JP2019218026A - 路面状態判別方法及び路面状態判別装置 - Google Patents

路面状態判別方法及び路面状態判別装置 Download PDF

Info

Publication number
JP2019218026A
JP2019218026A JP2018119176A JP2018119176A JP2019218026A JP 2019218026 A JP2019218026 A JP 2019218026A JP 2018119176 A JP2018119176 A JP 2018119176A JP 2018119176 A JP2018119176 A JP 2018119176A JP 2019218026 A JP2019218026 A JP 2019218026A
Authority
JP
Japan
Prior art keywords
time
road surface
series waveform
feature vector
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018119176A
Other languages
English (en)
Inventor
啓太 石井
Keita Ishii
啓太 石井
剛 真砂
Go Masago
剛 真砂
嵩人 後藤
Takahito GOTO
嵩人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2018119176A priority Critical patent/JP2019218026A/ja
Priority to PCT/JP2018/047164 priority patent/WO2019244380A1/ja
Publication of JP2019218026A publication Critical patent/JP2019218026A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Tires In General (AREA)

Abstract

【課題】時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別方法と路面状態判別装置とを提供する。【解決手段】加速度センサーにより検出したタイヤ振動の時系列波形を窓掛け手段により時間Tで窓掛けして、時間窓毎のタイヤ振動の時系列波形を抽出して時間窓毎の特徴ベクトルXiを算出した後、この時間窓毎の特徴ベクトルXiと、予め算出しておいた路面状態毎に求めておいた時間窓毎の特徴ベクトルである基準特徴ベクトルYAKJとからカーネル関数KAを算出する際に、時間窓毎の特徴ベクトルXiの小数点以下の桁数n0と基準特徴ベクトルYAKJの小数点以下の桁数n0とを、ともに、n0よりも小さなnに変更し、この桁数の変更された時間窓毎の特徴ベクトルXiと基準特徴ベクトルYAKとから、カーネル関数KAを算出するようにした。【選択図】図8

