JP2019202423A - Working tool and power tool provided with the working tool - Google Patents

Working tool and power tool provided with the working tool Download PDF

Info

Publication number
JP2019202423A
JP2019202423A JP2018096985A JP2018096985A JP2019202423A JP 2019202423 A JP2019202423 A JP 2019202423A JP 2018096985 A JP2018096985 A JP 2018096985A JP 2018096985 A JP2018096985 A JP 2018096985A JP 2019202423 A JP2019202423 A JP 2019202423A
Authority
JP
Japan
Prior art keywords
tool
processing
machining
members
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018096985A
Other languages
Japanese (ja)
Other versions
JP7103634B2 (en
Inventor
神野 浩
Hiroshi Jinno
浩 神野
太郎 神野
Taro Jinno
太郎 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OONO KAIHATSU KK
Original Assignee
OONO KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OONO KAIHATSU KK filed Critical OONO KAIHATSU KK
Priority to JP2018096985A priority Critical patent/JP7103634B2/en
Priority to PCT/JP2019/019870 priority patent/WO2019225533A1/en
Priority to TW108117310A priority patent/TW202003151A/en
Publication of JP2019202423A publication Critical patent/JP2019202423A/en
Application granted granted Critical
Publication of JP7103634B2 publication Critical patent/JP7103634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/04Plain cutters, i.e. having essentially a cylindrical or tapered cutting surface of substantial length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/06Face-milling cutters, i.e. having only or primarily a substantially flat cutting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/18Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Milling Processes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To provide a working tool capable of suppressing deterioration in the blade surfaces of working members and maintaining working efficiency for a long time, and a power tool provide with the working tool.SOLUTION: A working tool 100 for working the surface of a workpiece Wp comprises: a tool body 110 having a rotor shape; and a plurality of working members 10 having a cylindrical or circular truncated cone shape, and the plurality of working members 10 are fitted to the tool body 110 in such a manner that the respective outer circumferential faces S are made into working blade surfaces 11a of working the workpiece Wp.SELECTED DRAWING: Figure 1

Description

本発明は、加工工具および加工工具を備えた動力工具に関し、特に、被加工物の表面を加工するための加工工具、およびその加工工具を備えた動力工具に関するものである。   The present invention relates to a processing tool and a power tool including the processing tool, and more particularly to a processing tool for processing the surface of a workpiece and a power tool including the processing tool.

従来より、コンクリートや石材などの表層を剥がす電動工具として、円板状部材に加工刃を固定した加工工具を備え、加工工具を回転駆動軸に着脱可能に取り付けたものがある。   Conventionally, as an electric tool for peeling off a surface layer of concrete, stone, or the like, there is a tool provided with a processing tool having a processing blade fixed to a disk-like member, and the processing tool is detachably attached to a rotary drive shaft.

例えば、特許文献1には、このような電動工具として、床面や壁面などの表層としてのモルタルやコンクリートなどを剥がすのに用いられる電動回転工具が開示されている。   For example, Patent Document 1 discloses an electric rotary tool used for peeling mortar, concrete, or the like as a surface layer such as a floor surface or a wall surface as such an electric tool.

特開2004-298968号公報JP 2004-298968 A

ところで、特許文献1に記載の電動回転工具では、円板状部材に加工刃として取り付けられている研削刃は加工面が矩形状を有する長円弧状で構成されている。   By the way, in the electric rotary tool described in Patent Document 1, the grinding blade attached as a processing blade to the disk-shaped member is formed in a long arc shape whose processing surface has a rectangular shape.

このような電動回転工具では、切削刃の刃面が劣化しやすく、長時間にわたる加工効率が維持できない。また、加工時には、加工部材には大きな負荷が急激にかかることがあるため、回転工具を駆動させる駆動源を大きくしなければならないという問題などがあった。   In such an electric rotary tool, the blade surface of the cutting blade tends to deteriorate, and the processing efficiency over a long time cannot be maintained. Moreover, since a large load may be applied suddenly to the processed member during processing, there is a problem that the drive source for driving the rotary tool has to be increased.

本発明は、長時間にわたる加工効率を維持することができる加工工具およびそのような加工工具を備えた動力工具を得ることを目的とする。   An object of this invention is to obtain the processing tool which can maintain the processing efficiency over a long time, and the power tool provided with such a processing tool.

本発明は、以下の項目を提供する。
(項目1)
被加工物の表面を加工する加工工具であって、
回転体形状を有し、部材取付面を備える回転可能な工具本体と、
円筒形状あるいは円錐台形状を有し、該部材取付面上に設けられた複数の加工部材と
を備え、
該複数の加工部材は、それぞれの外周面が該被加工物を加工する刃面となるように該工具本体に取り付けられている、加工工具。
(項目2)
前記複数の加工部材のそれぞれにおいて前記刃面が前記工具本体から突出する高さは、該工具本体の回転方向の前方側でその後方側に比べて高くなっている、項目1に記載の加工工具。
(項目3)
前記刃面が前記工具本体の回転方向の前方側で該工具本体から突出する高さは、約1mm〜約10mmである、項目2に記載の加工工具。
(項目4)
前記複数の加工部材は、該加工部材が装着された位置における前記部材取付面の法線方向に対して、該加工部材の中心軸がオフセットするように配置されている、項目1〜3のいずれか一項に記載の加工工具。
(項目5)
前記法線に対する前記加工部材の中心軸のオフセット角度は、約1°〜約30°である、項目4に記載の加工工具。
(項目6)
前記複数の加工部材は、円錐台形状を有し、加工部材の外周面は、該加工部材の中心軸に対して約2°〜約15°傾斜している、項目1〜5のいずれか一項に記載の加工工具。
(項目7)
前記複数の加工部材の各々は、前記部材取付面上での前記工具本体の回転方向において異なる位置に配置されている、項目1〜6のいずれか一項に記載の加工工具。
(項目8)
前記複数の加工部材のうち隣接する加工部材は、前記部材取付面上での前記工具本体の回転方向において互いに重ならない位置に配置されている、項目7に記載の加工工具。
(項目9)
前記回転体形状は、円筒形状であり、
前記部材取付面は、該円筒形状の外周面である、項目1〜8のいずれか一項に記載の加工工具。
(項目10)
前記工具本体の軸線方向の基端側と先端側に位置する少なくとも1組の前記加工部材は、該工具本体の前記部材取付面上で回転方向において一部重なるように配置されている、項目9に記載の加工工具。
(項目11)
前記少なくとも1組の加工部材の重なり幅は、該工具本体の回転方向における前記加工部材の幅の約30%〜約70%である、項目10に記載の加工工具。
(項目12)
前記複数の加工部材は、前記部材取付面において螺旋状に配列されている、項目1〜11のいずれか一項に記載の加工工具。
(項目13)
前記複数の加工部材は複数のグループに分けられ、ここで、該複数のグループの各々に含まれる該複数の加工部材は、前記工具本体の部材取付面で該工具本体の軸線方向に対して所定角度で傾斜した線に沿って配列されている、項目12に記載の加工工具。
(項目14)
前記所定角度は、約30°〜約60°である、項目13に記載の加工工具。
(項目15)
前記複数のグループのうちの隣接するグループに含まれる加工部材同士は、千鳥状に配列されている、項目13または14に記載の研削工具。
(項目16)
前記回転体形状は、円板形状に円錐台形状を結合してなる複合形状であり、
前記部材取付面は前記工具本体のうちの該円錐台形状をなす部分の外周面に存在する、項目1〜7のいずれか一項に記載の加工部材。
(項目17)
前記複数の加工部材の少なくとも一部は、前記工具本体のうちの前記円板形状をなす部分の外周面に配置されている、項目16に記載の加工工具。
(項目18)
前記被加工物は、コンクリート、モルタル、アスファルト、レンガ、セメント、石材およびそれらの複合材料からなる群から選択される材料を含む、項目1〜17のいずれか一項に記載の加工工具。
(項目19)
項目1〜18のいずれか一項に記載の加工工具と、
前記加工工具を回転駆動する回転駆動部と
を備えた、動力工具。
(項目20)
項目1〜18のいずれか一項に記載の加工工具または項目19に記載の動力工具を用いて被加工物を加工することを含む、該被加工物の加工方法。
The present invention provides the following items.
(Item 1)
A processing tool for processing the surface of a workpiece,
A rotatable tool body having a rotating body shape and having a member mounting surface;
A plurality of processed members having a cylindrical shape or a truncated cone shape and provided on the member mounting surface;
The machining tool, wherein the plurality of machining members are attached to the tool body such that each outer peripheral surface is a blade surface for machining the workpiece.
(Item 2)
The machining tool according to item 1, wherein a height at which the blade surface protrudes from the tool body in each of the plurality of machining members is higher on a front side in a rotation direction of the tool body than on a rear side thereof. .
(Item 3)
The processing tool according to item 2, wherein a height at which the blade surface protrudes from the tool body on the front side in the rotation direction of the tool body is about 1 mm to about 10 mm.
(Item 4)
Any of items 1 to 3, wherein the plurality of processing members are arranged such that a central axis of the processing member is offset with respect to a normal direction of the member mounting surface at a position where the processing member is mounted. The processing tool according to claim 1.
(Item 5)
The processing tool according to item 4, wherein an offset angle of a central axis of the processing member with respect to the normal is about 1 ° to about 30 °.
(Item 6)
The plurality of processing members have a truncated cone shape, and the outer peripheral surface of the processing member is inclined by about 2 ° to about 15 ° with respect to the central axis of the processing member, any one of items 1 to 5 The processing tool according to item.
(Item 7)
The machining tool according to any one of items 1 to 6, wherein each of the plurality of machining members is disposed at a different position in the rotation direction of the tool main body on the member mounting surface.
(Item 8)
The processing tool according to item 7, wherein adjacent processing members among the plurality of processing members are arranged at positions that do not overlap each other in the rotation direction of the tool main body on the member mounting surface.
(Item 9)
The rotating body shape is a cylindrical shape,
The processing tool according to any one of Items 1 to 8, wherein the member mounting surface is the outer peripheral surface of the cylindrical shape.
(Item 10)
Item 9 wherein at least one set of the processing members positioned on the base end side and the tip end side in the axial direction of the tool body is arranged so as to partially overlap in the rotation direction on the member mounting surface of the tool body. The processing tool described in 1.
(Item 11)
Item 11. The processing tool according to Item 10, wherein the overlapping width of the at least one set of processing members is about 30% to about 70% of the width of the processing member in the rotation direction of the tool body.
(Item 12)
The processing tool according to any one of Items 1 to 11, wherein the plurality of processing members are arranged in a spiral on the member mounting surface.
(Item 13)
The plurality of machining members are divided into a plurality of groups, wherein the plurality of machining members included in each of the plurality of groups are predetermined with respect to the axial direction of the tool body on a member mounting surface of the tool body. Item 13. The processing tool according to Item 12, arranged along a line inclined at an angle.
(Item 14)
14. The processing tool according to item 13, wherein the predetermined angle is about 30 ° to about 60 °.
(Item 15)
The grinding tool according to item 13 or 14, wherein the processing members included in adjacent groups among the plurality of groups are arranged in a staggered manner.
(Item 16)
The rotating body shape is a composite shape formed by combining a truncated cone shape with a disc shape,
The processing member according to any one of Items 1 to 7, wherein the member mounting surface is present on an outer peripheral surface of a portion of the tool body having a truncated cone shape.
(Item 17)
Item 17. The processing tool according to Item 16, wherein at least a part of the plurality of processing members is disposed on an outer peripheral surface of a portion of the tool body that forms the disk shape.
(Item 18)
Item 18. The processing tool according to any one of Items 1 to 17, wherein the workpiece includes a material selected from the group consisting of concrete, mortar, asphalt, brick, cement, stone, and a composite material thereof.
(Item 19)
The processing tool according to any one of items 1 to 18,
A power tool comprising: a rotation drive unit that rotationally drives the machining tool.
(Item 20)
A method for processing a workpiece, comprising processing the workpiece using the processing tool according to any one of items 1 to 18 or the power tool according to item 19.

本発明によれば、加工部材の刃面の劣化が抑制され、長時間にわたる加工効率を維持することができる加工工具およびそのような加工工具を備えた動力工具を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, deterioration of the blade surface of a process member is suppressed and the power tool provided with such a process tool which can maintain the process efficiency over a long time and such a process tool can be obtained.

本発明の実施形態1による加工工具100の外観を示す斜視図。The perspective view which shows the external appearance of the processing tool 100 by Embodiment 1 of this invention. 図1の加工工具100の外観を示す平面図であり、図2(a)〜図2(f)はそれぞれ、図1のA方向〜F方向から見た加工工具100の構造を示す。It is a top view which shows the external appearance of the processing tool 100 of FIG. 1, FIG. 2 (a)-FIG.2 (f) each show the structure of the processing tool 100 seen from the A direction-F direction of FIG. 図1の加工工具100における1つの加工部材10を取り外した状態を示す斜視図。The perspective view which shows the state which removed the one processing member 10 in the processing tool 100 of FIG. 図1に示す加工工具100を構成する工具本体110(図4(a))、加工部材10(図4(b))、および固定ボルト20(図4(c))を示す斜視図。The perspective view which shows the tool main body 110 (FIG. 4 (a)), the process member 10 (FIG.4 (b)), and the fixing bolt 20 (FIG.4 (c)) which comprise the processing tool 100 shown in FIG. 図4(a)の工具本体110の説明図であり、図5(a)〜図5(f)はそれぞれ、図4(a)のA方向〜F方向から見た工具本体110の構造を示す。FIG. 5A is an explanatory diagram of the tool main body 110 in FIG. 4A, and FIGS. 5A to 5F show the structure of the tool main body 110 viewed from the A direction to the F direction in FIG. . 図4(a)の工具本体110の外周面Sに形成されている収容凹部112の配置を説明するための図であり、図6(a)は、工具本体110の外周面Sでの複数の収容凹部112の位置関係を示し、図6(b)は、図6(a)の複数の収容凹部112および複数の収容凹部112に取り付けられた加工部材10の配置を示す展開図。FIG. 6A is a view for explaining the arrangement of the accommodating recesses 112 formed on the outer peripheral surface S of the tool main body 110 in FIG. 4A, and FIG. FIG. 6B is a development view illustrating the positional relationship of the housing recesses 112, and FIG. 6B is a development view illustrating the plurality of housing recesses 112 in FIG. 図4(b)の加工部材10の説明図であり、図7(a)は、図4(b)のA1方向から見た加工部材10の構造を示し、図7(b)は、図7(a)のVIIb−VIIb線断面を示す。FIG. 7B is an explanatory diagram of the processing member 10 in FIG. 4B, FIG. 7A shows the structure of the processing member 10 viewed from the A1 direction in FIG. 4B, and FIG. The VIIb-VIIb line cross section of (a) is shown. 図1の加工工具100の断面図であり、図8(a)および図8(b)はそれぞれ、図2(f)のVIIIa−VIIIa線断面およびVIIIb−VIIIb線断面を示す。It is sectional drawing of the processing tool 100 of FIG. 1, FIG. 8 (a) and FIG.8 (b) each show the VIIIa-VIIIa line | wire cross section and VIIIb-VIIIb line | wire cross section of FIG.2 (f), respectively. 図1の加工工具100が装着された動力工具1を示す斜視図。The perspective view which shows the power tool 1 with which the processing tool 100 of FIG. 1 was mounted | worn. 加工部材10による被加工物Wpの加工状態を説明するための図であり、図9A(a)〜図9A(c)は、中心軸をオフセットさせた加工部材10により被加工物Wpが加工される様子を示し、図9A(d)〜図9A(f)は、中心軸をオフセットさせていない加工部材10により被加工物Wpが加工される様子を示す。FIGS. 9A (a) to 9A (c) are diagrams for explaining the processing state of the workpiece Wp by the processing member 10. In FIGS. 9A (a) to 9A (c), the workpiece Wp is processed by the processing member 10 with the center axis offset. 9A (d) to 9A (f) show how the workpiece Wp is processed by the processing member 10 whose center axis is not offset. 本発明の実施形態2による加工工具200を説明するための斜視図であり、加工工具200が装着された電動工具2を示す。It is a perspective view for demonstrating the processing tool 200 by Embodiment 2 of this invention, and shows the electric tool 2 with which the processing tool 200 was mounted | worn. 図10の加工工具200の説明図であり、図11(a)および図11(b)はそれぞれ、図10のA2方向およびB2方向から見た加工工具200の構造を示す。It is explanatory drawing of the processing tool 200 of FIG. 10, FIG. 11 (a) and FIG.11 (b) each show the structure of the processing tool 200 seen from the A2 direction and B2 direction of FIG. 図11(b)の加工工具200の工具本体210のうちの加工部材10が収容される収容凹部212a、212bの配置を説明する図。The figure explaining arrangement | positioning of the accommodation recessed parts 212a and 212b in which the process member 10 of the tool main body 210 of the process tool 200 of FIG.11 (b) is accommodated. 図10の加工工具200による被加工物Wpの加工状態を説明するための図であり、図12A(a)は、図10のA2方向から見た動力装置の先端部の構造を示す平面図、図12A(b)は、図12A(a)の加工工具200を被加工物Wp側(B2方向)から見た斜視図。It is a figure for demonstrating the processing state of the to-be-processed object Wp by the processing tool 200 of FIG. 10, FIG. 12A (a) is a top view which shows the structure of the front-end | tip part of the power unit seen from the A2 direction of FIG. FIG. 12A (b) is a perspective view of the processing tool 200 of FIG. 12A (a) as viewed from the workpiece Wp side (B2 direction).

以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。   The present invention will be described below. It is to be understood that the terms used in this specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.

