JP2019213304A - Direct current charging system for electric vehicle batteries - Google Patents

Direct current charging system for electric vehicle batteries Download PDF

Info

Publication number
JP2019213304A
JP2019213304A JP2018105773A JP2018105773A JP2019213304A JP 2019213304 A JP2019213304 A JP 2019213304A JP 2018105773 A JP2018105773 A JP 2018105773A JP 2018105773 A JP2018105773 A JP 2018105773A JP 2019213304 A JP2019213304 A JP 2019213304A
Authority
JP
Japan
Prior art keywords
electric vehicle
charging
filter circuit
frequency pwm
charging pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018105773A
Other languages
Japanese (ja)
Other versions
JP6670344B2 (en
Inventor
洛良 薛
Luoliang Xue
洛良 薛
潺 薛
chan Xue
潺 薛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xue Chan
Original Assignee
Xue Chan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xue Chan filed Critical Xue Chan
Priority to JP2018105773A priority Critical patent/JP6670344B2/en
Publication of JP2019213304A publication Critical patent/JP2019213304A/en
Application granted granted Critical
Publication of JP6670344B2 publication Critical patent/JP6670344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a direct current charging system for electric vehicle batteries capable of reducing structure and circuit complexity of a charging pile, and reducing the loss of a device itself, thereby reducing costs.SOLUTION: By combining a distribution transformer 1 and a step-down type high-frequency PWM rectification filter circuit, use of high-frequency transformers in switching power supplies can be eliminated, the number of components is reduced, and investment in charging devices is reduced. A step-down type high-frequency PWM rectification circuit has a high input voltage, reduces currents in a switch transistor and a diode circuit, and reduces a loss of the device itself.SELECTED DRAWING: Figure 1

Description

本発明はバッテリー急速充電の技術分野に関し、特に電気自動車バッテリー用の直流充電システムに関する。   The present invention relates to the technical field of battery rapid charging, and more particularly to a DC charging system for electric vehicle batteries.

電気自動車バッテリーによる急速充電の要件を満たすために、直流充電装置の使用が必要である。従来、直流充電杭(charging pile)は、スイッチング電源により実現されるものであり、電子デバイスの性能による影響を受けて、単一のスイッチング電源の容量が小さくて、大容量バッテリーによる急速充電の要件を満足できないため、従来の直流充電杭(charging pile)は、複数のスイッチング電源を並列接続してなり、制御装置はバッテリーによる充電ニーズに応じて並列接続された各スイッチング電源に電力を割り当てる。スイッチング電源は、Boostで整流して、高周波変圧器を用いて入力と出力を電気的に絶縁させ、上記装置では、使用されているパワーデバイスや電子デバイスが多く、接線が複雑で、装置自体の損失が大きいことによって、コストの高騰を引き起こす。   In order to meet the requirements for fast charging with electric vehicle batteries, it is necessary to use a DC charging device. Conventionally, a DC charging pile is realized by a switching power supply, and is affected by the performance of an electronic device, so that the capacity of a single switching power supply is small and the requirement for rapid charging by a large capacity battery is required. Therefore, the conventional DC charging pile has a plurality of switching power supplies connected in parallel, and the control device allocates power to the switching power supplies connected in parallel according to the charging needs of the battery. The switching power supply is rectified by boost, and the input and output are electrically isolated using a high frequency transformer. In the above device, there are many power devices and electronic devices used, the tangent line is complicated, and the device itself A large loss causes an increase in cost.

本発明の目的は、充電杭(charging pile)の構造と回路の複雑さを低下させて、装置自体の損失を低下させ、それによりコストを削減させる電気自動車バッテリー用の直流充電システムを提供することである。   It is an object of the present invention to provide a direct current charging system for an electric vehicle battery that reduces the complexity of the charging pile structure and circuitry, thereby reducing the loss of the device itself, thereby reducing costs. It is.

上記目的を達成させるために、本発明は下記技術案を提供する。   In order to achieve the above object, the present invention provides the following technical solutions.

