JP2019213427A - Battery device with connector for high voltage that can be easily attached and detached - Google Patents

Battery device with connector for high voltage that can be easily attached and detached Download PDF

Info

Publication number
JP2019213427A
JP2019213427A JP2018110371A JP2018110371A JP2019213427A JP 2019213427 A JP2019213427 A JP 2019213427A JP 2018110371 A JP2018110371 A JP 2018110371A JP 2018110371 A JP2018110371 A JP 2018110371A JP 2019213427 A JP2019213427 A JP 2019213427A
Authority
JP
Japan
Prior art keywords
storage battery
electrode
side electrode
battery
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018110371A
Other languages
Japanese (ja)
Inventor
弘 佐野
Hiroshi Sano
弘 佐野
善教 佐々木
Yoshinori Sasaki
善教 佐々木
祐一 橋本
Yuichi Hashimoto
祐一 橋本
末定 新治
Shinji Suesada
新治 末定
智也 岡橋
Tomoya Okahashi
智也 岡橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2018110371A priority Critical patent/JP2019213427A/en
Publication of JP2019213427A publication Critical patent/JP2019213427A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a battery device with improved explosion-proof performance, insulation performance, insertion and removal life including a connector that enables high-voltage power transmission or telecommunication.SOLUTION: The battery device includes: a battery cell 7; an oscillation circuit; a storage battery housing 1 having a rectifier circuit 9 and a storage battery side electrode unit; and a receiver side electrode unit 2. The storage battery side electrode unit and the receiver side electrode unit have a joint surface engageable with each other. The joint surface is covered with an insulating material (battery side insulating material 5, folder side insulating material 6).SELECTED DRAWING: Figure 3

Description

この発明は、防爆性能、絶縁性能、挿し抜き寿命を向上させた、高電圧の電力伝送または電気通信を可能にするコネクタを備えたバッテリー装置に関するものである。 The present invention relates to a battery device having a connector that enables high-voltage power transmission or telecommunication with improved explosion-proof performance, insulation performance, and insertion / removal life.

バッテリーからの電力や通信機器からの信号を伝送するケーブルのコネクタは、従来、感電防止やアーク放電防止の観点から低電圧に設定されており、コネクタの着脱時においては、対となる金属接点を直に触れさせたり離したりしている。 Conventionally, cable connectors that transmit power from batteries and signals from communication devices have been set to low voltage in order to prevent electric shock and arc discharge. They are touching and releasing directly.

電力を伝送する場合においては、ケーブルの内部抵抗により発熱ロスが生じ、その大きさは、そのケーブルを流れる電流の2乗に比例する。その為に、大電力を伝送するためには出来るだけ電圧を高くして電流を小さく抑えることが望ましい。 In the case of transmitting electric power, heat loss occurs due to the internal resistance of the cable, and the magnitude thereof is proportional to the square of the current flowing through the cable. Therefore, in order to transmit a large amount of power, it is desirable to keep the current small by increasing the voltage as much as possible.

一方、通信信号の伝送においても、感電防止の観点から低電圧での伝送が主流であるが、耐雑音性能を向上させるためには信号電圧を高くしてS/N比を大きくする必要がある。 On the other hand, in the transmission of communication signals, transmission at a low voltage is the mainstream from the viewpoint of preventing electric shock, but in order to improve noise resistance, it is necessary to increase the signal voltage and increase the S / N ratio. .

コネクタを高電圧伝送に対応させるには、感電防止、絶縁対策の観点から金属部の露出を無くのが理想的であり、無接点のワイヤレス伝送が適していると考えられ、従来においてもこの種の技術は知られている。
例えば、特開2014−183622号に係る「ワイヤレス給電方法及びワイヤレス給電システム」は、電界結合による並列共振において、周波数同調のための誘電体シートを対の電極間に挿入し、コイルを使った周波数同調回路よりも銅損を排除してロスを低減させたとしている。しかしながら、電極間に挿入された誘電体にはその構成分子の熱振動による誘電損が存在し、周波数が高くなると発熱によってシートの変形などが生じる恐れもある。また、並列回路として部品点数も多くなるため回路内での抵抗損も大きくなる。
In order to make the connector compatible with high voltage transmission, it is ideal that the metal part is not exposed from the viewpoint of electric shock prevention and insulation measures, and contactless wireless transmission is considered suitable. The technology of is known.
For example, “wireless power feeding method and wireless power feeding system” disclosed in Japanese Patent Application Laid-Open No. 2014-183622 is a frequency which uses a coil by inserting a dielectric sheet for frequency tuning between parallel electrodes in parallel resonance by electric field coupling. The loss is reduced by eliminating the copper loss than the tuning circuit. However, the dielectric inserted between the electrodes has a dielectric loss due to thermal vibration of its constituent molecules, and when the frequency is increased, the sheet may be deformed due to heat generation. Moreover, since the number of parts increases as a parallel circuit, the resistance loss in the circuit also increases.

特開2015−139229号に係る「ワイヤレス給電装置及びワイヤレス受電機器」は、複数の小型の送電コイルのうち、伝送効率の最も高いものを自動選択し、磁界結合によりワイヤレス電力伝送を実現するものである。しかしながら、小型の送電コイルの場合、電流を多く流すと銅損が大きくなり、大電力伝送には不向きである。 “Wireless power supply device and wireless power receiving device” according to Japanese Patent Application Laid-Open No. 2015-139229 automatically selects the one having the highest transmission efficiency among a plurality of small power transmission coils and realizes wireless power transmission by magnetic field coupling. is there. However, in the case of a small power transmission coil, if a large amount of current is passed, the copper loss increases, which is not suitable for high power transmission.

特開2016−73016号に係る「ワイヤレス給電システム」は、対の送電用コネクタおよび受電用コネクタをそれぞれ凹凸構造としており、充電部および受電部の対向位置を常に固定することにより高い送電効率を得ることとしている。しかしながら、凹凸の挿入時に高い位置精度を求めるための複雑な操作が必要であり、挿し抜きを繰り返すことによるコネクタ筐体の劣化により、受電部および送電部の対向精度も低下する虞れがある。
さらに、受電部および送電部が凹部の底面と凸部の先端に位置している構造であることにより、電極面積が限定され、送電可能な電力の大きさも限定されることになる。
In the “wireless power feeding system” according to Japanese Patent Laid-Open No. 2006-73016, the pair of power transmission connectors and the power reception connectors each have a concavo-convex structure, and high power transmission efficiency is obtained by always fixing the facing positions of the charging unit and the power receiving unit. I am going to do that. However, a complicated operation for obtaining high positional accuracy is required when inserting the unevenness, and the opposing accuracy of the power reception unit and the power transmission unit may be reduced due to deterioration of the connector housing due to repeated insertion and removal.
Furthermore, since the power reception unit and the power transmission unit are located at the bottom surface of the recess and the tip of the projection, the electrode area is limited, and the amount of power that can be transmitted is also limited.