本明細書において使用される用語「約」とは、後に続く数値の±10%の範囲を意味する。   The term “about” as used herein means a range of ± 10% of the numerical values that follow.

本明細書において、「回転体」、「円筒」、「円錐」、「円錐台」、「円板」などの形状に関する用語は、厳密にそれらの形状に限定されるのではなく、本発明の効果を奏する範囲においてその前方に「略」が付されたものも包含するように解釈される。例えば、「円」とは「真円」のみを意味するものではない。   In the present specification, terms related to shapes such as “rotary body”, “cylinder”, “cone”, “conical frustum”, “disc” are not strictly limited to those shapes, In the range where the effect is exerted, it is interpreted so as to include those with “abbreviated” in front of them. For example, “circle” does not mean only “true circle”.

本発明の加工工具は、回転体形状の工具本体の表面に円筒形状あるいは円錐台形状の複数の加工部材を取り付け、複数の加工部材の外周面を被加工物に対する刃面とすることにより、被加工物への刃面の切込みの際に刃面が被加工物により研がれる作用により、刃面の劣化による加工能力の低下という課題を解決したものである。従って、本発明の加工工具は、回転体形状を有する工具本体と、円筒形状あるいは円錐台形状を有する複数の加工部材とを備え、複数の加工部材の外周面で被加工物を加工するものであれば、特に限定されるものではない。   The machining tool of the present invention is provided with a plurality of cylindrical or frusto-conical machining members attached to the surface of a rotating tool-shaped tool body, and the outer peripheral surfaces of the plurality of machining members are used as blade surfaces for a workpiece. By cutting the blade surface into the work piece, the problem that the blade surface is sharpened by the work piece solves the problem of a reduction in processing ability due to the deterioration of the blade surface. Accordingly, the processing tool of the present invention includes a tool body having a rotating body shape and a plurality of processing members having a cylindrical shape or a truncated cone shape, and processes a workpiece on the outer peripheral surface of the plurality of processing members. If there is, it will not be specifically limited.

また、加工部材に円筒形状あるいは円錐台形状のものを用いることにより、被加工物の加工屑が加工部材の円筒形状あるいは円錐台形状に沿って首尾よく加工部材の刃面から剥離されて外部に排出されることから、刃面に加工屑が固着することによる加工能力の低下が解消される。   In addition, by using a cylindrical or truncated cone shape as the machining member, the processing scrap of the workpiece can be successfully peeled off from the blade surface of the machining member along the cylindrical shape or truncated cone shape of the machining member and exposed to the outside. Since it is discharged, the reduction in processing capability due to the sticking of work scraps to the blade surface is eliminated.

(工具本体)
本発明の工具本体は、その外形が回転体形状であり、回転体形状の外周面上に部材取付面を有し、外部の駆動源と連結されて、または工具本体内に備えられた駆動源によって、自身が回転することができるものである。工具本体の回転の際に、工具本体の部材取付面に設けられた加工部材が被加工物と接触することによって、所望の被加工物の加工(例えば表層剥離)が達成され得る。
(Tool body)
The tool main body of the present invention has a rotary body shape, has a member mounting surface on the outer peripheral surface of the rotary body, and is connected to an external drive source or a drive source provided in the tool body Can rotate itself. When the tool main body is rotated, the processing member provided on the member mounting surface of the tool main body comes into contact with the workpiece, so that desired processing of the workpiece (for example, surface peeling) can be achieved.

例えば、工具本体が有する回転体形状は、円筒形状、円錐形状、円錐台形状、円板形状、およびそれらの結合した複合形状など任意の形状であり得る。1つの実施形態において、工具本体の形状は円筒形状であり、この場合、部材取付面は工具本体の外周面であってもよいし、先端側の円形面であってもよい。本明細書において、工具本体における「基端側」とは、工具本体において、工具本体を回転駆動する駆動源に接続される側をいい、「先端側」とは基端側とは反対側で被加工物に向かい合う側をいう。   For example, the rotating body shape of the tool body may be any shape such as a cylindrical shape, a conical shape, a truncated cone shape, a disc shape, and a combined shape obtained by combining them. In one embodiment, the shape of the tool body is a cylindrical shape. In this case, the member mounting surface may be an outer peripheral surface of the tool body or a circular surface on the tip side. In this specification, the “base end side” in the tool body refers to the side of the tool body that is connected to a drive source that rotationally drives the tool body, and the “tip side” is the side opposite to the base end side. The side facing the workpiece.

好ましい実施形態においては、本発明の工具本体の形状は円筒形状であり、部材取付面は外周面であり得る(例えば、図1〜9を参照のこと)。別の実施形態においては、本発明の工具本体の形状は円板形状に円錐台形状を結合して得られる複合形状であり、部材取付面は円錐台部分の外周面(以下、複合形状の底面、あるいは単に底面という。)であり得る(例えば、図10〜12を参照のこと)。   In a preferred embodiment, the shape of the tool body of the present invention is a cylindrical shape, and the member mounting surface may be an outer peripheral surface (see, for example, FIGS. 1 to 9). In another embodiment, the shape of the tool body of the present invention is a composite shape obtained by joining a circular truncated cone shape to a disc shape, and the member mounting surface is an outer peripheral surface of the truncated cone portion (hereinafter referred to as the composite shaped bottom surface). Or simply the bottom surface) (see, eg, FIGS. 10-12).

本発明の工具本体は、部材取付面において、加工部材を固定するための固定機構を備えてもよい。この固定機構は、ネジ、接着剤、接着テープ、嵌合、溶着、電着など当該分野で任意のものであり得る。好ましい実施形態においては、本発明の工具本体は、部材取付面に、加工部材を収容するための収容凹部を備えてもよい。このような収容凹部を備えることによって、剥離加工時の加工部材にかかるトルクを収容凹部の壁面で支持することができ、加工部材の固定機構が安定し得る。さらに好ましい実施形態においては、本発明の工具本体は、ネジと収容凹部との組み合わせによって、部材取付面において加工部材を固定し得る。こうすることによって、加工時の固定機構の安定を達成しながら、加工部材の交換も容易であり、好ましい。   The tool main body of the present invention may include a fixing mechanism for fixing the machining member on the member mounting surface. This fixing mechanism may be arbitrary in the art, such as a screw, an adhesive, an adhesive tape, fitting, welding, or electrodeposition. In a preferred embodiment, the tool main body of the present invention may be provided with a housing recess for housing the machining member on the member mounting surface. By providing such an accommodation recess, the torque applied to the processing member during the peeling process can be supported by the wall surface of the accommodation recess, and the fixing mechanism of the processing member can be stabilized. In a further preferred embodiment, the tool main body of the present invention can fix the processing member on the member mounting surface by a combination of a screw and a housing recess. This is preferable because it is easy to replace the processed member while achieving stability of the fixing mechanism during processing.

駆動源による加工時の工具本体の回転数は、約1000rpm〜約15000rpmであり、好ましくは約3000rpm〜約12000rpmであり、より好ましくは約8000rpm〜約12000rpmである。   The number of rotations of the tool body during processing by the drive source is about 1000 rpm to about 15000 rpm, preferably about 3000 rpm to about 12000 rpm, and more preferably about 8000 rpm to about 12000 rpm.

(加工部材)
加工部材は被加工物の表面を機械加工できる任意のものであり得る。例えば、切削工具(セラミックチップ、ダイヤモンドチップ、超硬チップなど)、研削工具(ダイヤモンド砥石、セラミック砥石など)であるが、本発明はこれに限定されない。
(Processed parts)
The workpiece can be any that can machine the surface of the workpiece. Examples include cutting tools (ceramic chips, diamond chips, carbide chips, etc.) and grinding tools (diamond wheels, ceramic wheels, etc.), but the present invention is not limited thereto.

本発明の加工部材は、円筒形状あるいは円錐台形状を有し、その形状の外周面が被加工物を加工(除去・剥離)するための刃面である。加工部材の外形形状は、円筒形状、円錐形状、円錐台形状など、端縁が円形あるいは楕円形であれば任意のものであってよい。加工部材の加工面を外周面(図8(b)の11aを参照のこと)とすることにより、加工時において、被加工物は加工部材に対して刃面を研ぐ方向に移動するため、加工部材の刃面は鋭利な状態を保つことになり、その結果、長期間にわたり加工部材の加工効率を維持することが可能となる。さらに、加工面(刃面)を円筒形状あるいは円錐台形状の外周面とすることにより、加工部材の被加工物への最初の接触から、加工部材が被加工物をえぐって加工(除去・剥離)するにつれて、加工部材にかかる負荷は徐々に増加していくため(図9A(a)〜(f)参照)、急激かつ大きな負荷が使用者に付与されず、またそのような負荷に耐え得る駆動源が不要となる。   The processed member of the present invention has a cylindrical shape or a truncated cone shape, and the outer peripheral surface of the shape is a blade surface for processing (removing / separating) a workpiece. The outer shape of the processed member may be arbitrary as long as the end edge is circular or elliptical, such as a cylindrical shape, a conical shape, or a truncated cone shape. By setting the processing surface of the processing member as the outer peripheral surface (see 11a in FIG. 8B), the workpiece moves in the direction of sharpening the blade surface with respect to the processing member during processing. The blade surface of the member is kept in a sharp state, and as a result, the processing efficiency of the processed member can be maintained over a long period of time. Furthermore, by setting the machining surface (blade surface) to a cylindrical or frustoconical outer peripheral surface, the machining member passes through the workpiece from the first contact of the machining member (removal / peeling). ), The load applied to the processed member gradually increases (see FIGS. 9A (a) to (f)), so that a sudden and large load is not given to the user and can withstand such a load. A drive source becomes unnecessary.

好ましい実施形態においては、複数の加工部材のそれぞれにおいて刃面が工具本体から突出する高さは、工具本体の回転方向の前方側でその後方側に比べて高くなっている。これにより、加工部材の外周面のうちの工具本体の回転方向の前方側の部分である刃面が被加工物を加工(除去・剥離)することにより形成された加工溝の底に、加工部材の先端面のうちの工具本体の回転方向の後方側の部分が接触することが防止される(例えば、図9A(a)〜(c)を参照)。このように被加工物に対する加工部材の刃面以外の部分の接触が抑制され、その結果、被加工物の表面上で加工工具をその回転面に沿った方向にスムーズに往復移動させながら被加工物の表面を加工することが可能となる。   In a preferred embodiment, the height at which the blade surface protrudes from the tool body in each of the plurality of machining members is higher on the front side in the rotation direction of the tool body than on the rear side. As a result, the machining member is formed on the bottom of the machining groove formed by machining (removing / separating) the workpiece by the blade surface, which is the front side portion of the outer circumferential surface of the machining member in the rotation direction of the tool body. Of the tip end surface of the tool body is prevented from coming into contact with the tool body in the rotational direction (see, for example, FIGS. 9A to 9C). In this way, contact of the part other than the blade surface of the workpiece with respect to the workpiece is suppressed, and as a result, the workpiece is processed while reciprocating smoothly in the direction along the rotation surface on the surface of the workpiece. It becomes possible to process the surface of an object.

刃面が工具本体の回転方向の前方側で工具本体の部材取付面から突出する高さは、約1mm〜約10mm、好ましくは約2mm〜約8mm、さらに好ましくは約3mm〜約5mmである。   The height at which the blade surface protrudes from the member mounting surface of the tool body on the front side in the rotation direction of the tool body is about 1 mm to about 10 mm, preferably about 2 mm to about 8 mm, more preferably about 3 mm to about 5 mm.

また、加工部材が円錐台形状を有する場合、加工部材の中心軸に対する外周面の傾斜角度は、約2°〜約15°、さらに好ましくは約5°〜約10°の範囲で適宜設定され得る。   When the processed member has a truncated cone shape, the inclination angle of the outer peripheral surface with respect to the central axis of the processed member can be appropriately set in the range of about 2 ° to about 15 °, more preferably about 5 ° to about 10 °. .

なお、刃面が工具本体から突出する高さが工具本体の回転方向の前方側でその後方側に比べて高い構造は、例えば、円筒形状あるいは円錐台形状の加工部材の工具本体に取り付ける配置の工夫、または円筒形状あるいは円錐台形状の加工部材の一部を加工することにより形成することによって達成され得る。   In addition, the structure in which the height at which the blade surface protrudes from the tool body is higher on the front side in the rotation direction of the tool body than on the rear side thereof is, for example, arranged to be attached to the tool body of a cylindrical or frustoconical processing member. It can be achieved by a device or by forming a part of a cylindrical or frustoconical processing member.

好ましい実施形態においては、本発明の加工部材は、部材取付面の加工部材の装着位置での法線方向(すなわち、加工部材の装着位置における部材取付面の接平面に対する法線方向)に対してオフセットした方向に沿って(具体的には、加工部材の中心軸がこのオフセットした方向に向くように)配置され得る(例えば、図9A(a)〜(c)を参照)。このように、加工部材の中心軸を加工部材の取り付け位置での法線方向に対してオフセットさせることによって、円筒形状や円錐台形状の加工部材をそのまま用いて、複数の加工部材のそれぞれにおいて刃面が工具本体から突出する高さを、工具本体の回転方向の前方側でその後方側に比べて高くすることができる。   In a preferred embodiment, the processing member of the present invention is in a normal direction at the mounting position of the processing member on the member mounting surface (that is, a normal direction with respect to the tangential plane of the member mounting surface at the mounting position of the processing member). It can be arranged along the offset direction (specifically, the center axis of the processed member faces this offset direction) (see, for example, FIGS. 9A (a) to 9 (c)). In this way, by offsetting the central axis of the machining member with respect to the normal direction at the machining member mounting position, the cylindrical member or the truncated cone-shaped machining member can be used as it is, and the blade in each of the machining members. The height at which the surface protrudes from the tool body can be made higher on the front side in the rotation direction of the tool body than on the rear side.

本明細書において、加工部材の「オフセット角度」とは、加工部材の装着位置である部材取付面の法線方向と、加工部材の中心軸との間の角度をいう。   In this specification, the “offset angle” of the processed member refers to an angle between the normal direction of the member mounting surface, which is the mounting position of the processed member, and the central axis of the processed member.

加工部材の「オフセット角度」は、任意の角度であり得るが、被加工物の硬度または粘性の度合いによって適宜調整され得る。例えば、硬度や粘性が高い場合はオフセット角度を大きく、硬度や粘性が低い場合はオフセット角度を小さくするように調整される。加工部材のオフセット角度を大きくすることにより、刃面が被加工物に接触する面積を小さくすることができる。その結果、被加工物への切込み量が小さくなることによる加工工具にかかる負荷(回転トルク)の上昇が抑制されるため、大きな負荷がかかるおそれのある硬度や粘性の高い被加工物の加工を良好に行うことが可能となる。一方、加工部材のオフセット角度を小さくすることにより、刃面が被加工物に接触する面積を大きくすることができる。その結果、被加工物への切込み量が大きくできるため、小さな負荷で加工の行える硬度や粘性の低い被加工物の加工効率を向上させることが可能となる。   The “offset angle” of the workpiece can be any angle, but can be appropriately adjusted depending on the hardness or viscosity of the workpiece. For example, when the hardness or viscosity is high, the offset angle is increased, and when the hardness or viscosity is low, the offset angle is adjusted to be small. By increasing the offset angle of the workpiece, the area where the blade surface contacts the workpiece can be reduced. As a result, an increase in the load (rotational torque) applied to the machining tool due to a decrease in the depth of cut into the workpiece is suppressed, so that machining of a workpiece with high hardness or viscosity that may be subjected to a large load is possible. It is possible to perform well. On the other hand, by reducing the offset angle of the processed member, the area where the blade surface contacts the workpiece can be increased. As a result, since the depth of cut into the workpiece can be increased, it is possible to improve the machining efficiency of the workpiece having low hardness and low viscosity that can be machined with a small load.

刃面が被加工物に接触する面積の調整は、オフセット角度の調整の他、加工部材の刃面が工具本体から突出する高さを調整することでも達成される。   The adjustment of the area where the blade surface comes into contact with the workpiece can be achieved by adjusting the height at which the blade surface of the processed member protrudes from the tool body in addition to the adjustment of the offset angle.

例えば、オフセット角度は約1°〜約30°であり、好ましくは約3°〜約20°であり、より好ましくは約5°〜約15°である。   For example, the offset angle is about 1 ° to about 30 °, preferably about 3 ° to about 20 °, and more preferably about 5 ° to about 15 °.

具体的な実施形態として、コンクリート上に塗装された膜厚約3mm〜約5mmのウレタン塗装面を加工する場合、円錐台形状の加工部材を用い、高さ約4mm〜約5mm、最大直径約9mm〜約11mm、オフセット角度を約10°〜約15°とする。   As a specific embodiment, when processing a urethane coating surface having a film thickness of about 3 mm to about 5 mm coated on concrete, a truncated cone-shaped processing member is used, the height is about 4 mm to about 5 mm, and the maximum diameter is about 9 mm. ˜about 11 mm and the offset angle is about 10 ° to about 15 °.

加工部材がオフセットされて部材取付面に配置されることによって、加工部材として円筒形状や円錐台形状の加工部材をそのまま用いても、複数の加工部材のそれぞれにおいて刃面が工具本体の部材取付面から突出する高さを、複数の加工部材の回転方向の前方側が複数の加工部材の回転方向の後方側に比べて高くすることが可能となる(例えば、図9A(a)参照)。   Since the machining member is offset and disposed on the member mounting surface, even if a cylindrical or frusto-conical machining member is used as it is, the blade surface of each of the machining members is the member mounting surface of the tool body. It is possible to increase the height protruding from the front side in the rotational direction of the plurality of processing members as compared to the rear side in the rotational direction of the plurality of processing members (for example, see FIG. 9A (a)).

