portions according to the present embodiment and a rolling mill having double rolling rolls (third rolling rolls) 152. It is a line which illustrated the rate of deformation of the thickness direction in a central position.
Here, the graph in FIG. 8 is based on the assumption that the side rolling roll (second rolling roll) 142 is not used in consideration of the change in the roll shape effect due to the use of the rolling mill having the rolling rolls 132 in the width direction. It is measured.

図8のグラフを見ると、同一の圧下量の条件(厚さの減少量が同一)において、変形率が大きいほど、表面の変形が中央部へと、浸透しやすくなることが分かる。
また、A1、B1、及びB2のグラフを見ると、通常の圧延機に比べ、従来の連続式圧延システム100を通過した場合、表面の変形は、1.37倍、厚さ中央部の場合、1.13倍増加したことが分かる。
It can be seen from the graph of FIG. 8 that the surface deformation is more likely to penetrate into the central portion as the deformation rate is larger under the same reduction amount condition (the reduction amount of the thickness is the same).
Also, looking at the graphs of A1, B1 and B2, when passing through the conventional continuous rolling system 100 as compared with a normal rolling mill, the surface deformation is 1.37 times and in the case of the thickness central portion It can be seen that it increased by 1.13 times.

一方、A1、C1、及びC2のグラフを見ると、通常の圧延機に比べ、本実施例の圧延システム100を通過した場合、表面の変形は1.68倍、厚さ中央部の場合、1.49倍に大きく増加したことが分かる。
このようなグラフは、本実施例の圧延システム100を適用することにより、スラブの厚さから最終製品の厚さまで、表面変形の厚さ中央への浸透性能に優れるようになることを確認することができる。
On the other hand, looking at the graphs of A1, C1 and C2, when passing through the rolling system 100 of the present example, the deformation of the surface is 1.68 times and 1 in the case of the central portion of thickness compared to a normal rolling mill. It can be seen that the increase is .49 times.
Such a graph confirms that application of the rolling system 100 of the present embodiment results in excellent penetration of the surface deformation into the thickness center from the thickness of the slab to the thickness of the final product. Can.

図9は従来技術と本実施例による圧延システムのトルク比を示したグラフである。
図9に示したとおり、本実施例の圧延システム100は、被圧延材110の厚さ方向への1次圧延及び1次圧延後の2次圧延の際に発生するトルクの不均衡が減少する。このように、本実施例の圧延システム100は、従来技術の圧延機の間で発生するトルクの不均衡を改善できる。
FIG. 9 is a graph showing the torque ratio of the rolling system according to the prior art and the present embodiment.
As shown in FIG. 9, in the rolling system 100 of the present embodiment, the imbalance in torque generated during primary rolling in the thickness direction of the material to be rolled 110 and secondary rolling after primary rolling is reduced. . Thus, the rolling system 100 of the present embodiment can improve the torque imbalance generated between the prior art rolling mills.

図10は従来技術と本実施例による圧延システムにより圧延された被圧延材の幅中央位置での厚さ方向の結晶粒度を示したグラフである。
図10から、一般的な圧延機を有する従来技術と、チャンファー型圧延ロール132を有する圧延機を含む他の従来技術、及び本実施例の圧延ロール132、152(第1圧延ロール及び第3圧延ロール)を有する圧延機の幅中央位置での厚さ方向の結晶粒度が分かる。
FIG. 10 is a graph showing the grain size in the thickness direction at the width center position of the rolled material rolled by the rolling system according to the prior art and the present embodiment.
From FIG. 10, the prior art having a general rolling mill, the other prior art including a rolling mill having chamfered rolling rolls 132, and the rolling rolls 132 and 152 of the present embodiment (first and third rolling rolls and third rolling mill). The grain size in the thickness direction at the widthwise center of a rolling mill having a rolling roll) is known.