特開2014−183622号に係る「ワイヤレス給電方法及びワイヤレス給電システム」“Wireless Power Supply Method and Wireless Power Supply System” according to Japanese Patent Application Laid-Open No. 2014-183622 特開2015−139229号に係る「ワイヤレス給電装置及びワイヤレス受電機器」“Wireless Power Supply Device and Wireless Power Receiving Device” according to JP-A-2015-139229 特開2016−73016号に係る「ワイヤレス給電システム」"Wireless power feeding system" according to JP-A-2006-73016

ワイヤレス電力伝送は、対となるコイルまたは電極間において磁界結合や電界結合により、上述の特許文献1〜3に示されるように金属電極が非接触で電力伝送を実現する技術であるが、上記のごとき問題がある。
この発明が解決しようとする課題は、大電力や高電圧の通信信号の接続部を挿し抜きする手法として、金属電極部を絶縁したワイヤレス伝送技術により安全且つ脱着容易なコネクタを備えたバッテリー装置を提供することである。
Wireless power transmission is a technique that realizes power transmission without contact between metal electrodes as shown in Patent Documents 1 to 3 described above by magnetic field coupling or electric field coupling between a pair of coils or electrodes. There is a problem.
The problem to be solved by the present invention is to provide a battery device equipped with a connector that is safe and easy to attach and detach by wireless transmission technology in which a metal electrode part is insulated as a technique for inserting and removing a connection part of a high-power or high-voltage communication signal. Is to provide.

上記の課題を解決のため、本発明によるバッテリー装置のコネクタは、電極対となる同じ面積の2枚の金属板がそれぞれ絶縁体で覆われて、双方の金属板は直接接触することが無い構造としている。
電極間の距離dは、電極金属板を覆っている絶縁体の厚さで決まり、電極金属の面積Sと絶縁体の誘電率をεとすれば、これらの金属板間には、容量C=ε×S/dを持つコンデンサが構成される。
In order to solve the above problems, the connector of the battery device according to the present invention has a structure in which two metal plates having the same area as electrode pairs are covered with an insulator, and the two metal plates are not in direct contact with each other. It is said.
The distance d between the electrodes is determined by the thickness of the insulator covering the electrode metal plate. If the area S of the electrode metal and the dielectric constant of the insulator are ε, the capacitance C = A capacitor with ε × S / d is constructed.

このとき、電極金属にインダクタLを有するコイルを接続することにより、電極対を含むコネクタのインピーダンスZはZ=√{R+(ωL−1/ωC)}となる。ここで、Rはコネクタを構成する回路の抵抗成分、ωは角周波数ω=2πfであり、fは電源または信号源の交流周波数である。
したがって、その交流周波数fがf=f=1/[2π√{LC}]のとき、コネクタのインピーダンスZは回路の抵抗成分Rのみで最小となり、このときの周波数fを共振周波数と呼ぶ。
At this time, by connecting the coil having the inductor L to the electrode metal, the impedance Z of the connector including the electrode pair becomes Z = √ {R 2 + (ωL−1 / ωC) 2 }. Here, R is the resistance component of the circuit constituting the connector, ω is the angular frequency ω = 2πf, and f is the AC frequency of the power source or signal source.
Therefore, when the AC frequency f is f = f 0 = 1 / [2π√ {LC}], the impedance Z of the connector is minimized only by the resistance component R of the circuit, and the frequency f 0 at this time is called a resonance frequency. .

共振周波数においては電極対のインピーダンスは最小になり、電力または電気信号はコネクタの2次側に最大効率、すなわち回路の抵抗成分Rによる発熱損失分のみで伝送される。
電極対の間にゴミなどが付着したり、電極位置がズレたりした場合には、電極対の電気容量が変化するので、共振周波数にズレが生じる。
At the resonance frequency, the impedance of the electrode pair is minimized, and the power or electric signal is transmitted to the secondary side of the connector with the maximum efficiency, that is, only the heat loss due to the resistance component R of the circuit.
When dust or the like adheres between the electrode pairs or the electrode positions are deviated, the electric capacity of the electrode pairs changes, and thus the resonance frequency is deviated.

そのため、電源または信号源の交流周波数を変化した共振周波数に追従して同調させるための同調回路を付加し、高効率な電力伝送または信号伝送を維持する。
電極対は、覆われた絶縁体によって感電やアーク放電の虞れもなく、高い電圧を印加することが可能である。
Therefore, a tuning circuit for tuning the AC frequency of the power source or the signal source to follow the changed resonance frequency is added to maintain highly efficient power transmission or signal transmission.
A high voltage can be applied to the electrode pair without the risk of electric shock or arc discharge due to the covered insulator.

そのため、低電流でも大きな電力を伝送可能であり、またノイズに強い長距離の信号伝送が可能である。
また電極対をなす2枚の電極金属は近接しているため、交流電圧または信号の漏洩が少なく、外部に対して電磁波ノイズを放射するなどの問題が発生しにくい。
Therefore, a large amount of power can be transmitted even at a low current, and a long-distance signal transmission resistant to noise can be performed.
Further, since the two electrode metals forming the electrode pair are close to each other, there is little leakage of AC voltage or signal, and problems such as radiating electromagnetic noise to the outside hardly occur.

電極対の面積Sは大きいほど、電極間隔dは狭いほど、また絶縁体の誘電率εが大きいほど、電極対で構成されるコンデンサの容量Cは大きくなる。容量Cが大きくなると、共振周波数が下がり、またはインダクタLの値を小さく出来、あるいはその両方が可能である。 The larger the area S of the electrode pair, the shorter the electrode interval d, and the larger the dielectric constant ε of the insulator, the larger the capacitance C of the capacitor composed of the electrode pair. When the capacitance C increases, the resonance frequency decreases, the value of the inductor L can be decreased, or both.

従来のネジ止めや差込接続を要したコネクタを備えたバッテリーでは、その交換は容易でない。本発明のバッテリー装置はコネクタと交流発生回路を組み合わせることにより、該バッテリーの交換が容易に出来るようにしている。
その場合、電極対をバッテリーの側面に位置させることにより、省スペースでコネクタを構成することができる。
It is not easy to replace a battery having a connector that requires conventional screwing or plug-in connection. The battery device of the present invention can be easily replaced by combining a connector and an AC generator circuit.
In that case, a connector can be comprised in a space-saving by positioning an electrode pair in the side surface of a battery.