また、別の実施形態においては、円筒形状や円錐台形状の加工部材の一部を除去加工することにより、刃面が工具本体から突出する高さを、工具本体の回転方向の前方側でその後方側に比べて高くなるようにしてもよい。このようにした場合は、加工部材をオフセットした位置に配置しなくても、同様に刃面が工具本体の部材取付面から突出する高さを、加工部材の回転方向の前方側が加工部材の回転方向の後方側に比べて高くすることが可能となる。   Further, in another embodiment, by removing a part of the cylindrical or frustoconical processing member, the height at which the blade surface protrudes from the tool main body is set at the front side in the rotation direction of the tool main body thereafter. You may make it become high compared with the other side. In this case, even if the machining member is not disposed at the offset position, the height at which the blade surface protrudes from the member mounting surface of the tool body is similarly set, and the front side in the rotation direction of the machining member is the rotation of the machining member. It becomes possible to make it higher than the rear side in the direction.

さらに、複数の加工部材は、回転体形状の工具本体の外周面(外周部の表面)に取り付けられていてもよいし、回転体形状の工具本体の底面(底部の表面)に取り付けられていてもよい。また、工具本体に取り付けられる複数の加工部材の配置関係も特に限定されるものではない。   Further, the plurality of processing members may be attached to the outer peripheral surface (surface of the outer peripheral portion) of the rotary body-shaped tool body, or may be attached to the bottom surface (surface of the bottom portion) of the rotary body-shaped tool main body. Also good. Further, the arrangement relationship of the plurality of processing members attached to the tool body is not particularly limited.

(加工部材(収容凹部)の配置パターン)
好ましい実施形態において、複数の加工部材の各々は、工具本体の部材取付面上での工具本体の回転方向において異なる位置に配置されている。ここで、本明細書において、加工部材が「工具本体の回転方向において異なる位置」に配置されているとは、複数の加工部材の中心軸同士が、工具本体の回転方向において一致しないことをいう。例えば、図6(b)の部材取付面の展開図を参照すると、各加工部材の中心軸は、工具本体の回転方向(R1方向)においてそれぞれ一致しておらず、各加工部材は工具本体の回転方向R1において異なる位置に配置されていることが理解される。
(Pattern of processing members (accommodating recesses))
In a preferred embodiment, each of the plurality of processing members is disposed at a different position in the rotation direction of the tool body on the member mounting surface of the tool body. Here, in the present specification, the fact that the machining members are arranged at “different positions in the rotation direction of the tool body” means that the central axes of the plurality of machining members do not match in the rotation direction of the tool body. . For example, referring to the development view of the member mounting surface in FIG. 6B, the center axis of each processing member does not coincide with the rotation direction (R1 direction) of the tool body, and each processing member is It is understood that they are arranged at different positions in the rotation direction R1.

好ましい実施形態において、隣接する加工部材は、工具本体の部材取付面上での工具本体の回転方向において互いに重ならない位置に配置されている。隣接する加工部材とは、図6(b)の部材取付面の展開図において、工具本体の軸線方向(Y1方向)において1つの加工部材に対して最も近接している1つまたは2つの加工部材をいう。すなわち、図6(b)において、加工部材10a2は、加工部材10a1および10a3と隣接し、加工部材10a3は、加工部材10a2および10a4と隣接する。加工部材10a5は、加工部材10a4のみと隣接し、加工部材10b1とは隣接するとはいわない点に留意されたい。図11(a)においては、加工部材10a1’は加工部材10a2’とのみ隣接し、加工部材10a2’は加工部材10a1’および10a3’と隣接している。本明細書において、隣接する加工部材が、工具本体の部材取付面上での工具本体の回転方向において「互いに重ならない」位置とは、一方(前方)の加工部材の工具本体の回転方向後端部の位置が、他方(後方)の加工部材の工具本体の回転方向前端部の位置よりも回転方向の前方側に配置されていることをいう。   In a preferred embodiment, adjacent processing members are arranged at positions that do not overlap each other in the direction of rotation of the tool body on the member mounting surface of the tool body. The adjacent processing members are one or two processing members that are closest to one processing member in the axial direction (Y1 direction) of the tool body in the development view of the member mounting surface in FIG. Say. That is, in FIG. 6B, the processed member 10a2 is adjacent to the processed members 10a1 and 10a3, and the processed member 10a3 is adjacent to the processed members 10a2 and 10a4. It should be noted that the processed member 10a5 is adjacent to only the processed member 10a4 and is not adjacent to the processed member 10b1. In FIG. 11A, the processed member 10a1 'is adjacent only to the processed member 10a2', and the processed member 10a2 'is adjacent to the processed members 10a1' and 10a3 '. In the present specification, the position where the adjacent machining members do not overlap each other in the rotation direction of the tool body on the member mounting surface of the tool body is the rear end in the rotation direction of the tool body of one (front) machining member This means that the position of the part is arranged on the front side in the rotational direction relative to the position of the front end part in the rotational direction of the tool body of the other (rear) processing member.

このようにすることにより、加工時に被加工物の加工に寄与する加工部材が実質的に1つとなり、被加工物の加工時に実際に加工を行う加工部材の数や加工部材が被加工物に接触する領域が削減される。これによって、加工における負荷(回転トルク)を小さく抑えることが可能となる。加工における負荷が抑えられるため、加工工具を駆動する駆動源などの小型化が可能となり使用者の操作性が向上および設備および製造コストの削減が可能となる。   By doing so, the number of processing members that contribute to the processing of the workpiece during processing is substantially one, and the number of processing members that are actually processed during processing of the workpiece and the processing members become the workpiece. The contact area is reduced. As a result, the load (rotational torque) in processing can be kept small. Since the processing load can be suppressed, the drive source for driving the processing tool can be reduced in size, and the operability for the user can be improved and the equipment and manufacturing costs can be reduced.

1つの実施形態において、工具本体は円筒形状であり、部材取付面は円筒形状の外周面である。この実施形態において、工具本体の軸線方向の基端側と先端側の両端に位置する少なくとも1組の加工部材(例えば、図6(b)における加工部材10a5と加工部材10b1)は、工具本体の部材取付面上での工具本体の回転方向(R1方向)において一部重なるように配置されていてもよい。本明細書において、工具本体の軸線方向の基端側と先端側に位置する少なくとも1組の加工部材が「工具本体の部材取付面上での工具本体の回転方向において一部重なるように配置」されるとは、一方(前方)の加工部材の工具本体の回転方向後端部の位置が、他方(後方)の加工部材の工具本体の回転方向前端部の位置よりも回転方向の後方側に配置されていることをいう。この場合、工具本体を回転させたときに工具本体の軸線方向の両端に位置する加工部材が被加工物の表面に接するタイミングが重なるので、工具本体の回転軸の被加工物の表面に対するふらつきを抑制でき、振動や騒音の発生を低減できる。この実施形態における、1組の加工部材同士の重なり幅は、任意であり得る。ただし、あまり重なり幅が大きすぎると、加工部材にかかる負荷(回転トルク)が大きくなるので好ましくない。一つの実施形態において、工具本体の回転方向における加工部材の幅の約20%〜約80%であり、好ましくは、工具本体の回転方向における加工部材の幅の約30%〜約70%であり、より好ましくは工具本体の回転方向における加工部材の幅の約50%である。例えば、図6(b)においては、加工部材10a5と加工部材10b1とは、加工部材の約50%が重なっている。   In one embodiment, the tool body has a cylindrical shape, and the member mounting surface is a cylindrical outer peripheral surface. In this embodiment, at least one set of processing members (for example, the processing member 10a5 and the processing member 10b1 in FIG. 6B) located at both ends of the base end side and the tip end side in the axial direction of the tool main body is the tool main body. You may arrange | position so that a part may overlap in the rotation direction (R1 direction) of the tool main body on a member attachment surface. In this specification, at least one set of processing members positioned on the base end side and the tip end side in the axial direction of the tool main body is “arranged so as to partially overlap in the rotation direction of the tool main body on the member mounting surface of the tool main body”. When the position of the rear end portion in the rotation direction of the tool body of the one (front) machining member is on the rear side in the rotation direction from the position of the front end portion in the rotation direction of the tool body of the other (rear) machining member. It is arranged. In this case, when the tool body is rotated, the timings at which the processing members located at both ends in the axial direction of the tool body come into contact with the surface of the workpiece overlap, so that the rotation axis of the tool body rotates relative to the surface of the workpiece. It can be suppressed and the generation of vibration and noise can be reduced. In this embodiment, the overlapping width between a pair of processed members may be arbitrary. However, if the overlap width is too large, the load (rotational torque) applied to the processed member increases, which is not preferable. In one embodiment, from about 20% to about 80% of the width of the workpiece in the direction of rotation of the tool body, preferably from about 30% to about 70% of the width of the workpiece in the direction of rotation of the tool body. More preferably, it is about 50% of the width of the processed member in the rotation direction of the tool body. For example, in FIG. 6B, the processing member 10a5 and the processing member 10b1 are overlapped by about 50% of the processing members.

1つの実施形態において、複数の加工部材のうちで工具本体の部材取付面上で工具本体の軸線方向(Y1方向)において加工部材は、一部重なるように配置される。ここで、本明細書において、「工具本体の軸線方向(Y1方向)において加工部材が、一部重なるように配置」されているとは、一方(工具本体先端側)の加工部材の工具本体基端側端部の位置が、他方(工具本体基端側)の加工部材の工具本体先端側端部の位置よりも工具本体基端側に配置されていることをいう。   In one embodiment, among the plurality of processing members, the processing members are arranged so as to partially overlap in the axial direction (Y1 direction) of the tool body on the member mounting surface of the tool body. Here, in this specification, “the processing members are arranged so as to partially overlap in the axial direction (Y1 direction) of the tool main body” means that the tool main body base of one of the processing members (the tool main body tip side) is arranged. It means that the position of the end side end portion is arranged closer to the tool body proximal end side than the position of the tool body distal end side end portion of the other (tool body proximal end side).

このように、工具本体の軸線方向(Y1方向)において複数の加工部材が一部重ねることにより被加工面の表面性状を向上させることが可能となる。その重なりが大きいほど、被加工面の表面性状は向上する反面、加工にかかる負荷(回転トルク)が上昇する。複数の加工部材の重なりを設けるか否か、また重なりをどの程度にするかは、求められる被加工面の表面性状や加工工具の駆動性能などに基づいて適宜設定され得る。   As described above, it is possible to improve the surface properties of the surface to be processed by overlapping a plurality of processing members in the axial direction (Y1 direction) of the tool body. As the overlap increases, the surface properties of the surface to be processed improve, but the load (rotational torque) applied to the processing increases. Whether or not the overlap of the plurality of processing members is provided and how much overlap can be appropriately set based on the required surface properties of the processing surface, the driving performance of the processing tool, and the like.

1つの実施形態において、複数の加工部材は、部材取付面において螺旋状に配置されている。典型的には、複数の加工部材は、工具本体の部材取付面において、軸線方向に対して傾斜した線にほぼ沿って、工具本体の軸線方向の基端側から先端側にわたって並ぶように配置され得る。この場合、工具本体の外周面に設けられた加工部材の刃面で生成された加工屑は、加工工具の回転により、工具本体の外周面をその軸線方向に対して傾斜した線に沿って並ぶ複数の加工部材によって工具本体の外周面の一方の縁側に掃き寄せられることとなる。これにより加工工具の工具本体の外周面からの加工屑の掃き出しをスムーズに行うことができる。   In one embodiment, the plurality of processing members are arranged in a spiral shape on the member mounting surface. Typically, the plurality of processing members are arranged on the member mounting surface of the tool main body so as to be aligned from the base end side to the tip end side in the axial direction of the tool main body substantially along a line inclined with respect to the axial direction. obtain. In this case, the processing waste generated by the blade surface of the processing member provided on the outer peripheral surface of the tool main body is aligned along a line inclined with respect to the axial direction of the outer peripheral surface of the tool main body by the rotation of the processing tool. The plurality of processing members are swept to one edge side of the outer peripheral surface of the tool body. As a result, it is possible to smoothly remove the machining waste from the outer peripheral surface of the tool body of the machining tool.

なお、上記の軸線方向に対して傾斜した線の傾斜角、すなわち、図6(b)の展開図において傾斜した線Ltと工具本体の軸線方向(Y1方向)とがなす角度は、約20°〜約70°であり、好ましくは、約30°〜約60°であり、より好ましくは約45°である。   The inclination angle of the line inclined with respect to the axial direction, that is, the angle formed by the inclined line Lt in the developed view of FIG. 6B and the axial direction (Y1 direction) of the tool body is about 20 °. To about 70 °, preferably about 30 ° to about 60 °, more preferably about 45 °.

角度を小さくすると、配置される加工部材の数が増えることにより、加工効率および被加工面の平滑性を向上させることができる反面、加工における負荷(回転トルク)は増加させることとなる。角度は、求められる加工効率、加工工具の有する仕様などに基づいて適宜設定され得る。   If the angle is reduced, the number of processing members to be arranged increases, so that the processing efficiency and the smoothness of the surface to be processed can be improved, but the load (rotational torque) in processing increases. The angle can be appropriately set based on required processing efficiency, specifications of the processing tool, and the like.

本明細書において、複数の加工部材は複数のグループに分れていてもよい。ここで、「複数のグループ」は、上記の傾斜した線上に配置される一群の複数の加工部材を含む。好ましい実施形態において、複数のグループは第1のグループと第2のグループとを含み、ここで、第1のグループと第2のグループに含まれる加工部材同士が千鳥状に配置されている。すなわち、それぞれのグループに含まれる加工部材同士が、工具本体の軸線方向において異なる位置に配置されている。ここで、本明細書において、各グループそれぞれの加工部材同士が「工具本体の軸線方向において異なる位置」に配置されているとは、加工部材の中心軸同士が、工具本体の軸線方向において一致しないことをいう。すなわち、図6(b)において、第1のグループG1と第2のグループG2とでは、各グループに含まれる加工部材同士の中心軸は、工具本体の軸線方向(Y1方向)において一致していない。   In the present specification, the plurality of processed members may be divided into a plurality of groups. Here, “a plurality of groups” includes a group of a plurality of processing members arranged on the inclined line. In a preferred embodiment, the plurality of groups includes a first group and a second group, and the processing members included in the first group and the second group are arranged in a staggered manner. That is, the processing members included in each group are arranged at different positions in the axial direction of the tool body. Here, in this specification, the fact that the processing members of each group are arranged at “different positions in the axial direction of the tool body” means that the central axes of the processing members do not match in the axial direction of the tool body. That means. That is, in FIG. 6B, in the first group G1 and the second group G2, the central axes of the processing members included in each group do not coincide with each other in the axial direction (Y1 direction) of the tool body. .

上記のように、第1のグループと第2のグループに含まれる加工部材同士を千鳥状に配置することによって、個々のグループでの切削作用が弱い領域を補完することができる。   As described above, by disposing the processing members included in the first group and the second group in a staggered manner, it is possible to supplement a region where the cutting action of each group is weak.

好ましい実施形態において、第1のグループ(図6(b)におけるG1)と、加工部材同士の中心軸が工具本体の軸線方向において一致するように配置された加工部材を含むグループ(図6(b)におけるG1’、G1’’)がさらに存在し得る。G1、G1’、G1’’は、その間に同様に加工部材同士の中心軸が工具本体の軸線方向において一致するように配置された加工部材を含むG2、G2’、G2’’を介して交互に配列されていてもよい。このように配列することによって、被加工物の加工面をより均一にすることができる。   In a preferred embodiment, the first group (G1 in FIG. 6B) and the group including the processing members arranged so that the central axes of the processing members coincide with each other in the axial direction of the tool body (FIG. 6B). ), G1 ′, G1 ″) can also be present. G1, G1 ′, and G1 ″ are alternately passed through G2, G2 ′, and G2 ″ that include processing members that are arranged so that the central axes of the processing members coincide with each other in the axial direction of the tool body. May be arranged. By arranging in this way, the processed surface of the workpiece can be made more uniform.

別の実施形態において、図11に示すように、工具本体は円板形状に円錐台形状を小径側が下側を向くように結合することにより得られる複合形状を有し、部材取付面は円錐台部分の外周面(底面)であり得る。好ましくは、複数の加工部材は底面の部材取付面にだけ配置されているのではなく、複数の加工部材の一部は、複合形状の円板形状部分の外周面(以下、単に外周面という。)に配置され得る。このようにすることによって、加工部材の側面においても加工が可能になる。   In another embodiment, as shown in FIG. 11, the tool body has a composite shape obtained by joining a disk shape to a truncated cone shape so that the small diameter side faces downward, and the member mounting surface is a truncated cone shape. It may be the outer peripheral surface (bottom surface) of the part. Preferably, the plurality of processing members are not arranged only on the member mounting surface on the bottom surface, but a part of the plurality of processing members is referred to as an outer peripheral surface (hereinafter simply referred to as an outer peripheral surface) of a composite-shaped disk-shaped portion. ). By doing in this way, processing is possible also on the side of the processed member.

