JP2019205264A - 溶接用電源装置および出力制御方法。 - Google Patents

溶接用電源装置および出力制御方法。 Download PDF

Info

Publication number
JP2019205264A
JP2019205264A JP2018098393A JP2018098393A JP2019205264A JP 2019205264 A JP2019205264 A JP 2019205264A JP 2018098393 A JP2018098393 A JP 2018098393A JP 2018098393 A JP2018098393 A JP 2018098393A JP 2019205264 A JP2019205264 A JP 2019205264A
Authority
JP
Japan
Prior art keywords
inverter circuit
transformer
turned
welding
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018098393A
Other languages
English (en)
Other versions
JP7018354B2 (ja
Inventor
佳昭 北村
Yoshiaki Kitamura
佳昭 北村
裕志 橋本
Hiroshi Hashimoto
裕志 橋本
亮 戸田
Ryo Toda
亮 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018098393A priority Critical patent/JP7018354B2/ja
Publication of JP2019205264A publication Critical patent/JP2019205264A/ja
Application granted granted Critical
Publication of JP7018354B2 publication Critical patent/JP7018354B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】溶接電流の増減に起因する、変圧器における偏磁を抑制する。【解決手段】溶接用電源装置50は、第1〜第4トランジスタQ1〜Q4をブリッジ状に配列してなり、直流を交流に変換するインバータ回路52と、インバータ回路52が出力する交流を変圧する変圧器53と、変圧器53が出力する交流を整流して直流を出力する二次整流回路54と、二次整流回路から溶接ワイヤに流れる溶接電流の大きさが目標値に近づくようにインバータ回路52の動作を制御するとともに、インバータ回路52から変圧器53の一次側に印加される一次側印加電圧の累積値に基づいて、インバータ回路52で次にオンさせるトランジスタを決定する制御回路58とを備える。【選択図】図2