また、電極対にテーパー状の傾きを持たせると、バッテリーの位置ともに電極の位置を容易に固定可能と成る。
また、電極形状をジグザグ状あるいは波状にすれば、電極面積を大きくすることができるほか、電極対の位置決め固定を容易にすることが可能である。
In addition, if the electrode pair has a tapered inclination, the position of the electrode can be easily fixed together with the position of the battery.
If the electrode shape is zigzag or wavy, the electrode area can be increased and the positioning and fixing of the electrode pair can be facilitated.

電力あるいは信号伝送のための電極対は直流伝送と同様に2組必要であるが、交流伝送のために極性は無いので、接続の際に極性の確認を省くことできる。
また、2組の電極対を同心円状に配置することにより、接続の向きの制約を排除でき、接続を維持したまま回転させることもできる。
そして、電極は金属板で薄く軽く作れるので、マグネットなどで固定も可能である。
Two pairs of electrode pairs for power or signal transmission are required as in the case of DC transmission. However, since there is no polarity for AC transmission, it is possible to omit the confirmation of polarity when connecting.
Further, by arranging the two pairs of electrodes concentrically, it is possible to eliminate restrictions on the direction of connection and to rotate while maintaining the connection.
Since the electrode can be made thin and light with a metal plate, it can be fixed with a magnet or the like.

本発明によるコネクタにより、金属電極部を絶縁被覆して導電部を露出しないワイヤレス給電による電力または電気信号の接続を実現することが可能になり、挿抜寿命、防水性、防爆性、感電防止、耐アークなどの課題解決を図ることができる。
また、磁石等による電極部の保持や脱着を容易にすることにより、取り扱いが容易となる。
With the connector according to the present invention, it is possible to realize connection of electric power or electric signal by wireless power feeding without insulating the metal electrode part and exposing the conductive part, and the insertion / extraction life, waterproofness, explosion proof, electric shock prevention, It is possible to solve problems such as arcing.
Moreover, handling is facilitated by facilitating the holding and detachment of the electrode portion by a magnet or the like.

ワイヤレス電力伝送には共振周波数の自動追従機能を付加し、電極の多少のズレ等を寛容可能となる。
また、水中や可燃ガスの雰囲気中においても安全で、多頻度の挿し抜き(脱着)を繰り返しても劣化しないコネクタが実現する。
The wireless power transmission is provided with an automatic tracking function of the resonance frequency to allow for slight displacement of the electrodes.
In addition, a connector that is safe even in water or in an atmosphere of combustible gas and that does not deteriorate even after repeated insertion and removal (removal) is realized.

そして、高電圧化による低電流化によって、バッテリーの充電時間の短縮・高出力化も容易になり、さらには電力ケーブルを細く軽量化できるため、屋外などで活動する災害ロボットへの応用など用途が広がることが期待される。 And by reducing the current by high voltage, it is easy to shorten the battery charging time and increase the output, and furthermore, the power cable can be made thinner and lighter, so it can be used for disaster robots working outdoors etc. Expected to spread.

本発明のバッテリー装置を用いて構成した基本概要図。The basic outline figure constituted using the battery device of the present invention. 従来技術による蓄電池の接続形態の例を示す説明図である。It is explanatory drawing which shows the example of the connection form of the storage battery by a prior art. 本発明のバッテリー装置における電極配置の例であり、蓄電池筐体と受け手側電極部とが分離している状態。It is an example of electrode arrangement | positioning in the battery apparatus of this invention, and the state which the storage battery housing | casing and the receiver side electrode part have isolate | separated. 本発明のバッテリー装置で、蓄電池筐体が受け手側電極部に嵌っている状態。In the battery device of the present invention, the storage battery case is fitted in the receiver side electrode portion. 本発明におけるバッテリー装置の充電形態の例を示す説明図である。It is explanatory drawing which shows the example of the charge form of the battery apparatus in this invention. 本発明におけるバッテリー装置の放電形態の例を示す説明図である。It is explanatory drawing which shows the example of the discharge form of the battery apparatus in this invention. コネクタにおける電極配置を示す他の具体例である。It is another example which shows the electrode arrangement | positioning in a connector. コネクタにおける電極配置を示す別の具体例である。It is another specific example which shows the electrode arrangement | positioning in a connector.

本発明は、バッテリーの端子および通信のコネクタの金属部を絶縁体で被覆して、感電防止と脱着容易性、あるいは耐雑音性能の向上を図り、且つ高電圧・低電流化によりバッテリーの出力増大、充電時間の短縮、また通信距離の伸長を図るものである。 The present invention covers the battery terminals and the metal part of the communication connector with an insulator to prevent electric shock, improve detachability, and improve noise resistance, and increase the output of the battery by high voltage and low current. It is intended to shorten the charging time and extend the communication distance.

図1は本発明の基本構成を説明するための回路の基本概要図である。また、図2は従来のコネクタ接続を示す具体例である。
従来では、蓄電池と負荷回路は有線接続され、それらの切離しのために使用されるコネクタには、蓄電池側と負荷側の両方が対となった電極が用いられる。
FIG. 1 is a basic schematic diagram of a circuit for explaining the basic configuration of the present invention. FIG. 2 is a specific example showing a conventional connector connection.
Conventionally, a storage battery and a load circuit are connected in a wired manner, and an electrode in which both the storage battery side and the load side are paired is used for a connector used for disconnecting them.

従来のコネクタを構成する金属電極は、蓄電池側と負荷側の両方の金属部が直接接触することにより導通を実現し電流あるいは電気信号が流れる。
その為に、従来コネクタでは、接続や切離しの際の挿し抜きにより、金属電極が擦れたり、電圧が印加されている場合に発生し得るアーク放電などにより、磨耗や劣化が生じる問題がある。
A metal electrode constituting a conventional connector realizes conduction when a metal part on both the storage battery side and the load side is in direct contact, and a current or an electric signal flows.
Therefore, in the conventional connector, there is a problem that the metal electrode is rubbed due to insertion / removal at the time of connection or disconnection, or arc discharge that may occur when a voltage is applied, resulting in wear or deterioration.

また、コネクタの挿し抜きを正確に行うために、コネクタ位置を精度良く把握する手間も必要になる。特に蓄電池を自動装置により無人で交換する場合には、コネクタを正確な位置に把握する他に、より確実な接続のために挿入する力の大きさの管理なども必要になり制御が複雑になる。
そして、頻繁に挿し抜きを行うと、磨耗や劣化により接続部分が破損し、正常な接続が実現しなくなる虞がある。即ち、挿し抜き寿命が尽きることになる。
In addition, in order to accurately insert and remove the connector, it is necessary to troubleshoot the connector position with high accuracy. In particular, when the storage battery is unattended and replaced by an automatic device, in addition to grasping the connector at the correct position, it is necessary to manage the magnitude of the force to be inserted for more reliable connection, and the control becomes complicated. .
And if it inserts and removes frequently, there exists a possibility that a connection part may be damaged by wear and deterioration, and normal connection may not be implement | achieved. That is, the insertion / extraction life is exhausted.