圧延前の被圧延材110の初期結晶粒を250mmと仮定すると、X1線で示される従来の一般的な圧延システム100により圧延された後の平均結晶粒度は、148mmであり、Y1線で示される従来のチャンファー型作業ロールを有する圧延機を含む圧延システム100により圧延された後の平均結晶粒度は、85.3mmであり、Z1線で示される本実施例における多段の段差部を有する圧延機を含む圧延システム100により圧延された後の平均結晶粒度は、67.5mmと、大きく減少することが分かる。
また、被圧延材110の機械的物性の増加に主要な影響を及ぼす厚さ方向の結晶粒度の範囲は、一般的な従来の圧延システム100の場合、83〜228mmであり、従来のチャンファー型作業ロールを有する圧延機を含む圧延システム100の場合、61〜129mmであるが、本実施例の多段の段差部を有する圧延ロール(第1圧延ロール)132を含む圧延システム100の場合、56〜73mmであることが分かる。
被圧延材110は、厚さ方向の結晶粒度の差が小さいほど、厚さ方向の機械的物性の差が小さいことは広く知られており、これを考慮すると、本実施例の多段の段差部を有する圧延ロール(第1圧延ロール)132を含む圧延システム100の場合、均一化が大きく改善されている。
Assuming that the initial grain size of the material to be rolled 110 before rolling is 250 mm, the average grain size after rolling by the conventional general rolling system 100 shown by the X1 line is 148 mm and is shown by the Y1 line The average grain size after rolling by a rolling system 100 including a rolling mill having a conventional chamfer type work roll is 85.3 mm, and the rolling mill having a multi-step difference portion in the present embodiment shown by the Z1 line It can be seen that the average grain size after being rolled by the rolling system 100 including is greatly reduced to 67.5 mm.
In addition, the range of grain size in the thickness direction that mainly affects the increase in the mechanical properties of the material to be rolled 110 is 83 to 228 mm in the case of the general conventional rolling system 100, and the conventional chamfer type In the case of a rolling system 100 including a rolling mill having work rolls, the diameter is 61 to 129 mm, but in the case of a rolling system 100 including rolling rolls (first rolling rolls) 132 having multiple stepped portions according to the present embodiment It turns out that it is 73 mm.
It is widely known that the smaller the difference in grain size in the thickness direction, the smaller the difference in mechanical properties in the thickness direction of the material to be rolled 110, and in consideration of this, the stepped portion of the multistage of this embodiment In the case of a rolling system 100 including a rolling roll (first rolling roll) 132 having the following, the homogenization is greatly improved.

図11は従来技術と本実施例による圧延システムにより圧延された被圧延材の幅中央位置での厚さ方向の変形率を示したグラフである。
また、図11を基にすると、1150℃の温度を有する被圧延材110の厚さが100mm、幅は1500mm、長さは1500mmであり、圧延速度が2.1m/secであり、且つ作業ロールの最大直径が1200mmである条件において、X2線で示した従来の一般的な圧延システム100の場合の圧下率が13%である時、厚さ方向の平均変形率は0.18である。また、Y2線で示した従来のチャンファー型作業ロールを有する圧延機を含む圧延システム100の場合の圧下率が20%である時、厚さ方向の平均変形率は、0.28である。
FIG. 11 is a graph showing the deformation rate in the thickness direction at the width center position of the material rolled by the rolling system according to the prior art and the present embodiment.
Further, based on FIG. 11, the thickness of the material to be rolled 110 having a temperature of 1150 ° C. is 100 mm, the width is 1500 mm, the length is 1500 mm, the rolling speed is 2.1 m / sec, and the work roll The average deformation rate in the thickness direction is 0.18 when the rolling reduction in the case of the conventional general rolling system 100 shown by the X2 line is 13% under the condition that the maximum diameter of is 1200 mm. When the rolling reduction in the case of a rolling system 100 including a rolling mill having a conventional chamfer-type work roll indicated by the Y2 line is 20%, the average deformation rate in the thickness direction is 0.28.

一方、Z2線で示した本実施例の多段の段差部を有する圧延ロール(第1圧延ロール)132を含む圧延システム100の場合、圧下率は13%と、小さいにもかかわらず、平均変形率は、0.45であることが分かる。
0.45という平均変形率は、従来の圧延機において、圧延機の設備荷重及び設備トルクの制約により達成されることができない値であり、13%の圧下率で圧延される従来の圧延システム100のトルクに対して、本実施例の連続システムのトルク比は、0.98(第1圧延機130)、1.0(第2圧延機140)と、従来の圧延モーターの仕様から外れないことが分かる。
On the other hand, in the case of the rolling system 100 including the rolling roll (first rolling roll) 132 having the multi-step difference portion of the present embodiment shown by the Z2 line, the average deformation rate is 13%, although the rolling reduction is small. Is found to be 0.45.
The average deformation rate of 0.45 is a value that can not be achieved in the conventional rolling mill due to the equipment load and equipment torque constraints of the rolling mill, and the conventional rolling system 100 is rolled at a rolling reduction of 13%. The torque ratio of the continuous system of this embodiment is 0.98 (the first rolling mill 130), 1.0 (the second rolling mill 140) and the specification of the conventional rolling motor with respect to the torque of I understand.