配電変圧器と直流充電杭(charging pile)を備える電気自動車バッテリー用の直流充電システムであって、
前記配電変圧器は一次高圧側と二次低圧側を含み、前記直流充電杭(charging pile)は充電杭(charging pile)コントローラと降圧型高周波PWM整流フィルタ回路を含み、
前記降圧型高周波PWM整流フィルタ回路は、フィルタ、整流ブリッジ及びフィルタ回路を含み、前記フィルタはフィルタインダクタとエネルギー貯蔵コンデンサを含み、前記整流ブリッジは6つの整流ブリッジアームを含み、前記整流ブリッジアームはそれぞれ1つのスイッチトランジスタと1つのダイオードを直列接続してなり、前記フィルタ回路はフリーホイーリングダイオード、エネルギー貯蔵インダクタンス及びフィルタコンデンサを含み、
前記一次高圧側にユーティリティ中圧配電網が接続され、前記二次低圧側が前記降圧型高周波PWM整流フィルタ回路の入力端子に接続されて、前記降圧型高周波PWM整流回路に給電し、前記降圧型高周波PWM整流フィルタ回路の出力端子は前記直流充電杭(charging pile)の充電インターフェースに接続され、
前記整流ブリッジの正出力端子は前記フリーホイーリングダイオードの陰極及び前記エネルギー貯蔵インダクタンスの一端に接続され、前記エネルギー貯蔵インダクタンスの他端は前記フィルタコンデンサの陽極に接続され、前記整流ブリッジの負出力端子は前記フリーホイーリングダイオードの陽極及び前記フィルタコンデンサの陰極に接続され、
前記充電杭(charging pile)コントローラの出力端子は絶縁ドライブを介して前記スイッチトランジスタに接続され、前記降圧型高周波PWM整流フィルタ回路におけるスイッチトランジスタの導通と遮断を制御する。
A DC charging system for an electric vehicle battery comprising a distribution transformer and a DC charging pile,
The distribution transformer includes a primary high-voltage side and a secondary low-voltage side, and the DC charging pile includes a charging pile controller and a step-down high-frequency PWM rectifying filter circuit;
The step-down high-frequency PWM rectification filter circuit includes a filter, a rectification bridge, and a filter circuit. The filter includes a filter inductor and an energy storage capacitor. The rectification bridge includes six rectification bridge arms. One switch transistor and one diode are connected in series, and the filter circuit includes a freewheeling diode, an energy storage inductance, and a filter capacitor.
A utility medium voltage distribution network is connected to the primary high-voltage side, and the secondary low-voltage side is connected to an input terminal of the step-down high-frequency PWM rectifier filter circuit to supply power to the step-down high-frequency PWM rectifier circuit, and The output terminal of the PWM rectifying filter circuit is connected to the charging interface of the DC charging pile,
The positive output terminal of the rectifier bridge is connected to the cathode of the freewheeling diode and one end of the energy storage inductance, the other end of the energy storage inductance is connected to the anode of the filter capacitor, and the negative output terminal of the rectifier bridge Is connected to the anode of the freewheeling diode and the cathode of the filter capacitor;
An output terminal of the charging pile controller is connected to the switch transistor through an insulation drive, and controls conduction and interruption of the switch transistor in the step-down high-frequency PWM rectification filter circuit.

好ましくは、前記充電杭(charging pile)コントローラの出力端子は前記スイッチトランジスタのグリッドに接続される。   Preferably, an output terminal of the charging pile controller is connected to a grid of the switch transistors.

好ましくは、前記二次低圧側は少なくとも1つの三相二次巻線である。   Preferably, the secondary low voltage side is at least one three-phase secondary winding.

好ましくは、前記三相二次巻線の低圧側電圧は非公称電圧値である。   Preferably, the low-voltage side voltage of the three-phase secondary winding is a non-nominal voltage value.

本発明による実施例によれば、本発明は以下の技術的効果を開示する。
本発明は、配電変圧器と降圧型高周波PWM整流フィルタ回路を組み合わせることで、スイッチング電源の高周波変圧器を使用せずに済み、部品の点数を減少させ、充電装置への投資を削減させる。降圧型高周波PWM整流回路は、入力電圧が高く、スイッチトランジスタ、ダイオード回路の電流を減少させ、装置自体の損失を減少させる、電気自動車バッテリー用の直流充電システムを提供する。さらにバック(Buck)整流回路を並列接続することで容量を拡大できる。
According to embodiments of the present invention, the present invention discloses the following technical effects.
The present invention combines a distribution transformer and a step-down high-frequency PWM rectifying filter circuit, thereby eliminating the need for a high-frequency transformer of a switching power supply, reducing the number of parts, and reducing the investment in the charging device. The step-down high-frequency PWM rectifier circuit provides a DC charging system for an electric vehicle battery that has a high input voltage, reduces the current of the switch transistor and the diode circuit, and reduces the loss of the device itself. Further, the capacity can be expanded by connecting back rectifier circuits in parallel.

