JP2019196594A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2019196594A
JP2019196594A JP2018089503A JP2018089503A JP2019196594A JP 2019196594 A JP2019196594 A JP 2019196594A JP 2018089503 A JP2018089503 A JP 2018089503A JP 2018089503 A JP2018089503 A JP 2018089503A JP 2019196594 A JP2019196594 A JP 2019196594A
Authority
JP
Japan
Prior art keywords
improved
rod
improved body
material slurry
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089503A
Other languages
Japanese (ja)
Other versions
JP6998266B2 (en
Inventor
文彦 木村
Fumihiko Kimura
文彦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP2018089503A priority Critical patent/JP6998266B2/en
Publication of JP2019196594A publication Critical patent/JP2019196594A/en
Application granted granted Critical
Publication of JP6998266B2 publication Critical patent/JP6998266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

To provide a ground improvement method capable of comprehending the diameter of the improved body under construction more accurately without inserting any built-in pipe or access pipe.SOLUTION: The ground improvement method for creating improved body 8 in which, after a rod 4 is inserted into the ground 2, the rod 4 is pulled up while rotating, and spraying a solidifying material slurry S from the nozzle 5 provided on the rod 4 to mix the solid material slurry S with the soil in the ground improvement target area. The improved body 8 is created by mixing a density increasing substance 32 having a higher density than the solidifying material 31 with the solidifying material 31 as a raw material of the solidifying material slurry to generate the solidifying material slurry S and spray the solidifying material slurry S from the nozzle 5.SELECTED DRAWING: Figure 4

Description

本発明は、固化材スラリーの噴射によって地盤を改良する地盤改良方法に関する。   The present invention relates to a ground improvement method for improving a ground by spraying a solidifying material slurry.

軟弱地盤等を高強度に改良するための地盤改良工法として、高圧噴射攪拌工法が知られている。高圧噴射攪拌工法は、地盤に挿入したロッドのノズルから固化材スラリーを高圧で噴射することにより、地盤中に改良体を造成する工法である。   As a ground improvement method for improving soft ground and the like with high strength, a high-pressure jet stirring method is known. The high-pressure jet agitation method is a method of creating an improved body in the ground by injecting solidified material slurry at a high pressure from a nozzle of a rod inserted into the ground.

高圧噴射攪拌工法においては、地盤改良の対象となる土層のせん断強さやN値等のいわゆる硬さによってその改良径が左右される。このため、地盤改良工事を行う場合は、地盤改良の対象となる土壌の土質などを考慮して固化材スラリーの噴射圧力、噴射流量等の噴射仕様を設定することにより、地盤改良に必要とされる改良径を確保している。しかし、高圧噴射攪拌工法によって造成される改良体の改良径は種々の要因、たとえば対象土のせん断強さや対象土層の不均一性等によってばらつく。このため、改良径を客観的に保証するには、実際に造成される改良径を把握する必要がある。しかし、改良体は地中に造成されるため、掘削によって改良体を露出させない限り、地上において改良体を目視で確認したり、改良径を直接測定することはできない。   In the high-pressure jet agitation method, the improved diameter depends on the so-called hardness such as the shear strength and N value of the soil layer to be ground improved. For this reason, when performing ground improvement work, it is necessary for ground improvement by setting the injection specifications such as the injection pressure and injection flow rate of the solidifying slurry in consideration of the soil quality of the soil to be improved. The improved diameter is secured. However, the improved diameter of the improved body produced by the high-pressure jet stirring method varies depending on various factors such as the shear strength of the target soil and the non-uniformity of the target soil layer. For this reason, in order to objectively guarantee the improved diameter, it is necessary to grasp the actually improved diameter. However, since the improved body is built in the ground, unless the improved body is exposed by excavation, the improved body cannot be visually confirmed or the improved diameter cannot be directly measured on the ground.

そこで、改良体の造成中に、改良体の径を把握する技術が幾つか提案されている。たとえば、特許文献1には、地盤と改良体との境界面における音波の反射を利用して改良体の形状を測定する技術が記載されている。また、特許文献2には、注入管の周囲の地盤に建込み管を挿入し、注入管のノズルから高圧噴射される固化材が建込み管に当たる音または振動を検知することで、改良体の径を把握する技術が記載されている。また、特許文献3には、注入管の挿入位置から設計改良半径だけ離れた位置に到達管を挿入し、地盤に挿入した注入管を引き上げる際に、固化材スラリーの噴射によって到達管に生じる加速度を検知することで、改良体の径を把握する技術が記載されている。   Therefore, several techniques for grasping the diameter of the improved body during the creation of the improved body have been proposed. For example, Patent Document 1 describes a technique for measuring the shape of an improved body using reflection of sound waves at the boundary surface between the ground and the improved body. Further, in Patent Document 2, a built-in pipe is inserted into the ground around the injection pipe, and the improved body is detected by detecting the sound or vibration that the solidified material injected from the nozzle of the injection pipe hits the built-in pipe. The technology to grasp the diameter is described. Patent Document 3 discloses an acceleration generated in the arrival pipe by injection of the solidified slurry when the arrival pipe is inserted at a position away from the insertion position of the injection pipe by the design improvement radius and the injection pipe inserted into the ground is pulled up. A technique for detecting the diameter of the improved body by detecting the above is described.

