JP2019209760A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2019209760A
JP2019209760A JP2018105579A JP2018105579A JP2019209760A JP 2019209760 A JP2019209760 A JP 2019209760A JP 2018105579 A JP2018105579 A JP 2018105579A JP 2018105579 A JP2018105579 A JP 2018105579A JP 2019209760 A JP2019209760 A JP 2019209760A
Authority
JP
Japan
Prior art keywords
resin member
tire
belt
holes
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018105579A
Other languages
Japanese (ja)
Inventor
誓志 今
Seiji Kon
誓志 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2018105579A priority Critical patent/JP2019209760A/en
Priority to PCT/JP2019/021227 priority patent/WO2019230763A1/en
Publication of JP2019209760A publication Critical patent/JP2019209760A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

To provide a pneumatic tire arranged with a resin member, which suppresses occurrence of poor air intrusion.SOLUTION: A pneumatic tire includes: a belt in which a cord coated with a coating material is spirally wound in a tire circumferential direction; and a resin member which is arranged inside or outside in a tire radial direction of the belt, in which one or more through holes are provided on the resin member.SELECTED DRAWING: Figure 2

Description

本発明は、空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire.

従来、空気入りタイヤにおいては、タイヤ性能の向上を所期して、カーカスのタイヤ径方向外側にベルトが配置されることが、通常行われている(例えば、特許文献1)。   Conventionally, in a pneumatic tire, a belt is usually disposed outside the carcass in the tire radial direction in order to improve tire performance (for example, Patent Document 1).

当該ベルトは、コードを樹脂又はゴム等の被覆材料で被覆した樹脂被覆コード又はゴム被覆コード等がタイヤ周方向に螺旋状に巻回された状態としたもの(いわゆる、スパイラルベルト)とすることも提案されている。   The belt may be a belt in which a resin-coated cord or a rubber-coated cord or the like with a cord coated with a coating material such as resin or rubber is spirally wound in the tire circumferential direction (so-called spiral belt). Proposed.

特開平10−035220号公報Japanese Patent Laid-Open No. 10-035220

樹脂被覆コード又はゴム被覆コード等がタイヤ周方向に螺旋状に巻回された状態のベルトは、従来の2層交錯ベルト対比でベルトの面内せん断剛性が劣るため、樹脂部材等をさらに配置して剛性を補強することが考えられる。   A belt in which a resin-coated cord or rubber-coated cord is spirally wound in the tire circumferential direction is inferior in the in-plane shear rigidity of the belt compared to the conventional two-layer cross belt, and therefore a resin member or the like is further arranged. It is possible to reinforce the rigidity.

しかし、樹脂部材は、ゴム部材等に比べてガス透過率が低いため、タイヤ成型時に抱き込んだエアや加硫時にゴムから出るガスが当該樹脂部材の付近に滞留し、エア入り不良が発生してしまうことが考えられる。   However, since the gas permeability of resin members is lower than that of rubber members, etc., the air that was embraced during tire molding or the gas that is emitted from the rubber during vulcanization stays in the vicinity of the resin member, resulting in poor air entry. It can be considered.

そこで、本発明は、樹脂部材を配置した空気入りタイヤにおいて、エア入り不良の発生を抑制した空気入りタイヤを提供することを目的とする。   Then, an object of this invention is to provide the pneumatic tire which suppressed generation | occurrence | production of the poor air entry in the pneumatic tire which has arrange | positioned the resin member.

本発明の要旨構成は、以下の通りである。
本発明の空気入りタイヤは、被覆材料で被覆されたコードがタイヤ周方向に螺旋状に巻回された状態のベルトと、前記ベルトのタイヤ径方向内側又は外側に配置された、樹脂部材と、を備え、
前記樹脂部材に、1つ以上の貫通孔を設けたことを特徴とする。
本発明の空気入りタイヤによれば、エア入り不良の発生を抑制することができる。
The gist configuration of the present invention is as follows.
The pneumatic tire of the present invention is a belt in a state where a cord covered with a coating material is spirally wound in the tire circumferential direction, a resin member disposed on the inner side or the outer side of the belt in the tire radial direction, With
The resin member is provided with one or more through holes.
According to the pneumatic tire of the present invention, it is possible to suppress the occurrence of poor air entry.