(被加工物)
本発明の加工工具により加工される被加工物の材質は特に限定されるものではないが、例えば、コンクリート、モルタル、アスファルト、レンガ、セメント、石材およびそれらの複合材料からなる群から選択された材料を含むものでもよい。さらに、本発明の加工工具により加工される被加工物は、加工工具により加工可能なものであれば、これらの材質以外の材質のものでもよく、例えば、上記のような硬い材質の他に軟らかい材質を含むものでもよい。軟らかい材質を含む被加工物としては、例えば、硬い材質で構成された本体部分と、本体部分の表面に固着されている軟らかい材質で構成された表層とを含むものが一例として挙げられる。軟らかい材質も特に限定されるものではないが、例えば、ポリウレタンやポリエチレンテレフタレートなどの樹脂、不織布、天然皮革、合成皮革、木材、紙、炭素繊維、ガラス繊維からなる群から選択されたものでもよい。
(Workpiece)
Although the material of the workpiece processed by the processing tool of the present invention is not particularly limited, for example, a material selected from the group consisting of concrete, mortar, asphalt, brick, cement, stone, and composite materials thereof. May be included. Furthermore, the workpiece processed by the processing tool of the present invention may be made of a material other than these materials as long as it can be processed by the processing tool. For example, it is soft in addition to the hard material as described above. The material may be included. As an example of the workpiece including a soft material, for example, a workpiece including a main body portion made of a hard material and a surface layer made of a soft material fixed to the surface of the main body portion can be given. The soft material is not particularly limited, and may be selected from the group consisting of resins such as polyurethane and polyethylene terephthalate, nonwoven fabric, natural leather, synthetic leather, wood, paper, carbon fiber, and glass fiber.

好ましい実施形態においては、加工工具は、本体部分がコンクリート、石材などからなる床面や壁面の表層に設けられたウレタンなどの塗膜やタイル、モルタルなどの加工(除去・剥離)に用いられる。   In a preferred embodiment, the processing tool is used for processing (removal / peeling) of a coating film such as urethane, tile, mortar, etc. provided on the surface of the floor surface or wall surface of which the main body portion is made of concrete, stone or the like.

(具体的な実施形態)
以下の実施形態の説明では、実施形態1の加工工具として、工具本体が円筒形状を有し、加工部材が円錐台形状を有し、複数の加工部材は、工具本体の外周面に取り付けられた複数の加工部材を含み、複数の加工部材は、奇数個(例えば、5個)の加工部材からなる第1のグループと、偶数個(例えば、4個)の加工部材からなる第2のグループとにグループ分けされているものを挙げる。
(Specific embodiment)
In the following description of the embodiment, as the processing tool of Embodiment 1, the tool body has a cylindrical shape, the processing member has a truncated cone shape, and the plurality of processing members are attached to the outer peripheral surface of the tool body. The plurality of processing members include a first group including an odd number (for example, five) processing members and a second group including an even number (for example, four) processing members. Listed in groups.

また、実施形態2の加工部材として、工具本体が複合形状(円板形状に円錐台形状を結合することにより得られる形状)を有し、加工部材が円錐台形状を有し、複数の加工部材は、工具本体の底面(円錐台形状部分の外周面)に取り付けられた複数の加工部材(底面側加工部材)と、工具本体の外周面(円板形状部分の外周面)に取り付けられた複数の加工部材(外周側加工部材)とを含み、複数の底面側加工部材が、工具本体の半径方向を横切ってその底面の外周から中心へ向かって並ぶ一定数(例えば、3個)の底面側加工部材毎にグループに分かれているものを挙げる。   In addition, as the processing member of the second embodiment, the tool body has a composite shape (a shape obtained by joining a circular truncated cone shape to a disk shape), the processing member has a truncated cone shape, and a plurality of processed members Are a plurality of machining members (bottom surface side machining members) attached to the bottom surface of the tool body (the outer peripheral surface of the frustoconical portion) and a plurality of workpieces attached to the outer peripheral surface of the tool body (the outer peripheral surface of the disk-shaped portion). A certain number (for example, three) of bottom surface sides in which a plurality of bottom surface processing members are arranged from the outer periphery of the bottom surface toward the center across the radial direction of the tool body. List the workpieces divided into groups.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1および図2はそれぞれ、本発明の実施形態1による加工工具100の外観を示す斜視図および平面図であり、図2(a)〜図2(f)はそれぞれ、図1のA方向〜F方向から見た加工工具100の構造を示す。
(Embodiment 1)
FIGS. 1 and 2 are a perspective view and a plan view, respectively, showing an external appearance of the processing tool 100 according to Embodiment 1 of the present invention, and FIGS. 2 (a) to 2 (f) are respectively a direction A in FIG. The structure of the processing tool 100 viewed from the F direction is shown.

この加工工具100は、被加工物Wpの表面を切削により剥離する加工工具である。この加工工具100は、回転体形状としての円筒形状を有する工具本体110と、円錐台形状を有する複数の加工部材10とを備えている。複数の加工部材10は、それぞれの外周面が被加工物Wpを切削する刃面11aとなるように工具本体110に取り付けられている。工具本体110への加工部材10の取付には六角ボルト20が用いられている。   This processing tool 100 is a processing tool for peeling the surface of the workpiece Wp by cutting. The processing tool 100 includes a tool body 110 having a cylindrical shape as a rotating body shape, and a plurality of processing members 10 having a truncated cone shape. The plurality of processing members 10 are attached to the tool body 110 such that the outer peripheral surfaces thereof are the blade surfaces 11a for cutting the workpiece Wp. A hexagon bolt 20 is used to attach the machining member 10 to the tool body 110.

1つの実施形態においては、複数の加工部材のそれぞれにおいて刃面11aが工具本体110から突出しており、加工部材10の突出する高さは、工具本体110の回転方向R1の前方側(Rf側)でその後方側(Rb側)に比べて高くなっている。ここで、刃面11aが工具本体110の回転方向R1の前方側Rfで工具本体110の部材取付面Sから突出する高さは、約1mm〜約10mm、好ましくは約2mm〜約8mm、さらに好ましくは約3mm〜約5mmである。1つの具体的な実施形態において、刃面11aが工具本体110の回転方向R1の前方側Rfで工具本体110の部材取付面Sから突出する高さは約3mm〜約5mmとし、刃面11aが工具本体110の回転方向R1の後方側Rbで工具本体110の部材取付面Sから突出する高さは約0mmとしている。   In one embodiment, the blade surface 11a protrudes from the tool main body 110 in each of the plurality of processing members, and the protruding height of the processing member 10 is the front side (Rf side) in the rotation direction R1 of the tool main body 110. Therefore, it is higher than the rear side (Rb side). Here, the height at which the blade surface 11a protrudes from the member mounting surface S of the tool body 110 on the front side Rf in the rotation direction R1 of the tool body 110 is about 1 mm to about 10 mm, preferably about 2 mm to about 8 mm, more preferably. Is about 3 mm to about 5 mm. In one specific embodiment, the height at which the blade surface 11a protrudes from the member mounting surface S of the tool body 110 on the front side Rf in the rotation direction R1 of the tool body 110 is about 3 mm to about 5 mm, and the blade surface 11a is The height protruding from the member mounting surface S of the tool body 110 on the rear side Rb in the rotation direction R1 of the tool body 110 is about 0 mm.

本発明の実施形態において、加工部材10を工具本体110へ固定する機構(固定機構)として、六角ボルト20が用いられているが、固定機構は任意の手段であり得る。ここで、固定機構は、ネジ、接着剤、接着テープ、嵌合、溶着、電着など、当該分野で任意のものであり得る。   In the embodiment of the present invention, the hexagon bolt 20 is used as a mechanism (fixing mechanism) for fixing the machining member 10 to the tool body 110, but the fixing mechanism may be any means. Here, the fixing mechanism may be arbitrary in the art, such as a screw, an adhesive, an adhesive tape, fitting, welding, and electrodeposition.

ここで、工具本体110は、回転体形状として円筒形状を有し、外周部110aと底面部110bとで構成されており、工具本体110の部材取付面である外周部110aの表面(以下、外周面ともいう。)Sには加工部材10が取り付けられている。底面部110bの中央部は肉厚部111となっており、肉厚部111には、電動工具の駆動シャフト(図示せず)が挿入される取付穴111aが形成されている。この加工工具100は、電動工具によってR1方向に回転させることで被加工物Wpの加工を行うものである。   Here, the tool main body 110 has a cylindrical shape as a rotating body shape, and is configured by an outer peripheral portion 110a and a bottom surface portion 110b. The surface of the outer peripheral portion 110a that is a member mounting surface of the tool main body 110 (hereinafter referred to as an outer peripheral portion). A processing member 10 is attached to S. A central portion of the bottom surface portion 110b is a thick portion 111, and a mounting hole 111a into which a drive shaft (not shown) of an electric tool is inserted is formed in the thick portion 111. This processing tool 100 processes the workpiece Wp by rotating it in the R1 direction with an electric tool.

図3は、図1に示す加工工具100の1つの加工部材10を取り外した状態を示す斜視図であり、図4は、図1に示す加工工具100を構成する工具本体110(図4(a))、加工部材10(図4(b))、および固定ボルト20(図4(c))を示す斜視図である。   FIG. 3 is a perspective view showing a state where one processing member 10 of the processing tool 100 shown in FIG. 1 is removed, and FIG. 4 is a tool main body 110 (FIG. 4A) constituting the processing tool 100 shown in FIG. )), The processing member 10 (FIG. 4B), and the fixing bolt 20 (FIG. 4C).

加工工具100は、図3に示すように、複数の加工部材10を六角ボルト20により工具本体110に取り付けた構造となっている。従って、加工工具100は、図4に示すように工具本体110と、複数の加工部材10と、複数の六角ボルト20とで構成されている。   As shown in FIG. 3, the machining tool 100 has a structure in which a plurality of machining members 10 are attached to a tool body 110 with hexagon bolts 20. Therefore, the processing tool 100 is composed of a tool main body 110, a plurality of processing members 10, and a plurality of hexagon bolts 20, as shown in FIG.

ここで、工具本体110の外周部110aの表面(外周面)Sには、図4(a)に示すように、加工部材10を収容する収容凹部112が形成されており、収容凹部112の形状は、任意の形状であり得、好ましくは、加工部材10の形状に基づいた形状である。収容凹部112の底面には、六角ボルト20をねじ込むための固定ねじ穴113が形成されている。加工部材10は、図4(b)に示すように、その内部を六角ボルト20が貫通するように筒形形状を有する。六角ボルト20は、図4(c)に示すように、逆円錐台形状のボルト頭部22と、ボルト頭部22から延びる雄ねじ部21とを有し、ボルト頭部22には、六角レンチ(図示せず)を嵌め込むための六角穴22aが形成されている。   Here, on the surface (outer peripheral surface) S of the outer peripheral portion 110 a of the tool main body 110, as shown in FIG. 4A, an accommodating recess 112 for accommodating the processing member 10 is formed, and the shape of the accommodating recess 112 is formed. Can be any shape, preferably a shape based on the shape of the workpiece 10. A fixing screw hole 113 for screwing the hexagon bolt 20 is formed on the bottom surface of the housing recess 112. As shown in FIG. 4B, the processed member 10 has a cylindrical shape so that the hexagon bolt 20 penetrates through the inside thereof. As shown in FIG. 4 (c), the hexagon bolt 20 has an inverted truncated cone-shaped bolt head 22 and a male screw portion 21 extending from the bolt head 22, and the bolt head 22 has a hexagon wrench ( A hexagonal hole 22a for fitting a not shown) is formed.

以下、加工工具100を構成する工具本体110および加工部材10を詳しく説明する。   Hereinafter, the tool main body 110 and the processing member 10 constituting the processing tool 100 will be described in detail.

〔工具本体110〕
図5は、図4(a)の工具本体110の外観を示す平面図であり、図5(a)〜図5(f)はそれぞれ、図4(a)のA方向〜F方向から見た工具本体110の構造を示す。
[Tool body 110]
FIG. 5 is a plan view showing the appearance of the tool main body 110 of FIG. 4A, and FIGS. 5A to 5F are viewed from the A direction to the F direction of FIG. 4A, respectively. The structure of the tool main body 110 is shown.

工具本体110の外周面(外周部110aの表面)Sには、図4(a)および図5(a)〜図5(f)に示すように、円錐台形状の加工部材10を収容する複数の収容凹部112が形成され、それぞれの収容凹部112の中央には、六角ボルト20のボルトねじ部21をねじ込むための固定ねじ穴113が形成されている。   On the outer peripheral surface (surface of the outer peripheral portion 110a) S of the tool main body 110, as shown in FIG. 4A and FIGS. The housing recess 112 is formed, and a fixing screw hole 113 for screwing the bolt screw portion 21 of the hexagon bolt 20 is formed in the center of each housing recess 112.

図6は、図4(a)の工具本体110の外周面Sに形成されている収容凹部112の配置を説明するための図であり、図6(a)は、工具本体110の外周面Sでの複数の収容凹部112の位置関係を示し、図6(b)は、図6(a)の複数の収容凹部112および複数の収容凹部112に取り付けられた加工部材10の配置の展開図である。なお、図6(b)では、説明の都合上、図6(a)に示されている固定ねじ穴113は省略している。図6(b)における「0」〜「48」の数字は、円筒形状の工具本体110の外周面Sを周方向に48等分したときの外周面Sの基準位置P0からの距離をその数値で示している。例えば、数字「24」が示す位置は、工具本体110の中心軸C0の周りの角度で基準位置P0から180°(=(360°/48)×24)だけ離れた位置である。   FIG. 6 is a view for explaining the arrangement of the accommodating recesses 112 formed in the outer peripheral surface S of the tool main body 110 in FIG. 4A, and FIG. 6A is an outer peripheral surface S of the tool main body 110. 6 (b) is a development view of the arrangement of the plurality of housing recesses 112 and the processing members 10 attached to the plurality of housing recesses 112 in FIG. 6 (a). is there. In FIG. 6B, the fixing screw hole 113 shown in FIG. 6A is omitted for convenience of explanation. The numbers “0” to “48” in FIG. 6B indicate the distance from the reference position P0 of the outer peripheral surface S when the outer peripheral surface S of the cylindrical tool body 110 is equally divided into 48 in the circumferential direction. Is shown. For example, the position indicated by the numeral “24” is a position away from the reference position P0 by 180 ° (= (360 ° / 48) × 24) at an angle around the central axis C0 of the tool body 110.

複数の収容凹部112は、図6(a)に示すように、工具本体110の外周面Sに設定される9個の仮想円周L1〜L9のいずれかの仮想円周上に配置されている。仮想円周L1〜L9はそれぞれ、工具本体110が有する円筒形状の半径と一致した半径を有する円であり、工具本体110の中心軸C0の軸線方向に一定の間隔D2で配置されている。なお、ここでは、工具本体110の中心軸C0の軸線方向の両端に位置する仮想円周L1およびL9と、工具本体110の両端縁との間隔D1は、隣接する仮想円周の間隔D2より広くなっている。例えば、工具本体110の円筒形状の直径Dmが約50mm〜約100mm、この円筒形状の幅Wが約30mm〜約70mmである場合、間隔D1は約3mm〜約10mm、間隔D2は約3mm〜約10mであり、好ましくは、直径Dmが約80mm、この円筒形状の幅Wが約52mmである場合、間隔D1は約6mm、間隔D2は約5mmである。ただし、円筒形状の直径Dm、幅W、間隔D1およびD2は、これらの値に限定されるものではない。   As shown in FIG. 6A, the plurality of housing recesses 112 are arranged on any one of the nine virtual circumferences L <b> 1 to L <b> 9 set on the outer circumferential surface S of the tool body 110. . The virtual circumferences L1 to L9 are circles having radii that coincide with the radius of the cylindrical shape of the tool body 110, and are arranged at a constant interval D2 in the axial direction of the central axis C0 of the tool body 110. Here, the distance D1 between the virtual circumferences L1 and L9 located at both ends in the axial direction of the central axis C0 of the tool body 110 and the both edges of the tool body 110 is wider than the distance D2 between the adjacent virtual circumferences. It has become. For example, when the diameter Dm of the cylindrical shape of the tool body 110 is about 50 mm to about 100 mm and the width W of the cylindrical shape is about 30 mm to about 70 mm, the distance D1 is about 3 mm to about 10 mm, and the distance D2 is about 3 mm to about When the diameter Dm is about 80 mm and the width W of the cylindrical shape is about 52 mm, the distance D1 is about 6 mm and the distance D2 is about 5 mm. However, the diameter Dm, the width W, and the intervals D1 and D2 of the cylindrical shape are not limited to these values.

工具本体110の各仮想円周L1〜L9上では、3つの収容凹部112が120°の間隔で配置されている。工具本体110の外周面の一方の縁Ed1側から数えて奇数番目の仮想円周L1、L3、L5、L7、L9での複数の収容凹部112の配列は、工具本体110の底面部110b(外周面の他の縁Ed2)に近づくに連れて、各仮想ライン上での収容凹部112の配列の位相が約15°づつ、使用時の工具本体110の回転方向R1に進んだ配列となっている。工具本体110の外周面の一方の縁側から数えて偶数番目の仮想円周L2、L4、L6、L8においても、奇数番目の仮想円周と同様、工具本体110の底面部110bに近づくに連れて、各仮想ライン上での収容凹部112の配列の位相が15°づつ、工具本体110の回転方向R1に進んでいる。ただし、隣接する仮想円周上に配置されている収容凹部112の位相ずれ量や位相ずれの方向は限定されるものではなく、加工工具100の加工対象である被加工物Wpに合わせて適宜設定可能である。   On each virtual circumference L1-L9 of the tool main body 110, the three accommodating recessed parts 112 are arrange | positioned at intervals of 120 degrees. The arrangement of the plurality of receiving recesses 112 at the odd-numbered virtual circumferences L1, L3, L5, L7, and L9 from the one edge Ed1 side of the outer peripheral surface of the tool main body 110 is the bottom surface portion 110b (outer periphery) of the tool main body 110. As it approaches the other edge Ed2) of the surface, the phase of the arrangement of the accommodating recesses 112 on each virtual line is about 15 °, and the arrangement advances in the rotation direction R1 of the tool body 110 at the time of use. . Even in the even-numbered virtual circumferences L2, L4, L6, and L8 counted from one edge side of the outer peripheral surface of the tool main body 110, as the odd-numbered virtual circumferences are approached, the bottom surface 110b of the tool main body 110 is approached. The phase of the arrangement of the accommodating recesses 112 on each virtual line advances in the rotation direction R1 of the tool body 110 by 15 degrees. However, the phase shift amount and the phase shift direction of the accommodation recess 112 arranged on the adjacent virtual circumference are not limited, and are appropriately set according to the workpiece Wp to be processed by the processing tool 100. Is possible.