Description

本発明は、溶接電流の出力制御方法および溶接用電源装置に関する。
アーク溶接装置で用いられる溶接用電源装置として、商用電源(例えば三相交流電源)を整流して直流に変換する一次側変換回路と、複数のスイッチング素子を含み、一次変換回路から入力される直流を高周波交流に変換するインバータ回路と、インバータ回路から入力される高周波交流をより低圧に変換する溶接トランス(変圧器)と、溶接トランスから入力される低圧な交流を整流して直流に変換し、溶接トーチおよび溶接対象に出力する二次側変換回路とを備えたものが知られている(特許文献1参照)。また、特許文献1では、4つの半導体スイッチング素子(トランジスタ等)をブリッジ状に配置してなるフルブリッジ方式のインバータ回路を用い、溶接トーチの電極(溶接ワイヤ)から溶接対象に流れる溶接電流の大きさを、インバータ回路のスイッチング制御によって調整している。より具体的に説明すると、フルブリッジ方式のインバータ回路では、対角に位置する2つのスイッチング素子を1ペアとし、オンさせるペアを交互に切り換えることで、直流を交流に変換している。そして、例えば各ペアをオンさせる期間(パルス幅)を調整するPWM変調方式を用いて、インバータ回路が出力する交流の大きさを調整している。
特開2016−144303号公報
アーク溶接装置で用いられる溶接用電源装置の場合、インバータ回路から変圧器に供給される高周波交流において、正負がほぼ釣り合っている場合には、特に問題は生じないが、正側または負側に偏りが生じた場合には、変圧器で偏磁が生じることがあり得る。そして、変圧器で偏磁が生じた場合、スイッチング素子に過大な電流が流れることに伴って、スイッチング素子が故障するおそれがある。
特に、アーク溶接では、スパッタ等の発生を抑制する目的で、溶接ワイヤと溶接対象(ワーク)との間に形成される溶滴の状態に応じて、溶接電流の大きさを急激に増減させる制御が行われることがあり得る。このような制御を行う場合、インバータ回路から変圧器に供給される高周波交流が、正側または負側に偏りやすくなる。
ここで、特許文献1では、インバータ回路の各スイッチング素子をオンさせるオンパルス幅を監視し、オンパルス幅の補正を行うことで、変圧器の偏磁を抑制している。しかしながら、上述した、溶接電流の大きさを急激に増減させるような制御を行う場合には、変圧器の偏磁を抑制することが困難である。
本発明は、溶接電流の増減に起因する、変圧器における偏磁を抑制することを目的とする。
本発明の溶接用電源装置は、ブリッジ回路を構成する複数のスイッチング素子を備え、直流を交流に変換するインバータ回路と、前記インバータ回路から出力される交流を変圧する変圧器と、前記変圧器から出力される交流を直流に整流する整流回路と、前記整流回路から溶接ワイヤに流れる溶接電流の大きさに基づいて前記インバータ回路における前記複数のスイッチング素子を制御する制御手段と、前記インバータ回路から前記変圧器の一次側に印加される一次側印加電圧の累積値に基づき、当該インバータ回路で次にオンさせるスイッチング素子を決定する決定手段とを含んでいる。
このような溶接用電源装置において、前記決定手段は、前記一次側印加電圧と当該一次側印加電圧の印加時間との積であるET積を、前記累積値として用いることを特徴とすることができる。
また、前記インバータ回路は、第1のスイッチング素子をオンし且つ第2のスイッチング素子をオフしたときに前記変圧器の一次側に正の電流を供給するとともに、当該第1のスイッチング素子をオフし且つ当該第2のスイッチング素子をオンしたときに当該変圧器の一次側に負の電流を供給し、前記決定手段は、一次側印加電圧の累積値が負側に偏った場合に、前記インバータ回路で次にオンさせるスイッチング素子を前記第1のスイッチング素子に決定することを特徴とすることができる。
さらに、前記インバータ回路は、第1のスイッチング素子をオンし且つ第2のスイッチング素子をオフしたときに前記変圧器の一次側に正の電流を供給するとともに、当該第1のスイッチング素子をオフし且つ当該第2のスイッチング素子をオンしたときに当該変圧器の一次側に負の電流を供給し、前記決定手段は、一次側印加電圧の累積値が正側に偏った場合に、前記インバータ回路で次にオンさせるスイッチング素子を前記第2のスイッチング素子に決定することを特徴とすることができる。
また、他の観点から捉えると、本発明の溶接用電源装置は、4つのスイッチング素子をブリッジ状に配列してなり、対角に位置する2つのスイッチング素子をそれぞれ組とする第1素子対および第2素子対を用いて、直流を交流に変換するインバータ回路と、
前記インバータ回路から出力される交流を変圧する変圧器と、前記変圧器から出力される交流を整流し、溶接ワイヤに向けて直流を出力する整流回路と、前記インバータ回路からの出力に基づき、当該インバータ回路に対し、前記第1素子対をオンさせた後に前記第2素子対をオンさせるか、当該第2素子対をオンさせた後に当該第1素子対をオンさせるか、当該第1素子対をオンさせた後に当該第1素子対をオンさせるか、当該第2素子対をオンさせた後に当該第2素子対をオンさせるか、を決定する決定手段とを含んでいる。
さらに、他の観点から捉えると、本発明は、ブリッジ回路を構成する複数のスイッチング素子を備え、直流を交流に変換するインバータ回路と、当該インバータ回路から出力される交流を変圧する変圧器と、当該変圧器から出力される交流を直流に整流する整流回路とを含む溶接用電源装置の出力制御方法であって、前記整流回路から溶接ワイヤに流れる溶接電流の大きさに基づいて前記インバータ回路における前記複数のスイッチング素子を制御し、前記インバータ回路から前記変圧器の一次側に印加される一次側印加電圧の累積値に基づき、前記インバータ回路で次にオンさせるスイッチング素子を決定することを特徴としている。
さらにまた、他の観点から捉えると、本発明は、4つのスイッチング素子をブリッジ状に配列してなり、対角に位置する2つのスイッチング素子をそれぞれ組とする第1素子対および第2素子対を用いて、直流を交流に変換するインバータ回路と、当該インバータ回路から出力される交流を変圧する変圧器と、当該変圧器から出力される交流を整流し、溶接ワイヤに向けて直流を出力する整流回路とを含む溶接用電源装置の出力制御方法であって、前記インバータ回路からの出力を取得し、前記インバータ回路から取得した出力に基づき、当該インバータ回路に対し、前記第1素子対をオンさせた後に前記第2素子対をオンさせるか、当該第2素子対をオンさせた後に当該第1素子対をオンさせるか、当該第1素子対をオンさせた後に当該第1素子対をオンさせるか、当該第2素子対をオンさせた後に当該第2素子対をオンさせるか、を決定することを特徴としている。
本発明によれば、溶接電流の増減に起因する、変圧器における偏磁を抑制することができる。
本発明の実施の形態に係る溶接システムの概略構成を示す図である。 溶接システムにおける溶接用電源装置の概略構成を示す図である。 溶接用電源装置における制御回路の概略構成を示す図である。 短絡移行における出力電流の目標値の一例を示す図である。 (a)〜(c)は、本実施の形態のインバータ回路の動作を説明するための図である。 (a)〜(c)は、本実施の形態のインバータ回路の動作(続き)を説明するための図である。 (a)〜(c)は、本実施の形態のインバータ回路の動作(続き)を説明するための図である。 (a)、(b)は、ET積を説明するための図である。 本実施の形態における出力電流の制御を説明するためのフローチャートである。 本実施の形態の手法を適用した場合の、総ET積の経時変化の一例(実施例)を説明するための図である。 本実施の形態の手法を適用しない場合の、総ET積の経時変化の一例(比較例)を説明するための図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[溶接システムの構成]