本発明の実施例又は従来技術による技術案をより明瞭に説明するために、以下は実施例に使用される図面を簡単に説明するが、勿論、以下に説明する図面は本発明の一部の実施例を説明するものに過ぎず、当業者であれば、創造的な努力を必要とせずに、これら図面に基づいて他の図面を想到し得る。
本発明の実施例による電気自動車バッテリー用の直流充電システムの原理構造図である。
In order to more clearly explain the embodiments of the present invention or the technical solutions according to the prior art, the following briefly describes the drawings used in the embodiments, but of course, the drawings described below are part of the present invention. It is merely illustrative of the embodiments, and those skilled in the art will be able to conceive other drawings based on these drawings without the need for creative efforts.
1 is a principle structural diagram of a DC charging system for an electric vehicle battery according to an embodiment of the present invention.

以下、本発明の実施例における図面を参照しながら、本発明の実施例における技術案を明瞭且つ完全に説明するが、勿論、説明する実施例は本発明の一部の実施例に過ぎず、すべての実施例ではない。本発明の実施例に基づいて、当業者が創造的な努力を必要とせずに想到し得るすべてのほかの実施例は本発明の保護範囲に属する。   Hereinafter, the technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the drawings in the embodiments of the present invention, but of course, the described embodiments are only a part of the embodiments of the present invention. Not all examples. Based on the embodiments of the present invention, all other embodiments that can be conceived by those skilled in the art without requiring creative efforts fall within the protection scope of the present invention.

本発明の目的は、充電杭(charging pile)の構造と回路の複雑さを低下させ、装置自体の損失を低下させ、それによりコストを削減させる電気自動車バッテリー用の直流充電システムを提供することである。   An object of the present invention is to provide a DC charging system for an electric vehicle battery that reduces the complexity of the structure and circuit of the charging pile, reduces the loss of the device itself, and thereby reduces costs. is there.

本発明の上記目的、特徴及び利点をより明らかに且つ理解しやすくするために、以下、図面と実施形態にて本発明について更に詳細に説明する。   To make the above objects, features and advantages of the present invention clearer and easier to understand, the present invention will be described in more detail with reference to the drawings and embodiments.