さらに、複数の収容凹部112の各々は、工具本体110の外周面S上での中心軸周りの位置が他の収容凹部112とは異なるように配置され、さらに、複数の収容凹部112のうち隣接する収容凹部112は、部材取付面S上での工具本体110の回転方向R1において互いに重ならない位置に配置されている。従って、複数の収容凹部112に収容された複数の加工部材10の各々は、工具本体110の外周面上での中心軸周りの位置が他の加工部材とは異なるように配置され、さらに、隣接する加工部材10は、部材取付面S上での工具本体110の回転方向R1において互いに重ならない位置に配置されることとなる。ただし、複数の収容凹部112には、工具本体110の外周面S上での中心軸周りの位置が重なるものが含まれていてもよい。   Further, each of the plurality of receiving recesses 112 is arranged such that the position around the central axis on the outer peripheral surface S of the tool body 110 is different from the other receiving recesses 112, and is adjacent to the other receiving recesses 112. The receiving recesses 112 are arranged at positions that do not overlap with each other in the rotation direction R1 of the tool body 110 on the member mounting surface S. Therefore, each of the plurality of machining members 10 accommodated in the plurality of accommodation recesses 112 is arranged such that the position around the central axis on the outer peripheral surface of the tool body 110 is different from that of the other machining members, and further adjacent to each other. The processed members 10 to be arranged are arranged at positions that do not overlap each other in the rotation direction R1 of the tool main body 110 on the member mounting surface S. However, the plurality of receiving recesses 112 may include ones whose positions around the central axis on the outer peripheral surface S of the tool body 110 overlap.

また、複数の収容凹部112は、3つの第1のグループG1と3つの第2のグループG2とに分れており、これらのグループの各々に含まれる複数の収容凹部112は、工具本体の外周面の展開図(図6(b))において外周面Sの幅方向Y1に対して傾斜した各グループに対応する傾斜直線Ltに沿って、外周面Sの一方の縁Ed1側から他方の縁Ed2側に跨って並ぶように工具本体110の外周面Sに配置されている。   Further, the plurality of receiving recesses 112 are divided into three first groups G1 and three second groups G2, and the plurality of receiving recesses 112 included in each of these groups is the outer periphery of the tool body. In the development view of the surface (FIG. 6B), along the inclined straight line Lt corresponding to each group inclined with respect to the width direction Y1 of the outer peripheral surface S, the other edge Ed2 from the one edge Ed1 side of the outer peripheral surface S. It arrange | positions at the outer peripheral surface S of the tool main body 110 so that it may straddle across.

ここで、展開図における幅方向Y1に対する傾斜直線Ltの傾斜角は、約20°〜約70°であり、好ましくは約30°〜約60°であり、より好ましくは約45°である。   Here, the inclination angle of the inclination straight line Lt with respect to the width direction Y1 in the developed view is about 20 ° to about 70 °, preferably about 30 ° to about 60 °, and more preferably about 45 °.

具体的には、工具本体110の中心軸回りの方向R1において連続して並ぶ複数の収容凹部112であって、それぞれ奇数番目の仮想ラインL1、L3、L5、L7、L9と傾斜直線との交点に位置する5つの収容凹部112は、収容凹部112の第1のグループG1を構成している。工具本体110の中心軸回りの方向R1において連続して並ぶ複数の収容凹部112であって、それぞれ偶数番目の仮想ラインL2、L4、L6、L8と傾斜直線との交点上に位置する4つの収容凹部112は、収容凹部112の第2のグループG2を構成している。   Specifically, a plurality of receiving recesses 112 continuously arranged in the direction R1 around the central axis of the tool body 110, each of which is an intersection of an odd-numbered virtual line L1, L3, L5, L7, L9 and an inclined straight line. The five receiving recesses 112 located in the first portion constitute a first group G1 of the receiving recesses 112. A plurality of receiving recesses 112 arranged continuously in the direction R1 around the central axis of the tool body 110, each of which is located at the intersection of the even-numbered virtual lines L2, L4, L6, L8 and the inclined straight line The concave portion 112 constitutes a second group G2 of the accommodating concave portion 112.

なお、この実施形態1では、複数の収容凹部112は、3つの第1のグループG1と3つの第2のグループG2とにグループ分けされている場合を示しているが、第1、第2のグループG1、G2はそれぞれ、1つでも2つでも、あるいは4つ以上でもよし、複数の収容凹部112は、グループ分けされていなくてもよい。   In addition, in this Embodiment 1, although the some accommodating recessed part 112 has shown the case where it groups into the 3 1st group G1 and the 3rd 2nd group G2, the 1st, 2nd Each of the groups G1 and G2 may be one, two, or four or more, and the plurality of receiving recesses 112 may not be grouped.

さらに、この実施形態1では、3つの第1のグループG1と3つの第2のグループG2とは、工具本体110の外周方向X1において交互に配置される。ただし、複数の第1のグループG1と複数の第2のグループG2とは、工具本体110の中心軸回りの方向(工具本体の回転方向)R1において交互に配置されていなくてもよい。   Furthermore, in the first embodiment, the three first groups G1 and the three second groups G2 are alternately arranged in the outer peripheral direction X1 of the tool body 110. However, the plurality of first groups G1 and the plurality of second groups G2 may not be alternately arranged in the direction R1 around the central axis of the tool body 110 (the rotation direction of the tool body).

従って、このようにグループ分けされた複数の収容凹部112に収容された複数の加工部材10は、複数の収容凹部112と同様に、3つの第1のグループG1の加工部材10と3つの第2のグループG2の加工部材10とにグループ分けされ、加工部材10の3つの第1のグループG1と加工部材10の3つの第2のグループG2とは、工具本体110中心軸回りの方向R1において交互に配置される。さらに、これらの3つの第1のグループG1と3つの第2のグループG2の加工部材10は、工具本体の外周面の展開図において外周面の幅方向に対して傾斜した各グループに対応する傾斜直線Ltに沿って、外周面Sの一方の縁Ed1側から他方の縁Ed2側に跨って並ぶように工具本体110の外周面Sに配置される。このように、複数のグループの各々の加工部材は、部材取付面において螺旋状に配列され、複数のグループのうちの隣接するグループに含まれる加工部材同士は、千鳥状に配列されている。   Therefore, the plurality of processing members 10 housed in the plurality of housing recesses 112 grouped in this way are the same as the plurality of housing recesses 112, and the three first group G1 processing members 10 and the three second members. The group G2 of the machining members 10 are grouped, and the three first groups G1 of the machining members 10 and the three second groups G2 of the machining members 10 are alternately arranged in the direction R1 around the central axis of the tool body 110. Placed in. Further, the machining members 10 of these three first groups G1 and three second groups G2 are inclined corresponding to the respective groups inclined with respect to the width direction of the outer peripheral surface in the development view of the outer peripheral surface of the tool body. Along the straight line Lt, the outer peripheral surface S is arranged on the outer peripheral surface S of the tool body 110 so as to extend from one edge Ed1 side to the other edge Ed2 side. As described above, the processing members of the plurality of groups are arranged in a spiral shape on the member mounting surface, and the processing members included in the adjacent groups of the plurality of groups are arranged in a staggered manner.

さらに、工具本体110の外周面Sに形成されている複数の収容凹部112のうちで工具本体110の中心軸周りの方向R1において隣接し、かつ、工具本体110の外周面Sの両端に位置する一対の収容凹部112(例えば、図6(b)に右上がりのハッチングを付けて示す1組の収容凹部112b1および112a5、図6(b)に左上がりのハッチングを付けて示す1組の収容凹部112a1および収容凹部112b4など)は、工具本体110の外周面上でその中心軸周りの方向R1において一部重なるように、具体的には回転角で約7.5°だけ重なるように配置されている。   Further, among the plurality of receiving recesses 112 formed on the outer peripheral surface S of the tool main body 110, they are adjacent to each other in the direction R <b> 1 around the central axis of the tool main body 110 and are positioned at both ends of the outer peripheral surface S of the tool main body 110. A pair of housing recesses 112 (for example, a pair of housing recesses 112b1 and 112a5 shown with a right-up hatching in FIG. 6B, and a pair of housing recesses shown in FIG. 6B with a left-up hatching) 112a1 and the housing recess 112b4) are arranged so as to partially overlap on the outer peripheral surface of the tool body 110 in the direction R1 around the central axis, specifically, by about 7.5 ° in rotation angle. Yes.

ここでは、各グループG1、G2内では、工具本体110の中心軸周りの方向R1において隣接する2つの収容凹部112の間隔を回転角で約15°とすることにより、隣接する収容凹部112間に工具本体110の中心軸周りの方向R1における隙間ができないように複数の収容凹部112を配置している。従って、工具本体110の両端に位置する一対の収容凹部112b1および112a5(図6(b)で右上がりのハッチングを付けたもの)、あるいは一対の収容凹部112a1および112b4(図6(b)で左上がりのハッチングを付けたもの)を工具本体の中心軸周りの方向R1において、回転角で約7.5°だけ重なるように配置した場合、これらの1組の収容凹部112が工具本体の中心軸周りの方向R1における収容凹部112の幅の約半分(約50%)だけ重なることとなる。   Here, in each of the groups G1 and G2, by setting the interval between the two receiving recesses 112 adjacent to each other in the direction R1 around the central axis of the tool body 110 to be about 15 ° in rotation angle, the adjacent receiving recesses 112 are separated. The plurality of receiving recesses 112 are arranged so that there is no gap in the direction R <b> 1 around the central axis of the tool body 110. Therefore, a pair of receiving recesses 112b1 and 112a5 (hatched with a right-up hatching in FIG. 6B) located at both ends of the tool body 110, or a pair of receiving recesses 112a1 and 112b4 (left in FIG. 6B). Are arranged so that the rotation angle is about 7.5 ° in the direction R1 around the central axis of the tool body, these one set of receiving recesses 112 is the central axis of the tool body. It will overlap by about half (about 50%) of the width of the accommodating recess 112 in the surrounding direction R1.

ただし、工具本体110の外周面Sの両端に位置する少なくとも1組の収容凹部112が工具本体の中心軸周りの方向において重なる重なり幅は、工具本体の中心軸周りの方向における収容凹部112の幅の約50%に限定されない。例えば、被加工物Wpの材質にもよるが、工具本体110の外周面Sの両端に位置する少なくとも1組の収容凹部112が工具本体の中心軸周りの方向において重なる重なり幅は、収容凹部112の幅の約20%〜約80%の幅であればよく、好ましくは、収容凹部112の幅の約30%〜約70%の幅であればよい。重なり幅は、大きくなると振動が抑制される反面、加工部材にかかる負荷(回転トルク)が大きくなることから、求められる振動や負荷に基づいて所望の重なり幅に設定し得る。   However, the overlapping width in which at least one pair of receiving recesses 112 positioned at both ends of the outer peripheral surface S of the tool body 110 overlap in the direction around the central axis of the tool body is the width of the receiving recess 112 in the direction around the center axis of the tool body. It is not limited to about 50%. For example, although depending on the material of the workpiece Wp, the overlapping width in which at least one pair of receiving recesses 112 located at both ends of the outer peripheral surface S of the tool body 110 overlap in the direction around the central axis of the tool body is equal to the receiving recess 112. About 20% to about 80% of the width, and preferably about 30% to about 70% of the width of the housing recess 112. As the overlap width is increased, vibration is suppressed, but the load (rotational torque) applied to the processed member is increased. Therefore, the overlap width can be set to a desired overlap width based on the required vibration and load.

従って、複数の収容凹部112に収容された複数の加工部材10では、工具本体110の外周面Sでの配置は、複数の収容凹部112の配置と同じ配置となり、例えば、工具本体110の外周面Sの両端に位置する少なくとも1組の加工部材は、工具本体110の外周面S上でその中心軸周りの方向R1において互いに加工部材10の幅の約半分だけ重なるように配置される。   Therefore, in the plurality of processing members 10 accommodated in the plurality of accommodating recesses 112, the arrangement on the outer peripheral surface S of the tool body 110 is the same as the arrangement of the plurality of accommodating recesses 112, for example, the outer peripheral surface of the tool main body 110 At least one set of machining members located at both ends of S is arranged on the outer circumferential surface S of the tool body 110 so as to overlap each other by about half the width of the machining member 10 in the direction R1 around the central axis.

〔加工部材10〕
図7は、図4(b)の加工部材10の説明図であり、図7(a)は、図4(b)のA1方向から見た加工部材10の構造を示し、図7(b)は、図7(a)のVIIb−VIIb線断面を示す。
[Working member 10]
FIG. 7 is an explanatory view of the processing member 10 in FIG. 4B. FIG. 7A shows the structure of the processing member 10 viewed from the A1 direction in FIG. 4B, and FIG. These show the VIIb-VIIb line cross section of Fig.7 (a).

加工部材10は、円錐台形状を有する筒状体11で構成されており、筒状体11の直径の大きい方の端面には、固定ボルト20を挿入するためのボルト挿入口11bが形成されており、筒状体11の内面には、固定ボルト20の円錐台形状のボルト頭部22の側面に当接する頭部当接面11cが形成されている。   The processing member 10 is constituted by a cylindrical body 11 having a truncated cone shape, and a bolt insertion port 11b for inserting the fixing bolt 20 is formed on the end surface of the cylindrical body 11 having the larger diameter. In addition, a head contact surface 11 c that contacts the side surface of the truncated cone head portion 22 of the fixing bolt 20 is formed on the inner surface of the cylindrical body 11.

1つの実施形態においては、加工部材10を構成する円錐台形状の筒状体11の外周面は、図7(b)に示すように、加工部材10の中心軸C10に対して約7°で傾斜している。ただし、加工部材10の中心軸C10に対する外周面の傾斜角度は約7°に限定されるものではない。好ましくは約2°〜約15°、さらに好ましくは約5°〜約10°の範囲で適宜設定され得る。例えば、傾斜角度を小さくすると、加工部材が被加工物への食い込み(切り込み)が小さくなるため、加工における負荷(回転トルク)を抑制でき、加工工具の被加工面における移動をスムーズに行うことができ、被加工面の表面性状(表面粗さ)も細かくできる。ただし、傾斜角度をあまり小さくすると、被加工物への加工部材の食い込み(切り込み)が小さくなることで、加工効率が損なわれる。逆に傾斜角度を大きくすると加工部材が被加工物への食い込み(切り込み)が大きくなるため、加工効率は向上するが、加工における負荷(回転トルク)が大きくなり、加工工具の被加工面における移動の円滑性が損なわれ、被加工面の表面粗さは粗くなる。従って、傾斜角度は求められる加工条件(被加工面の表面性状、加工効率など)に基づいて適宜設定され得る。   In one embodiment, the outer peripheral surface of the truncated cone-shaped cylindrical body 11 constituting the processed member 10 is about 7 ° with respect to the central axis C10 of the processed member 10 as shown in FIG. Inclined. However, the inclination angle of the outer peripheral surface with respect to the central axis C10 of the processed member 10 is not limited to about 7 °. Preferably, it can be appropriately set in the range of about 2 ° to about 15 °, more preferably about 5 ° to about 10 °. For example, if the inclination angle is reduced, the work member is less likely to bite into the work piece (cutting), so the load (rotational torque) in the work can be suppressed, and the work tool can be moved smoothly on the work surface. In addition, the surface property (surface roughness) of the surface to be processed can be made fine. However, if the inclination angle is too small, the cutting efficiency of the workpiece is reduced because the biting (cutting) of the workpiece into the workpiece is reduced. Conversely, if the tilt angle is increased, the machining member will bite into the work piece (cutting) and the machining efficiency will be improved. However, the machining load (rotational torque) will increase, and the machining tool will move on the work surface. Smoothness is impaired, and the surface roughness of the work surface becomes rough. Therefore, the inclination angle can be appropriately set based on the required processing conditions (surface properties of the surface to be processed, processing efficiency, etc.).

そして、複数の加工部材10を工具本体110の複数の収容凹部112に固定ボルト20により固定することにより加工工具100が組み立てられる。   Then, the machining tool 100 is assembled by fixing the plurality of machining members 10 to the plurality of receiving recesses 112 of the tool body 110 with the fixing bolts 20.

図8は、組み立てられた加工工具100の断面図であり、図8(a)および図8(b)はそれぞれ、図2(f)のVIIIa−VIIIa線断面およびVIIIb−VIIIb線断面を示す。   FIG. 8 is a cross-sectional view of the assembled processing tool 100, and FIGS. 8A and 8B show a cross-section taken along line VIIIa-VIIIa and a cross-section taken along line VIIIb-VIIIb in FIG. 2F, respectively.

この加工工具100では、図8(b)に示すように、複数の加工部材10は、筒状体11の直径の小さい方の端面が収容凹部112の底面に対向し、かつ、工具本体110の外周面S上での加工部材10の位置P10に立てた法線N10に対して工具本体110の中心軸C10が一定角度A10だけオフセットするように工具本体110に取り付けられる。ここで、オフセット角度A10は、約1°〜約30°であり、好ましくは約3°〜約20°であり、より好ましくは約5°〜約15°である。   In this machining tool 100, as shown in FIG. 8B, the plurality of machining members 10 are configured such that the end surface having the smaller diameter of the cylindrical body 11 faces the bottom surface of the housing recess 112, and The tool body 110 is attached to the tool body 110 such that the central axis C10 of the tool body 110 is offset by a certain angle A10 with respect to the normal line N10 standing at the position P10 of the processing member 10 on the outer peripheral surface S. Here, the offset angle A10 is about 1 ° to about 30 °, preferably about 3 ° to about 20 °, and more preferably about 5 ° to about 15 °.