図1は、本発明の実施の形態に係る溶接システム1の概略構成を示す図である。この溶接システム1は、消耗電極式(溶極式)のガスシールドアーク溶接法によって、被溶接物200の溶接を行うものである。
この溶接システム1は、溶接ワイヤ100を用いて被溶接物200を溶接する溶接トーチ10と、溶接トーチ10を保持するとともに溶接トーチ10の位置や姿勢を設定するロボットアーム20とを備えている。また、溶接システム1は、溶接トーチ10に溶接ワイヤ100を送給するワイヤ送給装置30と、溶接トーチ10にシールドガス(例えば炭酸ガス)を供給するシールドガス供給装置40とを備えている。さらに、溶接システム1は、溶接トーチ10を介して溶接ワイヤ100および被溶接物200に直流の溶接電流の供給を行うとともに溶接電流の制御を行う溶接用電源装置50と、ロボットアーム20を制御するロボット制御装置60とを備えている。なお、ここでは詳細な説明を行わないが、溶接用電源装置50は、溶接電流の他に、溶接速度や溶接ワイヤ100の送給速度等の制御も行っている。
[溶接用電源装置の構成]
図2は、溶接システム1における溶接用電源装置50の概略構成を示す図である。ただし、図2は、溶接用電源装置50のうち、溶接電流の供給および制御に関連する構成要素を、抜き出して示している。
本実施の形態の溶接用電源装置50は、商用交流電源5から供給されてくる三相交流電力に各種処理を施すことで直流電力に変換し、溶接トーチ10および被溶接物200(図1参照)へと供給する。この間、溶接用電源装置50では、各種電力変換を行うことにより、外部に出力する直流電力(直流電圧および直流電流)の調整を行う。なお、以下の説明においては、溶接用電源装置50から溶接トーチ10および溶接ワイヤ100を介して被溶接物200(図1参照)へと出力される溶接電流のことを、出力電流と称することがある。
本実施の形態の溶接用電源装置50は、一次整流回路51と、インバータ回路52と、変圧器53と、二次整流回路54と、出力リアクトル55と、出力電流検出回路56と、一次側印加電圧検出回路57と、制御回路58とを備えている。以下、溶接用電源装置50の各構成要素について、順に説明を行う。
(一次整流回路)
一次整流回路51は、入力側が商用交流電源5に接続されており、出力側がインバータ回路52に接続されている。この一次整流回路51は、商用交流電源5から入力されてくる三相交流を、整流および平滑化することで直流に変換する。ここで、本実施の形態の一次整流回路51は、三相全波整流回路によって構成されている。より具体的に説明すると、本実施の形態の一次整流回路51は、商用交流電源5の出力側に設けられる一次整流ダイオード群511と、一次整流ダイオード群511の出力側に設けられる入力リアクトル512と、入力リアクトル512の出力側に設けられる平滑コンデンサ513とを有している。なお、この例において、一次整流ダイオード群511は、6つのダイオードを含んでいる。
(インバータ回路)
インバータ回路52は、入力側が一次整流回路51に接続されており、出力側が変圧器53に接続されている。このインバータ回路52は、一次整流回路51から入力されてくる直流にスイッチング処理を施すことで、商用交流電源5よりも高周波となる単相交流に変換する。ここで、本実施の形態のインバータ回路52は、電圧形フルブリッジインバータによって構成されている。より具体的に説明すると、本実施の形態のインバータ回路52は、一次整流回路51の出力側に設けられる入力コンデンサ521と、入力コンデンサ521の出力側に設けられるスイッチ素子群522とを有している。
そして、本実施の形態のスイッチ素子群522は、ブリッジ状に接続された複数(ここでは4つ)のスイッチング素子を有している。より具体的に説明すると、本実施の形態のスイッチ素子群522は、それぞれがスイッチング素子として機能する第1トランジスタQ1、第2トランジスタQ2、第3トランジスタQ3および第4トランジスタQ4を有している。ここで、第1トランジスタQ1〜第4トランジスタQ4としては、特に限定されるものではないが、この例ではIGBT(Insulated Gate Bipolar Transistor)を用いている。なお、本実施の形態では、第1トランジスタQ1および第4トランジスタQ4が第1のスイッチング素子として、また、第2トランジスタQ2および第3トランジスタQ3が第2のスイッチング素子として、それぞれ機能している。
そして、このスイッチ素子群522では、第1トランジスタQ1および第4トランジスタQ4が、ブリッジにおける一方の対角に位置し、第2トランジスタQ2および第3トランジスタQ3が、ブリッジにおける他方の対角に位置している。そして、第1トランジスタQ1と第3トランジスタQ3との接続部位、および、第2トランジスタQ2と第4トランジスタQ4と接続部位が、スイッチ素子群522における入力側となる。また、第1トランジスタQ1と第2トランジスタQ2との接続部位、および、第3トランジスタQ3と第4トランジスタQ4との接続部位が、スイッチ素子群522における出力側となる。
また、本実施の形態のスイッチ素子群522は、これら第1トランジスタQ1〜第4トランジスタQ4のそれぞれに並列に接続された、第1還流ダイオードD1、第2還流ダイオードD2、第3還流ダイオードD3および第4還流ダイオードD4をさらに有している。
(変圧器)
変圧器53は、入力側がインバータ回路52に接続されており、出力側が二次整流回路54に接続されている。そして、変圧器53からみて入力側(図中左側)が一次側となっており、変圧器53からみて出力側(図中右側)が二次側となっている。この変圧器53は、インバータ回路52から入力されてくる単相交流(一次側電圧)を、より電圧値の低い単相交流(二次側電圧)に変換(変圧)する。ここで、本実施の形態の変圧器53は、磁心530と一次巻線531と二次巻線532とを有しており、一次側と二次側とを絶縁するとともに、二次巻線532側にセンタータップを設けた単相変圧器によって構成されている。
(二次整流回路)
整流回路の一例としての二次整流回路54は、入力側が変圧器53に接続されており、出力側且つ正極側は出力リアクトル55に、出力側且つ負極側は出力電流検出回路56に、それぞれ接続されている。この二次整流回路54は、変圧器53から入力されてくる単相交流を、整流することで直流に変換する。ここで、本実施の形態の二次整流回路54は、変圧器53における二次側のセンタータップを利用する、センタータップ型単相両波整流回路によって構成されている。より具体的に説明すると、本実施の形態の二次整流回路54は、変圧器53の出力側に設けられる二次整流ダイオード群541を有している。なお、この例において、二次整流ダイオード群541は、2つのダイオードを含んでいる。そして、これら2つのダイオードは、変圧器53の出力側に設けられた二次巻線532の一端側および他端側にそれぞれ接続され、二次整流回路54の出力側且つ正極側となる。これに対し、変圧器53の出力側に設けられた二次巻線532の中点は、二次整流回路54の出力側且つ負極側となる。