本発明の空気入りタイヤでは、前記貫通孔の径は、1mm未満であることが好ましい。上記の範囲でもエア入り不良の発生を抑制することができ、一方で、樹脂部材の剛性がなるべく低下しないようにすることができる。
ここで、「貫通孔」の径は、平面視での貫通孔の周壁の任意の2点間の距離のうち最大距離をいうものとする。
また、「タイヤ幅方向の幅」及び本明細書におけるその他の寸法は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態で測定されるものとする。
ただし、後述の「タイヤ接地幅」は、タイヤを適用リムに装着し、規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ幅方向最外側位置を接地端とし、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態での接地端間のタイヤ幅方向距離とする。
In the pneumatic tire of the present invention, the diameter of the through hole is preferably less than 1 mm. Even in the above range, it is possible to suppress the occurrence of poor air entry, and on the other hand, it is possible to prevent the rigidity of the resin member from being reduced as much as possible.
Here, the diameter of the “through hole” refers to the maximum distance among the distances between any two points on the peripheral wall of the through hole in plan view.
Further, the “width in the tire width direction” and other dimensions in the present specification are measured in a state in which the tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
However, the “tire contact width” described later refers to the outermost position in the tire width direction of the contact surface when the tire is mounted on the applicable rim, filled with the specified internal pressure, and the maximum load is applied, Mounted on the applicable rim, filled with the specified internal pressure, and defined as the distance in the tire width direction between the ground contact edges in a no-load state

本明細書において、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association, Inc.)のYEAR BOOK等に記載されている、または将来的に記載される適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(すなわち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載される適用サイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。また、「規定内圧」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力に対応する空気圧(最高空気圧)をいう。なお、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。   In this specification, “applicable rim” is an industrial standard effective in the area where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, in Europe, ETRTO (The European) STANDARDDS MANUAL of Tire and Rim Technical Organization, in the United States, YEAR BOOK of TRA (The Tire and Rim Association, Inc.) etc. Refers to the Measuring Rim, or the Design Rim in the TRA YEAR BOOK (ie, the "rim" above is the current size) In addition, it includes sizes that can be included in the above industry standards in the future.As examples of “applicable sizes to be described in the future,” the sizes described as “FUTURE DEVELOPMENTS” in the 2013 edition of STANDARDS MANUAL of ETRTO In the case of a size that is not described in the industrial standard, it means a rim having a width corresponding to the bead width of the tire. The “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.

本発明の空気入りタイヤでは、前記樹脂部材は、プレート状であり、
前記樹脂部材の平面視において、複数の前記貫通孔が、平均で、前記樹脂部材の単位面積10000mm当たり、1〜10000個配置されてなることが好ましい。
上記の範囲とすることにより、樹脂部材の剛性を確保しつつも、エア入り不良の発生を抑制することができる。
In the pneumatic tire of the present invention, the resin member has a plate shape,
In a plan view of the resin member, it is preferable that the plurality of through-holes are arranged in an average of 1 to 10,000 per unit area of 10,000 mm 2 of the resin member.
By setting it as said range, generation | occurrence | production of air-incompleteness can be suppressed, ensuring the rigidity of a resin member.

本発明の空気入りタイヤでは、前記樹脂部材は、プレート状であり、
前記樹脂部材の平面視において、複数の前記貫通孔が、前記樹脂部材の任意の箇所の単位面積10000mm当たり、100〜10000個配置されてなることが好ましい。
この構成によれば、エア入り不良の発生をさらに抑制することができる。
In the pneumatic tire of the present invention, the resin member has a plate shape,
In the plan view of the resin member, it is preferable that a plurality of the through-holes are arranged in a unit area of 10000 mm 2 at an arbitrary location of the resin member.
According to this configuration, it is possible to further suppress the occurrence of defective air entry.

本発明によれば、樹脂部材を配置した空気入りタイヤにおいて、エア入り不良の発生を抑制した空気入りタイヤを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the pneumatic tire which has arrange | positioned the resin member, the pneumatic tire which suppressed generation | occurrence | production of a pneumatic defect can be provided.

本発明の一実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. 図1に示す実施形態の樹脂部材の概略平面図である。It is a schematic plan view of the resin member of embodiment shown in FIG. 貫通孔の第1の変形例を示す図である。It is a figure which shows the 1st modification of a through-hole. 貫通孔の第2の変形例を示す図である。It is a figure which shows the 2nd modification of a through-hole. 貫通孔の第3の変形例を示す図である。It is a figure which shows the 3rd modification of a through-hole. 貫通孔の第4の変形例を示す図である。It is a figure which shows the 4th modification of a through-hole.

以下、本発明の実施形態について、図面を参照して詳細に例示説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態にかかる空気入りタイヤを示す、タイヤ幅方向概略断面図である。図1に示すように、本実施形態の空気入りタイヤ1(以下、単にタイヤとも称する)は、一対のビード部2に埋設されたビードコア2aにトロイダル状に跨るカーカス3を備えている。このタイヤ1は、カーカス3のクラウン部のタイヤ径方向外側に、ベルト4と、トレッド5とを順に備えている。なお、図1に示すように、本実施形態のタイヤ1は、タイヤ赤道面CLを境界とするタイヤ幅方向半部間で同様の構成を有しているが、非対称な構成とすることもできる。   FIG. 1 is a schematic cross-sectional view in the tire width direction showing a pneumatic tire according to an embodiment of the present invention. As shown in FIG. 1, the pneumatic tire 1 of the present embodiment (hereinafter also simply referred to as a tire) includes a carcass 3 straddling a bead core 2 a embedded in a pair of bead portions 2 in a toroidal shape. The tire 1 includes a belt 4 and a tread 5 in this order on the outer side in the tire radial direction of the crown portion of the carcass 3. As shown in FIG. 1, the tire 1 of the present embodiment has the same configuration between the half portions in the tire width direction with the tire equatorial plane CL as a boundary, but may be asymmetrical. .