これにより、加工部材10は、図8(a)および図8(b)に示すように、筒状体11の直径の大きい方の端部側の外周面のうちの回転方向R1の前方側を向いた面が、被加工物Wpに対する加工を施す刃面11aとなる。   Thereby, as shown in FIG. 8A and FIG. 8B, the processed member 10 has a front side in the rotational direction R <b> 1 on the outer peripheral surface on the end portion side with the larger diameter of the cylindrical body 11. The facing surface is the blade surface 11a that performs processing on the workpiece Wp.

この場合、複数の加工部材10のそれぞれにおいて刃面11aが工具本体110から突出する高さは、複数の加工部材10の回転方向の前方側で複数の加工部材10の回転方向の後方側に比べて高くなっている。   In this case, the height at which the blade surface 11a protrudes from the tool main body 110 in each of the plurality of machining members 10 is higher on the front side in the rotation direction of the plurality of machining members 10 than on the rear side in the rotation direction of the plurality of machining members 10. It is high.

1つの実施形態においては、加工部材10のオフセット角度が約10°〜約15°となり、工具本体110の回転方向R1の前方側での刃面11aの最大突出高さが約3mm〜約5mmとなり、工具本体110の回転方向R1の後方側での刃面11aの最低突出高さが約0mmとなるように、加工部材10が工具本体110に取り付けられている。   In one embodiment, the offset angle of the machining member 10 is about 10 ° to about 15 °, and the maximum protrusion height of the blade surface 11a on the front side in the rotation direction R1 of the tool body 110 is about 3 mm to about 5 mm. The machining member 10 is attached to the tool body 110 so that the minimum protrusion height of the blade surface 11a on the rear side in the rotation direction R1 of the tool body 110 is about 0 mm.

次にこの加工工具100の使用方法を説明する。   Next, the usage method of this processing tool 100 is demonstrated.

図9は、図1の加工工具100が装着された動力工具1を示す斜視図である。   FIG. 9 is a perspective view showing the power tool 1 on which the processing tool 100 of FIG. 1 is mounted.

図9に示すように、動力工具1の駆動部1aの駆動シャフト(図示せず)に加工工具100を取り付け、加工工具100を回転させる。このとき、加工工具100は、加工部材10の外周面のうちの工具本体110の外周面から突出する部分(図1参照)が刃面11aとして被加工物Wpの表面に当たる方向R1に回転させる。このときの回転速度は、望ましくは、一般的な携帯型切削工具や研削工具と同様の約1000rpm〜約15000rpmであり、好ましくは約3000rpm〜約12000rpmであり、より好ましくは約8000rpm〜約12000rpmの回転速度である。例えば、実施形態1における回転速度は、一般的なディスクグラインダーと同程度の約10000rpmである。但し、回転速度はこれに限定されるものではない。ここで、動力工具1は、電動工具などのモータの駆動力で駆動されるものでもよいし、圧縮空気などの圧縮された流体で駆動されるものでもよい。また、動力工具は、携帯型のものに限定されず、重機のアームの先端に取り付けられたものでも、あるいは旋盤やマシニングセンタなどの据置型装置の駆動軸に取り付けられるものでもよい。   As shown in FIG. 9, the machining tool 100 is attached to a drive shaft (not shown) of the drive unit 1 a of the power tool 1, and the machining tool 100 is rotated. At this time, the machining tool 100 is rotated in a direction R1 in which a portion (see FIG. 1) protruding from the outer circumferential surface of the tool body 110 in the outer circumferential surface of the machining member 10 hits the surface of the workpiece Wp as the blade surface 11a. The rotation speed at this time is desirably about 1000 rpm to about 15000 rpm, preferably about 3000 rpm to about 12000 rpm, more preferably about 8000 rpm to about 12000 rpm, which is the same as that of a general portable cutting tool or grinding tool. Rotation speed. For example, the rotation speed in the first embodiment is about 10000 rpm, which is the same as that of a general disk grinder. However, the rotation speed is not limited to this. Here, the power tool 1 may be driven by a driving force of a motor such as an electric tool, or may be driven by a compressed fluid such as compressed air. The power tool is not limited to a portable tool, and may be a tool attached to the tip of an arm of a heavy machine or a tool attached to a drive shaft of a stationary apparatus such as a lathe or a machining center.

なお、図中、1bは、動力工具1の動力部に取り付けられたカバー部材であり、加工部材10の回転により被加工物Wpの加工屑が周囲に飛び散るのを防止することが可能である。また、カバー部材1bに取り付けられた取っ手1b1によって使用者が加工工具100を被加工物Wpに押え付けやすくするものである。さらに、カバー部材1bには、加工屑を吸引するための吸引ホース(図示せず)が取り付けられている。   In the figure, 1b is a cover member attached to the power section of the power tool 1, and it is possible to prevent the processing waste of the workpiece Wp from being scattered around by the rotation of the processing member 10. Further, the handle 1b1 attached to the cover member 1b makes it easy for the user to press the processing tool 100 against the workpiece Wp. Furthermore, a suction hose (not shown) for sucking the processing waste is attached to the cover member 1b.

このように加工工具100を回転させた状態で、加工工具100の外周面に取り付けられている加工部材10の先端が被加工物Wpに接触するように加工部材10の外周面を被加工物Wpの表面に押し付けると、工具本体110の外周部110aに取り付けられている複数の加工部材10の刃面11aが被加工物Wpを加工することとなり、被加工物Wpの表面が削り取られることとなる。   In a state where the machining tool 100 is rotated in this way, the workpiece Wp is placed on the outer peripheral surface of the machining member 10 such that the tip of the machining member 10 attached to the outer circumferential surface of the machining tool 100 contacts the workpiece Wp. When pressed against the surface of the tool body 110, the blade surfaces 11a of the plurality of processing members 10 attached to the outer peripheral portion 110a of the tool body 110 process the workpiece Wp, and the surface of the workpiece Wp is scraped off. .

図9Aは、加工部材10による被加工物Wpの加工状態を説明するための図であり、図9A(a)〜図9A(c)は、中心軸をオフセットさせた加工部材10により被加工物Wpが加工される様子を示し、図9A(d)〜図9A(f)は、中心軸がオフセットさせていない加工部材10により被加工物Wpが加工される様子を示す。なお、図9Aでは、説明の都合上、工具本体110に取り付けられている複数の加工部材10(図8(b)参照)のうちの1つのみ示し、また固定ボルト20は省略している。   FIG. 9A is a diagram for explaining a processing state of the workpiece Wp by the processing member 10, and FIGS. 9A (a) to 9A (c) show the workpiece by the processing member 10 whose center axis is offset. 9A (d) to FIG. 9A (f) show how the workpiece Wp is processed by the processing member 10 whose center axis is not offset. In FIG. 9A, for convenience of explanation, only one of the plurality of processed members 10 (see FIG. 8B) attached to the tool body 110 is shown, and the fixing bolt 20 is omitted.

このような構成の実施形態1の加工工具100では、円筒形状の加工部材10の刃面11aは、加工部材10が円錐台形状を有し、その刃面11aがその外周面であるため、加工時において、まず刃面11aの回転方向における頂部Tが被加工物Wpに当接し、その後被加工物と当接する部分が頂部Tの両側に広がっていくので、加工部材10に負荷(回転トルク)が急激にかかることが抑制される。さらに、被加工物Wpのうちの刃面11aに当接する部分が加工部材10の刃面11aの頂部Tからその両側に広がっていく際に、加工部材10の刃面11aとなっている外周面が研がれる状態となる。したがって、常に刃面11aが鋭利な状態が維持されるため、加工効率を維持することが可能となる。   In the processing tool 100 of Embodiment 1 having such a configuration, the blade surface 11a of the cylindrical processing member 10 has a truncated cone shape and the blade surface 11a is an outer peripheral surface thereof. At this time, first, the top portion T in the rotation direction of the blade surface 11a abuts on the workpiece Wp, and then the portion that abuts on the workpiece spreads on both sides of the top portion T. Therefore, a load (rotational torque) is applied to the machining member 10. Is suppressed from taking abruptly. Furthermore, when the part which contact | abuts the blade surface 11a of the workpiece Wp spreads to the both sides from the top part T of the blade surface 11a of the processing member 10, the outer peripheral surface used as the blade surface 11a of the processing member 10 Will be sharpened. Therefore, since the blade surface 11a is always maintained in a sharp state, the machining efficiency can be maintained.

また、加工部材10にかかる負荷(回転トルク)が急激にかかることがないため、加工部材10を駆動する駆動源の小型化を図ることが可能となる。なお、図9に示す実施形態においては、加工部材10は円錐台形状を用いた場合について説示したが、加工部材が円筒形状であった場合においても、円錐台形状の場合に比べて若干劣るが上述した同様の効果を得ることができる。   In addition, since the load (rotational torque) applied to the processed member 10 is not applied suddenly, it is possible to reduce the size of the drive source that drives the processed member 10. In the embodiment shown in FIG. 9, the case where the processing member 10 has a truncated cone shape has been described. However, even when the processing member has a cylindrical shape, it is slightly inferior to the case of the truncated cone shape. The same effect as described above can be obtained.

さらに、加工部材10は、図8(b)に示すように、加工部材10の中心軸C10が工具本体110の中心軸C0からずれるようにオフセットして配置されている。   Further, as shown in FIG. 8B, the machining member 10 is disposed so as to be offset so that the center axis C <b> 10 of the machining member 10 is displaced from the center axis C <b> 0 of the tool body 110.

このようにすることで、円錐台形状の加工部材10をそのまま用いて、複数の加工部材10のそれぞれにおいて外周面が工具本体110から突出する高さを、工具本体110の回転方向の前方側Rfでその後方側Rbに比べて高くすることができる。   By doing so, the frustoconical machining member 10 is used as it is, and the height at which the outer peripheral surface protrudes from the tool body 110 in each of the machining members 10 is set to the front side Rf in the rotation direction of the tool body 110. Therefore, it can be made higher than the rear side Rb.

このように、加工部材10の外周面の突出高さが工具本体110の回転方向の前方側Rfでその後方側Rbに比べて高くした場合(図9A(a)〜(c)参照)、加工部材10の外周面の突出高さが回転方向の前方側Rfとその後方側Rbで同じでる場合(図9A(d)〜(f)参照)とは異なり、加工部材10の回転方向前方側Rfの外周面が刃面11aとして被加工物Wpの表面を切り込んだときに、刃面として寄与しない加工部材10の回転方向後方側Rbの円形先端面Rbtが被加工物Wpの加工溝Dcの底面Dc1に接触することが防止できる。その結果、周期的に発生する負荷(回転トルク)の増加が防止され、加工工具100の回転面に沿って前後に加工工具100をスムーズに往復移動させながら加工を行うことが可能となる。   Thus, when the protrusion height of the outer peripheral surface of the processing member 10 is higher on the front side Rf in the rotation direction of the tool body 110 than on the rear side Rb (see FIGS. 9A (a) to (c)). Unlike the case where the protrusion height of the outer peripheral surface of the member 10 is the same on the front side Rf in the rotational direction and the rear side Rb (see FIGS. 9A to 9F), the rotational direction front side Rf of the processed member 10. When the outer peripheral surface of the workpiece 10 cuts the surface of the workpiece Wp as the blade surface 11a, the circular tip surface Rbt on the rear side Rb in the rotational direction of the workpiece 10 that does not contribute as the blade surface is the bottom surface of the machining groove Dc of the workpiece Wp. Contact with Dc1 can be prevented. As a result, an increase in periodically generated load (rotational torque) is prevented, and it is possible to perform machining while smoothly reciprocating the machining tool 100 back and forth along the rotation surface of the machining tool 100.

図3および図8に示すように、加工部材10の回転方向後端側の外周面を収容凹部112の内周面に実質的に当接させることにより、加工部材10の刃先11aに回転方向R1の大きな負荷がかかった場合でも、収容凹部112の内周面で負荷を受けることができるため、加工部材10の工具本体10からの脱落や破損などを防止することが可能となる。   As shown in FIG. 3 and FIG. 8, the outer peripheral surface on the rear end side in the rotation direction of the processing member 10 is substantially brought into contact with the inner peripheral surface of the housing recess 112, so Even when a large load is applied, the load can be received on the inner peripheral surface of the housing recess 112, so that the processing member 10 can be prevented from falling off or being damaged from the tool body 10.

また、1つの実施形態においては、図7に示すように、加工部材10の外形は円錐台形状であり、しかも、加工部材10の先端側(被加工物側)ほど直径が大きくなっている。その結果、加工部材10の外周面である刃面11aの先端が被加工物Wpに入り込んだ部位から被加工物Wpを両側に切り裂くが効果的に働く。なぜなら、加工部材10の刃面11aは加工部材10の円錐台形状の側面のうちの先端側ほど広がっているため、加工部材10の刃面11aの先端は90°より尖っており、工具本体110の回転により加工部材10の外周面が加工部材10の刃面11aとして被加工物Wpに入り込むと、さらに、加工部材10の外周面の縁が、90°より尖った鋭利な刃先となって、小さい力で被加工物Wpの表面を効果的に切り裂くこととなる。さらに、加工部材10がオフセットして配置されている場合、オフセットしない場合に比べて、工具本体110から突出して刃面として機能する外周面の領域を大きくすることができるため、さらに上記効果の向上を図ることが可能となる。   In one embodiment, as shown in FIG. 7, the outer shape of the processed member 10 is a truncated cone shape, and the diameter of the processed member 10 is increased toward the distal end side (workpiece side). As a result, the work Wp is effectively cut off from the part where the tip of the blade surface 11a that is the outer peripheral surface of the work member 10 enters the work Wp. This is because the blade surface 11a of the machining member 10 spreads toward the tip side of the truncated cone-shaped side surface of the machining member 10, so that the tip of the blade surface 11a of the machining member 10 is sharper than 90 °, and the tool body 110 When the outer peripheral surface of the processing member 10 enters the workpiece Wp as the blade surface 11a of the processing member 10 due to the rotation, the edge of the outer peripheral surface of the processing member 10 becomes a sharp cutting edge sharpened from 90 °, The surface of the workpiece Wp is effectively cut with a small force. Further, when the machining member 10 is arranged offset, the area of the outer peripheral surface that protrudes from the tool body 110 and functions as the blade surface can be increased as compared with the case where the machining member 10 is not offset. Can be achieved.

また、加工部材10の刃面11aの部分では、加工部材10の円錐台形状の側面のうちの先端側(被加工物Wp側)ほど基端側(工具本体110の中心軸C0側)に比べて広がっていることから、加工部材10が被加工物Wpの被加工面(剥離面)から退避する際に、その刃面11aには加工屑を退避する方向に向けて被加工面から持ち上げる力が働くため、加工屑を被加工面から外部へ排出するのを効率的に行うことが可能となる。   Further, in the portion of the blade surface 11a of the machining member 10, the tip side (workpiece Wp side) of the frustoconical side surfaces of the machining member 10 is closer to the base side (center axis C0 side of the tool body 110). Therefore, when the workpiece 10 is retracted from the workpiece surface (peeling surface) of the workpiece Wp, the blade surface 11a is lifted from the workpiece surface in the direction of retracting the machining waste. Therefore, it is possible to efficiently discharge the processing waste from the processing surface to the outside.

また、刃面が回転体形状の外周面である場合、加工部材10を回転させて実際に加工に寄与する刃面11aとして働く外周面の位置を移動させることにより、加工部材10の外周面を全体的に刃面として使用することが可能である。その結果、加工部材10の外周面を刃面として無駄なく使用することが可能となる。   When the blade surface is a rotating body-shaped outer peripheral surface, the outer peripheral surface of the processed member 10 is moved by moving the position of the outer peripheral surface serving as the blade surface 11a that actually contributes to the processing by rotating the processed member 10. It can be used as a blade surface as a whole. As a result, the outer peripheral surface of the processed member 10 can be used as a blade surface without waste.

また、複数の加工部材10が工具本体110の外周面上に間隔を空けて配置されているので、削り取られた加工屑が隣接する加工部材10の間に溜まって目詰まりを起こすことを防止できる。そして、複数の加工部材10の各々は、工具本体110の中心軸周りの方向において他の加工部材とは異なる位置に位置するように配置されているので、加工工具100を回転させたときに複数の加工部材10のうちで、ある所定期間において加工時に被加工物Wpに作用する加工部材10の数などを少なくすることにより、加工工具100にかかる負荷(回転トルク)を小さく抑えることができる。それにより、電動工具のモータへの過負荷がかかるのを防止、またモータを小型化することができる。   Moreover, since the some processing member 10 is arrange | positioned at intervals on the outer peripheral surface of the tool main body 110, it can prevent that the scraped machining waste collects between the adjacent processing members 10, and causes clogging. . Since each of the plurality of processing members 10 is disposed at a position different from the other processing members in the direction around the central axis of the tool main body 110, a plurality of processing members 10 are provided when the processing tool 100 is rotated. Among the machining members 10, the load (rotational torque) applied to the machining tool 100 can be reduced by reducing the number of machining members 10 that act on the workpiece Wp during machining during a certain period. Thereby, it is possible to prevent the electric tool from being overloaded to the motor and to reduce the size of the motor.