(出力リアクトル)
出力リアクトル55は、入力側が二次整流回路54の出力側且つ正極側に接続されており、出力側が溶接トーチ10を介して溶接ワイヤ100(図1参照)に接続されている。この出力リアクトル55は、出力電流の波形を平滑化するとともに、溶接ワイヤ100が母材である被溶接物200に接触短絡した場合や、溶滴が溶融池に接触した場合などにおける出力電流の流れを、パッシブにコントロールする。ただし、出力リアクトル55を、二次整流回路54の出力側且つ負極側に接続してもかまわない。
(出力電流検出回路)
出力電流検出回路56は、入力側が二次整流回路54に接続されており、出力側が被溶接物200(図1参照)に接続されている。この出力電流検出回路56は、溶接トーチ10から溶接ワイヤ100を介して被溶接物200に流れる、出力電流の大きさである溶接電流値Iを検出する。
(一次側印加電圧検出回路)
一次側印加電圧検出回路57は、インバータ回路52の出力側と変圧器53の入力側との間に設けられており、インバータ回路52が出力する電圧(インバータ出力電圧値)を検出する。ここで、この例においては、このインバータ出力電圧値が、変圧器53の一次巻線531に印加される一次側印加電圧値Vと同じ大きさになる。
(制御回路)
制御手段および決定手段の一例としての制御回路58は、出力電流検出回路56が検出した出力電流値Iと、一次側印加電圧検出回路57が検出した一次側印加電圧値Vとに基づき、インバータ回路52に設けられた第1トランジスタQ1〜第4トランジスタQ4の動作(スイッチング動作)を制御する。
[制御回路の構成]
図3は、溶接用電源装置50における制御回路58の概略構成を示す図である。ただし、図3は、制御回路58のうち、第1トランジスタQ1〜第4トランジスタQ4の動作の制御に関連する構成を、抜き出して示している。また、以下の説明においては、スイッチ素子群522(図2参照)でブリッジを構成する第1トランジスタQ1〜第4トランジスタQ4のうち、一方の対角に位置する第1、第4トランジスタQ1、Q4を第1素子対P1と称し、他方の対角に位置する第2、第3トランジスタQ2、Q3を第2素子対P2と称する。そして、本実施の形態では、第1素子対P1および第2素子対P2を単位として、第1トランジスタQ1〜第4トランジスタQ4のオン/オフが行われる。なお、本実施の形態では、第1トランジスタQ1〜第4トランジスタQ4のオン期間の長さ(パルス幅)を変調するPWM(Pulse Width Modulation)方式によって、インバータ回路52の出力を制御している。
本実施の形態の制御回路58は、デューティ信号作成部581と、駆動信号作成部582と、ET積演算部583と、総ET積記憶部584とを有している。以下、制御回路58の各構成要素について、順に説明を行う。
(デューティ信号作成部)
デューティ信号作成部581は、出力電流検出回路56から入力されてくる溶接電流値Iと、出力電流(溶接電流)の目標値とに基づき、PWM制御におけるデューティ比を決定し、デューティ信号を作成する。ここで、本実施の形態のデューティ比は、インバータ回路52での制御周期とオン期間との関係に基づいて定まるものであるが、その詳細については後述する。
(駆動信号作成部)
駆動信号作成部582は、デューティ信号作成部581から入力されてくるデューティ信号と、総ET積記憶部584から入力されてくる総ET積とに基づき、第1素子対P1(第1、第4トランジスタQ1、Q4)を駆動するための信号(以下では第1駆動信号と称する)と、第2素子対P2(第2、第3トランジスタQ2、Q3)を駆動するための信号(以下では第2駆動信号と称する)とを作成する。
(ET積演算部)
ET積演算部583は、デューティ信号作成部581から入力されてくるデューティ信号と、一次側印加電圧検出回路57から入力されてくる一次側印加電圧値Vとに基づき、変圧器53の一次側印加電圧値Vと印加時間との積として定められるET積を、制御周期毎に演算する。また、ET積演算部583は、過去のET積の累積値として定められる総ET積に、今回の制御周期で新たに発生したET積を加算(累積)する演算を行い、総ET積を更新する。なお、ET積の詳細については後述する。
(総ET積記憶部)
総ET積記憶部584はET積演算部583から入力されてくる、更新済みの総ET積を記憶する。また、総ET積記憶部584は、駆動信号作成部582およびET積演算部583からの要求に応じて、自身が記憶している総ET積を出力する。
[溶接システムの動作]
では、本実施の形態の溶接システム1の、基本的な動作を説明する。
一次整流回路51は、商用交流電源5から入力されてくる三相交流(例えば三相220V、60Hz)を、直流(例えば300V程度)に変換する。このとき、一次整流回路51では、一次整流ダイオード群511が三相全波整流を行うとともに、入力リアクトル512および平滑コンデンサ513が、三相全波整流後の平滑化を行う。
次に、インバータ回路52が、一次整流回路51から入力されてくる直流を、商用交流電源5よりも高周波となる単相交流(例えば10kHz〜100kHz程度)に変換する。このとき、インバータ回路52では、入力コンデンサ521が電圧の安定化を行うとともに、第1素子対P1および第2素子対P2(第1トランジスタQ1〜第4トランジスタQ4)がオン/オフ制御されることにより、交直流変換を行う。また、インバータ回路52に設けられた第1還流ダイオードD1〜第4還流ダイオードD4は、それぞれに対応する第1トランジスタQ1〜第4トランジスタQ4において、印加している電圧と逆向きの電流の逃げ道として機能する。
続いて、変圧器53が、インバータ回路52から入力されてくる単相交流を、より低圧な単相交流(例えば数十V程度)に変換する。
次いで、二次整流回路54が、変圧器53から入力されてくる単相交流を、直流に変換する。このとき、二次整流回路54では、二次整流ダイオード群541が単相両波整流を行う。
それから、出力リアクトル55が、二次整流回路54から入力されてくる直流を平滑化し、出力電流として出力する。そして、出力リアクトル55を介して出力される出力電流は、溶接トーチ10および溶接ワイヤ100を介して、被溶接物200に流れる。このとき、溶接ワイヤ100の先端が、アークにより溶融して溶滴となり、成長した溶滴が溶接ワイヤ100から離脱して被溶接物200へと移行し、被溶接物200の溶接が行われることになる。その結果、被溶接物200を、溶接ワイヤ100を用いて溶接してなる溶接物が得られる。この間、出力電流の大きさすなわち溶接電流値Iは、インバータ回路52の制御に応じて増減されることになる。
[出力電流の目標値]
図4は、短絡移行における出力電流の目標値の一例を示す図である。図4において、横軸は時間t(sec)であり、縦軸は出力電流の目標値の大きさすなわち溶接電流値I(A)である。また、図4に示す例は、送給速度が一定であることを前提としている。
短絡移行の場合、溶接ワイヤ100および被溶接物200が、溶接ワイヤ100の先端に形成された溶滴を介して短絡する短絡状態と、この溶滴が溶接ワイヤ100から離脱して被溶接物200側に移行することで、溶接ワイヤ100と被溶接物200との間にアークが発生するアーク状態とを繰り返すことになる。ここで、短絡状態が維持される期間を短絡期間Txとし、アーク状態が維持される期間をアーク期間Tyとしたとき、溶接周期Tzはこれら短絡期間Txおよびアーク期間Tyの和(Tz=Tx+Ty)として表現することができる。なお、溶接周期Tzは、10(msec)〜30(msec)程度であり、1秒あたり30回〜100回程度繰り返される(30Hz〜100Hz程度)ことになる。