図1は、本発明の実施例による電気自動車バッテリー用の直流充電システムの原理構造図である。図1に示されるように、電気自動車バッテリー用の直流充電システムは、配電変圧器と直流充電杭(charging pile)を備え、
前記配電変圧器1は、一次高圧側11と二次低圧側12を含み、前記直流充電杭(charging pile)は充電杭(charging pile)コントローラと降圧型高周波PWM整流フィルタ回路を含み、
前記降圧型高周波PWM整流フィルタ回路は、フィルタ、整流ブリッジ及びフィルタ回路を含み、前記フィルタはフィルタインダクタL1、L2、L3とエネルギー貯蔵コンデンサC1、C2、C3を含み、前記整流ブリッジは6つの整流ブリッジアームを含み、前記整流ブリッジアームはそれぞれ1つのスイッチトランジスタと1つの整流ダイオードを直列接続してなり、前記フィルタ回路はフリーホイーリングダイオードD7、エネルギー貯蔵インダクタンスL4及びフィルタコンデンサC4を含み、
前記一次高圧側11にユーティリティ中圧配電網が接続され、前記二次低圧側12が前記降圧型高周波PWM整流フィルタ回路の入力端子に接続されて、前記降圧型高周波PWM整流回路に給電し、前記降圧型高周波PWM整流フィルタ回路の出力端子は前記直流充電杭(charging pile)の充電インターフェースに接続され、
前記整流ブリッジの正出力端子は前記フリーホイーリングダイオードD7の陰極及び前記エネルギー貯蔵インダクタンスL4の一端に接続され、前記エネルギー貯蔵インダクタンスL4の他端は前記フィルタコンデンサC4の陽極に接続され、前記整流ブリッジの負出力端子は前記フリーホイーリングダイオードD7の陽極及び前記フィルタコンデンサC4の陰極に接続され、
前記充電杭(charging pile)コントローラの出力端子は絶縁ドライブ回路を介して前記スイッチトランジスタV1、V2、V3、V4、V5、V6に接続され、前記降圧型高周波PWM整流フィルタ回路におけるスイッチトランジスタV1、V2、V3、V4、V5、V6の導通と遮断を制御する。
FIG. 1 is a schematic structural diagram of a DC charging system for an electric vehicle battery according to an embodiment of the present invention. As shown in FIG. 1, a DC charging system for an electric vehicle battery includes a distribution transformer and a DC charging pile,
The distribution transformer 1 includes a primary high-voltage side 11 and a secondary low-voltage side 12, and the DC charging pile includes a charging pile controller and a step-down high-frequency PWM rectifying filter circuit,
The step-down high-frequency PWM rectifier filter circuit includes a filter, a rectifier bridge, and a filter circuit. The filter includes filter inductors L1, L2, and L3 and energy storage capacitors C1, C2, and C3. The rectifier bridge includes six rectifier bridges. Each of the rectifier bridge arms includes one switch transistor and one rectifier diode connected in series, and the filter circuit includes a freewheeling diode D7, an energy storage inductance L4, and a filter capacitor C4.
A utility medium voltage distribution network is connected to the primary high voltage side 11, the secondary low voltage side 12 is connected to an input terminal of the step-down high-frequency PWM rectification filter circuit, and supplies power to the step-down high-frequency PWM rectification circuit, The output terminal of the step-down high-frequency PWM rectifying filter circuit is connected to the charging interface of the DC charging pile,
The positive output terminal of the rectifier bridge is connected to the cathode of the freewheeling diode D7 and one end of the energy storage inductance L4, and the other end of the energy storage inductance L4 is connected to the anode of the filter capacitor C4. Is connected to the anode of the freewheeling diode D7 and the cathode of the filter capacitor C4,
An output terminal of the charging pile controller is connected to the switch transistors V1, V2, V3, V4, V5, and V6 through an insulating drive circuit, and the switch transistors V1 and V2 in the step-down high-frequency PWM rectifying filter circuit are connected. , V3, V4, V5, and V6 are controlled.

前記充電杭(charging pile)コントローラの出力端子は絶縁ドライブを介して前記スイッチトランジスタV1、V2、V3、V4、V5、V6のグリッドに接続される。   The output terminal of the charging pile controller is connected to the grid of the switch transistors V1, V2, V3, V4, V5, V6 through an insulating drive.

前記二次低圧側12は少なくとも1つの三相二次巻線である。   The secondary low voltage side 12 is at least one three-phase secondary winding.

前記三相二次巻線の低圧側電圧は非公称電圧値である。   The low-voltage side voltage of the three-phase secondary winding is a non-nominal voltage value.

実施形態1
前記配電変圧器の二次低圧側12は1つの三相二次巻線として設置され、直流充電杭(charging pile)は複数設置され、二次低圧側12の出力する非公称電圧値は電池充電要件、力率制御要件、送電網電圧が15%変動するという要件を同時に満たし、充電杭(charging pile)コントローラの出力する変調波はスイッチトランジスタV1、V2、V3、V4、V5、V6のグリッドを制御し、PWM変調により整流回路の出力電流の大きさと入力力率を制御し、フィルタ回路は電流リップルが電気自動車バッテリーの充電ニーズを満たすようにする。具体的に、充電杭(charging pile)コントローラは、バッテリーの充電ストラテジー及び力率制御要件に基づいて搬送波のパルス幅を変調させて、整流回路におけるスイッチトランジスタV1、V2、V3、V4、V5、V6の導通と遮断を制御し、直流充電システム装置全体は出力端子U1によって電気自動車バッテリーを充電する。
Embodiment 1
The secondary low voltage side 12 of the distribution transformer is installed as one three-phase secondary winding, a plurality of DC charging piles are installed, and the non-nominal voltage value output from the secondary low voltage side 12 is a battery charge. The modulation wave output from the charging pile controller is applied to the grid of the switch transistors V1, V2, V3, V4, V5, and V6 at the same time. Control and control the output current magnitude and input power factor of the rectifier circuit by PWM modulation, the filter circuit ensures that the current ripple meets the charging needs of the electric vehicle battery. Specifically, the charging pile controller modulates the pulse width of the carrier based on the charging strategy and power factor control requirements of the battery, and switches transistors V1, V2, V3, V4, V5, V6 in the rectifier circuit. The entire DC charging system device charges the electric vehicle battery through the output terminal U1.