Description

本発明は、走行中のタイヤの振動の時系列波形のデータのみを用いて路面状態を判別する方法とその装置に関する。
従来、走行中のタイヤの振動の時系列波形のデータのみを用いて路面状態を判別する方法として、タイヤの振動の時系列波形に窓関数をかけて抽出した時系列波形から算出される時間窓毎の特徴量と、予め路面状態毎に求めておいた時間窓毎の特徴量である基準特徴量とから算出したカーネル関数を用いて路面状態を判別する方法が提案されている。
基準特徴量は、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量を学習データとして、機械学習(SVM)により求められる(例えば、特許文献1参照)。
特開2014−35279号公報
しかしながら、時間伸縮は、取得された時系列波形を比較するために必要な操作であるものの、計算量が多いため、計算時間が長く、処理が非常に重くなってしまう、といった問題点があった。
本発明は、従来の問題点に鑑みてなされたもので、時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別方法と路面状態判別装置とを提供することを目的とする。
本発明は、走行中のタイヤの振動を検出するステップ(a)と、前記検出されたタイヤの振動の時系列波形を取り出すステップ(b)と、前記タイヤ振動の時系列波形に所定の時間幅の窓関数をかけて時間窓毎の時系列波形を抽出するステップ(c)と、前記時間窓毎の時系列波形からそれぞれ特徴量を算出するステップ(d)と、前記ステップ(d)で算出した時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出するステップ(e)と、前記カーネル関数を用いた識別関数の値に基づいて走行中の路面の状態を判別するステップ(f)と、を備えた路面状態判別方法において、前記算出された基準特徴量の小数点以下の桁数n0を、n0よりも小さな桁数n’変更(例えば、X=121.123(n0=3)で、n=1なら、X’=121.1となる)して保存するとともに、前記ステップ(e)では、前記ステップ(d)で算出した時間窓毎の特徴量の桁数n0を、n0よりも小さなnに変更し、これら桁数がnに変更された時間窓毎の特徴量と基準特徴量とからカーネル関数を算出することを特徴とする。
これにより、カーネル関数K(X,Y)を算出するために使用するデータ量を削減できるので、路面状態の判別精度を確保しつつ、計算速度を速くすることができる。
なお、n0,nは0または負の値もとることができる。
例えば、a=121.123(n0=3)、n=0なら、a’=121(整数)となり、n=−1なら、a’=120となる。また、a=121(n0=0)、n=−1なら、a’=120となる。したがって、この処理は、計算に使用する有効数字を減らす、という意味も含まれる。
なお、前記の特徴ベクトルXiとしては、前記窓関数をかけて抽出した時間窓毎の時系列波形の特定周波数帯域の振動レベル、前記特定周波数帯域の振動レベルの時変分散、及び、前記時系列波形のケプストラム係数のいずれか1つ、または、複数、または、全部等が挙げられる。また、前記特定周波数帯域の振動レベルは、前記窓関数をかけて抽出した時間窓毎の時系列波形の周波数スペクトル、もしくは、前記窓関数をかけて抽出した時間窓毎の時系列波形をバンドパスフィルタを通して得られた時系列波形路面状態の判別精度を向上させることができる。
また、前記カーネル関数を、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値とすれば、路面状態の判別精度を向上させることができる。
また、本発明は、タイヤトレッド部のインナーライナー部の気室側に配設された、走行中のタイヤの振動を検出するタイヤ振動検出手段と、前記タイヤ振動検出手段で検出された前記タイヤ振動の時系列波形を予め設定した時間幅で窓掛けして時間窓毎にタイヤ振動の時系列波形を抽出する窓掛け手段と、前記抽出された時間窓毎の時系列波形における特定周波数の振動レベルを成分とする特徴量もしくは前記振動レベルの関数を成分とする特徴量を算出する特徴量算出手段と、予め算出しておいた路面状態毎のタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量と前記基準特徴量に対応するラグランジェ未定乗数とを記憶する記憶手段と、前記特徴量算出手段で算出した時間窓毎の特徴量と、前記記憶手段に記憶された基準特徴量とからカーネル関数を算出するカーネル関数算出手段と、前記カーネル関数を用いた識別関数の値に基づいて路面状態を判別する路面状態判別手段とを備え、タイヤの走行する路面の状態を判別する路面状態判別装置において、前記記憶手段は、算出された基準特徴量の小数点以下の桁数n0を、n0よりも小さな桁数nに変更して保存するとともに、前記特徴量算出手段で算出した時間窓毎の特徴量の桁数n0を、n0よりも小さなnに変更する数値精度削減手段を設けて、前記カーネル関数算出手段では、前記桁数がnに変更された時間窓毎の特徴量と基準特徴量とからカーネル関数を算出することを特徴とする。
このような構成を採ることにより、計算量を少なくしても、路面状態の判別精度を確保することのできる路面状態判別装置と得ることができる。
なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。
本実施の形態に係る路面状態判別装置の機能ブロック図である。 加速度センサーの装着位置の一例を示す図である。 タイヤ振動の時系列波形の一例を示す図である。 タイヤ振動の時系列波形から特徴ベクトルを算出する方法を示す図である。 入力空間を示す模式図である。 入力空間上における、DRY路面の路面特徴ベクトルとWET路面の路面特徴ベクトルとを示す図である。 GAカーネルの算出方法を示す図である。 本発明による路面状態判別方法を示すフローチャートである。 記憶手段に保存されている特徴行列の数値例を示す図である。 数値精度の違いによる路面状態の判別精度を比較した図である。