本実施形態のタイヤ1は、スチールコードを束ねたビードコア2aを有している。ビードコアの材質や形状は特に限定されず、あるいは、ビードコア2aを有しない構造とすることができる。また、本実施形態では、有機繊維からなる1枚のカーカスプライでカーカス3を構成しているが、カーカスプライの材料や枚数も特に限定されない。   The tire 1 of this embodiment has a bead core 2a in which steel cords are bundled. The material and shape of the bead core are not particularly limited, or may have a structure without the bead core 2a. Moreover, in this embodiment, although the carcass 3 is comprised by the one carcass ply consisting of organic fiber, the material and the number of carcass plies are not particularly limited.

本実施形態では、ベルト4は、被覆材料である被覆ゴム4aにより被覆されたコード4bがタイヤ周方向に螺旋状に巻回された状態のスパイラルベルトである。本実施形態では、ベルト4は1層とすることが好ましい。軽量化の観点から好ましいからである。ベルト4のタイヤ幅方向の幅は、例えば、タイヤ接地幅の90〜120%とすることができる。ベルト4の厚さ(最大厚さ)は、特に限定しないが、例えば、0.3〜3.5mmとすることができる。コード4bは、任意の既知の材料を用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード4bは、有機繊維やカーボン繊維等を用いることもできる。有機繊維は、例えばナイロン等を用いることができ、単繊維又は複数本の単繊維を撚り合わせたものを用いることができる。また、被覆ゴム4aは、ベルトコーティングゴムとして通常用いられるゴム材料等、任意の既知のゴム材料を用いることができる。   In the present embodiment, the belt 4 is a spiral belt in a state in which a cord 4b covered with a covering rubber 4a that is a covering material is spirally wound in the tire circumferential direction. In the present embodiment, the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction. The width of the belt 4 in the tire width direction can be 90 to 120% of the tire ground contact width, for example. The thickness (maximum thickness) of the belt 4 is not particularly limited, but can be, for example, 0.3 to 3.5 mm. As the cord 4b, any known material can be used, for example, a steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. The cord 4b can also use organic fiber, carbon fiber, or the like. For example, nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used. The covering rubber 4a can be made of any known rubber material such as a rubber material usually used as a belt coating rubber.

他の実施形態として、ベルト4は、被覆材料である被覆樹脂4aにより被覆されたコード4bがタイヤ周方向に螺旋状に巻回された状態のスパイラルベルトとすることもできる。この場合も、ベルト4は1層とすることが好ましい。軽量化の観点から好ましいからである。この場合も、ベルト4のタイヤ幅方向の幅は、例えば、タイヤ接地幅の90〜120%とすることができる。この場合も、ベルト4の厚さ(最大厚さ)は、特に限定しないが、例えば、0.3〜3.5mmとすることができる。この場合も、コード4bは、任意の既知の材料を用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード4bは、有機繊維やカーボン繊維等を用いることもできる。有機繊維は、例えばナイロン等を用いることができ、単繊維又は複数本の単繊維を撚り合わせたものを用いることができる。また、被覆樹脂4aは、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75−2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。コード4bを被覆する被覆樹脂4aの引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。ベルト剛性を補強して高めることができるからである。また、コード4bを被覆する被覆樹脂4aの引張弾性率は、1000MPa以下とすることが好ましい。乗り心地性等を良好に維持することができるからである。なお、ここでいう被覆樹脂4aには、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。上記の樹脂被覆コードは、例えば、溶融状態の被覆樹脂4aをコード4bの外周側に被覆し、冷却により固化させることによって形成することができる。   As another embodiment, the belt 4 may be a spiral belt in which a cord 4b covered with a coating resin 4a that is a coating material is spirally wound in the tire circumferential direction. Also in this case, the belt 4 is preferably a single layer. It is because it is preferable from a viewpoint of weight reduction. Also in this case, the width of the belt 4 in the tire width direction can be, for example, 90 to 120% of the tire ground contact width. Also in this case, the thickness (maximum thickness) of the belt 4 is not particularly limited, but may be, for example, 0.3 to 3.5 mm. In this case as well, any known material can be used for the cord 4b. For example, a steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. The cord 4b can also use organic fiber, carbon fiber, or the like. For example, nylon or the like can be used as the organic fiber, and a single fiber or a plurality of single fibers twisted together can be used. Further, as the coating resin 4a, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal dislocation can also be used. As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (0.45 MPa load) specified in ISO 75-2 or ASTM D648 is 78 ° C. or more, and the tensile yield strength specified in JIS K7113 is A material having a tensile fracture elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used. The tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 4a that covers the cord 4b is preferably 50 MPa or more. This is because the belt rigidity can be reinforced and increased. The tensile modulus of the coating resin 4a that covers the cord 4b is preferably 1000 MPa or less. It is because riding comfort etc. can be maintained favorable. The coating resin 4a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature). The resin-coated cord can be formed, for example, by coating a molten coating resin 4a on the outer peripheral side of the cord 4b and solidifying by cooling.