短絡期間Txは、短絡第1期間Tx1と、短絡第1期間Tx1に続く短絡第2期間Tx2と、短絡第2期間Tx2に続く短絡第3期間Tx3とを含んでいる。これらのうち、溶接ワイヤ100と被溶接物200とが、成長した溶滴により短絡し始める短絡第1期間Tx1では、溶接電流値Iを低い値で一定(ただし、後述するアーク第2期間Ty2よりは大きな値)とするように目標値が設定される。また、溶滴が短絡状態(橋絡状態)にあり、電磁ピンチ力によるくびれの形成を促進する短絡第2期間Tx2では、溶接電流値Iを急増させるように目標値が設定される。さらに、くびれ形成後に溶滴が離脱し始める第3短絡期間Tx3では、溶接電流値Iを急減させるように目標値が設定される。なお、図4に示す例では、短絡第2期間Tx2において、溶接電流値Iの目標値の傾きを二段階に設定している。
アーク期間Tyは、短絡第3期間Tx3に続くアーク第1期間Ty1と、アーク第1期間Ty1に続き且つ短絡第1期間Tx1へと続くアーク第2期間Ty2とを含んでいる。これらのうち、アーク再点弧後の再短絡防止のために電流を増加させるとともに溶滴の成長を促すアーク第1期間Ty1では、溶接電流値Iを急増させた後に漸減させるように目標値が設定される。また、短絡時のスパッタ飛散を抑制するアーク第2期間Ty2では、溶接電流値Iをさらに低下させた状態で一定とするように目標値が設定される。
本実施の形態における溶接電流値Iの目標値は、常時正の値をとるとともに、基本的には溶接周期Tzにて同じ波形が繰り返し出力されるように設定される。ただし、厳密には、溶滴の成長度合いなどにより、溶接周期Tzは固定出来ず、平均電圧や平均電流の狙い値、短絡状態に合わせて、基本形状は維持しつつ、電流のピーク値や各期間の幅を調整する(変える)ことになる。ここで、溶接電流値Iの目標値は、溶接ワイヤ100のワイヤ径等にもよるが、例えば最小値が数(A)となり最大値が数百(A)となる範囲から選択される。そして、本実施の形態では、このように出力電流値Iの目標値を設定することで、例えば短絡期間Txからアーク期間Tyに移行する際に、出力電流値Iが過大となることに起因するスパッタの発生を抑制している。
[インバータ回路の動作]
図5〜図7は、本実施の形態のインバータ回路52の動作を説明するための図である。ここで、図5(a)〜(c)、図6(a)〜(c)、図7(a)〜(c)は、それぞれ、デューティ信号作成部581が出力するデューティ信号Sdと、駆動信号作成部582が出力する第1駆動信号S1(第1素子対P1用)および第2駆動信号S2(第2素子対P2用)と、インバータ回路52が出力し且つ変圧器53に入力される一次側印加電圧値Vとの関係を示している。また、図5(a)〜(c)、図6(a)〜(c)、図7(a)〜(c)は、それぞれ、インバータ回路52の制御周期Tcの連続する2周期分を示している。ここで、本実施の形態におけるインバータ回路52の制御周期Tcは、インバータ回路52が出力する単相交流の周期(周波数が10kHz〜100kHzの場合、0.01msec〜0.1msec)の半分(半周期)となる。したがって、インバータ回路52の制御周期Tcは、溶接周期Tzに比べて十分に小さいといえる(Tc≪Tz)。
一般的なPWM制御では、制御周期Tc毎に正の出力と負の出力とを交互に繰り返している。これに対し、本実施の形態では、正負の出力を交互に行う以外に、正の出力を続けたり、負の出力を続けたりすることができるようになっている。ここで、図5(a)〜(c)は、連続する2つの制御周期Tcにて、正の出力と負の出力とを行う場合を例示している。また、図6(a)〜(c)は、連続する2つの制御周期Tcにて、ともに正の出力を行う場合を例示している。さらに、図7(a)〜(c)は、連続する2つの制御周期Tcにて、ともに負の出力を行う場合を例示している。
また、一般的なPWM制御では、各制御周期Tcにて、対象となる素子対(第1素子対P1または第2素子対P2)をオンさせるオン時間Tonを調整することで、デューティ比(=オン時間Ton/制御周期Tc)の設定を行っている。なお、PWM制御では、制御周期Tcが一定となるため、オン時間Tonが減少すれば出力も減少し、オン時間Tonが増加すれば出力も増加する。ここで、図5(a)、図6(a)および図7(a)は、連続する2つの制御周期Tcにて、同じ大きさの出力を行う場合を例示している。また、図5(b)、図6(b)および図7(b)は、連続する2つの制御周期Tcにて、出力を減少させていく場合を例示している。さらに、図5(c)、図6(c)および図7(c)は、連続する2つの制御周期Tcにて、出力を増加させていく場合を例示している。
そして、本実施の形態では、インバータ回路52の制御において、これら図5(a)〜(c)、図6(a)〜(c)、図7(a)〜(c)のいずれかに記載されたパターンが用いられる。なお、本実施の形態では、第1素子対P1がオンに設定され、且つ、第2素子対P2がオフに設定されたときに、変圧器53の一次巻線531に流れる電流の向きを、「正」と定義する。また、本実施の形態では、第1素子対P1がオフに設定され、且つ、第2素子対P2がオフに設定されたときに、変圧器53の一次巻線531に流れる電流の向きを、「負」と定義する。
[ET積]
図8は、ET積を説明するための図である。ここで、図8(a)は一次印加電圧値Vが正の場合のET積を説明するための図であり、図8(b)は一次印加電圧値Vが負の場合のET積を説明するための図である。
ET積は、変圧器53のパラメータの1つであって、変圧器53に印加される電圧(ここでは一次印加電圧値V)とその印加時間(ここではオン時間Ton)との積(図中にハッチングで示す)で表される。そして、ET積は、変圧器53(磁心530)の磁束密度に対応している。なお、一次印加電圧値Vが正の場合(図8(a)参照)に、ET積は正の値(+)をとり、一次印加電圧値Vが負の場合(図8(b)参照)に、ET積は負の値(−)をとる。
[出力電流の制御]
図9は、本実施の形態の出力電流(溶接電流)の制御を説明するためのフローチャートである。なお、初期状態において、総ET積記憶部584に記憶される総ET積の値は「0」であるものとする。
溶接システム1において溶接が開始されると、デューティ信号作成部581は、出力電流検出回路56から入力されてくる出力電流値Iを取得する(ステップ10)。次に、デューティ信号作成部581は、ステップ10で取得した出力電流値Iと、出力電流値Iの目標値(図4参照)とに基づき、今回の制御周期Tcのデューティ比を決定する(ステップ20)。そして、デューティ信号作成部581は、ステップ20で決定した今回の制御周期Tcのデューティ比を含むデューティ信号Sdを作成し、駆動信号作成部582およびET積演算部583に出力する。
続いて、駆動信号作成部582は、総ET積記憶部584から総ET積I_ETを読み出す(ステップ30)。そして、駆動信号作成部582は、デューティ信号作成部581から入力されるデューティ信号Sdと、ステップ30で読み出した総ET積I_ETとに基づき、駆動信号(第1駆動信号S1および第2駆動信号S2)を作成する(ステップ40)。なお、ステップ40で作成された、第1駆動信号S1は第1素子対P1(第1、第4トランジスタQ1、Q4)に、第2駆動信号S2は第2素子対P2(第2、第3トランジスタQ2、Q3)に、それぞれ出力される。