実施形態2
本実施形態では、前記配電変圧器の二次低圧側12に複数の三相二次巻線が設置され、直流充電杭(charging pile)の数が三相二次巻線の数と同じである以外、残りは実施形態1と同様である。
Embodiment 2
In this embodiment, a plurality of three-phase secondary windings are installed on the secondary low-voltage side 12 of the distribution transformer, and the number of DC charging piles is the same as the number of three-phase secondary windings. The rest is the same as in the first embodiment.

本発明は、降圧型(Buck)高周波PWM整流装置と専用配電変圧器1を組み合わせるものであり、配電変圧器は、低圧側電圧が非公称電圧値であり、降圧型(Buck)高周波PWM整流装置に給電し、その電圧値が電池充電要件、力率制御要件、送電網電圧が15%変動するという要件を同時に満たし、配電変圧器の低圧側での電流を整流フィルタリングした後に充電電流を出力し、このように、スイッチング電源の高周波変圧器を使用せずに済み、部品の点数を減少させて、充電装置への投資を削減させ、(Buck)高周波PWM整流回路の入力電圧が高く、同じ電力によりスイッチトランジスタ、ダイオード回路の電流を減少させて、装置自体の損失を減少させ、且つバック(Buck)整流回路を並列接続することで容量を拡大させて、充電杭(charging pile)の構造と回路の複雑さを低下させ、充電杭(charging pile)を建設するための投資を減少できる。   The present invention combines a step-down (Buck) high-frequency PWM rectifier and a dedicated distribution transformer 1, and the distribution transformer has a non-nominal voltage value on a low-voltage side, and a step-down (Buck) high-frequency PWM rectifier. Power supply, and the voltage value satisfies the requirements for battery charging, power factor control, and 15% fluctuation of the grid voltage at the same time, and outputs the charging current after rectifying and filtering the current on the low voltage side of the distribution transformer Thus, it is not necessary to use the high frequency transformer of the switching power supply, the number of parts is reduced, the investment in the charging device is reduced, and the input voltage of the high frequency PWM rectifier circuit is high and the same power This reduces the current in the switch transistor and the diode circuit, reduces the loss of the device itself, and expands the capacity by connecting a back rectifier circuit in parallel. By, it reduces the complexity of the structure and the circuit of the charging pile (charging pile), can reduce the investment for the construction of charging pile (charging pile).

本明細書は、具体例によって本発明の原理及び実施形態について説明したが、以上の実施例の説明は本発明の方法及びその主旨を理解しやすくするために過ぎず、また、当業者であれば、本発明の構想に基づいて、実施形態及び応用範囲について変化することができる。前記のとおり、本明細書の内容は本発明を制限するものではない。   Although the present specification has described the principles and embodiments of the present invention by way of specific examples, the above description of the examples is only for the purpose of facilitating understanding of the method and the gist of the present invention, and for those skilled in the art. For example, the embodiment and application range can be changed based on the concept of the present invention. As described above, the contents of this specification do not limit the present invention.

Claims (5)