特開2012−172329号公報JP 2012-172329 A 特開2012−62626号公報JP 2012-62626 A 特開2017−2464号公報JP 2017-2464 A

しかしながら、特許文献1に記載の技術では、地盤と改良体との境界面で音波が十分に反射せず、改良体の径を正確に把握できないおそれがあった。また、特許文献2に記載の技術では、改良体の径を把握するために、建込み管の挿入とその後の引き抜きが必要となり、特許文献3に記載の技術でも、到達管の挿入とその後の引き抜きが必要になる。このため、特許文献2,3に記載の技術では、施工効率の低下が避けられないという課題があった。   However, in the technique described in Patent Document 1, there is a possibility that sound waves are not sufficiently reflected at the boundary surface between the ground and the improved body, and the diameter of the improved body cannot be accurately grasped. Moreover, in the technique described in Patent Document 2, in order to grasp the diameter of the improved body, it is necessary to insert a built-in pipe and then pull it out. Pulling out is necessary. For this reason, the techniques described in Patent Documents 2 and 3 have a problem that a reduction in construction efficiency is unavoidable.

本発明は、上記課題を解決するためになされたもので、その目的は、建込み管や到達管を挿入しなくても、造成中の改良体の径をより正確に把握することができる地盤改良方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is the ground capable of more accurately grasping the diameter of the improved body during construction without inserting a built-in pipe or a reaching pipe. It is to provide an improved method.

本発明は、地盤に挿入したロッドを回転させながら引き上げるとともに、前記ロッドに設けられたノズルから固化材スラリーを噴射させることにより、前記地盤の原土と前記固化材スラリーとを混合して改良体を造成する地盤改良方法であって、前記固化材スラリーの原料となる固化材に、該固化材よりも密度が高い密度増大物質または該固化材よりも密度が低い密度減少物質を混合して固化材スラリーを生成し、前記生成した固化材スラリーを前記ノズルから噴射させて前記改良体を造成する。   The present invention raises the rod inserted into the ground while rotating it, and injects the solidified material slurry from the nozzle provided on the rod, thereby mixing the ground soil and the solidified material slurry to improve the body. The solid improvement method for forming the solidified material slurry is mixed with a solidified material that is a raw material of the solidified material slurry by mixing a density increasing material having a higher density than the solidified material or a density decreasing material having a lower density than the solidified material. A material slurry is generated, and the generated solidified material slurry is sprayed from the nozzle to form the improved body.

本発明の地盤改良方法において、前記密度増大物質は鉄粉であってもよく、前記密度減少物質は気泡または発泡ビーズであってもよい。   In the ground improvement method of the present invention, the density increasing material may be iron powder, and the density decreasing material may be bubbles or foam beads.

本発明の地盤改良方法において、距離測長波を発信する発信器および該距離測長波を受信する受信器を有する計測センサを前記ロッドに設けておき、前記改良体の造成中に、前記ロッドの径方向外側に向かって前記発信器から前記距離測長波を発信し、前記密度増大物質または前記密度減少物質を混合した前記固化材スラリーの噴射によって改良される改良領域と該改良領域よりも外側の非改良領域との境界位置で反射した前記距離測長波を前記受信器で受信することにより、前記改良体の径を測定してもよい。   In the ground improvement method of the present invention, a measuring sensor having a transmitter for transmitting a distance measuring wave and a receiver for receiving the distance measuring wave is provided in the rod, and the diameter of the rod is determined during the creation of the improved body. The distance measuring wave is transmitted from the transmitter outward in the direction, and an improved region improved by the injection of the solidified material slurry mixed with the density increasing substance or the density decreasing substance, and a non-exposed area outside the improved area. The diameter of the improved body may be measured by receiving the distance measuring wave reflected at the boundary position with the improved region by the receiver.

本発明の地盤改良方法において、前記改良体の造成中に、前記改良体の径と前記ロッドの回転角度とを対応付けたデータを用いて前記改良体の断面形状を求め、該断面形状を表示装置に表示してもよい。   In the ground improvement method of the present invention, during the creation of the improved body, the cross-sectional shape of the improved body is obtained using data in which the diameter of the improved body is associated with the rotation angle of the rod, and the cross-sectional shape is displayed. It may be displayed on the device.

本発明によれば、建込み管や到達管を挿入しなくても、造成中の改良体の径をより正確に把握することができる。   According to the present invention, the diameter of the improved body can be grasped more accurately without inserting a built-in pipe or a reaching pipe.