ここで、ステップ40の具体的な内容について説明を行う。
ステップ40において、駆動信号作成部582は、まず、総ET積I_ETが負の閾値−th以下となっているか否かを判断する(ステップ41)。ステップ41で肯定の判断(Yes)を行った場合、駆動信号作成部582は、今回の制御周期Tcの出力先を第1素子対P1に設定する(ステップ42)。一方、ステップ41で否定の判断(No)を行った場合、駆動信号作成部582は、次に、総ET積I_ETの絶対値が、正の閾値+th以下となっているか否かを判断する(ステップ43)。
ステップ43で肯定の判断(Yes)を行った場合、駆動信号作成部582は、前回の制御周期Tcの出力先が、第2素子対P2であったか否かを判断する(ステップ44)。ステップ44で肯定の判断(Yes)を行った場合、駆動信号作成部582は、ステップ42へと進み、今回の制御周期Tcの出力先を第1素子対P1に設定する。これに対し、ステップ43あるいはステップ44で否定の判断(No)を行った場合、駆動信号作成部582は、今回の制御周期Tcの出力先を第2素子対P2に設定する(ステップ45)。
ここで、ステップ42を選択した場合、駆動信号作成部582は、今回の制御周期Tcにおいて、第1駆動信号S1をデューティ信号Sdに応じた期間(オン期間Ton)だけオンに設定する一方、第2駆動信号S2を常時オフに設定する。これに対し、ステップ45を選択した場合、駆動信号作成部582は、今回の制御周期Tcにおいて、第1駆動信号S1を常時オフに設定する一方、第2駆動信号S2をデューティ信号Sdに応じた期間(オン期間Ton)だけオンに設定する。そして、次のステップ50へと進む。
次いで、ET積演算部583は、一次側印加電圧検出回路57から入力されてくる一次側印加電圧値Vを取得する(ステップ50)。次に、ET積演算部583は、デューティ信号作成部581から入力されるデューティ信号Sdと、ステップ50で取得した一次側印加電圧値Vとに基づき、今回の制御周期TcのET積etを算出する(ステップ60)。また、ET積演算部583は、総ET積記憶部584から総ET積I_ETを読み出す(ステップ70)。そして、ET積演算部583は、ステップ70で読み出した総ET積I_ETに、ステップ60で算出した今回の制御周期TcのET積etを加算する(I_ET=I_ET+et:ステップ80)ことで、総ET積I_ETを更新する。その後、ET積演算部583は、ステップ80で更新した総ET積I_ETを、総ET積記憶部584に書き込む(ステップ90)ことで、総ET積記憶部584に記憶させる。
そして、溶接が終了したか否かの判断が行われ(ステップ100)、否定の判断(No)を行った場合にはステップ10に戻って処理が続行され、肯定の判断(Yes)を行った場合には処理を終了する。
[具体例]
図10は、本実施の形態の手法を適用した場合の、総ET積I_ETの経時変化の一例(実施例)を説明するための図である。ここで、図10は、デューティ信号Sdと、第1駆動信号S1と、第2駆動信号S2と、一次側印加電圧値Vと、総ET積I_ETとの関係を示している。また、図10において、横軸は時間の経過を示しており、ここでは、連続する20の制御周期Tcを記載している。そして、図10では、例えば1番目の制御周期Tcを〔1〕と表記し、例えば20番目の制御周期Tcを〔20〕と表記している。なお、これらのことは、後述する図11においても同じである。
本実施の形態の手法を採用した場合、制御周期Tc毎に、総ET積I_ETと閾値(正の閾値+th、負の閾値−th)との大小関係によって、出力先すなわちオンの対象となる素子対(第1素子対P1または第2素子対P2)が決まる。
図10に示す実施例では、基本的に、第1素子対P1および第2素子対P2が、出力先として交互に選択される。ただし、総ET積I_ETが正の閾値+thあるいは負の閾値−thを超えた場合において、条件によっては、第1素子対P1が連続して選択(〔5〕〜〔6〕参照)されたり、第2素子対P2が連続して選択(〔11〕〜〔13〕参照)されたりすることがあり得る。なお、総ET積I_ETが正の閾値+thあるいは負の閾値−thを超えた場合においても、条件によっては、第1素子対P1および第2素子対P2が交互に選択(〔13〕〜〔15〕、〔16〕〜〔18〕参照)されることがあり得る。
図10に示す実施例の場合、総ET積I_ETは、一時的に正の閾値+thあるいは負の閾値−thを超えることはあるものの、その後、0に近づく側に制御される。すなわち、総ET積I_ETを、正の閾値+thおよび負の閾値+thの範囲内に収めるような制御が行われる。これにより、変圧器53の磁心530に流れる電流が、正または負のいずれか一方に偏りにくくなることから、変圧器53における偏磁が抑制される。そして、変圧器53における偏磁が抑制されることにより、インバータ回路52を構成する第1トランジスタQ1〜第4トランジスタQ4に過大な電流が流れることに起因する、これらスイッチング素子の故障を抑制できることになる。
[比較例]
図11は、本実施の形態の手法を適用しない場合の、総ET積I_ETの経時変化の一例(比較例)を説明するための図である。ここで、図11に示すデューティ信号Sdの波形は、図10に示すものと同じである。
本実施の形態の手法を採用しない場合、制御周期Tc毎に、総ET積I_ETとは無関係に、出力先すなわちオンの対象となる素子対(第1素子対P1または第2素子対P2)が決まる。
図11に示す比較例では、常に、第1素子対P1および第2素子対P2が、出力先として交互に選択される。したがって、図10に示す実施例のように、第1素子対P1が連続して選択されたり、第2素子対P2が連続して選択されたりすることはあり得ない。
図11に示す比較例の場合、総ET積I_ETが、時間の経過とともに負側に偏ってしまっている。この場合、変圧器53の磁心530に流れる電流が、負に偏ってしまうことから、変圧器53における偏磁が生じやすくなる。そして、変圧器53における偏磁が生じやすくなることにより、インバータ回路52を構成する第1トランジスタQ1〜第4トランジスタQ4に過大な電流が流れることに起因する、これらスイッチング素子の故障を抑制できなくなる。
[その他]
なお、本実施の形態では、PWM制御において、1制御周期Tcあたり1パルスを出力するシングルパルス制御を例として説明を行ったが、これに限られない、例えば、1制御周期Tcあたり2以上のパルスを出力するマルチパルス制御を行ってもかまわない。
また、本実施の形態では、インバータ回路52をPWM制御する場合を例として説明を行ったが、これに限られない。例えば、PPM(Pulse Phase Modulation)方式を採用してもかまわない。
1…溶接システム、10…溶接トーチ、20…ロボットアーム、30…ワイヤ送給装置、40…シールドガス供給装置、50…溶接用電源装置、51…一次整流回路、52…インバータ回路、53…変圧器、54…二次整流回路、55…出力リアクトル、56…出力電流検出回路、57…一次側印加電圧検出回路、58…制御回路、581…デューティ信号作成部、582…駆動信号作成部、583…ET積演算部、584…総ET積記憶部、Q1…第1トランジスタ、Q2…第2トランジスタ、Q3…第3トランジスタ、Q4…第4トランジスタ、P1…第1素子対、P2…第2素子対