電気自動車バッテリー用の直流充電システムであって、
配電変圧器と直流充電杭(charging pile)を備え、
前記配電変圧器は一次高圧側と二次低圧側を含み、前記直流充電杭(charging pile)は充電杭(charging pile)コントローラと降圧型高周波PWM整流フィルタ回路を含み、
前記降圧型高周波PWM整流フィルタ回路は、フィルタ、整流ブリッジ及びフィルタ回路を含み、前記フィルタはフィルタインダクタとエネルギー貯蔵コンデンサを含み、前記整流ブリッジは6つの整流ブリッジアームを含み、前記整流ブリッジアームはそれぞれ1つのスイッチトランジスタと1つのダイオードを直列接続してなり、前記フィルタ回路はフリーホイーリングダイオード、エネルギー貯蔵インダクタンス及びフィルタコンデンサを含み、
前記配電変圧器は、一次高圧側にユーティリティ中圧配電網が接続され、前記二次低圧側が前記降圧型高周波PWM整流フィルタ回路の入力端子に接続されて、前記降圧型高周波PWM整流回路に給電し、前記降圧型高周波PWM整流フィルタ回路の出力端子は前記直流充電杭(charging pile)の充電インターフェースに接続され、
前記充電杭(charging pile)コントローラの出力端子は絶縁ドライブを介して前記スイッチトランジスタに接続され、前記降圧型高周波PWM整流フィルタ回路におけるスイッチトランジスタの導通と遮断を制御することを特徴とする電気自動車バッテリー用の直流充電システム。
A direct current charging system for an electric vehicle battery,
It is equipped with a distribution transformer and a DC charging pile,
The distribution transformer includes a primary high-voltage side and a secondary low-voltage side, and the DC charging pile includes a charging pile controller and a step-down high-frequency PWM rectifying filter circuit;
The step-down high-frequency PWM rectification filter circuit includes a filter, a rectification bridge, and a filter circuit. The filter includes a filter inductor and an energy storage capacitor. The rectification bridge includes six rectification bridge arms. One switch transistor and one diode are connected in series, and the filter circuit includes a freewheeling diode, an energy storage inductance, and a filter capacitor.
The distribution transformer has a utility medium voltage distribution network connected to a primary high voltage side, and the secondary low voltage side connected to an input terminal of the step-down high-frequency PWM rectification filter circuit to supply power to the step-down high-frequency PWM rectification circuit. The output terminal of the step-down high-frequency PWM rectifying filter circuit is connected to the charging interface of the DC charging pile,
An electric vehicle battery characterized in that an output terminal of the charging pile controller is connected to the switch transistor via an insulation drive, and controls conduction and interruption of the switch transistor in the step-down high-frequency PWM rectifying filter circuit. DC charging system for
前記充電杭(charging pile)コントローラの出力端子は絶縁ドライブを介して前記スイッチトランジスタのグリッドに接続されることを特徴とする請求項1に記載の電気自動車バッテリー用の直流充電システム。   The DC charging system for an electric vehicle battery according to claim 1, wherein an output terminal of the charging pile controller is connected to a grid of the switch transistors through an insulating drive. 前記整流ブリッジの正出力端子は前記フリーホイーリングダイオードの陰極及び前記エネルギー貯蔵インダクタンスの一端に接続され、前記エネルギー貯蔵インダクタンスの他端は前記フィルタコンデンサの陽極に接続され、前記整流ブリッジの負出力端子は前記フリーホイーリングダイオードの陽極及び前記フィルタコンデンサの陰極に接続されることを特徴とする請求項1に記載の電気自動車バッテリー用の直流充電システム。   The positive output terminal of the rectifier bridge is connected to the cathode of the freewheeling diode and one end of the energy storage inductance, the other end of the energy storage inductance is connected to the anode of the filter capacitor, and the negative output terminal of the rectifier bridge 2. The DC charging system for an electric vehicle battery according to claim 1, wherein is connected to an anode of the freewheeling diode and a cathode of the filter capacitor. 前記二次低圧側は少なくとも1つの三相二次巻線であることを特徴とする請求項1に記載の電気自動車バッテリー用の直流充電システム。   The DC charging system for an electric vehicle battery according to claim 1, wherein the secondary low-voltage side is at least one three-phase secondary winding. 前記三相二次巻線の低圧側電圧は電池充電要件、力率制御要件及び送電網電圧が15%変動するという要件を同時に満たす非公称電圧値であることを特徴とする請求項4に記載の電気自動車バッテリー用の直流充電システム。   5. The low-voltage side voltage of the three-phase secondary winding is a non-nominal voltage value that simultaneously satisfies a battery charging requirement, a power factor control requirement, and a requirement that the grid voltage fluctuates by 15%. DC charging system for electric vehicle batteries.
JP2018105773A 2018-06-01 2018-06-01 DC charging system for electric vehicle batteries Active JP6670344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018105773A JP6670344B2 (en) 2018-06-01 2018-06-01 DC charging system for electric vehicle batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105773A JP6670344B2 (en) 2018-06-01 2018-06-01 DC charging system for electric vehicle batteries