本発明の実施形態に係る地盤改良方法に用いられる高圧噴射攪拌装置の構成例を示す側面概略図である。It is a side schematic diagram showing an example of composition of a high-pressure jet stirring device used for a ground improvement method concerning an embodiment of the present invention. (A),(B)は、それぞれロッドを90°異なる方向から見た概略側面図である。(A), (B) is the schematic side view which looked at the rod from the direction 90 degrees different, respectively. 本発明の実施形態に係る地盤改良方法に用いられる高圧噴射攪拌装置の制御系の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control system of the high pressure jet stirring apparatus used for the ground improvement method which concerns on embodiment of this invention. 固化材スラリーの生成方法を説明する模式図である。It is a schematic diagram explaining the production | generation method of a solidification material slurry. 改良体の断面形状の表示例を示す図である。It is a figure which shows the example of a display of the cross-sectional shape of an improved body.

以下、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本発明の実施形態に係る地盤改良方法に用いられる高圧噴射攪拌装置の構成例を示す側面概略図である。
高圧噴射攪拌装置1は、地盤2上に設置される施工機3と、施工機3によって地盤2に挿入されるロッド4と、備えている。ロッド4は、施工機3によって垂直に支持されている。ロッド4は、単管構造、二重管構造、三重管等の多重管構造のうちのいずれであってもよい。ロッド4の内部には、図示しないスラリー流路が形成されている。また、ロッド4の下端部近傍には、スラリー流路に連通するようにノズル5が形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic side view illustrating a configuration example of a high-pressure jet stirring apparatus used in a ground improvement method according to an embodiment of the present invention.
The high-pressure jet agitating device 1 includes a construction machine 3 installed on the ground 2 and a rod 4 inserted into the ground 2 by the construction machine 3. The rod 4 is vertically supported by the construction machine 3. The rod 4 may have any of a single tube structure, a double tube structure, a multiple tube structure such as a triple tube. A slurry flow path (not shown) is formed inside the rod 4. A nozzle 5 is formed near the lower end of the rod 4 so as to communicate with the slurry flow path.

一方、ロッド4の上端部には、スイベル6を介してホース7が接続されている。ホース7は図示しないプラントへと接続されている。プラントは、地盤改良に用いる固化材スラリーを生成するとともに、生成した固化材スラリーを所定の圧力で送り出すものである。プラントから送り出された固化材スラリーは、ホース7とスイベル6を通してロッド4に供給され、ロッド4内のスラリー流路を流れた後、ノズル5から噴射される。   On the other hand, a hose 7 is connected to the upper end of the rod 4 via a swivel 6. The hose 7 is connected to a plant (not shown). A plant produces | generates the solidification material slurry used for ground improvement, and sends out the produced | generated solidification material slurry with a predetermined | prescribed pressure. The solidified material slurry sent out from the plant is supplied to the rod 4 through the hose 7 and the swivel 6, flows through the slurry flow path in the rod 4, and is then injected from the nozzle 5.

上記構成からなる高圧噴射攪拌装置1を用いて地盤改良を行う場合は、地盤2上に設定された位置Pから施工機3によってロッド4を所定の深さまで挿入する。このとき、施工機3は、ロッド4を回転させながら下降させる。所定の深さは、地盤2の原土の性状等に応じてあらかじめ設定される。   When performing ground improvement using the high-pressure jet agitating apparatus 1 having the above-described configuration, the rod 4 is inserted from the position P set on the ground 2 to a predetermined depth by the construction machine 3. At this time, the construction machine 3 lowers the rod 4 while rotating it. The predetermined depth is set in advance according to the properties of the soil of the ground 2.

次に、ロッド4のノズル5から固化材スラリーSを高圧で噴射させる。このとき、施工機3は、ロッド4を回転させながら引き上げる。これにより、地中に略円柱状の改良体8が造成される。改良体8は、ロッド4のノズル5から噴射した固化材スラリーSが、地盤の原土と攪拌混合して形成されるものである。   Next, the solidifying material slurry S is sprayed from the nozzle 5 of the rod 4 at a high pressure. At this time, the construction machine 3 pulls up while rotating the rod 4. Thereby, the substantially cylindrical improvement body 8 is created in the ground. The improved body 8 is formed by stirring and mixing the solidified material slurry S sprayed from the nozzle 5 of the rod 4 with the ground soil.