また、工具本体110の中心軸周りの方向(回転方向)R1において隣接する加工部材10であって、工具本体の中心軸C0の軸線方向における両端に位置する1組の端部加工部材(図6(b)の右上がりのハッチングで示した収容凹部112b1および112a5に収容される加工部材10b1および10a5、図6(b)の左上がりのハッチングで示した収容凹部112b4および112a1に収容される加工部材10b4および10a1など)は、工具本体110の中心軸周りの方向R1において互いに一部が重なるように配置されているので、工具本体を回転させたときに工具本体の回転軸C0が被加工物Wpの表面に対してふらつくのを抑制でき、振動や騒音の発生を低減できる。   Further, a set of end machining members (FIG. 6) that are adjacent machining members 10 in the direction (rotation direction) R1 around the central axis of the tool body 110 and are located at both ends in the axial direction of the central axis C0 of the tool body. (B) Processing members 10b1 and 10a5 accommodated in the accommodating recesses 112b1 and 112a5 indicated by the rightward hatching, and processing members accommodated in the accommodating recesses 112b4 and 112a1 indicated by the upwardly hatching in FIG. 6 (b). 10b4 and 10a1) are arranged so as to partially overlap each other in the direction R1 around the central axis of the tool body 110, so that when the tool body is rotated, the rotation axis C0 of the tool body becomes the workpiece Wp. It is possible to suppress wobbling with respect to the surface of the glass and to reduce the generation of vibration and noise.

さらに、この実施形態1の加工工具100で被加工物Wpの表面を加工した場合、加工部材10の刃面は外周面であるため、被加工物Wpの加工部材10の刃面11aにより加工されて剥離された面は、全体的にみて微細な凹凸が形成された状態となる。さらに、被加工物Wpに作用する加工部材10の数を少なくした場合、被加工物Wpの加工部材10の刃面11aにより加工されて剥離された被加工面は、さらに微細な凹凸が形成される状態となる。   Furthermore, when the surface of the workpiece Wp is machined with the machining tool 100 according to the first embodiment, the blade surface of the workpiece 10 is an outer peripheral surface, so that the workpiece is processed by the blade surface 11a of the workpiece 10 of the workpiece Wp. The peeled surface is in a state where fine irregularities are formed as a whole. Furthermore, when the number of the processing members 10 acting on the workpiece Wp is reduced, the workpiece surface processed by the blade surface 11a of the processing member 10 of the workpiece Wp and separated is further formed with unevenness. It becomes a state.

このように、被加工物Wpの剥離された被加工面が微細な凹凸を有していることにより、被加工面の上に塗料材料などを塗装する際の密着強度が高められる効果が得られる。   As described above, since the work surface from which the work Wp is peeled has fine irregularities, an effect of increasing the adhesion strength when coating a paint material or the like on the work surface is obtained. .

なお、上記実施形態1では、加工工具100として、円筒形状の工具本体110の外周面に複数の加工部材10を取り付けたものを示したが、加工工具100はこれに限定されるものではなく、例えば、工具本体は任意の回転体形状であれば円形の板状形状でもよく、例えば、円板形状に円錐台形状を結合して得られる複合形状であってもよく、その場合、複数の加工部材は、円錐台形状部分の外周面(工具本体の底面)に取り付けてもよい。   In the first embodiment, the machining tool 100 is shown in which a plurality of machining members 10 are attached to the outer peripheral surface of the cylindrical tool body 110, but the machining tool 100 is not limited to this, For example, the tool body may have a circular plate shape as long as it has an arbitrary rotating body shape, for example, a composite shape obtained by combining a circular truncated cone shape with a disk shape, and in that case, a plurality of processing You may attach a member to the outer peripheral surface (bottom surface of a tool main body) of a truncated cone shape part.

(実施形態2)
以下、実施形態2の加工工具として、円板形状の工具本体を用いた加工工具を説明する。
(Embodiment 2)
Hereinafter, a processing tool using a disk-shaped tool body will be described as the processing tool of the second embodiment.

図10は、本発明の実施形態2による加工工具200を説明するための斜視図であり、加工工具200が装着された動力工具2を示す。図11は、図10に示す加工工具200の具体的な構造を説明するための図であり、図11(a)および図11(b)はそれぞれ、図10のA2方向およびB2方向から見た加工工具200の構造を示す。   FIG. 10 is a perspective view for explaining a machining tool 200 according to Embodiment 2 of the present invention, and shows the power tool 2 to which the machining tool 200 is attached. FIG. 11 is a view for explaining a specific structure of the processing tool 200 shown in FIG. 10, and FIGS. 11 (a) and 11 (b) are viewed from the A2 direction and the B2 direction of FIG. 10, respectively. The structure of the processing tool 200 is shown.

この実施形態2の動力工具2は、図1に示す加工工具100とは構造が異なる加工工具200を用いたものであり、この動力工具2の駆動部2aには加工工具200が取り付けられている。ここで、加工工具200は、回転体形状として複合形状を有する工具本体210の底面および外周面に複数の加工部材を取り付けたものである。   The power tool 2 of the second embodiment uses a processing tool 200 having a structure different from that of the processing tool 100 shown in FIG. 1, and the processing tool 200 is attached to the drive unit 2 a of the power tool 2. . Here, the processing tool 200 is obtained by attaching a plurality of processing members to the bottom surface and the outer peripheral surface of a tool body 210 having a composite shape as a rotating body shape.

ここで、工具本体210は、複合形状を構成する円板形状の部分210bと、複合形状を構成する、円板形状に結合された円錐台形状の部分210aとを含み、複合形状の工具本体210の底面(円錐台形状部分210aの外周面)および外周面(円板形状部分210bの外周面)に複数の加工部材を取り付けたものである。従って、加工工具200では、複合形状の工具本体210の底面および外周面が加工部材10を取り付けるための部材取付面となっている。従って、工具本体210の底面側部材取付面は円錐台形状をしており、従って、底面側部材取付面は、外周から中心に向かって工具本体210の中心軸C0aの軸線方向の先端側に突出した構造となっている。   Here, the tool body 210 includes a disk-shaped portion 210b constituting the composite shape and a truncated cone-shaped portion 210a coupled to the disk shape constituting the composite shape. A plurality of processing members are attached to the bottom surface (the outer peripheral surface of the truncated cone-shaped portion 210a) and the outer peripheral surface (the outer peripheral surface of the disc-shaped portion 210b). Therefore, in the processing tool 200, the bottom surface and the outer peripheral surface of the composite-shaped tool main body 210 are member mounting surfaces for mounting the processing member 10. Therefore, the bottom surface side member mounting surface of the tool body 210 has a truncated cone shape, and therefore, the bottom surface side member mounting surface protrudes from the outer periphery toward the center in the axial direction of the central axis C0a of the tool body 210. It has a structure.

このように工具本体210の底面側部材取付面を円錐台形状としているのは、底面側部材取付面に取り付けられている複数の加工部材10a’のうちの一部の加工部材10a’のみが被加工物Wpに接するように底面側部材取付面を傾斜させることを可能とするためである。   In this way, the bottom surface side member mounting surface of the tool body 210 has a truncated cone shape so that only a part of the processing members 10a ′ of the plurality of processing members 10a ′ mounted on the bottom surface side member mounting surface is covered. This is because the bottom surface side member mounting surface can be inclined so as to be in contact with the workpiece Wp.

なお、図中、10b’は、工具本体210の外周面に取り付けられた加工部材(外周側加工部材)を示し、2bは、動力工具2の動力部に取り付けられたカバー部材を示す。カバー部材2bは、加工部材10による被加工物Wpの切削により加工屑が飛び散るのを防止するとともに、カバー部材2bに取り付けられた取っ手2b1によって加工工具200を被加工物Wpに押え付けやすくするものである。   In the figure, 10 b ′ indicates a processing member (outer peripheral side processing member) attached to the outer peripheral surface of the tool main body 210, and 2 b indicates a cover member attached to the power portion of the power tool 2. The cover member 2b prevents the processing waste from being scattered by cutting the workpiece Wp by the processing member 10, and makes it easy to press the processing tool 200 against the workpiece Wp by the handle 2b1 attached to the cover member 2b. It is.

さらに、カバー部材2bは、カバー部材2bの姿勢により、加工工具200の姿勢が維持されるような構造となっていてもよい。例えば、カバー部材2bは、その下端面が被加工物Wpの表面に当接したとき、駆動部2aの駆動シャフト(図示せず)に取り付けた加工工具200の底面側部材取付面の稜線が被加工物Wpの表面に接する加工工具200の姿勢が維持されるように駆動部2aに取り付け器具2b2により固定されている。   Further, the cover member 2b may be structured such that the posture of the processing tool 200 is maintained by the posture of the cover member 2b. For example, when the lower end surface of the cover member 2b comes into contact with the surface of the workpiece Wp, the ridge line of the bottom member mounting surface of the processing tool 200 attached to the driving shaft (not shown) of the driving unit 2a is covered. It fixes to the drive part 2a with the attachment tool 2b2 so that the attitude | position of the processing tool 200 which touches the surface of the workpiece Wp may be maintained.

このように実施形態2の加工工具200は、複合形状の工具本体210と、工具本体210の底面210aに取り付けられた複数の加工部材(底面側加工部材)10a’と、工具本体210の外周面210bに取り付けられた複数の加工部材(外周側加工部材)10b’と、加工部材10a’および10b’を工具本体110に固定する固定ボルト20とを有している。ここで、底面側加工部材10a’および外周側加工部材10b’は、実施形態1の加工部材10と同一の構成を有し、固定ボルト20は実施形態1の加工工具100におけるものと同一のものである。なお、この実施形態2の加工工具200は、必ずしも、底面側加工部材10a’と外周側加工部材10b’との両方を有する必要はなく、底面側加工部材10a’を有するものであればよい。   As described above, the machining tool 200 according to the second embodiment includes a tool body 210 having a composite shape, a plurality of machining members (bottom side machining members) 10a ′ attached to the bottom surface 210a of the tool body 210, and the outer peripheral surface of the tool body 210. A plurality of processing members (outer peripheral side processing members) 10b ′ attached to 210b and fixing bolts 20 for fixing the processing members 10a ′ and 10b ′ to the tool body 110 are provided. Here, the bottom surface side processing member 10a ′ and the outer peripheral side processing member 10b ′ have the same configuration as the processing member 10 of the first embodiment, and the fixing bolt 20 is the same as that in the processing tool 100 of the first embodiment. It is. Note that the processing tool 200 according to the second embodiment does not necessarily need to include both the bottom surface side processing member 10a 'and the outer peripheral side processing member 10b', as long as it includes the bottom surface processing member 10a '.

工具本体210の中央には円形凹部が形成され、この円形凹部は、電動工具の駆動シャフト(図示せず)を取り付ける取付部211となっている。取付部211の中央には、駆動シャフト(図示せず)を挿入するための取付穴211aが形成され、取付穴211aに挿入された駆動シャフトに装着されたナット部材が取付部211としての円形凹部に収容されるようになっている。   A circular recess is formed in the center of the tool body 210, and this circular recess serves as an attachment portion 211 to which a drive shaft (not shown) of the electric tool is attached. A mounting hole 211a for inserting a drive shaft (not shown) is formed at the center of the mounting portion 211, and a nut member mounted on the driving shaft inserted into the mounting hole 211a is a circular recess serving as the mounting portion 211. Is to be housed.

なお、図11では図示していないが、工具本体210の底面部および外周部にはそれぞれ、底面側加工部材10a’および外周側加工部材10b’を収容する収容凹部が形成され、さらに、収容凹部の底面には、固定ボルト20をねじ込むための固定ねじ穴が形成されていることは言うまでもない。   Although not shown in FIG. 11, an accommodation recess for accommodating the bottom surface side processing member 10 a ′ and the outer periphery side processing member 10 b ′ is formed on the bottom surface portion and the outer periphery of the tool body 210, respectively. Needless to say, a fixing screw hole for screwing the fixing bolt 20 is formed on the bottom surface.

そして、この実施形態2の加工工具200では、図11(a)に示すように、工具本体210の底面に複数の底面側加工部材10a’が取り付けられている。工具本体210の底面に取り付けられた複数の底面側加工部材10a’は、図11(b)に示すように、それぞれの中心軸C10が、工具本体210の中心軸C0aに斜めに交差する傾斜直線C0bに平行となるように工具本体210の底面に取り付けられている。工具本体210の中心軸C0aに斜めに交差する傾斜直線C0bの傾斜角度(つまり、オフセット角度)は約1°〜約30°である。オフセット角度は、任意であり得るが、被加工部材の硬度や粘性の度合いによって所定の角度に適宜設定され得る。   In the machining tool 200 of the second embodiment, a plurality of bottom surface side machining members 10 a ′ are attached to the bottom surface of the tool body 210 as shown in FIG. As shown in FIG. 11B, the plurality of bottom surface side processing members 10 a ′ attached to the bottom surface of the tool main body 210 are inclined straight lines in which the respective central axes C <b> 10 obliquely intersect the central axis C <b> 0 a of the tool main body 210. It is attached to the bottom surface of the tool body 210 so as to be parallel to C0b. The inclination angle (that is, the offset angle) of the inclination straight line C0b that obliquely intersects the central axis C0a of the tool body 210 is about 1 ° to about 30 °. The offset angle can be arbitrary, but can be appropriately set to a predetermined angle depending on the hardness and viscosity of the workpiece.

具体的な実施形態として、コンクリート上に塗装された膜厚約3mm〜約5mmのウレタン塗装面を加工する場合、円錐台形状の加工部材を用い、高さ約4mm〜約5mm、最大直径約9mm〜約11mm、オフセット角度を約10°〜約15°とする。   As a specific embodiment, when processing a urethane coating surface having a film thickness of about 3 mm to about 5 mm coated on concrete, a truncated cone-shaped processing member is used, the height is about 4 mm to about 5 mm, and the maximum diameter is about 9 mm. ˜about 11 mm and the offset angle is about 10 ° to about 15 °.

1つの実施形態においては、実施形態1の加工工具100と同様に、実施形態2の加工工具200においても、底面側加工部材10a’のオフセット角度は約15°としている。この場合、工具本体210の回転方向R2の前方側での刃面11aの最大突出高さが約3mmとなり、工具本体210の回転方向R2の後方側での刃面11aの最低突出高さが約0mmとなっている。   In one embodiment, similarly to the processing tool 100 of the first embodiment, also in the processing tool 200 of the second embodiment, the offset angle of the bottom surface side processing member 10 a ′ is about 15 °. In this case, the maximum protrusion height of the blade surface 11a on the front side in the rotation direction R2 of the tool body 210 is about 3 mm, and the minimum protrusion height of the blade surface 11a on the rear side in the rotation direction R2 of the tool body 210 is about It is 0 mm.

ただし、複数の底面側加工部材10a’は、その中心軸C10が工具本体210の中心軸C0aに平行になるように、つまり、オフセットなしで配置されていてもよい。   However, the plurality of bottom surface side processing members 10a 'may be arranged so that the central axis C10 thereof is parallel to the central axis C0a of the tool body 210, that is, without offset.

図12は、図11(b)に示す加工工具200の工具本体210における収容凹部212aおよび212bの配置を説明するための図である。   FIG. 12 is a view for explaining the arrangement of the housing recesses 212a and 212b in the tool body 210 of the processing tool 200 shown in FIG.

加工工具200の工具本体210の底面には、図12(a)に示すように、底面側加工部材10a’を収容する複数の収容凹部(底面側収容凹部)212aが、工具本体210の底面上に設定される6個の仮想円周La1〜La6に沿って配置されている。   On the bottom surface of the tool body 210 of the processing tool 200, as shown in FIG. 12A, a plurality of storage recesses (bottom side storage recesses) 212 a for storing the bottom surface side processing member 10 a ′ are provided on the bottom surface of the tool body 210. Are arranged along the six virtual circumferences La1 to La6.

工具本体210の中心側から数えて奇数番目の仮想円周La1、La3、La5上に位置する底面側収容凹部212aのうちの隣接する3つの収容凹部212aは、第1のグループG1aを形成し、工具本体210の中心側から数えて偶数番目の仮想円周La2、La4、La6上に位置する収容凹部112aのうちの隣接する3つの収容凹部212aは、第2のグループG2aを形成している。言い換えると、円板形状の工具本体210の円周方向に隣接する2つのグループの間では、円板形状の中心C0aから複数の底面側収容凹部212aの各々までの距離が異なる。従って、第1のグループG1aの底面側収容凹部212aに収容された加工部材は第1のグループG1aの底面側加工部材10a’(10a1’、10a2’、10a3’)を形成し、第2のグループG2aの底面側収容凹部212aに収容された加工部材は第2のグループG2aの底面側加工部材10a’’(10a1’’、10a2’’、10a3’’)を形成する。   Three adjacent accommodation recesses 212a among the bottom side accommodation recesses 212a located on the odd-numbered virtual circumferences La1, La3, La5 counted from the center side of the tool body 210 form a first group G1a, Three adjacent recesses 212a among the recesses 112a located on the even-numbered virtual circumferences La2, La4, and La6 counted from the center side of the tool body 210 form a second group G2a. In other words, the distance from the disk-shaped center C0a to each of the plurality of bottom-side receiving recesses 212a differs between two groups adjacent to each other in the circumferential direction of the disk-shaped tool body 210. Therefore, the processing member accommodated in the bottom surface side accommodation recess 212a of the first group G1a forms the bottom surface processing member 10a ′ (10a1 ′, 10a2 ′, 10a3 ′) of the first group G1a, and the second group. The processing members accommodated in the bottom surface side accommodating recess 212a of G2a form the bottom surface side processing members 10a ″ (10a1 ″, 10a2 ″, 10a3 ″) of the second group G2a.