Claims (7)

  1. ブリッジ回路を構成する複数のスイッチング素子を備え、直流を交流に変換するインバータ回路と、
    前記インバータ回路から出力される交流を変圧する変圧器と、
    前記変圧器から出力される交流を直流に整流する整流回路と、
    前記整流回路から溶接ワイヤに流れる溶接電流の大きさに基づいて前記インバータ回路における前記複数のスイッチング素子を制御する制御手段と、
    前記インバータ回路から前記変圧器の一次側に印加される一次側印加電圧の累積値に基づき、当該インバータ回路で次にオンさせるスイッチング素子を決定する決定手段と
    を含む溶接用電源装置。
  2. 前記決定手段は、前記一次側印加電圧と当該一次側印加電圧の印加時間との積であるET積を、前記累積値として用いることを特徴とする請求項1記載の溶接用電源装置。
  3. 前記インバータ回路は、第1のスイッチング素子をオンし且つ第2のスイッチング素子をオフしたときに前記変圧器の一次側に正の電流を供給するとともに、当該第1のスイッチング素子をオフし且つ当該第2のスイッチング素子をオンしたときに当該変圧器の一次側に負の電流を供給し、
    前記決定手段は、一次側印加電圧の累積値が負側に偏った場合に、前記インバータ回路で次にオンさせるスイッチング素子を前記第1のスイッチング素子に決定すること
    を特徴とする請求項1または2記載の溶接用電源装置。
  4. 前記インバータ回路は、第1のスイッチング素子をオンし且つ第2のスイッチング素子をオフしたときに前記変圧器の一次側に正の電流を供給するとともに、当該第1のスイッチング素子をオフし且つ当該第2のスイッチング素子をオンしたときに当該変圧器の一次側に負の電流を供給し、
    前記決定手段は、一次側印加電圧の累積値が正側に偏った場合に、前記インバータ回路で次にオンさせるスイッチング素子を前記第2のスイッチング素子に決定すること
    を特徴とする請求項1乃至3のいずれか1項記載の溶接用電源装置。
  5. 4つのスイッチング素子をブリッジ状に配列してなり、対角に位置する2つのスイッチング素子をそれぞれ組とする第1素子対および第2素子対を用いて、直流を交流に変換するインバータ回路と、
    前記インバータ回路から出力される交流を変圧する変圧器と、
    前記変圧器から出力される交流を整流し、溶接ワイヤに向けて直流を出力する整流回路と、
    前記インバータ回路からの出力に基づき、当該インバータ回路に対し、前記第1素子対をオンさせた後に前記第2素子対をオンさせるか、当該第2素子対をオンさせた後に当該第1素子対をオンさせるか、当該第1素子対をオンさせた後に当該第1素子対をオンさせるか、当該第2素子対をオンさせた後に当該第2素子対をオンさせるか、を決定する決定手段と
    を含む溶接用電源装置。
  6. ブリッジ回路を構成する複数のスイッチング素子を備え、直流を交流に変換するインバータ回路と、当該インバータ回路から出力される交流を変圧する変圧器と、当該変圧器から出力される交流を直流に整流する整流回路とを含む溶接用電源装置の出力制御方法であって、
    前記整流回路から溶接ワイヤに流れる溶接電流の大きさに基づいて前記インバータ回路における前記複数のスイッチング素子を制御し、
    前記インバータ回路から前記変圧器の一次側に印加される一次側印加電圧の累積値に基づき、前記インバータ回路で次にオンさせるスイッチング素子を決定すること
    を特徴とする出力制御方法。
  7. 4つのスイッチング素子をブリッジ状に配列してなり、対角に位置する2つのスイッチング素子をそれぞれ組とする第1素子対および第2素子対を用いて、直流を交流に変換するインバータ回路と、当該インバータ回路から出力される交流を変圧する変圧器と、当該変圧器から出力される交流を整流し、溶接ワイヤに向けて直流を出力する整流回路とを含む溶接用電源装置の出力制御方法であって、
    前記インバータ回路からの出力を取得し、
    前記インバータ回路から取得した出力に基づき、当該インバータ回路に対し、前記第1素子対をオンさせた後に前記第2素子対をオンさせるか、当該第2素子対をオンさせた後に当該第1素子対をオンさせるか、当該第1素子対をオンさせた後に当該第1素子対をオンさせるか、当該第2素子対をオンさせた後に当該第2素子対をオンさせるか、を決定すること
    を特徴とする出力制御方法。
JP2018098393A 2018-05-23 2018-05-23 溶接用電源装置および出力制御方法。 Active JP7018354B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098393A JP7018354B2 (ja) 2018-05-23 2018-05-23 溶接用電源装置および出力制御方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098393A JP7018354B2 (ja) 2018-05-23 2018-05-23 溶接用電源装置および出力制御方法。