その際、改良体8の径(以下、「改良径」ともいう。)rは、ロッド4のノズル5から噴射された固化材スラリーSがロッド4の中心軸Jから径方向外側にどれだけ離れた位置まで到達するかを示す距離、すなわち固化材スラリーの到達距離によって決まる。具体的には、固化材スラリーSの到達距離が長ければ、その分だけ改良体8の径rが大きくなり、固化材スラリーSの到達距離が短ければ、その分だけ改良体8の径rが小さくなる。なお、改良体8の径rは、ロッド4の中心軸Jの位置を基点とした改良体8の半径で表される。   At that time, the diameter (hereinafter, also referred to as “improved diameter”) r of the improved body 8 is determined by how far the solidified material slurry S injected from the nozzle 5 of the rod 4 is radially outward from the central axis J of the rod 4. It is determined by the distance indicating whether it reaches the position, that is, the reaching distance of the solidified slurry. Specifically, if the reaching distance of the solidifying material slurry S is long, the diameter r of the improved body 8 is increased correspondingly, and if the reaching distance of the solidifying material slurry S is short, the diameter r of the improving body 8 is correspondingly increased. Get smaller. The diameter r of the improved body 8 is expressed by the radius of the improved body 8 with the position of the central axis J of the rod 4 as a base point.

ここで、固化材スラリーSの到達距離は、固化材スラリーSの噴射圧力だけでなく、たとえば、地盤改良対象領域の原土の性状、粒度構成、含水比など種々の要因によって変わる。また、同じ地盤でも原土の性状等は場所によって変わる。このため、固化材スラリーSの噴射によって造成される改良体8の径rは、改良体8の高さ方向Hや円周方向Cでバラツキをもつ可能性がある。したがって、改良体8の造成中に、改良体8の径rを正確に把握することは、改良後の地盤強度を客観的に保証するうえできわめて重要になる。   Here, the reach distance of the solidifying material slurry S varies depending not only on the injection pressure of the solidifying material slurry S but also on various factors such as the properties of the raw soil in the ground improvement target region, the particle size configuration, and the water content ratio. In addition, even on the same ground, the properties of the raw soil vary depending on the location. For this reason, the diameter r of the improved body 8 created by the injection of the solidifying material slurry S may vary in the height direction H and the circumferential direction C of the improved body 8. Therefore, accurately grasping the diameter r of the improved body 8 during the formation of the improved body 8 is extremely important for objectively guaranteeing the ground strength after the improvement.

本発明の実施形態においては、改良体8の造成中に改良径rを把握するための計測センサをロッド4に設けてある。図2(A),(B)は、それぞれロッドを90°異なる方向から見た概略側面図である。図2(A),(B)において、計測センサ10は、距離測長波を用いて改良体8の径rを計測するセンサである。距離測長波は、距離の測定に適用可能な一定周波数の振動波である。本実施形態では、距離測長波の好ましい例として超音波を適用する。   In the embodiment of the present invention, the rod 4 is provided with a measurement sensor for grasping the improved diameter r during the construction of the improved body 8. 2 (A) and 2 (B) are schematic side views of the rods as viewed from different directions by 90 °. 2A and 2B, the measurement sensor 10 is a sensor that measures the diameter r of the improved body 8 using a distance measurement wave. The distance measurement wave is a vibration wave having a constant frequency applicable to distance measurement. In this embodiment, an ultrasonic wave is applied as a preferable example of the distance measurement wave.

計測センサ10は、ノズル5の近傍に位置してロッド4の外周面に取り付けられている。計測センサ10は、ロッド4の回転方向に対して、ノズル5が先行し、計測センサ10が後続するように、ノズル5とは90°異なる向きに配置されている。また、計測センサ10は、超音波を発信する発信器11および該超音波を受信する受信器12を有する。発信器11は、ロッド4の径方向外側に向かって超音波を発信する。受信器12は、発信器11から発信され、かつ、図1に示す改良領域E1と非改良領域E2との境界位置9で反射した超音波を受信する。改良領域E1は、固化材スラリーSの噴射によって改良される土壌領域であり、非改良領域E2は、改良領域E1よりも外側の領域、すなわち固化材スラリーSが到達しない土壌領域である。   The measurement sensor 10 is attached to the outer peripheral surface of the rod 4 in the vicinity of the nozzle 5. The measurement sensor 10 is disposed in a direction different from the nozzle 5 by 90 ° so that the nozzle 5 precedes the rotation direction of the rod 4 and the measurement sensor 10 follows. The measurement sensor 10 includes a transmitter 11 that transmits ultrasonic waves and a receiver 12 that receives the ultrasonic waves. The transmitter 11 transmits ultrasonic waves toward the radially outer side of the rod 4. The receiver 12 receives the ultrasonic wave transmitted from the transmitter 11 and reflected at the boundary position 9 between the improved region E1 and the non-improved region E2 shown in FIG. The improved region E1 is a soil region improved by the injection of the solidifying material slurry S, and the non-improved region E2 is a region outside the improved region E1, that is, a soil region where the solidifying material slurry S does not reach.