本発明は、上述した実施形態及び添付された図面に限定されず、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で多様な形での置換、変形及び変更が可能であるということは、当技術分野の通常の知識を有する者には明らかである。   The present invention is not limited to the above-described embodiment and the attached drawings, and can be replaced, modified, and changed in various forms without departing from the technical concept of the present invention described in the claims. It is apparent to one of ordinary skill in the art that the

前述した通り、本発明は、厚鋼板圧延法の工程に有用である。   As mentioned above, the present invention is useful for the process of the thick steel plate rolling method.

10:薄鋼板材
20:極厚鋼板材
100:圧延システム
110:被圧延材
120:移送ロール
130:第1圧延機
132:第1圧延ロール
133:第1加圧部
134:第1傾斜曲線面
135:第2加圧部
136:第2傾斜曲線面
137:第3加圧部
140:第2圧延機
142:第2圧延ロール、側面圧延ロール
150:第3圧延機
152:第3圧延ロール、二重圧延ロール
B1、B2:変形領域
C1:第1曲線面
C2:第2曲線面
C3:第3曲線面
C4:第4曲線面
ds1:第1加圧部と第2加圧部との段差、第1加圧部の直径と第2加圧部の直径との差
ds2:第2加圧部と第3加圧部との段差、第2加圧部の直径と第3加圧部の直径との差
L1:第1加圧部の半分の長さ
L2:第2加圧部の長さ
Ls1:第1傾斜曲線面の長さ
Ls2:第2傾斜曲線面の長さ
R:圧延ロール
R1:第1加圧部の直径
R2:第2加圧部の直径
R3:第3加圧部の直径
Wmin:被圧延材の最小幅
Δ:中央部の長さ方向の伸び量
Δ:両端部の長さ方向の伸び量
10: thin steel plate 20: extremely thick steel plate 100: rolling system 110: material to be rolled 120: transfer roll 130: first rolling machine 132: first rolling roll 133: first pressing part 134: first inclined curved surface 135: second pressing part 136: second inclined curved surface 137: third pressing part 140: second rolling mill 142: second rolling roll, side rolling roll 150: third rolling mill 152: third rolling roll, Double rolling rolls B1 and B2: deformation area C1: first curved surface C2: second curved surface C3: third curved surface C4: fourth curved surface ds1: level difference between first and second pressure parts A difference between a diameter of the first pressure unit and a diameter of the second pressure unit ds2: a level difference between the second pressure unit and the third pressure unit, a diameter of the second pressure unit, and a third pressure unit Difference from the diameter L1: half length of the first pressure part L2: length of the second pressure part Ls1: first inclined curved surface Length Ls2: length of second inclined curved surface R: rolling roll R1: diameter of first pressure part R2: diameter of second pressure part R3: diameter of third pressure part Wmin: of rolled material Minimum width Δ C : Elongation in the longitudinal direction of the central part Δ E : Elongation in the longitudinal direction of both ends

Claims (12)