Publications (2)

Publication Number Publication Date
JP2019205264A true JP2019205264A (ja) 2019-11-28
JP7018354B2 JP7018354B2 (ja) 2022-02-10

Family

ID=68727547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098393A Active JP7018354B2 (ja) 2018-05-23 2018-05-23 溶接用電源装置および出力制御方法。

Country Status (1)

Country Link
JP (1) JP7018354B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756250A (zh) * 2020-05-31 2020-10-09 中车永济电机有限公司 抑制高频全桥dc/dc变换器中变压器偏磁的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271662A (ja) * 2007-04-18 2008-11-06 Meidensha Corp コンデンサの充電装置
JP2011114963A (ja) * 2009-11-27 2011-06-09 Panasonic Corp インバータ制御方法およびインバータ制御加工装置
JP2016144303A (ja) * 2015-02-02 2016-08-08 株式会社ダイヘン 電源装置及び溶接用電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271662A (ja) * 2007-04-18 2008-11-06 Meidensha Corp コンデンサの充電装置
JP2011114963A (ja) * 2009-11-27 2011-06-09 Panasonic Corp インバータ制御方法およびインバータ制御加工装置
JP2016144303A (ja) * 2015-02-02 2016-08-08 株式会社ダイヘン 電源装置及び溶接用電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756250A (zh) * 2020-05-31 2020-10-09 中车永济电机有限公司 抑制高频全桥dc/dc变换器中变压器偏磁的控制方法
CN111756250B (zh) * 2020-05-31 2022-08-05 中车永济电机有限公司 抑制高频全桥dc/dc变换器中变压器偏磁的控制方法

Also Published As

Publication number Publication date
JP7018354B2 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
JP5110189B2 (ja) インバータ制御装置
US9751150B2 (en) Power source for electric arc welding
JP4303714B2 (ja) 電気アーク溶接用電源
CN101400472B (zh) 高电流交流焊机
JP2007283393A (ja) 消耗電極交流パルスアーク溶接の極性切換制御方法
JP5149752B2 (ja) パルスアーク溶接の出力制御方法
JP5090765B2 (ja) 消耗電極交流アーク溶接の送給制御方法
JP2014024077A (ja) パルスアーク溶接制御方法
JP5506590B2 (ja) アーク溶接機
US10239144B2 (en) Welding device
JP7018354B2 (ja) 溶接用電源装置および出力制御方法。
KR102099988B1 (ko) 전원 장치 및 아크 가공용 전원 장치
JP5353663B2 (ja) インバータ制御方法およびインバータ制御加工装置
JP2014093886A (ja) 電源装置及びアーク加工用電源装置
CN102448652B (zh) 交流电弧焊接装置
Klumpner et al. A two-stage power converter for welding applications with increased efficiency and reduced filtering
JP2006075890A (ja) パルスアーク溶接の溶接電流制御方法
JP6370565B2 (ja) 電源装置及びアーク加工用電源装置
JP6084436B2 (ja) アーク加工用電源装置
JP4464175B2 (ja) パルスアーク溶接用インバータ制御溶接電源の出力制御方法
JP6781663B2 (ja) 溶接用電源装置および溶接用電源装置の出力制御方法
JPH02137672A (ja) 消耗電極式アーク溶接装置
JP6198324B2 (ja) アーク溶接方法
JP2022177970A (ja) 電源装置
JPH0312450Y2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7018354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150