図3は、本発明の実施形態に係る地盤改良方法に用いられる高圧噴射攪拌装置の制御系の構成例を示すブロック図である。
管理端末21は、高圧噴射攪拌装置1を用いた地盤改良工法の施工管理用の端末である。管理端末21は、たとえば、CPU(Central Processing Unit)、ROM(Read-Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)のハードウェア資源を備えるコンピュータ装置によって構成される。管理端末21には、前述した計測センサ10のほか、回転角度検出器22と挿入量検出器23と表示装置24が、それぞれ電気的に接続されている。
FIG. 3 is a block diagram illustrating a configuration example of a control system of the high-pressure jet agitator used in the ground improvement method according to the embodiment of the present invention.
The management terminal 21 is a terminal for construction management of the ground improvement method using the high-pressure jet stirring device 1. The management terminal 21 is configured by a computer device including hardware resources such as a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and a hard disk drive (HDD). In addition to the measurement sensor 10 described above, a rotation angle detector 22, an insertion amount detector 23, and a display device 24 are electrically connected to the management terminal 21, respectively.

回転角度検出器22は、ロッド4の回転角度θ(図1参照)を検出するものである。ロッド4の回転角度θは、ロッド4が所定の方向を向いている状態を0°として、ロッド4が1回転する間に0°〜360°の値をとる。挿入量検出器23は、ロッド4の挿入量D(図1参照)を検出するものである。ロッド4の挿入量Dは、地表からロッド4の下端部までの距離で表され、あらかじめ設定された所定の深さまでロッド4を挿入したときに最大値をとる。   The rotation angle detector 22 detects the rotation angle θ of the rod 4 (see FIG. 1). The rotation angle θ of the rod 4 takes a value of 0 ° to 360 ° while the rod 4 rotates once, assuming that the state in which the rod 4 is oriented in a predetermined direction is 0 °. The insertion amount detector 23 detects the insertion amount D of the rod 4 (see FIG. 1). The insertion amount D of the rod 4 is represented by the distance from the ground surface to the lower end of the rod 4, and takes the maximum value when the rod 4 is inserted to a predetermined depth set in advance.

表示装置24は、管理端末21から出力される画像データを可視情報として表示するものである。表示装置24は、たとえば、液晶ディスプレイによって構成される。   The display device 24 displays the image data output from the management terminal 21 as visible information. The display device 24 is configured by a liquid crystal display, for example.

次に、計測センサ10を用いた改良径の測定方法について説明する。
まず、ロッド4の引き上げが開始され、かつ、固化材スラリーSの噴射が開始されると、管理端末21は、計測センサ10を起動して改良径の測定を開始する。これにより、計測センサ10の発信器11は、連続的に、または、一定の時間刻みで、超音波を発信する。本実施形態においては、一例として、発信器11が一定の時間刻みで超音波の発信を繰り返すものとする。
Next, a method for measuring an improved diameter using the measurement sensor 10 will be described.
First, when the lifting of the rod 4 is started and the injection of the solidified material slurry S is started, the management terminal 21 starts the measurement sensor 10 and starts measuring the improved diameter. Thereby, the transmitter 11 of the measurement sensor 10 transmits an ultrasonic wave continuously or at regular time intervals. In the present embodiment, as an example, it is assumed that the transmitter 11 repeats transmission of ultrasonic waves at regular time intervals.

発信器11が発信した超音波は、まず、改良領域E1と非改良領域E2との境界位置9に向かって進む。その後、超音波は、改良領域E1と非改良領域E2との境界位置9で一部が反射し、これが反射波となって戻ってくる。受信器12は、境界位置9からの反射波を受信する。このとき、受信器12は、受信した反射波の強度に応じた電圧レベルまたは電流レベルの電気信号を発生する。受信器12が発生する電気信号は、計測センサ10が出力するセンサ信号となる。このセンサ信号は管理端末21に取り込まれる。   The ultrasonic wave transmitted from the transmitter 11 first proceeds toward the boundary position 9 between the improved region E1 and the non-improved region E2. Thereafter, a part of the ultrasonic wave is reflected at the boundary position 9 between the improved region E1 and the non-improved region E2, and returns as a reflected wave. The receiver 12 receives the reflected wave from the boundary position 9. At this time, the receiver 12 generates an electric signal having a voltage level or a current level corresponding to the intensity of the received reflected wave. The electrical signal generated by the receiver 12 becomes a sensor signal output from the measurement sensor 10. This sensor signal is taken into the management terminal 21.