また、図1に示すように、このタイヤ1は、ベルト4のタイヤ径方向内側に、この例ではプレート状の、タイヤ幅方向に連続して延在する樹脂部材6を備えている。なお、本実施形態では、樹脂部材6は、ベルト4のタイヤ径方向内側に配置されているが、樹脂部材6は、ベルト4のタイヤ径方向外側に配置しても良い。図1に示すように、本実施形態では、樹脂部材6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より大きいが、同じ又は小さくすることもできる。樹脂部材6のタイヤ幅方向の幅は、例えば、タイヤ接地幅の80〜130%とすることができる。また、樹脂部材6の樹脂は、ベルトのコード4bの被覆材料4aを樹脂とした場合と同じ種類の樹脂を用いることができるが、異なる種類の樹脂を用いることもできる。   Further, as shown in FIG. 1, the tire 1 includes a resin member 6 that continuously extends in the tire width direction, which is plate-shaped in this example, on the inner side in the tire radial direction of the belt 4. In this embodiment, the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, but the resin member 6 may be disposed on the outer side in the tire radial direction of the belt 4. As shown in FIG. 1, in the present embodiment, the width of the resin member 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but may be the same or smaller. The width of the resin member 6 in the tire width direction can be, for example, 80 to 130% of the tire ground contact width. The resin of the resin member 6 can be the same type of resin as the case where the coating material 4a of the belt cord 4b is a resin, but a different type of resin can also be used.

図2は、図1に示す実施形態の樹脂部材6の概略平面図である。図2に示すように(図1では、貫通孔7の図示は省略されている)、本実施形態のタイヤ1では、樹脂部材6に、1つ以上の(図示例では多数の)、径が1mm未満の貫通孔7が設けられている。図2に示すように、本実施形態では、複数の貫通孔7は、全て径が同じである(なお、この例では貫通する方向に径は変化せず一定である)。また、図2に示すように、本実施形態では、複数の貫通孔7は、全て平面視で円形である。また、本実施形態では、樹脂部材6の平面視において、複数の貫通孔7が、平均で、樹脂部材6の単位面積10000mm当たり、1〜10000個配置されている。さらに、図2に示すように、本実施形態のタイヤでは、複数の貫通孔7が、樹脂部材6の任意の箇所の単位面積10000mm当たり、100〜10000個配置されている(均一に配置されている)。具体的には、この例では、貫通孔7は、千鳥状に配置されている。すなわち、一方の列にて、径が同じであり平面視で円形の貫通孔7がタイヤ周方向に沿って等間隔に配置されており、他方の列においては、一方の列とタイヤ周方向の位相をずらして(本例では、他方の列の貫通孔7が、一方の列のタイヤ周方向に隣接する2つの貫通孔7の丁度タイヤ周方向の中点に位置するように)同様の径及び形状の貫通孔7がタイヤ周方向に沿って等間隔に配置されている。なお、このような貫通孔7は、例えば、針状のものを用いて機械的に穿孔しても良いし、炭酸ガスレーザー等を用いても良いし、有機繊維の織物や編物を加熱溶融し、貫通孔7が形成された樹脂部材7を形成するようにしても良い。
以下、本実施形態の空気入りタイヤの作用効果について説明する。
FIG. 2 is a schematic plan view of the resin member 6 of the embodiment shown in FIG. As shown in FIG. 2 (in FIG. 1, illustration of the through-hole 7 is omitted) In the tire 1 of the present embodiment, the resin member 6 has one or more (many in the illustrated example) diameters. A through hole 7 of less than 1 mm is provided. As shown in FIG. 2, in the present embodiment, the plurality of through holes 7 have the same diameter (in this example, the diameter does not change in the penetrating direction and is constant). Further, as shown in FIG. 2, in the present embodiment, the plurality of through holes 7 are all circular in plan view. In the present embodiment, in the plan view of the resin member 6, the plurality of through holes 7 are arranged on an average of 1 to 10,000 per unit area of 10000 mm 2 of the resin member 6. Furthermore, as shown in FIG. 2, in the tire according to the present embodiment, a plurality of through holes 7 are disposed 100 to 10,000 per unit area 10000 mm 2 at an arbitrary location of the resin member 6 (uniformly disposed). ing). Specifically, in this example, the through holes 7 are arranged in a staggered manner. That is, in one row, the through holes 7 having the same diameter and circular in plan view are arranged at equal intervals along the tire circumferential direction. In the other row, one row and the tire circumferential direction are arranged. The same diameter with a phase shift (in this example, the through-holes 7 in the other row are located at the midpoint of the two circumferentially adjacent through-holes 7 in the tire circumferential direction). And the shape of the through-hole 7 is arrange | positioned at equal intervals along the tire circumferential direction. Such through-holes 7 may be mechanically perforated using, for example, a needle-like one, a carbon dioxide gas laser, or the like, or an organic fiber woven or knitted fabric may be heated and melted. The resin member 7 in which the through hole 7 is formed may be formed.
Hereinafter, the effect of the pneumatic tire of this embodiment is explained.