ここでは、2つの第1のグループG1aと2つの第2のグループG2aとは、工具本体210の外周方向R2に沿って交互に配置されている。また、各グループ内では、底面側収容凹部212aは、工具本体210の中心軸C0aの周りに約22.5°の間隔で配置されており、隣接するグループ間で隣接する底面側収容凹部212aは、工具本体210の中心軸周りに約30°隔てて配置されている。   Here, the two first groups G1a and the two second groups G2a are alternately arranged along the outer peripheral direction R2 of the tool body 210. Further, in each group, the bottom-side accommodation recesses 212a are arranged at an interval of about 22.5 ° around the central axis C0a of the tool body 210, and the bottom-side accommodation recesses 212a adjacent between adjacent groups are The tool body 210 is disposed about 30 ° apart from the central axis.

ここでは、仮想円周La1、La3、La5の半径は、円形凹部211の半径(約17mm)より約10mm、約15mm、約20mmだけ大きく、仮想円周La2、La4、La6の半径(約17mm)は、円形凹部211の半径より約13mm、約18mm、約23mmだけ大きい。ただし、これらの寸法は限定されるものではく、それ以上であってもそれ以下であってもよい。   Here, the radii of the virtual circumferences La1, La3, and La5 are larger by about 10 mm, about 15 mm, and about 20 mm than the radius (about 17 mm) of the circular recess 211, and the radii of the virtual circumferences La2, La4, and La6 (about 17 mm). Is larger than the radius of the circular recess 211 by about 13 mm, about 18 mm, and about 23 mm. However, these dimensions are not limited and may be more or less.

また、工具本体210の外周面には、工具本体210の中心軸周りに約45°のピッチで8個の外周側収容凹部212bが均等な間隔で形成されている。これらの外周側収容凹部212bは、外周側収容凹部212bの位置で工具本体210の外周面210bの円周Dc2上に立てた法線N20に対して外周側収容凹部212bの中心軸C20が一定角度A20だけオフセットするように配置されている。1つの実施形態においては、底面側加工部材10a’のオフセット角度A20は約10°〜約15°としている。   In addition, on the outer peripheral surface of the tool main body 210, eight outer peripheral receiving recesses 212b are formed at equal intervals around the central axis of the tool main body 210 at a pitch of about 45 °. These outer peripheral side receiving recesses 212b are arranged such that the central axis C20 of the outer peripheral side receiving recess 212b is at a constant angle with respect to the normal N20 raised on the circumference Dc2 of the outer peripheral surface 210b of the tool body 210 at the position of the outer peripheral side receiving recess 212b. They are arranged to be offset by A20. In one embodiment, the offset angle A20 of the bottom surface side processed member 10a 'is about 10 ° to about 15 °.

ただし、工具本体210の外周面210b上での外周側加工部材10b’の配置は、オフセットしない配置でもよい。この場合、外周側加工部材210bに収容された加工部材10b’は、その中心軸は工具本体210の半径方向と一致したものとなる。   However, the arrangement of the outer peripheral side machining member 10b 'on the outer peripheral surface 210b of the tool main body 210 may be an arrangement that is not offset. In this case, the center axis of the processing member 10 b ′ accommodated in the outer peripheral side processing member 210 b coincides with the radial direction of the tool body 210.

次にこの加工工具200の使用方法を説明する。   Next, the usage method of this processing tool 200 is demonstrated.

図12Aは、図10の加工工具200による被加工物Wpの加工状態を説明するための図であり、図12A(a)は、図10のA2方向から見た動力装置の先端部の構造を示す平面図、図12A(b)は、図12A(a)の加工工具200を被加工物Wp側(紙面下側)から見た斜視図である。なお、図12A(b)では、説明の都合上、工具本体210とこれに取り付けられている加工部材10a’、10b’のみを示している。   FIG. 12A is a diagram for explaining a machining state of the workpiece Wp by the machining tool 200 of FIG. 10, and FIG. 12A (a) shows the structure of the distal end portion of the power unit viewed from the A2 direction of FIG. FIG. 12A (b) is a perspective view of the processing tool 200 of FIG. 12A (a) as viewed from the workpiece Wp side (the lower side of the drawing). In FIG. 12A (b), only the tool body 210 and the processing members 10a 'and 10b' attached thereto are shown for convenience of explanation.

図12A(a)に示すように、動力工具2の駆動部2aの駆動シャフト2a1に加工工具200を取り付け、加工工具200を回転させる。このとき、カバー部材2bの下端が被加工物Wpの表面に当接するようにカバー部材2bを被加工物Wpに押し付けることにより、動力工具2は、駆動シャフト2a1に取り付けられた加工工具200の底面側部材取付面の稜線が被加工物Wpの表面に平行になる姿勢に保持される。   As shown in FIG. 12A (a), the machining tool 200 is attached to the drive shaft 2a1 of the drive unit 2a of the power tool 2, and the machining tool 200 is rotated. At this time, by pressing the cover member 2b against the workpiece Wp so that the lower end of the cover member 2b is in contact with the surface of the workpiece Wp, the power tool 2 is attached to the bottom surface of the machining tool 200 attached to the drive shaft 2a1. The ridgeline of the side member mounting surface is held in a posture that is parallel to the surface of the workpiece Wp.

この状態では、加工工具200の工具本体210に取り付けられている複数の底面側加工部材10a’は、駆動シャフト2a1より動力工具2の先端側で被加工物Wpを加工することとなる。また、複数の底面側加工部材10a’は、工具本体210の回転方向R2において異なる位置に配置されているので、被加工物Wpに同時に接触する加工部材10a’は、実質的に1つの加工部材10a’か、隣接する2つの加工部材10a’となり、駆動シャフト2a1にかかる負荷(回転トルク)を小さく抑えることができる。その結果、使用者が加工作業に疲れることなく長時間にわたり効率的に加工を行うことが可能となる。   In this state, the plurality of bottom surface side processing members 10a 'attached to the tool body 210 of the processing tool 200 will process the workpiece Wp on the tip side of the power tool 2 from the drive shaft 2a1. Further, since the plurality of bottom surface side processing members 10a ′ are arranged at different positions in the rotation direction R2 of the tool main body 210, the processing member 10a ′ that simultaneously contacts the workpiece Wp is substantially one processing member. 10a ′ or two adjacent processing members 10a ′, and the load (rotational torque) applied to the drive shaft 2a1 can be kept small. As a result, it becomes possible for the user to perform the processing efficiently for a long time without getting tired of the processing operation.

さらに、それぞれの底面側加工部材10a’は、工具本体210の回転により被加工物Wpの表面を円弧状の軌跡を描くように加工するため、被加工物Wpの表面を加工しながら加工工具200を移動させる場合に、いずれの方向にもスムーズに加工工具200を移動させることが可能となる。   Furthermore, each bottom surface processing member 10a ′ processes the surface of the workpiece Wp so as to draw an arc-shaped locus by the rotation of the tool main body 210, so that the processing tool 200 is processed while processing the surface of the workpiece Wp. When the tool is moved, the machining tool 200 can be smoothly moved in any direction.

以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention has been illustrated using preferable embodiment of this invention, this invention should not be limited and limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. It is understood that the documents cited in the present specification should be incorporated by reference into the present specification in the same manner as the content itself is specifically described in the present specification.

本発明は、加工工具および加工工具を備えた動力工具の分野において、加工部材の刃面の劣化が抑制され、長時間にわたる加工効率を維持することができる加工工具および加工工具を備えた動力工具を得ることできるものとして有用である。   The present invention relates to a machining tool and a power tool provided with the machining tool that can suppress the deterioration of the blade surface of the machining member and maintain machining efficiency for a long time in the field of the machining tool and the machining tool. It is useful as something that can be obtained.

1、2 電動工具
10 加工部材
11a 刃面
100、200 加工工具
110、210 工具本体
DESCRIPTION OF SYMBOLS 1, 2, Electric tool 10 Processing member 11a Blade surface 100, 200 Processing tool 110, 210 Tool main body

Claims (20)

被加工物の表面を加工する加工工具であって、
回転体形状を有し、部材取付面を備える回転可能な工具本体と、
円筒形状あるいは円錐台形状を有し、該部材取付面上に設けられた複数の加工部材と
を備え、
該複数の加工部材は、それぞれの外周面が該被加工物を加工する刃面となるように該工具本体に取り付けられている、加工工具。
A processing tool for processing the surface of a workpiece,
A rotatable tool body having a rotating body shape and having a member mounting surface;
A plurality of processed members having a cylindrical shape or a truncated cone shape and provided on the member mounting surface;
The machining tool, wherein the plurality of machining members are attached to the tool body such that each outer peripheral surface is a blade surface for machining the workpiece.
前記複数の加工部材のそれぞれにおいて前記刃面が前記工具本体から突出する高さは、該工具本体の回転方向の前方側でその後方側に比べて高くなっている、請求項1に記載の加工工具。   The machining according to claim 1, wherein a height at which the blade surface protrudes from the tool body in each of the plurality of machining members is higher on a front side in a rotation direction of the tool body than on a rear side thereof. tool. 前記刃面が前記工具本体の回転方向の前方側で該工具本体から突出する高さは、約1mm〜約10mmである、請求項2に記載の加工工具。   The processing tool according to claim 2, wherein a height at which the blade surface protrudes from the tool body on the front side in the rotation direction of the tool body is approximately 1 mm to approximately 10 mm. 前記複数の加工部材は、該加工部材が装着された位置における前記部材取付面の法線方向に対して、該加工部材の中心軸がオフセットするように配置されている、請求項1〜3のいずれか一項に記載の加工工具。   The plurality of processing members are arranged such that a central axis of the processing member is offset with respect to a normal direction of the member mounting surface at a position where the processing member is mounted. The processing tool according to any one of the above. 前記法線に対する前記加工部材の中心軸のオフセット角度は、約1°〜約30°である、請求項4に記載の加工工具。   The processing tool according to claim 4, wherein an offset angle of a central axis of the processing member with respect to the normal line is about 1 ° to about 30 °. 前記複数の加工部材は、円錐台形状を有し、加工部材の外周面は、該加工部材の中心軸に対して約2°〜約15°傾斜している、請求項1〜5のいずれか一項に記載の加工工具。   The plurality of processing members have a truncated cone shape, and an outer peripheral surface of the processing member is inclined by about 2 ° to about 15 ° with respect to a central axis of the processing member. The processing tool according to one item. 前記複数の加工部材の各々は、前記部材取付面上での前記工具本体の回転方向において異なる位置に配置されている、請求項1〜6のいずれか一項に記載の加工工具。   The machining tool according to any one of claims 1 to 6, wherein each of the plurality of machining members is disposed at a different position in the rotation direction of the tool body on the member mounting surface. 前記複数の加工部材のうち隣接する加工部材は、前記部材取付面上での前記工具本体の回転方向において互いに重ならない位置に配置されている、請求項7に記載の加工工具。   The processing tool of Claim 7 arrange | positioned in the position which does not mutually overlap in the rotation direction of the said tool main body on the said member attachment surface among these processing members. 前記回転体形状は、円筒形状であり、
前記部材取付面は、該円筒形状の外周面である、請求項1〜8のいずれか一項に記載の加工工具。
The rotating body shape is a cylindrical shape,
The processing tool according to any one of claims 1 to 8, wherein the member mounting surface is the cylindrical outer peripheral surface.
前記工具本体の軸線方向の基端側と先端側に位置する少なくとも1組の前記加工部材は、該工具本体の前記部材取付面上で回転方向において一部重なるように配置されている、請求項9に記載の加工工具。   The at least one set of the processing members positioned on the base end side and the tip end side in the axial direction of the tool main body is disposed so as to partially overlap in the rotation direction on the member mounting surface of the tool main body. 9. The processing tool according to 9. 前記少なくとも1組の加工部材の重なり幅は、該工具本体の回転方向における前記加工部材の幅の約30%〜約70%である、請求項10に記載の加工工具。   The processing tool according to claim 10, wherein an overlap width of the at least one set of processing members is about 30% to about 70% of a width of the processing members in a rotation direction of the tool body. 前記複数の加工部材は、前記部材取付面において螺旋状に配列されている、請求項1〜11のいずれか一項に記載の加工工具。   The machining tool according to any one of claims 1 to 11, wherein the plurality of machining members are arranged in a spiral on the member mounting surface. 前記複数の加工部材は複数のグループに分けられ、ここで、該複数のグループの各々に含まれる該複数の加工部材は、前記工具本体の部材取付面で該工具本体の軸線方向に対して所定角度で傾斜した線に沿って配列されている、請求項12に記載の加工工具。   The plurality of machining members are divided into a plurality of groups, wherein the plurality of machining members included in each of the plurality of groups are predetermined with respect to the axial direction of the tool body on a member mounting surface of the tool body. The processing tool according to claim 12, which is arranged along a line inclined at an angle. 前記所定角度は、約30°〜約60°である、請求項13に記載の加工工具。   The machining tool according to claim 13, wherein the predetermined angle is about 30 ° to about 60 °. 前記複数のグループのうちの隣接するグループに含まれる加工部材同士は、千鳥状に配列されている、請求項13または14に記載の研削工具。   The grinding tool according to claim 13 or 14, wherein the processing members included in adjacent groups among the plurality of groups are arranged in a staggered manner. 前記回転体形状は、円板形状に円錐台形状を結合してなる複合形状であり、
前記部材取付面は前記工具本体のうちの該円錐台形状をなす部分の外周面に存在する、請求項1〜7のいずれか一項に記載の加工部材。
The rotating body shape is a composite shape formed by combining a truncated cone shape with a disc shape,
The processed member according to claim 1, wherein the member mounting surface is present on an outer peripheral surface of a portion of the tool main body having a truncated cone shape.
前記複数の加工部材の少なくとも一部は、前記工具本体のうちの前記円板形状をなす部分の外周面に配置されている、請求項16に記載の加工工具。   The processing tool according to claim 16, wherein at least a part of the plurality of processing members is disposed on an outer peripheral surface of a portion of the tool body that forms the disc shape. 前記被加工物は、コンクリート、モルタル、アスファルト、レンガ、セメント、石材およびそれらの複合材料からなる群から選択される材料を含む、請求項1〜17のいずれか一項に記載の加工工具。   The processing tool according to any one of claims 1 to 17, wherein the workpiece includes a material selected from the group consisting of concrete, mortar, asphalt, brick, cement, stone, and a composite material thereof. 請求項1〜18のいずれか一項に記載の加工工具と、
前記加工工具を回転駆動する回転駆動部と
を備えた、動力工具。
The processing tool according to any one of claims 1 to 18,
A power tool comprising: a rotation drive unit that rotationally drives the machining tool.
請求項1〜18のいずれか一項に記載の加工工具または請求項19に記載の動力工具を用いて被加工物を加工することを含む、該被加工物の加工方法。   The processing method of this workpiece including processing a workpiece using the processing tool as described in any one of Claims 1-18, or the power tool as described in Claim 19.
JP2018096985A 2018-05-21 2018-05-21 Power tools with machining tools and machining tools Active JP7103634B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018096985A JP7103634B2 (en) 2018-05-21 2018-05-21 Power tools with machining tools and machining tools
PCT/JP2019/019870 WO2019225533A1 (en) 2018-05-21 2019-05-20 Working tool and power tool provided with working tool
TW108117310A TW202003151A (en) 2018-05-21 2019-05-20 Working tool and power tool provided with working tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018096985A JP7103634B2 (en) 2018-05-21 2018-05-21 Power tools with machining tools and machining tools

Publications (2)

Publication Number Publication Date
JP2019202423A true JP2019202423A (en) 2019-11-28
JP7103634B2 JP7103634B2 (en) 2022-07-20

Family

ID=68616727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018096985A Active JP7103634B2 (en) 2018-05-21 2018-05-21 Power tools with machining tools and machining tools

Country Status (3)

Country Link
JP (1) JP7103634B2 (en)
TW (1) TW202003151A (en)
WO (1) WO2019225533A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540103A (en) * 1969-01-30 1970-11-17 Stanray Corp Milling cutter
JPS63151509U (en) * 1987-03-20 1988-10-05
JPH1119817A (en) * 1997-05-02 1999-01-26 Synx Kk Throwaway type scallop cutter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540103A (en) * 1969-01-30 1970-11-17 Stanray Corp Milling cutter
JPS63151509U (en) * 1987-03-20 1988-10-05
JPH1119817A (en) * 1997-05-02 1999-01-26 Synx Kk Throwaway type scallop cutter

Also Published As

Publication number Publication date
JP7103634B2 (en) 2022-07-20
WO2019225533A1 (en) 2019-11-28
TW202003151A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
AU2005282744B2 (en) Helical flute end mill with multi-section cutting edge
US7367753B2 (en) Milling cutter
JP5697681B2 (en) Milling insert and milling insert changeable rotary cutting tool
JP2002126931A (en) Hole and groove milling cutter
JP2003300168A (en) Rotating tool and edge portion thereof
CN104703754A (en) Collet fan for a rotary tool
KR20110003311A (en) Tool body of cutter for plunge cutting, cutter for plunge cutting, and plunge cutting method
WO2016009995A1 (en) Replaceable edge-type rotating cutting tool
IL257313A (en) Multi-flute end mill
US7993185B2 (en) Device for smoothing the surfaces of hard or soft materials
US7901274B2 (en) Rotary finishing wheel
JP3904701B2 (en) Milling tools for edge rounding of machine parts
WO2019225533A1 (en) Working tool and power tool provided with working tool
JP2007237356A (en) Face milling cutter
JP2006239830A (en) Insert connecting and disconnecting type end mill and insert
EP2072186A1 (en) Abrasive coated bit
JP2016155178A (en) Rotary tool and manufacturing method thereof
JP2007245338A (en) Milling cutter
CN211804052U (en) Disc knife
JP2005297107A (en) Radius end mill
CN215787012U (en) T-shaped slot cutter
JP2003025133A (en) Rotating tool for removing coating film
JP2001157969A (en) Grinding tool, and grinding using same
JP3188346U (en) Deburring tool
JPH0819911A (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7103634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150