管理端末21は、発信器11が超音波を1回発信するたびに、発信器11が超音波を発信してから受信器12が境界位置9からの反射波を受信するまでの時間(以下、「往復時間」ともいう。)を計測する。さらに管理端末21は、往復時間の計測結果を基に、改良体8の径rを演算によって求める。ここで、往復時間は、計測センサ10の位置から境界位置9までの距離に応じて変わる。このため、往復時間は、計測センサ10の位置から境界位置9までの距離に換算することができる。また、ロッド4の径方向において、ロッド4の中心軸Jの位置から計測センサ10の位置までの距離は、既知の距離情報として管理端末21の記憶装置(ROM、HDD等)に記憶することができる。これにより、管理端末21は、往復時間からの換算によって求めた、計測センサ10の位置から境界位置9までの距離に、記憶装置から読み出した既知の距離情報を加算することにより、改良体8の径rを求めることができる。   Each time the transmitter 11 transmits an ultrasonic wave once, the management terminal 21 transmits a time from when the transmitter 11 transmits an ultrasonic wave until the receiver 12 receives a reflected wave from the boundary position 9 (hereinafter, (Also called “round trip time”). Furthermore, the management terminal 21 calculates | requires the diameter r of the improvement body 8 by calculation based on the measurement result of a round-trip time. Here, the round-trip time varies depending on the distance from the position of the measurement sensor 10 to the boundary position 9. For this reason, the round trip time can be converted into a distance from the position of the measurement sensor 10 to the boundary position 9. Further, the distance from the position of the central axis J of the rod 4 to the position of the measurement sensor 10 in the radial direction of the rod 4 can be stored in the storage device (ROM, HDD, etc.) of the management terminal 21 as known distance information. it can. Thereby, the management terminal 21 adds the known distance information read from the storage device to the distance from the position of the measurement sensor 10 to the boundary position 9 obtained by conversion from the round-trip time, so that the improved body 8 The diameter r can be obtained.

ただし、計測センサ10のセンサ信号には、境界位置9からの反射波を受信したときの信号成分だけでなく、境界位置9以外からの反射波を受信したときの信号成分がノイズとして含まれる。このため、管理端末21で改良体8の径rを求めるには、たとえば、あらかじめ管理端末21の記憶装置に所定の閾値を記憶しておき、計測センサ10のセンサ信号のレベルが閾値を超えたときに、受信器12が境界位置9からの反射波を受信したと判断する必要がある。その際、改良領域E1と非改良領域E2との境界位置9における超音波の反射率が低いと、境界位置9からの反射波を受信器12が受信したときの信号レベルが閾値を超えず、改良径を測定できないおそれがある。また、それを避けるために閾値を低く設定すると、本来はノイズとして除去されるべき信号成分が閾値を超えてしまい、改良径を正しく測定できないおそれがある。   However, the sensor signal of the measurement sensor 10 includes not only a signal component when a reflected wave from the boundary position 9 is received but also a signal component when a reflected wave from other than the boundary position 9 is received as noise. For this reason, in order to obtain the diameter r of the improved body 8 at the management terminal 21, for example, a predetermined threshold value is stored in advance in the storage device of the management terminal 21, and the level of the sensor signal of the measurement sensor 10 exceeds the threshold value. Sometimes, it is necessary to determine that the receiver 12 has received the reflected wave from the boundary position 9. At this time, when the reflectance of the ultrasonic wave at the boundary position 9 between the improved region E1 and the non-improved region E2 is low, the signal level when the receiver 12 receives the reflected wave from the boundary position 9 does not exceed the threshold value. The improved diameter may not be measured. If the threshold is set low to avoid this, the signal component that should be removed as noise originally exceeds the threshold, and the improved diameter may not be measured correctly.

そこで、本発明の実施形態においては、改良領域E1と非改良領域E2との境界位置9における超音波の反射率を上げるために、固化材スラリーSの原料となる固化材に、固化材よりも密度が高い密度増大物質を混合して固化材スラリーSを生成することとした。固化材としては、たとえば、セメント系固化材を用いることができる。密度増大物質としては、好ましくは、鉄粉を用いることができる。プラントにおいては、図4に示すように、固化材31が水30と混合されて固化材スラリーSとなる。その際、固化材31に密度増大物質32を混合して固化材スラリーSを生成すれば、改良体8の造成に用いられる固化材スラリーSの密度、ひいては固化材スラリーSと原土とを混合した混合物の密度を増大させることができる。   Therefore, in the embodiment of the present invention, in order to increase the reflectance of the ultrasonic wave at the boundary position 9 between the improved region E1 and the non-improved region E2, the solidified material that is the raw material of the solidified material slurry S is more than the solidified material. The solidified material slurry S was produced by mixing a density increasing substance having a high density. As the solidifying material, for example, a cement-based solidifying material can be used. As the density increasing substance, iron powder can be preferably used. In the plant, as shown in FIG. 4, the solidified material 31 is mixed with water 30 to form a solidified material slurry S. At that time, if the solidification material 31 is mixed with the density increasing material 32 to generate the solidification material slurry S, the density of the solidification material slurry S used for the formation of the improved body 8, and thus the solidification material slurry S and the raw soil are mixed. The density of the resulting mixture can be increased.