本実施形態の空気入りタイヤによれば、まず、ベルト4の他にタイヤ幅方向に連続して延在する樹脂部材6が配置されているため、ベルト4の剛性を十分に補強して高めて、操縦安定性等を向上させることができる。
さらに、本実施形態の空気入りタイヤでは、樹脂部材6に、1つ以上の(図示例では多数の)、径が1mm未満の貫通孔7が設けられているため、タイヤの加硫時に当該貫通孔7を介してエア(空気以外のガスも含む)が抜けることができ、エア溜まりを抑制して、空気入りタイヤのエア入り不良の発生を抑制することができる。ここで、エアが抜けるためには、貫通孔7の径は1mm未満としても十分であり、径を1mm未満とすることにより、樹脂部材6の剛性が低下しすぎないようにすることもできる。一方で、タイヤの加硫時に、エアが確実に抜けるようにするために、貫通孔7の径は0.1mm以上とすることが好ましい。
また、本実施形態では、複数の貫通孔7の径を全て同じとしており、また複数の貫通孔7を上記のような千鳥状の配置とすることで、樹脂部材6に均一に配置している。これにより、樹脂部材6で貫通孔7により局所的に剛性が低下する箇所が生じないようにしつつも、樹脂部材6の全面で上記のエアを抜ける効果を得ることができ、より一層エア入り不良の発生を抑制することができる。
以上のように、本実施形態の空気入りタイヤによれば、エア入り不良の発生を抑制することができる。
According to the pneumatic tire of the present embodiment, first, since the resin member 6 extending continuously in the tire width direction is disposed in addition to the belt 4, the rigidity of the belt 4 is sufficiently reinforced and enhanced. The steering stability can be improved.
Furthermore, in the pneumatic tire of the present embodiment, the resin member 6 is provided with one or more (a large number in the illustrated example) through-holes 7 having a diameter of less than 1 mm. Air (including gas other than air) can escape through the holes 7, and air accumulation can be suppressed, so that occurrence of poor air entry of the pneumatic tire can be suppressed. Here, in order for air to escape, it is sufficient that the diameter of the through hole 7 is less than 1 mm. By making the diameter less than 1 mm, the rigidity of the resin member 6 can be prevented from being excessively lowered. On the other hand, the diameter of the through hole 7 is preferably set to 0.1 mm or more so that air can be surely removed during vulcanization of the tire.
Moreover, in this embodiment, the diameters of the plurality of through holes 7 are all the same, and the plurality of through holes 7 are arranged in a staggered manner as described above so that they are uniformly arranged on the resin member 6. . Thereby, while preventing the resin member 6 from having a portion where the rigidity is locally lowered by the through-hole 7, it is possible to obtain the effect of releasing the air over the entire surface of the resin member 6. Can be suppressed.
As described above, according to the pneumatic tire of the present embodiment, it is possible to suppress the occurrence of poor air entry.

図3〜図6は、貫通孔7の第1〜第4の変形例を示す図である。以下の変形例では、貫通孔7の径は、全て0.1mm以上1mm未満であることが好ましい。   3-6 is a figure which shows the 1st-4th modification of the through-hole 7. As shown in FIG. In the following modifications, the diameters of the through holes 7 are all preferably 0.1 mm or more and less than 1 mm.