実施の形態
図1は、本実施の形態に係る路面状態判別装置10の構成を示す図である。
路面状態判別装置10は、タイヤ振動検出手段としての加速度センサー11と、振動波形抽出手段12と、窓掛け手段13と、特徴ベクトル算出手段14と、数値精度削減手段15と、記憶手段16と、カーネル関数算出手段17と、路面状態判別手段18とを備え、タイヤ20の走行している路面が、DRY路面であるかWET路面であるかの2路面判別を行う。
振動波形抽出手段12〜路面状態判別手段18までの各手段は、例えば、コンピュータのソフトウェア、及び、RAM等のメモリーから構成される。
加速度センサー11は、図2に示すように、タイヤ20のインナーライナー部21のタイヤ気室22側のほぼ中央部に一体に配置されて、路面からの入力による当該タイヤ20の振動を検出する。加速度センサー11の出力であるタイヤ振動の信号は、例えば、増幅器で増幅された後、デジタル信号に変換されて振動波形抽出手段12に送られる。
振動波形抽出手段12では、加速度センサー11で検出したタイヤ振動の信号から、タイヤの一回転毎に、タイヤ振動の時系列波形を抽出する。
図3はタイヤ振動の時系列波形の一例を示す図で、タイヤ振動の時系列波形は、踏み込み位置近傍と蹴り出し位置近傍に大きなピークを有しており、かつ、タイヤ20の陸部が接地する前の踏み込み前領域Rf、タイヤ20の陸部が路面から離れた後の蹴り出し後領域Rk、及び、タイヤ20の陸部が路面に接地している接地領域Rsにおいては、路面状態によって異なる振動が出現する。一方、踏み込み前領域Rfの前の領域と蹴り出し後領域Rkの後の領域(以下、路面外領域という)とは路面の影響を殆ど受けていないので、振動レベルも小さく、路面の情報も含んでいない。踏み込み前領域Rfから蹴り出し後領域Rkまでを、以下、路面領域という。
窓掛け手段13は、図4に示すように、前記抽出された時系列波形を予め設定した時間幅(時間窓幅ともいう)ΔTで窓掛けし、時間窓毎にタイヤ振動の時系列波形を抽出して特徴ベクトル算出手段14に送る。なお、同図のTsは、路面領域の時間幅である。
なお、前述したように、路面外領域の時系列波形は、路面の情報を含んでいないので、カーネル関数の計算速度を速めるため、本例では、路面領域の時系列波形のみを特徴ベクトル算出手段14には送るようにしている。
なお、路面外領域の定義としては、例えば、タイヤ振動の時系列波形に対してバックグラウンドレベルを設定し、このバックグラウンドレベルよりも小さな振動レベルを有する領域を路面外領域とすればよい。
特徴ベクトル算出手段14は、図4に示すように、抽出された各時間窓の時系列波形のそれぞれに対して特徴ベクトルXi(i=1〜N;Nは抽出された時間窓毎の時系列波形の数)算出する。
本例では、算出する特徴ベクトルXiとして、タイヤ振動の時系列波形を、それぞれ、0-0.5kHz、0.5-1kHz、1-2kHz、2-3kHz、3-4kHz、4-5kHzのバンドパスフィルタにそれぞれ通して得られた特定周波数帯域の振動レベル(フィルター濾過波のパワー値)aik(k=1〜6)を用いた。特徴ベクトルは、Xi=(ai1,ai2,ai3,ai4,ai5,ai6)で、特徴ベクトルXiの数はN個である。
図5は、特徴ベクトルXiの入力空間を示す模式図で、各軸は特徴量である特定周波数帯域の振動レベルaikを表し、各点が特徴ベクトルXiを表している。実際の入力空間は特定周波数帯域の数が3つなので時間軸と合わせると7次元空間になるが、同図は2次元(横軸がa1、縦軸がa2)で表している。
同図において、グループCがDRY路面を走行しているときの特徴ベクトルXiの集合で、グループC’がWET路面を走行しているときの特徴ベクトルX’iの集合とすると、グループCとグループC’とを区別することができれば、タイヤの走行している路面がDRY路面かWET路面かを判別することができる。
数値精度削減手段15は、入力されたデータxの小数点以下の桁数を、現行のn0から、n0よりも小さなnに変更する手段である。
具体的には、数値精度削減関数をR(x;n)で表すと、x=121.667,n=2ならR(121.667;2)=121.67、n=1ならR(121.667;1)=121.7である。
また、n≦0の場合には、R(121.667;0)=121、R(121.667;−1)=120、R(121.667;−2)のように、n=−1なら、1桁目を四捨五入し、n=−2なら2桁目を四捨五入する。
特徴ベクトル算出手段14にて算出された特徴ベクトルXiは小数点以下の桁数n0は、数値精度削減手段15により、n0よりも小さな桁数nに変更される。
記憶手段16は、予め求めておいた、DRY路面とWET路面とを識別するためのDW識別モデルを記憶する。
DW識別モデルは、DRY路面とWET路面とを分離超平面を表わす識別関数f(x)により分離するための基準特徴量である基準特徴ベクトルYAK(yjk)と、基準特徴ベクトルYAK(yjk)に対応するラグランジュ乗数λAとを備える。
基準特徴ベクトルYAK(yjk)及びλAは、加速度センサー11を取り付けたタイヤを搭載した試験車両を、DRY路面とWET路面にて、様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された時間窓毎の特徴ベクトルである路面特徴ベクトルYA(yjk)を入力データとして、学習により求められる。
基準特徴ベクトルYAK(yjk)の添え字Aは、DRYもしくはWETを示している。