ロール側部でバレルに沿って直径が異なる構造からなり、
前記バレルの中央部に形成され、被圧延材の中央部と接触する第1加圧部と、
前記第1加圧部の両側で第1傾斜曲線面を成して連続的に直径が減少し、前記第1加圧部より小さい直径に形成されて段差部を形成する第2加圧部と、
前記第2加圧部の両側で第2傾斜曲線面を成して連続的に直径が減少し、前記バレルの縁部まで前記第2加圧部より小さい直径に形成されて段差部を形成する第3加圧部と、
を含むことを特徴とする圧延ロール。
Consist of structures with different diameters along the barrel at the roll side,
A first pressing portion formed at a central portion of the barrel and in contact with the central portion of the material to be rolled;
A second pressure part which is continuously reduced in diameter to form a first inclined curved surface on both sides of the first pressure part and which has a smaller diameter than the first pressure part to form a stepped part; ,
A second inclined curved surface is formed on both sides of the second pressing portion to continuously decrease in diameter, and a diameter smaller than the second pressing portion is formed to the edge of the barrel to form a step portion A third pressure unit,
A rolling roll characterized by comprising.
前記第1加圧部の半分の長さL1は、前記被圧延材の最小幅Wminの0.2倍より小さく形成され(L1<0.2Wmin)、
前記第2加圧部の長さL2は、前記第1加圧部の半分の長さL1と同一であり(L2=L1)、
前記第1加圧部と前記第2加圧部との段差ds1は、前記第1加圧部の直径R1の0.4倍より小さく形成される(ds1<0.4R1)ことを特徴とする請求項1に記載の圧延ロール。
The half length L1 of the first pressing portion is formed smaller than 0.2 times the minimum width Wmin of the material to be rolled (L1 <0.2 Wmin),
The length L2 of the second pressing part is equal to the half length L1 of the first pressing part (L2 = L1),
A step ds1 between the first pressing portion and the second pressing portion may be smaller than 0.4 times a diameter R1 of the first pressing portion (ds1 <0.4R1). The rolling roll according to claim 1.
前記第1傾斜曲線面の長さLs1及び前記第2傾斜曲線面の長さLs2は、前記第1加圧部の半分の長さL1の0.4倍より小さく形成される(Ls1<0.4L1、Ls2<0.4L1)ことを特徴とする請求項1に記載の圧延ロール。   The length Ls1 of the first inclined curved surface and the length Ls2 of the second inclined curved surface are smaller than 0.4 times the half length L1 of the first pressure portion (Ls1 <0. The rolling roll according to claim 1, characterized in that 4L1, Ls2 <0.4L1). 前記第1傾斜曲線面は、前記第1加圧部と連結される端部、及び前記第2加圧部と連結される端部が、ラウンドを成すように形成されることを特徴とする請求項1に記載の圧延ロール。   The first inclined curved surface is formed so that an end connected to the first pressure part and an end connected to the second pressure part form a round. The rolling roll of claim 1. 前記第1傾斜曲線面は、一端が前記第1加圧部と連結される第1曲線面、及び一端は前記第1曲線面の他端に連結され、他端が前記第2加圧部の一端に連結される第2曲線面が、それぞれの楕円曲線の1/4領域を有するように連結されることを特徴とする請求項4に記載の圧延ロール。   The first inclined curved surface has a first curved surface whose one end is connected to the first pressing portion, one end is connected to the other end of the first curved surface, and the other end is the second pressing portion. The rolling roll according to claim 4, wherein the second curved surface connected to one end is connected so as to have a 1/4 area of each elliptic curve. 前記第1曲線面(C1)と前記第2曲線面(C2)は、下記数学式により決定されることを特徴とする請求項5に記載の圧延ロール。
C1:(x−L1)/Ls1+(y−R1+ds1/2)/ds1=0.25
C2:(x−L1−Ls1)/Ls1+(y−R1+ds1/2)/ds1=0.25
(ここで、L1は第1加圧部の半分の長さ、Ls1は第1傾斜曲線面の長さ、Ls2は第2傾斜曲線面の長さ、R1は第1加圧部の直径、ds1は第1加圧部と第2加圧部との段差である。)
The rolling roll according to claim 5, wherein the first curved surface (C1) and the second curved surface (C2) are determined by the following mathematical formula.
C1: (x-L1) 2 / Ls 1 2 + (y-R 1 + ds 1/2) 2 / ds 1 2 = 0.25
C2: (x-L1-Ls1 ) 2 / Ls1 2 + (y-R1 + ds1 / 2) 2 / ds1 2 = 0.25
(Here, L1 is half the length of the first pressure part, Ls1 is the length of the first inclined curved surface, Ls2 is the length of the second inclined curved surface, R1 is the diameter of the first pressure part, ds1 Is the step between the first pressure part and the second pressure part.)