Publications (2)

Publication Number Publication Date
JP2019213304A true JP2019213304A (en) 2019-12-12
JP6670344B2 JP6670344B2 (en) 2020-03-18

Family

ID=68845512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105773A Active JP6670344B2 (en) 2018-06-01 2018-06-01 DC charging system for electric vehicle batteries

Country Status (1)

Country Link
JP (1) JP6670344B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112532073A (en) * 2020-12-08 2021-03-19 数源科技股份有限公司 Direct current fills electric pile rectifier module's mounting structure
CN113009249A (en) * 2021-02-22 2021-06-22 福建星云电子股份有限公司 Charging pile component fault diagnosis method
JP2022083149A (en) * 2020-11-24 2022-06-03 洛良 薛 On-vehicle quick charge system for electric vehicle supplied with power by voltage of 1,250 volts outputted from transformer
CN115765515A (en) * 2022-11-17 2023-03-07 深圳市迪威电气有限公司 Three-phase buck-boost converter capable of bidirectional conversion and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083149A (en) * 2020-11-24 2022-06-03 洛良 薛 On-vehicle quick charge system for electric vehicle supplied with power by voltage of 1,250 volts outputted from transformer
CN112532073A (en) * 2020-12-08 2021-03-19 数源科技股份有限公司 Direct current fills electric pile rectifier module's mounting structure
CN113009249A (en) * 2021-02-22 2021-06-22 福建星云电子股份有限公司 Charging pile component fault diagnosis method
CN113009249B (en) * 2021-02-22 2023-07-28 福建星云电子股份有限公司 Fault diagnosis method for charging pile component
CN115765515A (en) * 2022-11-17 2023-03-07 深圳市迪威电气有限公司 Three-phase buck-boost converter capable of bidirectional conversion and control method thereof
CN115765515B (en) * 2022-11-17 2023-09-12 深圳市迪威电气有限公司 Bidirectional-conversion three-phase buck-boost converter and control method thereof

Also Published As

Publication number Publication date
JP6670344B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
Zheng et al. Analysis and design of a single-switch high step-up coupled-inductor boost converter
Hsieh et al. High-conversion-ratio bidirectional DC–DC converter with coupled inductor
Wai et al. High-efficiency bidirectional dc–dc converter with high-voltage gain
WO2021232785A1 (en) Three-bridge arm topology apparatus, control method, and uninterrupted power supply system
US8384333B2 (en) Alternating voltage control apparatus
JP6670344B2 (en) DC charging system for electric vehicle batteries
KR101199490B1 (en) Multi-phase interleaved bidirectional DC-DC converter with high voltage conversion ratio
Andersen et al. A ZVS-PWM three-phase current-fed push–pull DC–DC converter
KR20120068593A (en) Multi-input bidirectional dc-dc converter
US9118254B2 (en) DC-DC converter utilizing output power to turn off switches
CN102255542A (en) Single-stage boosting inverter with tap inductor
EP3576271A1 (en) Dc charging system for storage battery of electric vehicle
WO2021232749A1 (en) Three-bridge-arm topological device and uninterrupted power supply system
US20190372382A1 (en) Dc charging system for storage battery of electric vehicle
EP3255771B1 (en) Bidirectional dc-dc convertor
US11990830B2 (en) Power conversion system and virtual DC voltage generator circuit
US11764693B2 (en) Dual-capacitor resonant circuit for use with quasi-resonant zero-current-switching DC-DC converters
Montes et al. Forward-flyback resonant converter for high-efficient medium-power photovoltaic applications
Mazumder et al. A low-device-count single-stage direct-power-conversion solar microinverter for microgrid
Askarian et al. A novel single-stage AC/DC converter used in battery charger applications
Kumar et al. SiC dc fast charger control for electric vehicles
CN109905035B (en) Ultralow ripple electric automobile charging power supply with bidirectional energy flow
Ghasemi et al. A new isolated SEPIC converter with coupled inductors for photovoltaic applications
Nayak et al. Isolated single stage AC-DC converter topologies with regenerative snubber circuit for EV application
Sani et al. Analysis and implementation of an isolated high step‐down converter with interleaved output for low voltage applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250