また、添字j(j=1〜M)は時間窓毎に抽出した時系列波形の窓番号を示し、添字kはベクトルの成分を示している(k=1〜6)。すなわち、yjk=(aj1,aj2,aj3,aj4,aj5,aj6)である。また、SVはサポートベクトルの略である。
なお、本例のように、グローバルアライメントカーネル関数を用いる場合には、基準特徴ベクトルYAK(yjk)は、ベクトルyiの次元数(ここでは、6×M(M;窓の数))の行列となる。
以下、路面特徴ベクトルYA(yjk)及び基準特徴ベクトルYAK(yjk)を、それぞれ、YA、YAKと記す。
路面特徴ベクトルYAの算出方法は、前述した特徴ベクトルXjと同様で、例えば、DRY路面の基準特徴ベクトルYDなら、DRY路面を走行したときのタイヤ振動の時系列波形を時間幅ΔTで窓掛けし、時間窓毎にタイヤ振動の時系列波形を抽出し、抽出された各時間窓の時系列波形のそれぞれに対してDRY路面特徴ベクトルYD算出する。同様に、WET路面特徴ベクトルYWは、WET路面を走行したときの時間窓毎の時系列波形から算出される。
また、基準特徴ベクトルYAKVは、DRY路面特徴ベクトルYDとWET路面特徴ベクトルYWとを学習データとしたサポートベクトルマシーン(SVM)により、サポートベクトルとして選択された特徴ベクトルである。
なお、記憶手段16には全ての基準特徴ベクトルYAKを記憶する必要はなく、一般には、ラグランジュ乗数λが、所定の値λmin(例えば、λmin=0.05)以上であるサポートベクトルYASVのみを、基準特徴ベクトルYAKとして保存すればよい。
ここで、時間幅ΔTが、特徴ベクトルXjを求める場合の時間幅ΔTと同じ値であることが肝要である。時間幅Tが一定なら、時間窓の時系列波形の数Mはタイヤ種と車速によって異なる。すなわち、路面特徴ベクトルYAKの時間窓の時系列波形の数Mは、特徴ベクトルXjの時間窓の時系列波形の数Nとは必ずしも一致しない。例えば、タイヤ種が同じでも、特徴ベクトルXjを求めるときの車速が路面特徴ベクトルYAKを求めたときの車速よりも遅い場合には、M>Nとなり、速い場合にはM<Nとなる。
また、上記求められた基準特徴ベクトルYAKは、小数点以下の桁数n0を、n0よりも小さな桁数nに変更してから記憶手段16に保存される。
なお、小数点以下の桁数n0を、n0よりも小さな桁数nに変更する際には、上述した数値精度削減手段15と同様の手段を用いればよい。
図6は、入力空間上におけるDRY路面特徴ベクトルYDとWET路面特徴ベクトルYWを示す概念図で、同図の黒丸がDRY路面、白丸がWET路面である。
なお、前述したように、DRY路面特徴ベクトルYDもWET路面特徴ベクトルYWも行列であるが、グループの識別境界の求め方を説明するため、図6では、DRY路面特徴ベクトルYDとWET路面特徴ベクトルYWとをそれぞれ2次元のベクトルで示した。
グループの識別境界は、一般には、線形分離が不可能である。そこで、カーネル法を用いて、路面特徴ベクトルYV及びYWを非線形写像φによって高次元特徴空間に写像して線形分離を行うことで、元の入力空間において路面特徴ベクトルYD及びYWに対して非線形な分類を行う。
DRY路面とWET路面とを区別するには、DRY路面特徴ベクトルYDjとWET路面特徴ベクトルYWjとを分離する分離超平面である識別関数f(x)に対してマージンを持たせることで、DRY路面とWET路面とを精度よく区別することができる。
マージンとは、分離超平面から一番近いサンプルまでの距離をいい、識別境界である分離超平面はf(x)=0である。また、DRY路面特徴ベクトルYDjは全てf(x)≧+1の領域にあり、WET路面特徴ベクトルYWjは全てf(x)≦−1の領域にある。
次に、データの集合X=(x1,x2,……xn)と所属クラスz={1、−1}とを用いて、データを識別する最適な識別関数f(x)=wTφ(x)−bを求める。ここで、wは重み係数を表すベクトルで、bは定数である。
また、データはDRY路面特徴ベクトルYDjとWER路面特徴ベクトルYWjであり、所属クラスはz=1が同図のχ1で示すDRY路面のデータで、z=−1がχ2で示すWET路面のデータである。f(x)=0が識別境界で、1/||w||が路面特徴ベクトルYAj(A=D,W)とf(x)=0との距離である。
識別関数f(x)=wTφ(x)−bは、例えば、ラグランジュ未定乗数法を用いて最適化される。最適化問題は、以下の式(1),(2)に置き換えられる。
Figure 2019218026
ここで、α,βは複数ある学習データの指標である。また、λはラグランジュ乗数で、λ=0である路面特徴ベクトルYAjは、識別関数f(x)には関与しない(サポートベクトルではない)ベクトルデータである。
ここで、内積φT(xα)φ(xβ)をカーネル関数K(xα,xβ)に置き換えることで、識別関数f(x)=wTφ(x)−bを非線形できる。
なお、φT(xα)φ(xβ)は、xαとxβを写像φで高次元空間へ写像した後の内積である。
ラグランジュ乗数λは、前記の式(2)について、最急下降法やSMO(Sequential Minimal
Optimization)などの最適化アルゴリズムを用いて求めることができる。
このように、内積φT(xα)φ(xβ)を直接求めずに、カーネル関数K(xα,xβ)に置き換えるようにすれば、高次元の内積を直接求める必要がないので、計算時間を大幅に縮減できる。
本例では、カーネル関数K(xα,xβ)として、グローバルアライメントカーネル関数(GAカーネル)を用いた。
GAカーネルK(xα,xβ)は、図7及び以下の式(3),(4)に示すように、特徴ベクトルxαと特徴ベクトルxβとの類似度を示すローカルカーネルκij(xαi,xβj)の総和もしくは総積から成る関数で、時間長さの異なる時系列波形を直接比較することができる。 ローカルカーネルκij(xαi,xβj)は、時間間隔Tの窓毎に求められる。
なお、図7は、時間窓の数が6である特徴ベクトルxαiと、時間窓の数が4である特徴ベクトルxβとのGAカーネルを求めた例である。