特に農業用や災害用など、稼働時間が長時間必要なロボット等では、蓄電池の交換を頻繁に行う必要があり、その為にコネクタの劣化が更に促進する虞がある。
また、屋外でコネクタの防水・防塵・可燃性ガス雰囲気中での引火による火災または感電事故防止のためには、金属電極が露出していない方が望ましい。
Particularly in robots and the like that require a long operating time, such as those for agriculture and disasters, it is necessary to frequently replace the storage battery, which may further promote deterioration of the connector.
In addition, it is desirable that the metal electrode is not exposed in order to prevent a fire or electric shock accident due to ignition in a waterproof / dustproof / flammable gas atmosphere of the connector outdoors.

本発明によれば、電極は露出せず、また擦れあって磨耗することが無いので、感電事故防止とコネクタの長寿命化を同時に図ることができる。
そして、交流電流によるワイヤレス電力伝送を行うので、蓄電池または充電器からの直流を交流に変換する発振回路および蓄電池を充電またはモータを駆動するための直流を生成する整流回路を備えている。
According to the present invention, since the electrodes are not exposed and are not rubbed and worn, it is possible to simultaneously prevent an electric shock accident and extend the life of the connector.
Since wireless power transmission is performed using alternating current, an oscillation circuit that converts direct current from the storage battery or the charger into alternating current and a rectification circuit that charges the storage battery or generates direct current for driving the motor are provided.

即ち、蓄電池でモータを駆動する場合では、蓄電池の直流電流は、発信器を経て適度な交流電力に変換され、絶縁された電極対の相手側に電力を伝達する。そして、相手側の整流器で直流に変換され、制御回路を経てモータに供給される。 That is, when the motor is driven by the storage battery, the direct current of the storage battery is converted into an appropriate AC power through the transmitter, and the power is transmitted to the other side of the insulated electrode pair. Then, it is converted into direct current by the mating rectifier and supplied to the motor through the control circuit.

一方、蓄電池を充電する場合には、充電電流は充電回路側で適度な交流電流に変換されて、絶縁された電極対を経て蓄電池側の整流器で直流に変換されて蓄電池に充電される。 On the other hand, when the storage battery is charged, the charging current is converted into an appropriate alternating current on the charging circuit side, converted into direct current by the rectifier on the storage battery side through the insulated electrode pair, and charged to the storage battery.

なお、絶縁された電極部に電流が効率よく流れるためには、これらの回路が共振状態にある必要がある。
このときの共振周波数は、電極対の位置ズレなどにより変化する場合があるが、発振回路に内蔵された自動同調機能を有し、該自動同調機能にて常に最適な共振周波数へ追従することが出来る。
Note that these circuits need to be in a resonance state in order for current to efficiently flow through the insulated electrode portions.
The resonance frequency at this time may change depending on the displacement of the electrode pair, etc., but it has an automatic tuning function built in the oscillation circuit, and the automatic tuning function can always follow the optimum resonance frequency. I can do it.

図3は、本発明の使用形態の示す具体例である。バッテリーセル7、セル電圧保護回路10、蓄電池側整流回路9、蓄電池側発振回路8、蓄電池側通信回路11を内蔵した蓄電池筐体1を構成し、該筐体1の側面内側には適度な角度で傾斜した蓄電池側金属電極平板3を貼り付け、該金属電極平板の外表面には蓄電池側絶縁材5が被覆されている。
そして、受け手となるフォルダ電極部2は同じ角度で傾斜したフォルダ側金属電極平板4を配置し、該金属電極平板の内側面はフォルダ側絶縁材6で被覆されている。
FIG. 3 is a specific example of the usage pattern of the present invention. A storage battery case 1 including a battery cell 7, a cell voltage protection circuit 10, a storage battery side rectifier circuit 9, a storage battery side oscillation circuit 8, and a storage battery side communication circuit 11 is configured. The storage battery side metal electrode flat plate 3 inclined by the above is attached, and the external surface of the metal electrode flat plate is covered with the storage battery side insulating material 5.
The folder electrode portion 2 serving as a receiver has a folder side metal electrode flat plate 4 inclined at the same angle, and the inner side surface of the metal electrode flat plate is covered with a folder side insulating material 6.

このように、電極部を蓄電池筐体1の側面に配置することで、省スペースを図ると共に電極面積が大きくなり大電力伝送に適する。また、対をなす電極をテーパー状にすることにより、蓄電池筐体1はフォルダ電極部2に挿し込み易く、結合時の密着性も向上する。 Thus, by arranging the electrode portion on the side surface of the storage battery housing 1, space is saved and the electrode area is increased, which is suitable for high power transmission. Further, by forming the pair of electrodes in a tapered shape, the storage battery housing 1 can be easily inserted into the folder electrode portion 2 and the adhesion at the time of coupling is improved.

図4は、フォルダ電極部2に蓄電池筐体1が挿入されて嵌った状態を表している。蓄電池側金属電極平板3およびフォルダ側金属電極平板4の間に蓄電池側絶縁材5およびフォルダ側絶縁材6が平行に挟まれた電極対20が構成されている。蓄電池筐体1の側面及び受け手側電極部2の電極平板は共に同じテーパー角にて傾斜し、ブレルことなく蓄電池筐体1をフォルダ電極部2に固定することが出来、かつ電極対間の距離も一定となり、両電極部の密着性は向上する。 FIG. 4 shows a state where the storage battery housing 1 is inserted and fitted into the folder electrode portion 2. An electrode pair 20 is configured in which a storage battery side insulating material 5 and a folder side insulating material 6 are sandwiched in parallel between the storage battery side metal electrode flat plate 3 and the folder side metal electrode flat plate 4. The side surface of the storage battery case 1 and the electrode flat plate of the receiver side electrode part 2 are both inclined at the same taper angle, so that the storage battery case 1 can be fixed to the folder electrode part 2 without any brill, and the distance between the electrode pair Also, the adhesion between both electrode parts is improved.