図3に示すように、第1の変形例では、貫通孔7は、径が同じであり平面視で円形の貫通孔7が、一方の列と他方の列とで、それぞれタイヤ周方向に沿って等間隔で配置されており、一方の列と他方の列とは、タイヤ周方向に同位相である(この例では、他方の列の貫通孔7が、一方の列の貫通孔7とタイヤ周方向の同位置である)。そして、この例では、複数の貫通孔7が、タイヤ幅方向に沿っても等間隔で配置されている。このような構成によっても、樹脂部材6に貫通孔7を均一に配置することにより、樹脂部材6の剛性を確保しつつも、樹脂部材6の全面でエアが排出されるようにして、エア入り不良の発生を抑制することができる。   As shown in FIG. 3, in the first modified example, the through holes 7 have the same diameter and are circular through holes 7 in plan view along the tire circumferential direction in one row and the other row, respectively. The one row and the other row have the same phase in the tire circumferential direction (in this example, the through-hole 7 in the other row is connected to the through-hole 7 in one row and the tire). The same position in the circumferential direction). In this example, the plurality of through holes 7 are arranged at equal intervals even in the tire width direction. Even with such a configuration, by uniformly disposing the through holes 7 in the resin member 6, while ensuring the rigidity of the resin member 6, air is exhausted over the entire surface of the resin member 6. The occurrence of defects can be suppressed.

図4に示すように、第2の変形例では、貫通孔7は、径が同じであり平面視で円形の貫通孔7が、ランダム且つ均一に配置されている。このような構成によっても、樹脂部材6に貫通孔7を均一に配置することにより、樹脂部材6の剛性を確保しつつも、樹脂部材6の全面でエアが排出されるようにして、エア入り不良の発生を抑制することができる。   As shown in FIG. 4, in the second modification, the through holes 7 have the same diameter, and the circular through holes 7 in a plan view are arranged randomly and uniformly. Even with such a configuration, by uniformly disposing the through holes 7 in the resin member 6, while ensuring the rigidity of the resin member 6, air is exhausted over the entire surface of the resin member 6. The occurrence of defects can be suppressed.

図5に示すように、第3の変形例では、貫通孔7は、2種類の径の平面視で円形の貫通孔7が、一方の列と他方の列とで、それぞれタイヤ周方向に沿って等間隔で配置されており、一方の列と他方の列とは、タイヤ周方向に同位相である(本例では、他方の列の貫通孔7が、一方の列の貫通孔7とタイヤ周方向の同位置である)。そして、タイヤ幅方向に隣接する、一方の列の貫通孔7と他方の列の貫通孔7とで径の異なる貫通孔7が配置されている。各列においては、径の大きい貫通孔7と径の小さい貫通孔7とが、タイヤ周方向に交互に配置されている。このような構成によっても、樹脂部材6に貫通孔7を均一に配置することにより、樹脂部材6の剛性を確保しつつも、樹脂部材6の全面でエアが排出されるようにして、エア入り不良の発生を抑制することができる。   As shown in FIG. 5, in the third modified example, the through-hole 7 is a circular through-hole 7 in plan view of two types of diameters, and the tire circumferential direction is in one row and the other row, respectively. The one row and the other row are in the same phase in the tire circumferential direction (in this example, the through-hole 7 in the other row is connected to the through-hole 7 in one row and the tire). The same position in the circumferential direction). And the through-hole 7 from which a diameter differs by the through-hole 7 of one row | line | column adjacent to the tire width direction and the through-hole 7 of the other row | line | column is arrange | positioned. In each row, through-holes 7 having large diameters and through-holes 7 having small diameters are alternately arranged in the tire circumferential direction. Even with such a configuration, by uniformly disposing the through holes 7 in the resin member 6, while ensuring the rigidity of the resin member 6, air is exhausted over the entire surface of the resin member 6. The occurrence of defects can be suppressed.

図6に示すように、第4の変形例では、2種類の径の平面視で円形の貫通孔7が、ランダム且つ均一に配置されている。このような構成によっても、樹脂部材6に貫通孔7を均一に配置することにより、樹脂部材6の剛性を確保しつつも、樹脂部材6の全面でエアが排出されるようにして、エア入り不良の発生を抑制することができる。なお、図示例では、径の大きさは2種類としているが、3種類以上とすることもでき、いずれの種類でも径の大きさは1mm未満とし、また、0.1mm以上とすることが好ましい。   As shown in FIG. 6, in the fourth modification, circular through holes 7 are arranged randomly and uniformly in a plan view of two types of diameters. Even with such a configuration, by uniformly disposing the through holes 7 in the resin member 6, while ensuring the rigidity of the resin member 6, air is exhausted over the entire surface of the resin member 6. The occurrence of defects can be suppressed. In the illustrated example, two types of diameters are used, but three or more types can be used. In any type, the size of the diameter is less than 1 mm, and preferably 0.1 mm or more. .

本発明では、樹脂部材6は、プレート状であり、樹脂部材6の平面視において、複数の貫通孔7が、平均で、樹脂部材6の単位面積10000mm当たり、1〜10000個配置されてなることが好ましい。
貫通孔7を上記単位面積10000mm当たり1個以上配置することにより、エア入り不良の発生を抑制することができ、一方で、貫通孔7を上記単位面積10000mm当たり10000個以下配置することにより、樹脂部材6の剛性を確保することができるからである。
In the present invention, the resin member 6 has a plate shape, and in the plan view of the resin member 6, a plurality of through holes 7 are arranged on an average of 1 to 10,000 per unit area 10000 mm 2 of the resin member 6. It is preferable.
By arranging one or more through-holes 7 per unit area 10000 mm 2, it is possible to suppress the occurrence of poor air entry. On the other hand, by arranging no more than 10,000 through-holes 7 per unit area 10000 mm 2 This is because the rigidity of the resin member 6 can be ensured.