Figure 2019218026
ここで、||xαi−xβij||は、特徴ベクトル間の距離(ノルム)で、σは定数である。
カーネル関数算出手段17は、特徴ベクトル算出手段14にて算出され、更に、数値精度削減手段15にて桁数の変更された特徴ベクトルXiと、記憶手段16に記憶されているDRY路面の基準特徴ベクトルYDKとWET路面の基準特徴ベクトルYWKとから、DRYGAカーネルKD(X,YDK)とWETGAカーネルKW(X,YWK)とを算出する。
DRYGAカーネルKD(X,YDK)は、上記式(3)及び(4)において、特徴ベクトルxを特徴ベクトル算出手段14で算出された特徴ベクトルXiとし、特徴ベクトルxβをDRY路面の基準特徴ベクトルYDKjとしたときのローカルカーネルκij(Xi,YDKj)の総和もしくは総積から成る関数で、WETGAカーネルKW(X,YWK)は、特徴ベクトルxβをWET路面の基準特徴ベクトルYWKjとしたときのローカルカーネルκij(Xi,YWKj)の総和もしくは総積から成る関数である。これらのGAカーネルKD(X,YDK)及びKW(X,YWK)を用いることで、時間長さの異なる時系列波形を直接比較できる。
また、本例では、記憶手段16に記憶されている基準特徴ベクトルYDK及びYWKの桁数nを全て少数以下第1位(n=1)とするとともに、特徴ベクトルXiの桁数を全て、少数以下第3位(n0=3)から少数以下第1位(n=1)と変更しているので、カーネル関数K(X,Y)の演算に使用するデータ量を削減でき、演算時間を速くすることができる。
なお、上記のように、特徴ベクトルXiを求めた場合の時間窓の時系列波形の数nと路面特徴ベクトルYAj求めた場合の時間窓の時系列波形の数mとが異なっている場合でも、特徴ベクトルXiと基準特徴ベクトルYAKj間の類似度を求めることができる。
路面状態判別手段18では、以下の式(5)式に示す、カーネル関数KD(X,YDK)とカーネル関数KW(X,YWD)を用いた識別関数fDW(x)の値とに基づいて路面状態を判別する。
Figure 2019218026
ここで、NDKVはDRY路面の基準特徴ベクトルYDKjの個数で、NWKはWET路面の基準特徴ベクトルYWKjの個数である。
本例では、識別関数fDWを計算し、fDW>0であれば、路面がDRY路面であると判別し、fDW<0であれば、路面がWET路面であると判別する。
次に、路面状態判別装置10を用いて、タイヤ20の走行している路面の状態を判別する方法について、図8のフローチャートを参照して説明する。
まず、加速度センサー11によりタイヤ20が走行している路面からの入力により発生したタイヤ振動を検出し(ステップS10)、検出されたタイヤ振動の信号からタイヤ振動の時系列波形を抽出する(ステップS11)。
そして、抽出されたタイヤ振動の時系列波形に、予め設定した時間幅ΔTで窓掛けして、時間窓毎のタイヤ振動の時系列波形を求める。ここで、時間窓毎のタイヤ振動の時系列波形の数をm個とする(ステップS12)。
次に、抽出された各時間窓の時系列波形のそれぞれに対して特徴ベクトルXi=(xi1,xi2,xi3,xi4,xi5,xi6)を算出する(ステップS13)。本例では時間幅Tを3msec.とした。また、特徴ベクトルXiの数は6個である。
特徴ベクトルXiの各成分xi1〜xi6(i=1〜6)は、前述したように、タイヤ振動の時系列波形のフィルター濾過波のパワー値である。
次に、算出された特徴ベクトルXiの小数点以下の桁数n0を、n0よりも小さなnに変更(ステップS14)した後、記憶手段15に保存されているDRY路面及びWET路面の基準特徴ベクトルYAKjとの中から、DRY路面の基準特徴ベクトルYDKとWET路面の基準用特徴ベクトルYWKとを取出して、これら基準特徴ベクトルYDK及びYWKと、特徴ベクトルXiとから、ローカルカーネルκij(Xi,YAKj)を算出した後、ローカルカーネルκij(Xi,YAKj)の総和を求めて、GAカーネル関数KA(X,YAK)をそれぞれ算出する(ステップS15)。なお、記憶手段15に保存されているDRY路面の基準特徴ベクトルYDKの小数点以下の桁数も、WET路面の基準特徴ベクトルYWKの小数点以下の桁数も、ともに、nである。
A=DであるGAカーネル関数KD(X,YDK)がDRY路面のGAカーネル関数で、A=WであるGAカーネル関数KW(X,YWK)がWET路面のGAカーネル関数である。
そして、DRY路面のGAカーネル関数KDとWET路面のGAカーネル関数KWとを用いた識別関数fDW(x)を計算(ステップS16)し、fDW>0であれば、路面がDRY路面であると判別し、fDW<0であれば、路面がWET路面であると判別する。(ステップS17)。
このように、本例では、小数点以下の桁数がn(n<n0)に変更された時間窓毎の特徴ベクトルXiと基準特徴ベクトルYDK,YWKとからカーネル関数を算出するようにしたので、路面状態の判別精度を低下させることなく、演算時間を速くすることができる。
[実施例]
DRY路面のサポートベクトルとWET路面のサポートベクトルとを、予めDRY路面とWET路面求めておいた、DRY路面とWET路面を走行したときのタイヤ振動の時系列波形から算出された時間窓毎の特徴である路面データを学習データとして、機械学習(SVM)により求めた。
具体的には、以下の表2に示すように、使用した路面データを、訓練用(Train用)とテスト用(Test用)との分け、DRY路面のサポートベクトルとWET路面のサポートベクトルとを求めた後、DRY路面のサポートベクトルとWET路面のサポートベクトルの境界面とを求めた。このとき、サポートベクターマシーンのハイパーパラメータC,σは、それぞれ、C=2、σ=125とした。
このとき、サポートベクトルの数は最大で415個であった。