例えば、各電極平板の大きさを20cm×20cm(面積400cm)、電極平板を被覆した絶縁材の厚さを各1.5mm(電極対間距離合計3mm)、絶縁材の比誘電率を4、真空中の誘電率を8.854×10−12とした場合、電極対の静電容量はC=0.000472μファラドとなり、コイルのインダクタL=0.2mHを使用すれば共振周波数はf=518kHzとなる。 For example, the size of each electrode flat plate is 20 cm × 20 cm (area 400 cm 2 ), the thickness of the insulating material covering the electrode flat plate is 1.5 mm each (total distance between electrode pairs is 3 mm), and the relative dielectric constant of the insulating material is 4 When the dielectric constant in vacuum is 8.854 × 10 −12 , the capacitance of the electrode pair is C = 0.000472 μfarad, and if the inductor L of the coil is 0.2 mH, the resonance frequency is f 0. = 518 kHz.

このとき、回路の内部抵抗が10Ωであるとすると、共振の強さを示すQ値は65.1程度であり、直列共振回路にかかる電圧はQ倍であることから、電源電圧が100Vであれば6.51kVの高電圧が発生する。すなわち電源電圧の65.1倍の電圧に達する。 At this time, if the internal resistance of the circuit is 10Ω, the Q value indicating the strength of resonance is about 65.1, and the voltage applied to the series resonance circuit is Q times. For example, a high voltage of 6.51 kV is generated. That is, the voltage reaches 65.1 times the power supply voltage.

電極を被覆する絶縁材、例えばアルミナセラミックスやチタン酸バリウムの場合、絶縁破壊電圧は、厚さ1mm当り10kVであり、蓄電池側絶縁材5およびフォルダ側絶縁材6の厚さがそれぞれ1.5mm(合計3mmm)であれば、電極対間の絶縁破壊電圧は30kVとなるので、電源電圧は、30kV÷65.1≒460Vまで耐えることできる。また、アクリル樹脂の場合、絶縁破壊電圧は、厚さ1mm当り20kVであるので、電源電圧としては900V程度まで耐えることができる。
したがって、本発明によって高電圧のバッテリー接続が実現でき、低電流化により充電時間の短縮が図られる。
In the case of an insulating material covering the electrode, such as alumina ceramic or barium titanate, the dielectric breakdown voltage is 10 kV per 1 mm thickness, and the thickness of the storage battery side insulating material 5 and the folder side insulating material 6 is 1.5 mm ( If the total voltage is 3 mm, the dielectric breakdown voltage between the electrode pairs is 30 kV, so that the power supply voltage can withstand up to 30 kV ÷ 65.1≈460V. In the case of acrylic resin, since the dielectric breakdown voltage is 20 kV per 1 mm thickness, the power supply voltage can withstand up to about 900 V.
Therefore, high voltage battery connection can be realized by the present invention, and charging time can be shortened by reducing current.

一方、絶縁材の種類によって比誘電率が異なるので、共振周波数も異なり、さらに耐水性能や耐熱性能も異なる。したがって、目的の共振周波数や使用環境に応じて、蓄電池側絶縁材5およびフォルダ側絶縁材6として使用する絶縁材の種類を変更する。 On the other hand, since the relative dielectric constant varies depending on the type of insulating material, the resonance frequency also varies, and the water resistance and heat resistance also vary. Therefore, the type of insulating material used as the storage battery side insulating material 5 and the folder side insulating material 6 is changed according to the target resonance frequency and usage environment.

また、電極面積を拡大すると電極対の総静電容量はその面積に比例して大きくなり、共振周波数を下げることが容易となる。電極面積を拡大するための電極の配置方法として、図3あるいは図4に示した左右2つの側面にかぎらず、蓄電池筐体1の底面あるいは前後の側面にも電極を配置し、それらに対面するフォルダ電極部2を増設することも可能である。     Further, when the electrode area is enlarged, the total capacitance of the electrode pair increases in proportion to the area, and the resonance frequency can be easily lowered. As an electrode arrangement method for enlarging the electrode area, electrodes are arranged not only on the left and right side surfaces shown in FIG. 3 or FIG. 4 but also on the bottom surface or the front and back side surfaces of the storage battery housing 1 and face each other. It is also possible to add the folder electrode unit 2.

図5は本発明による蓄電池の充電時の使用形態を表している。外部から充電ユニット16の入力端子17に直流電圧が印加され、充電側発振回路18により交流電圧に変換された後、フォルダ側金属電極平板4、フォルダ側絶縁材6、蓄電池側絶縁材5、および蓄電池側金属電極平板3で構成する電極対20を介して蓄電池内部に通電する。蓄電池筐体1に内蔵されている蓄電池側発振回路8と蓄電池側整流回路9は、外部からの電圧を検知して連結切替スイッチ12と直結スイッチA13および直結スイッチB14により該整流回路9側に自動的に切換えられ、バッテリーセル7を充電する。 FIG. 5 shows a usage pattern during charging of the storage battery according to the present invention. After a DC voltage is applied to the input terminal 17 of the charging unit 16 from the outside and converted into an AC voltage by the charging side oscillation circuit 18, the folder side metal electrode flat plate 4, the folder side insulating material 6, the storage battery side insulating material 5, and The inside of the storage battery is energized through the electrode pair 20 constituted by the storage battery side metal electrode flat plate 3. The storage battery side oscillation circuit 8 and the storage battery side rectification circuit 9 built in the storage battery case 1 detect the voltage from the outside, and automatically switch to the rectification circuit 9 side by the connection changeover switch 12, the direct connection switch A13, and the direct connection switch B14. The battery cell 7 is charged.

入力電力は充電側発振回路18から電極対20を介して蓄電池筐体1内部の回路に入り、蓄電池側整流回路9のダイオードブリッジで整流されてバッテリーセル7に充填される。バッテリーセル7は直列に接続されていて、充填電圧は高電圧になるが、電流は小さいので充填時間は短くなる。なお、充填状況は内部に設けているセル電圧保護回路10によって常時監視され、状態を蓄電池側通信回路11から電極対経由にて外部に出力され受信される。 The input power enters the circuit inside the storage battery housing 1 from the charging side oscillation circuit 18 through the electrode pair 20, is rectified by the diode bridge of the storage battery side rectification circuit 9, and is charged into the battery cell 7. The battery cells 7 are connected in series and the charging voltage becomes high, but the charging time is shortened because the current is small. The filling state is constantly monitored by the cell voltage protection circuit 10 provided inside, and the state is output from the storage battery side communication circuit 11 to the outside via the electrode pair and received.