ここで、改良領域E1と非改良領域E2との境界位置9における超音波の反射率と、固化材スラリーSの密度との関係について説明する。
まず、ある境界面に超音波が入射した場合、その入射波の一部は境界面で反射し、それ以外は境界面を透過する。このとき、境界面での反射率は、境界面における音響インピーダンスの差が大きいほど高くなる。したがって、改良領域E1の音響インピーダンスと非改良領域E2の音響インピーダンスの差が大きくなれば、それらの境界位置9での反射率が高くなる。
Here, the relationship between the reflectance of the ultrasonic wave at the boundary position 9 between the improved region E1 and the non-improved region E2 and the density of the solidified material slurry S will be described.
First, when an ultrasonic wave is incident on a certain boundary surface, a part of the incident wave is reflected on the boundary surface, and the others are transmitted through the boundary surface. At this time, the reflectance at the boundary surface increases as the difference in acoustic impedance at the boundary surface increases. Therefore, if the difference between the acoustic impedance of the improved region E1 and the acoustic impedance of the non-improved region E2 increases, the reflectance at the boundary position 9 increases.

一方、音響インピーダンスは、媒質の密度と媒質の超音波伝搬速度との積で表される。このため、プラントにおいて固化材31に密度増大物質32を混合して固化材スラリーSを生成し、この固化材スラリーSをノズル5からの噴射によって原土と混合すれば、密度増大物質32を混合しない場合に比べて改良領域E1の音響インピーダンスが大きくなる。これにより、改良領域E1の音響インピーダンスと非改良領域E2の音響インピーダンスの差を大きくすることができる。その結果、改良領域E1と非改良領域E2との境界位置9における超音波の反射率を高めることが可能となる。   On the other hand, the acoustic impedance is represented by the product of the density of the medium and the ultrasonic propagation velocity of the medium. For this reason, if the density increasing substance 32 is mixed with the solidifying material 31 in the plant to produce the solidifying material slurry S, and this solidifying material slurry S is mixed with the raw soil by injection from the nozzle 5, the density increasing substance 32 is mixed. The acoustic impedance of the improved region E1 becomes larger than when not. Thereby, the difference of the acoustic impedance of the improvement area | region E1 and the acoustic impedance of the non-improvement area | region E2 can be enlarged. As a result, it is possible to increase the reflectance of the ultrasonic wave at the boundary position 9 between the improved region E1 and the non-improved region E2.

このように改良領域E1と非改良領域E2との境界位置9における超音波の反射率を高めることにより、境界位置9からの反射波を受信器12が受信したときの信号レベルが相対的に高くなる。このため、受信器12が境界位置9以外からの反射波を受信したときの信号成分であるノイズを、前述した閾値との比較によって確実に除去することができる。したがって、固化材スラリーSの原料となる固化材31に密度増大物質32を混合しない場合に比べて、改良体8の径rをより正確に把握することができる。また、改良体8の径rを把握するにあたって、建込み管や到達管を地盤に挿入する必要がないため、地盤改良の施工効率を向上させることができる。なお、固化材スラリーSの原料となる固化材31に密度増大物質32を混合する場合は、改良領域E1の音響インピーダンスと非改良領域E2の音響インピーダンスの差が10%以上20%以下となるように、密度増大物質32を混合することが好ましい。   Thus, by increasing the reflectance of the ultrasonic wave at the boundary position 9 between the improved region E1 and the non-improved region E2, the signal level when the receiver 12 receives the reflected wave from the boundary position 9 is relatively high. Become. For this reason, the noise which is a signal component when the receiver 12 receives the reflected wave from other than the boundary position 9 can be reliably removed by comparison with the above-described threshold value. Therefore, compared with the case where the density increasing substance 32 is not mixed with the solidified material 31 that is the raw material of the solidified material slurry S, the diameter r of the improved body 8 can be grasped more accurately. Moreover, since it is not necessary to insert a built-in pipe or a reaching pipe into the ground in order to grasp the diameter r of the improved body 8, the construction efficiency of the ground improvement can be improved. In addition, when the density increasing substance 32 is mixed with the solidified material 31 that is the raw material of the solidified material slurry S, the difference between the acoustic impedance of the improved region E1 and the acoustic impedance of the non-improved region E2 is 10% or more and 20% or less. Further, it is preferable to mix the density increasing substance 32.

また、本実施形態において、高圧噴射攪拌装置1は、計測センサ10と管理端末21に加えて、回転角度検出器22、挿入量検出器23および表示装置24を備えている。このため、次のような処理機能を高圧噴射攪拌装置1に持たせることができる。   In the present embodiment, the high-pressure jet agitating apparatus 1 includes a rotation angle detector 22, an insertion amount detector 23, and a display device 24 in addition to the measurement sensor 10 and the management terminal 21. For this reason, the following processing functions can be given to the high-pressure jet agitator 1.