Figure 2019218026
図9(a)〜(c)は、記憶手段15に基準特徴ベクトルYAKjとして保存されている特徴行列の数値例を示す図で、(a)図は数値精度を少数第3位までとしたデータ、(b)図は数値精度を少数第1位までとしたデータ、(c)図は数値精度を整数としたデータである。各数値精度のデータの保存容量を比較した結果を下記の表3に示す。
Figure 2019218026
また、各数値精度のデータを用いたときの路面状態の判別精度を比較した結果を図10のグラフに示す。
同図に示すように、いずれの数値精度のデータを用いても、95%以上の判別精度を得ることができた。
また、数値精度が整数であってもよいので、加速度センサー11のスペックを落としても判別精度を確保できることが確認された。したがって、加速度の分解能が1G程度である加速度センサーでも、十分路面判別ができるので、判別精度を確保しつつ、演算時間を速くすることができる。
以上、本発明を実施の形態及び実施例を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。
例えば、前記実施の形態1では、DW識別モデルを用いてタイヤ20の走行している路面が、DRY路面であるかWET路面であるかの2路面判別を行ったが、以下の6つの路面識別モデルを用いれば、タイヤ20の走行している路面が、DRY路面、WET路面、SNOW路面、ICE路面のいずれであるか判別することができる。
ここで、A,A’=DRY,WET,SNOW,ICE(A≠A’)とすると、AA’識別モデルは、A路面とA’路面とを分離超平面を表わす識別関数fAA’(x)により分離するための基準特徴量であるA路面特徴ベクトルYAKとラグランジュ乗数λAA’、及び、A’路面特徴ベクトルYA’Kラグランジュ乗数λA’ Aを備える。
基準特徴量YAKV及びλAは、加速度センサーを取り付けたタイヤを搭載した試験車両を、DRY,WET,SNOW,ICEの各路面にて、様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された時間窓毎の特徴ベクトルである路面特徴ベクトルYA(yjk)を入力データとして、学習により求められる。
なお、A路面のデータは、図6のχ1で示すz=1に所属するデータで、A’路面のデータは、χ2で示すz=−1に所属するデータである。
ところで、基準特徴ベクトルYAKに対応するラグランジュ乗数λAが識別モデル毎にあることに注意する必要がある。例えば、DRY路面特徴ベクトルYDK対応する3つのラグランジュ乗数λDW,λDS,λDIはそれぞれ異なる値をもつ。
他の路面特徴ベクトルYWK,YSK,YIKSについても同様である。
GAカーネル関数KA(X,YAK)の算出方法は実施の形態と同様で、A=DであるGAカーネル関数KD(X,YDK)がDRY路面のGAカーネル関数、A=WであるGAカーネル関数KW(X,YWK)がWET路面のGAカーネル関数、A=SであるGAカーネル関数KS(X,YSK)がSNOW路面のGAカーネル関数、A=IであるGAカーネル関数KI(X,YIK)がICE路面のGAカーネル関数である。
路面状態の判別は、以下の式(6)〜(11)に示す6つの識別関数fAA’(x)を用いて行う。
Figure 2019218026
上記のように、識別関数がfAA’(x)であれば、A路面のデータがz=1に所属するデーで、A’路面のデータがz=−1に所属するデータであるので、6つの識別関数fAA’から、以下のように路面判別することができる。
DW >0、fDS>0、fDI>0であれば、路面がDRY路面であると判別する。
DW <0、fWS>0、fWI>0であれば、路面がWET路面であると判別する。
DS <0、fWS>0、fSI>0であれば、路面がSNOW路面であると判別する。
DI <0、fWI<0、fSI<0であれば、路面がICE路面であると判別する。
なお、GAカーネル関数K(X,Y)に使用する特徴ベクトルを基準特徴ベクトルYASVとした場合には、式(6)〜(11)において、YAA’KをYA A’SVとし、NAA’KをNA’AKとすればよい。
また、前記実施の形態では、タイヤ振動検出手段を加速度センサー11としたが圧力センサーなどの他の振動検出手段を用いてもよい。また、加速度センサー11の設置箇所についても、タイヤ幅方向中心から幅方向に所定距離だけ離隔した位置に1個ずつ配設したり、ブロック内に設置するなど他の箇所に設置してもよい。
また、前記実施の形態では、特徴ベクトルXiをフィルター濾過波のパワー値xikとしたが、フィルター濾過波のパワー値xikの時変分散(log[xik(t)2+xik(t-1)2])を用いてもよい。あるいは、特徴ベクトルXiを、タイヤ振動時系列波形をフーリエ変換したときの特定周波数帯域の振動レベルであるフーリエ係数、もしくは、ケプストラム係数としてもよい。ケプストラムは、フーリエ変換後の波形をスペクトル波形とみなし、再度フーリエ変換して得られるか、もしくは、ARスペクトルを波形とみなし、更にAR係数を求めて得られる(LPC Cepstrum)もので、絶対レベルに影響されずにスペクトルの形状を特徴付けできるので、フーリエ変換により得られる周波数スペクトルを用いた場合よりも判別精度が向上する。
また、前記実施の形態では、カーネル関数としてGAカーネルを用いたが、ダイナミックタイムワーピングカーネル関数(DTWカーネル)を用いてもよい。あるいは、GAカーネルとDTWカーネル演算値を用いてもよい。
10 路面状態判別装置、11 加速度センサー、12 振動波形抽出手段、
13 窓掛け手段、14 特徴ベクトル算出手段、15 数値精度削減手段、
16 記憶手段、17 カーネル関数算出手段、18 路面状態判別手段、
20 タイヤ、21 インナーライナー部、22 タイヤ気室。