本発明では、樹脂部材6は、プレート状であり、樹脂部材6の平面視において、複数の貫通孔7が、樹脂部材6の任意の箇所の単位面積10000mm当たり、100〜10000個配置されてなることが好ましい。
任意の箇所の単位面積当たりの貫通孔7の個数が上記の範囲であることにより、貫通孔7の配置が均一となり、樹脂部材6で貫通孔7により局所的に剛性が低下する箇所が生じないようにすることができ、一方で、樹脂部材6の全面で上記のエアが抜ける効果を得ることができ、より一層エア入り不良の発生を抑制することができるからである。
In the present invention, the resin member 6 has a plate shape, and in the plan view of the resin member 6, a plurality of through-holes 7 are arranged at 100 to 10,000 per unit area of 10,000 mm 2 at an arbitrary portion of the resin member 6. It is preferable to become.
When the number of the through holes 7 per unit area at an arbitrary position is within the above range, the arrangement of the through holes 7 becomes uniform, and the resin member 6 does not have a portion where the rigidity is locally lowered by the through holes 7. This is because, on the other hand, it is possible to obtain the effect that the air escapes over the entire surface of the resin member 6, and it is possible to further suppress the occurrence of air entry defects.

以上、本発明の実施形態について説明したが、本発明は上記実施形態には何ら限定されるものではない。例えば、図1に示した実施形態では、樹脂部材6は、ベルト4のタイヤ径方向内側に配置されているが、ベルト4のタイヤ径方向外側に配置しても良い。また、図1に示した実施形態では、樹脂部材6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より大きいが、樹脂部材6のタイヤ幅方向の幅は、ベルト4のタイヤ幅方向の幅より小さいか、又は、略同じ幅とすることもできる。また、樹脂部材6の厚さは、ベルト4の厚さと大きくするか、ほぼ同じとするか、あるいは、小さくすることができる。
上記の実施形態や変形例では、いずれも貫通孔7の平面形状を円形としたが、本発明では、貫通孔7の平面形状を楕円形や四角形状等の多角形状とすることもできる。楕円形の場合、楕円の長軸の方向は特に限定されず、複数の貫通孔7間で当該方向を揃えることも、異ならせることもできる。また、多角形とする場合、当該多角形状の角部に丸みを持たせる等して、鋭角な部分が形成されないことが好ましい。
なお、図1に示した実施形態では、タイヤ周方向に連続して延びる(図示例で4本の)周方向主溝8を有するものとしているが、周方向主溝8の本数は特に限定されず、周方向主溝8を有しない構成とすることもできる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment at all. For example, in the embodiment shown in FIG. 1, the resin member 6 is disposed on the inner side in the tire radial direction of the belt 4, but may be disposed on the outer side in the tire radial direction of the belt 4. In the embodiment shown in FIG. 1, the width of the resin member 6 in the tire width direction is larger than the width of the belt 4 in the tire width direction, but the width of the resin member 6 in the tire width direction is the tire width of the belt 4. It may be smaller than the width in the direction or may be substantially the same width. Further, the thickness of the resin member 6 can be made larger, substantially the same as or smaller than the thickness of the belt 4.
In any of the above-described embodiments and modifications, the planar shape of the through hole 7 is circular. However, in the present invention, the planar shape of the through hole 7 may be an elliptical shape or a polygonal shape such as a rectangular shape. In the case of an ellipse, the direction of the major axis of the ellipse is not particularly limited, and the direction can be aligned or made different between the plurality of through holes 7. Moreover, when setting it as a polygon, it is preferable that an acute angle part is not formed by giving the corner | angular part of the said polygon shape roundness.
In the embodiment shown in FIG. 1, the circumferential main grooves 8 (four in the illustrated example) continuously extending in the tire circumferential direction are provided, but the number of the circumferential main grooves 8 is particularly limited. Alternatively, the circumferential main groove 8 may not be provided.