前記第2傾斜曲線面は、前記第2加圧部と連結される端部、及び前記第3加圧部と連結される端部が、ラウンドを成すように形成されることを特徴とする請求項1に記載の圧延ロール。   The second inclined curved surface may be formed such that an end connected to the second pressing unit and an end connected to the third pressing unit form a round. The rolling roll of claim 1. 前記第2傾斜曲線面は、一端が前記第2加圧部と連結される第3曲線面、及び一端は前記第3曲線面の他端に連結され、他端が前記第3加圧部の一端に連結される第4曲線面が、それぞれの楕円曲線の1/4領域を有するように連結されることを特徴とする請求項7に記載の圧延ロール。   The second inclined curved surface is a third curved surface whose one end is connected to the second pressing portion, and one end is connected to the other end of the third curved surface, and the other end is the third pressing portion. The roll according to claim 7, characterized in that the fourth curved surface connected to one end is connected to have a 1/4 area of each elliptic curve. 前記第3曲線面(C3)と前記第4曲線面(C4)は、下記の数学式により決定されることを特徴とする請求項8に記載の圧延ロール。
C3:(x−L1−Ls1−L2)/Ls2+(y−R2+ds2/2)/ds2=0.25
C4:(x−L1−Ls1−L2−Ls2)/Ls2+(y−R2+ds2/2)/ds2=0.25
(ここで、L1は第1加圧部の半分の長さ、Ls1は第1傾斜曲線面の長さ、Ls2は第2傾斜曲線面の長さ、L2は第2加圧部の長さ、R2は第2加圧部の直径、ds2は第2加圧部と第3加圧部との段差である。)
The rolling roll according to claim 8, wherein the third curved surface (C3) and the fourth curved surface (C4) are determined by the following mathematical formula.
C3: (x-L1-Ls1 -L2) 2 / Ls2 2 + (y-R2 + ds2 / 2) 2 / ds2 2 = 0.25
C4: (x-L1-Ls1 -L2-Ls2) 2 / Ls2 2 + (y-R2 + ds2 / 2) 2 / ds2 2 = 0.25
(Here, L1 is a half length of the first pressing portion, Ls1 is a length of the first inclined curved surface, Ls2 is a length of the second inclined curved surface, L2 is a length of the second pressing portion, R2 is a diameter of the second pressing portion, and ds2 is a step between the second pressing portion and the third pressing portion.
被圧延材の幅中央部を中心に圧延する請求項1から請求項9のいずれか1項に記載の圧延ロールを有する第1圧延機と、
前記第1圧延機に連続して配置され、前記第1圧延機により圧延された被圧延材の幅方向両側で幅エッジ部を加圧する側面圧延ロールを有する第2圧延機と、
前記第2圧延機に連続して配置され、前記第1圧延機により圧延された被圧延材が全体的に一定の厚さを有するように前記被圧延材の幅中央部の外部を圧延する二重圧延ロールを有する第3圧延機と、を含むことを特徴とする圧延システム。
The 1st rolling mill which has a rolling roll of any one of Claims 1-9 which rolls around the width center part of a material to be rolled,
A second rolling mill having side rolling rolls disposed continuously to the first rolling mill and pressing width edge portions on both sides in the width direction of the rolled material rolled by the first rolling mill;
The second rolling mill is disposed continuously to the second rolling mill, and the outside of the width center portion of the rolling material is rolled so that the rolling material rolled by the first rolling mill has a constant thickness as a whole. And a third rolling mill having heavy rolling rolls.
前記二重圧延ロールは、平ロール、またはバレルの中央から両端に行くほど直径が減少する形状ロールであることを特徴とする請求項10に記載の圧延システム。   The rolling system according to claim 10, wherein the double rolling roll is a flat roll, or a shape roll whose diameter decreases from the center to the both ends of the barrel. 前記形状ロールは、バレルの中央から両端に行くほど減少する直径が1mm以下であることを特徴とする請求項11に記載の圧延システム。   The rolling system according to claim 11, wherein the shape roll has a diameter of 1 mm or less which decreases from the center to both ends of the barrel.
JP2018550379A 2016-04-11 2016-12-06 Rolling roll and rolling system including the same Pending JP2019510638A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0044308 2016-04-11
KR1020160044308A KR101767825B1 (en) 2016-04-11 2016-04-11 Rolling roller and rolling system having the same
PCT/KR2016/014241 WO2017179791A1 (en) 2016-04-11 2016-12-06 Rolling roll and rolling system comprising same