Claims (4)

  1. 走行中のタイヤの振動を検出するステップ(a)と、前記検出されたタイヤの振動の時系列波形を取り出すステップ(b)と、前記タイヤ振動の時系列波形に所定の時間幅の窓関数をかけて時間窓毎の時系列波形を抽出するステップ(c)と、前記時間窓毎の時系列波形からそれぞれ特徴量を算出するステップ(d)と、前記ステップ(d)で算出した時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出するステップ(e)と、前記カーネル関数を用いた識別関数の値に基づいて走行中の路面の状態を判別するステップ(f)と、
    を備えた路面状態判別方法において、
    前記算出された基準特徴量の小数点以下の桁数n0を、n0よりも小さな桁数nに変更して保存するとともに、前記ステップ(e)では、
    前記ステップ(d)で算出した時間窓毎の特徴量の桁数n0を、n0よりも小さなnに変更し、これら桁数がnに変更された時間窓毎の特徴量と基準特徴量とからカーネル関数を算出することを特徴とする路面状態判別方法。
  2. 前記特徴量が、
    前記窓関数をかけて抽出した時間窓毎の時系列波形の特定周波数帯域の振動レベル、
    前記特定周波数帯域の振動レベルの時変分散、
    及び、前記時系列波形のケプストラム係数のいずれか1つ、または、複数、または、全部であり、
    前記特定周波数帯域の振動レベルは、前記窓関数をかけて抽出した時間窓毎の時系列波形の周波数スペクトル、もしくは、前記窓関数をかけて抽出した時間窓毎の時系列波形をバンドパスフィルタを通して得られた時系列波形から求められる特定周波数帯域の振動レベルであることを特徴とする請求項1に記載の路面状態判別方法。
  3. 前記カーネル関数が、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値であることを特徴とする請求項1または請求項2に記載の路面状態判別方法。
  4. タイヤトレッド部のインナーライナー部の気室側に配設された、走行中のタイヤの振動を検出するタイヤ振動検出手段と、
    前記タイヤ振動検出手段で検出された前記タイヤ振動の時系列波形を予め設定した時間幅で窓掛けして時間窓毎にタイヤ振動の時系列波形を抽出する窓掛け手段と、
    前記抽出された時間窓毎の時系列波形における特定周波数の振動レベルを成分とする特徴量もしくは前記振動レベルの関数を成分とする特徴量を算出する特徴量算出手段と、
    予め算出しておいた路面状態毎のタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量と前記基準特徴量に対応するラグランジェ未定乗数とを記憶する記憶手段と、
    前記特徴量算出手段で算出した時間窓毎の特徴量と、前記記憶手段に記憶された基準特徴量とからカーネル関数を算出するカーネル関数算出手段と、
    前記カーネル関数を用いた識別関数の値に基づいて路面状態を判別する路面状態判別手段とを備え、タイヤの走行する路面の状態を判別する路面状態判別装置において、
    前記記憶手段は、算出された基準特徴量の小数点以下の桁数n0を、n0よりも小さな桁数nに変更して保存するとともに、
    前記特徴量算出手段で算出した時間窓毎の特徴量の桁数n0を、n0よりも小さなnに変更する数値精度削減手段を設けて、
    前記カーネル関数算出手段では、
    前記桁数がnに変更された時間窓毎の特徴量と基準特徴量とからカーネル関数を算出することを特徴とする路面状態判別装置。
JP2018119176A 2018-06-22 2018-06-22 路面状態判別方法及び路面状態判別装置 Pending JP2019218026A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018119176A JP2019218026A (ja) 2018-06-22 2018-06-22 路面状態判別方法及び路面状態判別装置
PCT/JP2018/047164 WO2019244380A1 (ja) 2018-06-22 2018-12-21 路面状態判別方法及び路面状態判別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018119176A JP2019218026A (ja) 2018-06-22 2018-06-22 路面状態判別方法及び路面状態判別装置