1:空気入りタイヤ、 2:ビード部、 2a:ビードコア、 3:カーカス、
4:ベルト、 4a:被覆ゴム(被覆樹脂)(被覆樹脂)、 4b:コード、
5:トレッド、 6:樹脂部材、 7:貫通孔、
8:周方向主溝、
CL:タイヤ赤道面
1: pneumatic tire, 2: bead part, 2a: bead core, 3: carcass,
4: Belt, 4a: Coated rubber (coating resin) (coating resin), 4b: Cord,
5: Tread, 6: Resin member, 7: Through hole,
8: circumferential main groove,
CL: Tire equator

Claims (4)

被覆材料で被覆されたコードがタイヤ周方向に螺旋状に巻回された状態のベルトと、
前記ベルトのタイヤ径方向内側又は外側に配置された、樹脂部材と、を備え、
前記樹脂部材に、1つ以上の貫通孔を設けたことを特徴とする、空気入りタイヤ。
A belt in which a cord covered with a coating material is spirally wound in the tire circumferential direction;
A resin member disposed inside or outside in the tire radial direction of the belt, and
A pneumatic tire, wherein one or more through holes are provided in the resin member.
前記貫通孔の径は、1mm未満である、請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the diameter of the through hole is less than 1 mm. 前記樹脂部材は、プレート状であり、
前記樹脂部材の平面視において、複数の前記貫通孔が、平均で、前記樹脂部材の単位面積10000mm当たり、1〜10000個配置されてなる、請求項1又は2に記載の空気入りタイヤ。
The resin member is plate-shaped,
3. The pneumatic tire according to claim 1, wherein, in a plan view of the resin member, the plurality of through holes are arranged in an average of 1 to 10,000 per unit area of 10000 mm 2 of the resin member.
前記樹脂部材は、プレート状であり、
前記樹脂部材の平面視において、複数の前記貫通孔が、前記樹脂部材の任意の箇所の単位面積10000mm当たり、100〜10000個配置されてなる、請求項1〜3のいずれか一項に記載の空気入りタイヤ。
The resin member is plate-shaped,
The planar view of the said resin member WHEREIN: The said several through-hole is arrange | positioned per unit area 10000mm < 2 > of the arbitrary locations of the said resin member, and 100-10000 pieces are arrange | positioned. Pneumatic tires.
JP2018105579A 2018-05-31 2018-05-31 Pneumatic tire Pending JP2019209760A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018105579A JP2019209760A (en) 2018-05-31 2018-05-31 Pneumatic tire
PCT/JP2019/021227 WO2019230763A1 (en) 2018-05-31 2019-05-29 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105579A JP2019209760A (en) 2018-05-31 2018-05-31 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2019209760A true JP2019209760A (en) 2019-12-12

Family

ID=68698293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105579A Pending JP2019209760A (en) 2018-05-31 2018-05-31 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209760A (en)
WO (1) WO2019230763A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172003A (en) * 1974-12-19 1976-06-22 Shuji Noda
JPH0347203U (en) * 1989-09-14 1991-05-01
JP2002002220A (en) * 2000-06-20 2002-01-08 Ohtsu Tire & Rubber Co Ltd :The Radial tire
JP4588199B2 (en) * 2000-11-21 2010-11-24 株式会社ブリヂストン Composite reinforced rubber and pneumatic tires
JP2004358929A (en) * 2003-06-09 2004-12-24 Bridgestone Corp Method for producing pneumatic tire and pneumatic tire
FR2921863B1 (en) * 2007-10-05 2009-12-18 Michelin Soc Tech PNEUMATIC USING A FIBER REINFORCING STRUCTURE OF APLATIE SECTION
FR2962369B1 (en) * 2010-07-07 2014-03-21 Michelin Soc Tech TOP REINFORCEMENT FOR AIR TIRE
JP5749142B2 (en) * 2010-12-28 2015-07-15 横浜ゴム株式会社 Pneumatic tire and method for manufacturing pneumatic tire

Also Published As

Publication number Publication date
WO2019230763A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US9033017B2 (en) Pneumatic tire
US20130048185A1 (en) Pneumatic radial tire for use on passenger cars
WO2019230773A1 (en) Pneumatic tire
JP2019001412A (en) Pneumatic tire
US11207928B2 (en) Pneumatic tire
US20200114705A1 (en) Pneumatic tire with noise-absorbing member and tire-and-rim assembly
JP6774385B2 (en) How to make a pneumatic tire
WO2019230763A1 (en) Pneumatic tire
US20200376892A1 (en) Pneumatic tire
JP5083041B2 (en) Pneumatic tire
CN112638665B (en) Pneumatic tire and method for manufacturing pneumatic tire
US20210178821A1 (en) Tire
JP6928495B2 (en) Pneumatic tires
WO2019230496A1 (en) Pneumatic tire
JP5309731B2 (en) Pneumatic tire
WO2019230765A1 (en) Pneumatic tire
JP2010137737A (en) Pneumatic radial tire
JP2008087610A (en) Pneumatic radial tire
CN112313088B (en) Pneumatic tire
EP3736141B1 (en) Radial tire
JP2019001409A (en) Pneumatic tire
JP2005297871A (en) Pneumatic radial-ply tire
JP6774386B2 (en) Pneumatic tires
WO2019230761A1 (en) Pneumatic tire
WO2019230767A1 (en) Pneumatic tire and method for manufacturing pneumatic tire