蓄電池は、リチウムイオンバッテリーの場合、一セルあたり約3.7Vであり、100Vの電圧で使用したい場合には、27個のセルを直列に接続すれば概ね得ることが出来る。
直列接続された各セルに均等な電圧をかけ、それぞれの充電状態や異常を感知するためにセル電圧保護回路10が内蔵されている。感知された状態は充電電流に重畳して、電極対を介して外部の充電ユニット16に送信され、受信回路19において受信されて制御情報として得ることが出来る。
In the case of a lithium ion battery, the storage battery is about 3.7 V per cell, and when it is desired to use it at a voltage of 100 V, it can be generally obtained by connecting 27 cells in series.
A cell voltage protection circuit 10 is built in in order to apply an equal voltage to each cell connected in series and to detect each charging state and abnormality. The sensed state is superimposed on the charging current, transmitted to the external charging unit 16 via the electrode pair, and received by the receiving circuit 19 to obtain control information.

リチウムイオンバッテリーセルが27個直列に接続されているとき、1Aの電流を1時間流すと各バッテリーセルに蓄えられる電流容量は1Ahで、電圧が100Vであれば100Whの電力量を蓄積することが可能である。
仮に、蓄電池電圧が12Vであると、同じ電力容量(100Wh)を蓄電するためには、各バッテリーセルに蓄えなければならない電流容量は8.33Ah必要であり、充電電流1Aでおよそ8時間20分の充電時間が必要となる。
すなわち、蓄電池の高電圧化により同じ電力容量で充電時間を短縮することが可能になる。
When 27 lithium-ion battery cells are connected in series, if a current of 1A flows for 1 hour, the current capacity stored in each battery cell is 1Ah, and if the voltage is 100V, 100Wh of energy can be stored. Is possible.
If the storage battery voltage is 12V, in order to store the same power capacity (100 Wh), the current capacity that must be stored in each battery cell is 8.33 Ah, and the charging current is 1 A for about 8 hours and 20 minutes. Charging time is required.
That is, it is possible to shorten the charging time with the same power capacity by increasing the voltage of the storage battery.

一方、図6は、本発明による蓄電池から外部の負荷機器(直流モーター)に給電を行う場合の使用形態の例を示したものである。
左側の蓄電池筐体1のバッテリーセル7から出力された直流電力は、蓄電池側発振回路8によって高電圧の交流電流に変換され、電極対20を経由して負荷ユニット22の負荷側整流回路23そして負荷モータ24へ供給される。電力は高電圧で行われ、低電流のために送電ケーブル21は細く軽量化が可能となる。
上記発振回路は、蓄電池筐体1に設置されたスイッチ15もしくは、電極対20の電流の流れを検知して起動し、電極対20を介して、電流が外部機器(負荷ユニット22)の負荷側整流回路23に流れ、直流モータ(負荷モータ24)の動力として消費される。
On the other hand, FIG. 6 shows an example of a usage pattern when power is supplied from the storage battery according to the present invention to an external load device (DC motor).
The DC power output from the battery cell 7 of the left storage battery casing 1 is converted into a high voltage AC current by the storage battery side oscillation circuit 8, and the load side rectifier circuit 23 of the load unit 22 through the electrode pair 20 and It is supplied to the load motor 24. Electric power is generated at a high voltage, and the power transmission cable 21 can be made thin and light because of the low current.
The oscillation circuit is activated by detecting the current flow of the switch 15 or the electrode pair 20 installed in the storage battery casing 1, and the current is passed through the electrode pair 20 to the load side of the external device (load unit 22). It flows to the rectifier circuit 23 and is consumed as power for the DC motor (load motor 24).

外部への電流の流れが停止、または蓄電池セルの電圧が一定以下になった場合には、蓄電池側発振回路8は自動的に停止する。
該発振回路8が停止している場合において、蓄電池が再起動可能な電圧がバッテリーセル7にあると判断されるときは、蓄電池内の電極に電圧を印加している。
When the flow of current to the outside stops or the voltage of the storage battery cell becomes below a certain level, the storage battery side oscillation circuit 8 automatically stops.
When the oscillation circuit 8 is stopped, when it is determined that the battery cell 7 has a voltage at which the storage battery can be restarted, the voltage is applied to the electrode in the storage battery.

このとき、外部機器が起動されると一時的に電極対20に蓄積された電荷量が変化し、回路に電流が流れる。この電流を電流センサ25により検知して、蓄電池側発振回路8は再び起動する。
電極対に電荷が蓄積されていない場合は、負荷機器がONになっても電流が流れないので、蓄電池のスイッチ15の操作または通信信号により起動する。
もしくは、外部から電極対に電圧を印加し、電荷を注入しておくこともできる。
こちらも充電のときと同様に、高電圧化により電流を小さくでき、電力配線も細くできて、装置の軽量化に資することが可能である。
At this time, when an external device is activated, the amount of charge temporarily accumulated in the electrode pair 20 changes, and a current flows through the circuit. This current is detected by the current sensor 25, and the storage battery side oscillation circuit 8 starts again.
When no charge is accumulated in the electrode pair, no current flows even when the load device is turned on, so that the operation is started by operating the storage battery switch 15 or a communication signal.
Alternatively, a charge can be injected by applying a voltage to the electrode pair from the outside.
As in the case of charging, the current can be reduced by increasing the voltage and the power wiring can be reduced, which contributes to the weight reduction of the device.

図7は、2組の電極対を同心円状に配置した模式図を示したものである。すなわち、中心電極部27と同心を成す外周電極部28を有し、電極の向きによらず電力伝送が可能になり、回転体への電力供給などに適する。
また、電極の位置決め・固定には磁石35を用いることにより容易に吸着することが出来る。
FIG. 7 shows a schematic diagram in which two pairs of electrodes are arranged concentrically. That is, it has the outer peripheral electrode part 28 which is concentric with the center electrode part 27, enables power transmission regardless of the direction of the electrode, and is suitable for power supply to the rotating body.
Further, the magnets 35 can be easily attracted and used for positioning and fixing the electrodes.

前記図3、図4に示す実施例では、蓄電池側電極部を蓄電池筐体1の側面を所定のテーパー角度に傾斜し、またフォルダ側電極部も同じテーパー角度に傾斜しているが、両電極部の形態は限定しない。
蓄電池筐体底面の電極部とフォルダ側電極部を図7に示すように、互いに同心を成す中心電極部と外周電極部にて構成することが出来る。
In the embodiment shown in FIGS. 3 and 4, the storage battery side electrode portion is inclined at a predetermined taper angle on the side surface of the storage battery housing 1, and the folder side electrode portion is also inclined at the same taper angle. The form of the part is not limited.
As shown in FIG. 7, the electrode part and the folder side electrode part on the bottom surface of the storage battery housing can be constituted by a central electrode part and an outer peripheral electrode part that are concentric with each other.