Publications (1)

Publication Number Publication Date
JP2019218026A true JP2019218026A (ja) 2019-12-26

Family

ID=68983292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018119176A Pending JP2019218026A (ja) 2018-06-22 2018-06-22 路面状態判別方法及び路面状態判別装置

Country Status (2)

Country Link
JP (1) JP2019218026A (ja)
WO (1) WO2019244380A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4871192B2 (ja) * 2007-04-12 2012-02-08 倉敷化工株式会社 アクティブ除振装置及びそれに用いられる制振ユニット
JP6450170B2 (ja) * 2014-12-05 2019-01-09 株式会社ブリヂストン 路面状態判別方法

Also Published As

Publication number Publication date
WO2019244380A1 (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP5937921B2 (ja) 路面状態判別方法とその装置
JP6450170B2 (ja) 路面状態判別方法
JP6673766B2 (ja) 路面状態判別方法
WO2018207648A1 (ja) 路面状態判別方法及び路面状態判別装置
CN109477906A (zh) 路面状态判别方法和路面状态判别装置
JP2018004418A (ja) 路面状態判別方法
WO2019138774A1 (ja) 路面状態判別方法及び路面状態判別装置
WO2018230181A1 (ja) 路面状態判別方法及び路面状態判別装置
WO2019244380A1 (ja) 路面状態判別方法及び路面状態判別装置
JP6961539B2 (ja) 路面状態判別方法及び路面状態判別装置
WO2019244379A1 (ja) 路面状態判別方法及び路面状態判別装置
JP7112909B2 (ja) タイヤ種判別方法及びタイヤ種判別装置
JP7030532B2 (ja) 路面状態判別方法及び路面状態判別装置