Publications (1)

Publication Number Publication Date
JP2019510638A true JP2019510638A (en) 2019-04-18

Family

ID=60042125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550379A Pending JP2019510638A (en) 2016-04-11 2016-12-06 Rolling roll and rolling system including the same

Country Status (5)

Country Link
EP (1) EP3444043A4 (en)
JP (1) JP2019510638A (en)
KR (1) KR101767825B1 (en)
CN (1) CN108883449A (en)
WO (1) WO2017179791A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280593A (en) * 2019-06-26 2019-09-27 南京钢铁股份有限公司 The ribbon steel for not generating step determines method with three roll shape roughing mills and its pass
CN112222186A (en) * 2020-09-18 2021-01-15 太原理工大学 Device and method for producing variable thick plate with high precision

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534177Y2 (en) * 1972-11-16 1978-02-02
JPS6146306A (en) * 1984-08-09 1986-03-06 Sumitomo Metal Ind Ltd Rolling roll
JPH02175001A (en) * 1988-12-27 1990-07-06 Kawasaki Steel Corp Method for rolling shaped bloom
JP2004050221A (en) * 2002-07-18 2004-02-19 Ishikawajima Harima Heavy Ind Co Ltd Equipment and method for producing strip plate
JP2010082659A (en) * 2008-09-30 2010-04-15 Panasonic Corp Roll for forming metallic sheet and method of forming metallic sheet
JP5494058B2 (en) * 2010-03-16 2014-05-14 新日鐵住金株式会社 Rolling mill
DE102010029598A1 (en) * 2010-06-01 2011-12-01 ACHENBACH BUSCHHüTTEN GMBH Back-up roll and thus equipped roll stand
KR101433432B1 (en) * 2011-12-27 2014-08-26 주식회사 포스코 Roll design method for formming chamfer, apparatus and method for manufacturing steel plate using the same
KR101438774B1 (en) * 2012-12-27 2014-09-05 주식회사 포스코 Rolling mill and rolling method
KR101480487B1 (en) * 2012-12-27 2015-01-09 주식회사 포스코 Work roll and rolling mill and rolling method
DE102014005085A1 (en) 2014-04-08 2015-10-08 Sms Meer Gmbh Multi-roll table-type rolling mill and method of rolling rings in a multi-roll table-type rolling mill

Also Published As

Publication number Publication date
CN108883449A (en) 2018-11-23
WO2017179791A1 (en) 2017-10-19
KR101767825B1 (en) 2017-08-14
EP3444043A1 (en) 2019-02-20
EP3444043A4 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP2019510638A (en) Rolling roll and rolling system including the same
KR20110083721A (en) Roll stand for rolling a product, in particular made of metal
JP2019111584A (en) Rolled H-shaped steel
TWI624313B (en) Cold rolling method of steel plate and manufacturing method of steel plate
JP6874597B2 (en) Manufacturing method of steel sheet pile with flange
JP5862248B2 (en) Metal strip rolling method
JP6540631B2 (en) Cold tandem rolling mill and method of manufacturing cold rolled steel sheet
WO2020189140A1 (en) Method for manufacturing seamless square steel tube
JP5939234B2 (en) Cold rolling method for steel sheet
JP2010172936A (en) Blooming mill method using continuous rolling mill
JPS6044101A (en) Rolling method of u-shaped steel sheet pile
CN113333470A (en) Hot rolling method for improving 780 MPa-level thin-specification dual-phase steel edge wave
JP6277566B1 (en) Work roll for cold rolling and cold rolling method
JP2016182627A (en) Rolling method for deformed bar
JP6741192B1 (en) Method for manufacturing seamless rectangular steel pipe
EP3257597B1 (en) H-shaped steel production method
JP6614105B2 (en) Ingot rolling method for slabs
KR101433432B1 (en) Roll design method for formming chamfer, apparatus and method for manufacturing steel plate using the same
RU2403998C1 (en) Method of rolling strips for larger-diametre tubes from lowalloy steel at reversing thick plate mill
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JP6458212B2 (en) Cold rolling method
JP2023113156A (en) Method for manufacturing hat-shaped steel sheet pile
JPS6056401A (en) Manufacture of h-beam of large sheet-thickness ratio and its simulant
CN115608790A (en) Method and equipment for preventing edge rib forming defect of cold-rolled strip steel
JP2013111637A (en) Method of rolling cold-rolled steel sheet and method of manufacturing ultra thin steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728