図8は電極対の表面積を大きくしたい場合に、電極部表面をクサビ型もしくは波型などを採用した場合の例である。
電極対の表面積を大きくすると、共振周波数を下げることができる他、電極のズレも防止することが出来る。
すなわち、蓄電池筐体底面の蓄電池側電極部37とフォルダ側電極部38を図8に示すように、クサビ型もしくは波型とすることで、蓄電池筐体1をフォルダ電極部2に載置するだけで正しく位置決めされる。そして、磁石を取付けるならば、載置された蓄電池筐体1はフォルダ電極部2に固定される。
FIG. 8 shows an example in which a wedge-shaped or wave-shaped surface is adopted for the electrode surface when it is desired to increase the surface area of the electrode pair.
When the surface area of the electrode pair is increased, the resonance frequency can be lowered and the displacement of the electrode can be prevented.
That is, as shown in FIG. 8, the storage battery case electrode 1 and the folder side electrode part 38 on the bottom surface of the storage battery case are made wedge-shaped or corrugated, so that the storage battery case 1 is simply placed on the folder electrode part 2. Is positioned correctly. And if a magnet is attached, the mounted storage battery housing | casing 1 will be fixed to the folder electrode part 2. FIG.

本発明は、蓄電池に限るものではなく、電力供給を行う電源装置や、遠距離での通信ケーブルの接続にも応用が可能である。
また、図7において電極対間に僅かな隙間があっても同調回路により効率よく送電または通信が可能であるので、回転体の摺動部への適用も可能である。
The present invention is not limited to a storage battery, but can also be applied to a power supply device that supplies power and a connection of a communication cable at a long distance.
Further, in FIG. 7, even if there is a slight gap between the electrode pairs, power transmission or communication can be efficiently performed by the tuning circuit, so that it can be applied to the sliding portion of the rotating body.

1 蓄電池筐体
2 フォルダ電極部
3 蓄電池側金属電極平板
4 フォルダ側金属電極平板
5 蓄電池側絶縁材
6 フォルダ側絶縁材
7 バッテリーセル
9 蓄電池側整流回路
10 セル電圧保護回路
11 蓄電池側通信回路
12 連結切替スイッチ
13 直結スイッチA
14 直結スイッチB
15 スイッチ
16 充電ユニット
17 入力端子
18 充電側発振回路
19 受信回路
20 電極対
21 送電ケーブル
22 負荷ユニット
23 負荷側整流回路
24 負荷モータ
25 電流センサ
26 丸型配置電極
27 中心電極部
28 外周電極部
29 蓄電池側外周電極板
30 フォルダ側外周電極板
31 蓄電池側中心電極板
32 フォルダ側中心電極板
33 蓄電池側丸型絶縁材
34 フォルダ側丸型絶縁材
35 磁石
36 波型配置電極
37 蓄電池側電極部
38 フォルダ側電極部
DESCRIPTION OF SYMBOLS 1 Storage battery housing | casing 2 Folder electrode part 3 Storage battery side metal electrode flat plate 4 Folder side metal electrode flat plate 5 Storage battery side insulating material 6 Folder side insulating material 7 Battery cell 9 Storage battery side rectifier circuit 10 Cell voltage protection circuit 11 Storage battery side communication circuit 12 Connection Changeover switch 13 Direct connection switch A
14 Direct connection switch B
DESCRIPTION OF SYMBOLS 15 Switch 16 Charging unit 17 Input terminal 18 Charging side oscillation circuit 19 Reception circuit 20 Electrode pair 21 Power transmission cable 22 Load unit 23 Load side rectification circuit 24 Load motor 25 Current sensor 26 Round arrangement electrode 27 Center electrode part 28 Outer electrode part 29 Storage battery side outer peripheral electrode plate 30 Folder side outer peripheral electrode plate 31 Storage battery side central electrode plate 32 Folder side central electrode plate 33 Storage battery side round insulating material 34 Folder side circular insulating material 35 Magnet 36 Wave-type arranged electrode 37 Storage battery side electrode portion 38 Folder side electrode

Claims (5)

脱着容易なコネクタを備えたバッテリー装置において、該バッテリー装置はバッテリーセル、発振回路、整流回路、及び蓄電池側電極部を有す蓄電池筐体と受け手側電極部から成り、上記蓄電池側電極部及び受け手側電極部は互いに係合可能な接合面を有し、該接合面には絶縁材を被覆していることを特徴とするコネクタを備えたバッテリー装置。 A battery device having an easily removable connector, the battery device comprising a battery cell, an oscillation circuit, a rectifier circuit, a storage battery housing having a storage battery side electrode section and a receiver side electrode section, wherein the storage battery side electrode section and receiver A battery device comprising a connector, wherein the side electrode portions have joint surfaces that can be engaged with each other, and the joint surfaces are covered with an insulating material. 上記蓄電池側電極部を蓄電池筐体の側面を所定のテーパー角度に傾斜し、また受け手側電極部も同じテーパー角度に傾斜した請求項1記載のコネクタを備えたバッテリー装置。 The battery device comprising the connector according to claim 1, wherein the storage battery side electrode portion is inclined at a predetermined taper angle on the side surface of the storage battery housing, and the receiver side electrode portion is also inclined at the same taper angle. 上記蓄電池側電極部を蓄電池筐体の底面に設けて接合面をジグザグ状又は波状とし、また受け手側電極部の接合面も同じくジグザグ状又は波状とした請求項1記載のコネクタを備えたバッテリー装置。 The battery device provided with the connector according to claim 1, wherein the storage battery side electrode portion is provided on the bottom surface of the storage battery casing so that the joint surface is zigzag or corrugated, and the joint surface of the receiver side electrode portion is also zigzag or corrugated. . 上記蓄電池側電極部は蓄電池筐体の底面に設けて同心を成す中心電極部と外周電極部から成り、また受け手側電極部も同じく同心を成す中心電極部と外周電極部から成り、蓄電池側電極部と受け手側電極部が位置決めされるように磁石を取付けた請求項1記載のコネクタを備えたバッテリー装置。 The storage battery side electrode portion is provided on the bottom surface of the storage battery housing and is formed of a concentric center electrode portion and an outer peripheral electrode portion, and the receiver side electrode portion is also formed of a concentric center electrode portion and outer peripheral electrode portion. The battery device comprising the connector according to claim 1, wherein a magnet is attached so that the portion and the receiver side electrode portion are positioned. 上記発振回路に自動同調機能を付加して最適周波数に追従可能とした請求項1、請求項2、請求項3、又は請求項4記載のコネクタを備えたバッテリー装置。









5. A battery device comprising the connector according to claim 1, wherein an automatic tuning function is added to the oscillation circuit so as to follow an optimum frequency.









JP2018110371A 2018-06-08 2018-06-08 Battery device with connector for high voltage that can be easily attached and detached Pending JP2019213427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110371A JP2019213427A (en) 2018-06-08 2018-06-08 Battery device with connector for high voltage that can be easily attached and detached

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110371A JP2019213427A (en) 2018-06-08 2018-06-08 Battery device with connector for high voltage that can be easily attached and detached

Publications (1)

Publication Number Publication Date
JP2019213427A true JP2019213427A (en) 2019-12-12

Family

ID=68845697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110371A Pending JP2019213427A (en) 2018-06-08 2018-06-08 Battery device with connector for high voltage that can be easily attached and detached

Country Status (1)

Country Link
JP (1) JP2019213427A (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228933A (en) * 1987-03-17 1988-09-22 沖電気工業株式会社 Electrodeless cell
JPH0538232U (en) * 1991-10-25 1993-05-25 株式会社東海理化電機製作所 Vehicle key device
JPH08214405A (en) * 1995-02-02 1996-08-20 Technova:Kk Non-contact transmission device
JPH09131066A (en) * 1995-10-31 1997-05-16 West Electric Co Ltd Inverter unit, and lighting system using the same
JP2002325457A (en) * 2001-04-23 2002-11-08 Yazaki Corp Ac power supply system
JP2003197159A (en) * 2001-12-27 2003-07-11 Japan Storage Battery Co Ltd Battery
JP2004242410A (en) * 2003-02-05 2004-08-26 Uinzu:Kk Dc/ac inverter
JP2011147207A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Drive control system for electric vehicle
JP2012178968A (en) * 2011-01-31 2012-09-13 Kyocera Corp Solar power generation system
JP2012210146A (en) * 2009-06-25 2012-10-25 Murata Mfg Co Ltd Electric power transmission system
WO2013054800A1 (en) * 2011-10-12 2013-04-18 株式会社村田製作所 Wireless power transmission system
JP2013121211A (en) * 2011-12-06 2013-06-17 Sharp Corp Power supply system
WO2014006685A1 (en) * 2012-07-02 2014-01-09 富士機械製造株式会社 Capacitive coupling contactless power supply device
WO2014064975A1 (en) * 2012-10-26 2014-05-01 株式会社村田製作所 Wireless power receiving device, wireless power transmission device, and wireless power transmission system
JP2014150649A (en) * 2013-01-31 2014-08-21 Furukawa Electric Co Ltd:The Wireless power transmission system
WO2016075819A1 (en) * 2014-11-14 2016-05-19 オリンパス株式会社 Battery and battery system
JP2017511113A (en) * 2014-03-26 2017-04-13 アップル インコーポレイテッド Temperature management for inductive charging systems
JP2017143732A (en) * 2013-06-28 2017-08-17 ソニー株式会社 Power supply device and power supply system
WO2017145266A1 (en) * 2016-02-23 2017-08-31 Tdk株式会社 Non-contact power supply device and non-contact power transmission device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228933A (en) * 1987-03-17 1988-09-22 沖電気工業株式会社 Electrodeless cell
JPH0538232U (en) * 1991-10-25 1993-05-25 株式会社東海理化電機製作所 Vehicle key device
JPH08214405A (en) * 1995-02-02 1996-08-20 Technova:Kk Non-contact transmission device
JPH09131066A (en) * 1995-10-31 1997-05-16 West Electric Co Ltd Inverter unit, and lighting system using the same
JP2002325457A (en) * 2001-04-23 2002-11-08 Yazaki Corp Ac power supply system
JP2003197159A (en) * 2001-12-27 2003-07-11 Japan Storage Battery Co Ltd Battery
JP2004242410A (en) * 2003-02-05 2004-08-26 Uinzu:Kk Dc/ac inverter
JP2012210146A (en) * 2009-06-25 2012-10-25 Murata Mfg Co Ltd Electric power transmission system
JP2011147207A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Drive control system for electric vehicle
JP2012178968A (en) * 2011-01-31 2012-09-13 Kyocera Corp Solar power generation system
WO2013054800A1 (en) * 2011-10-12 2013-04-18 株式会社村田製作所 Wireless power transmission system
JP2013121211A (en) * 2011-12-06 2013-06-17 Sharp Corp Power supply system
WO2014006685A1 (en) * 2012-07-02 2014-01-09 富士機械製造株式会社 Capacitive coupling contactless power supply device
WO2014064975A1 (en) * 2012-10-26 2014-05-01 株式会社村田製作所 Wireless power receiving device, wireless power transmission device, and wireless power transmission system
JP2014150649A (en) * 2013-01-31 2014-08-21 Furukawa Electric Co Ltd:The Wireless power transmission system
JP2017143732A (en) * 2013-06-28 2017-08-17 ソニー株式会社 Power supply device and power supply system
JP2017511113A (en) * 2014-03-26 2017-04-13 アップル インコーポレイテッド Temperature management for inductive charging systems
WO2016075819A1 (en) * 2014-11-14 2016-05-19 オリンパス株式会社 Battery and battery system
WO2017145266A1 (en) * 2016-02-23 2017-08-31 Tdk株式会社 Non-contact power supply device and non-contact power transmission device

Similar Documents

Publication Publication Date Title
JP5773224B2 (en) Inductive rechargeable power pack
US7633263B2 (en) Battery charger
US8248025B2 (en) Charging system capable of charging electronic device by electromagnetic induction
EP2579427B1 (en) Power receiver for wireless charging, and portable electronic device having same
US9041359B2 (en) Battery pack with integral non-contact discharging means and electronic device including the same
TWI460961B (en) Battery module charging system
US8432130B2 (en) Wireless rechargeable battery
KR20020057468A (en) Contactless battery charger
US9035602B2 (en) Wireless battery charger for mobile devices and method thereof
CN103053090A (en) Universal inductive charger
US6806685B2 (en) Accumulator power supply unit
EP2654178B1 (en) Power storage cell and power storage apparatus
CN107799709A (en) Rechargeable battery
CN106685011B (en) Intelligent surface contact charging device, system and method
WO2009025973A1 (en) Pass around electrical contacts
KR101499331B1 (en) Wireless charging discerning battery pack comprising nfc communication part
JP2019213427A (en) Battery device with connector for high voltage that can be easily attached and detached
KR101469463B1 (en) Wireless charging battery pack
JP6046973B2 (en) Wireless microphone, microphone stand and microphone system
KR20140011556A (en) Wireless charging battery pack
CN209981297U (en) Intelligent battery system capable of being used for low-temperature starting engine
EP3671942A1 (en) Terminal case having improved secondary battery state estimation function
KR100971701B1 (en) Wireless charging system using piled type dual core
CN211351759U (en) Wireless charging and dual-charging lithium battery with USB port
CN211958792U (en) Dual wireless charge-discharge integrated lithium battery with TYPE-C port

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719