まず、施工機3がロッド4を回転させながら引き上げる場合、管理端末21には、回転角度検出器22によるロッド4の回転角度θの検出結果と、挿入量検出器23によるロッド4の挿入量Dの検出結果が、それぞれ取り込まれる。このとき、管理端末21は、発信器11が超音波を1回発信するたびに、前述のように計測センサ10を用いて測定した改良体8の径rと、ロッド4の回転角度θおよびロッド4の挿入量Dとを対応付けたデータを、記憶装置に記憶する。これにより、施工機3がロッド4を回転させながら引き上げるときに、発信器11が超音波を発信する周期に同期して、改良体8の径とロッド4の回転角度θおよび挿入量Dとを対応付けたデータが連続的に得られる。そして、固化材スラリーSの噴射開始から噴射終了までの間、そのように対応付けたデータが記憶装置に蓄積される。   First, when the construction machine 3 pulls up the rod 4 while rotating it, the management terminal 21 receives the detection result of the rotation angle θ of the rod 4 by the rotation angle detector 22 and the insertion amount D of the rod 4 by the insertion amount detector 23. The detection results are taken in respectively. At this time, each time the transmitter 11 transmits an ultrasonic wave once, the management terminal 21 measures the diameter r of the improved body 8 measured using the measurement sensor 10 as described above, the rotation angle θ of the rod 4 and the rod. 4 is stored in a storage device. Thereby, when the construction machine 3 pulls up while rotating the rod 4, the diameter of the improved body 8, the rotation angle θ of the rod 4, and the insertion amount D are synchronized with the period in which the transmitter 11 transmits ultrasonic waves. Corresponding data can be obtained continuously. And from the start of the injection of the solidifying material slurry S to the end of the injection, the data associated as such is accumulated in the storage device.

そこで、管理端末21は、改良体8の造成中に、上述のように連続的に得られるデータのうち、改良体8の径rとロッド4の回転角度θとを対応付けたデータを用いて、改良体8の断面形状を求める。改良体8の断面形状は、改良体8の径rとロッド4の回転角度θの各値を用いて、図5に示すように、ロッド4の中心軸の位置を原点Aとした極座標(r,θ)で表すことができる。また、管理端末21は、改良体8の造成中に、先に求めた改良体8の断面形状(r,θ)を可視情報として表示装置24に表示する。これにより、施工管理者は、表示装置24に表示される改良体8の断面形状(r,θ)をリアルタイムに確認しながら施工管理を行うことができる。   Therefore, the management terminal 21 uses the data in which the diameter r of the improved body 8 and the rotation angle θ of the rod 4 are associated with each other among the data continuously obtained as described above during the creation of the improved body 8. Then, the cross-sectional shape of the improved body 8 is obtained. As shown in FIG. 5, the cross-sectional shape of the improved body 8 is the polar coordinates (r) with the position of the center axis of the rod 4 as the origin A, using the values of the diameter r of the improved body 8 and the rotation angle θ of the rod 4. , Θ). Moreover, the management terminal 21 displays the cross-sectional shape (r, θ) of the improved body 8 obtained previously on the display device 24 as visible information during the creation of the improved body 8. Thereby, the construction manager can perform construction management while confirming the cross-sectional shape (r, θ) of the improved body 8 displayed on the display device 24 in real time.

また、管理端末21は、表示装置24に表示する改良体8の断面形状をロッド4の回転周期に応じて更新する。具体的には、今回の一つ前の回転周期においてロッド4の回転角度θがたとえば30°のときに測定した改良体8の径rを、今回の回転周期においてロッド4の回転角度θが30°のときに測定した改良体8の径rに置き換えて、改良体8の断面形状を表示する。これにより、表示装置24には、ロッド4の回転周期に応じて最新の改良体8の断面形状を表示することができる。   In addition, the management terminal 21 updates the cross-sectional shape of the improved body 8 displayed on the display device 24 according to the rotation period of the rod 4. Specifically, the diameter r of the improved body 8 measured when the rotation angle θ of the rod 4 is, for example, 30 ° in the previous rotation cycle, and the rotation angle θ of the rod 4 in the current rotation cycle is 30. The sectional shape of the improved body 8 is displayed in place of the diameter r of the improved body 8 measured at the time of °. Thereby, the display device 24 can display the latest sectional shape of the improved body 8 in accordance with the rotation period of the rod 4.

また、管理端末21は、地盤改良で必要とされる改良体8の基準径をraとすると、図5に示すように、改良体8の基準径raで描かれる円形状(ra,θ)を改良体8の断面形状(r,θ)と共に表示装置24に表示する。これにより、管理施工者は、表示装置24に表示される改良体8の断面形状(r,θ)と円形状(ra,θ)を比較することにより、改良体8の径rが基準径ra以上に確保されているかどうかを容易に判断することができる。   Further, when the reference diameter of the improved body 8 required for the ground improvement is ra, the management terminal 21 changes the circular shape (ra, θ) drawn with the reference diameter ra of the improved body 8 as shown in FIG. The information is displayed on the display device 24 together with the cross-sectional shape (r, θ) of the improved body 8. Thereby, the management contractor compares the cross-sectional shape (r, θ) of the improved body 8 displayed on the display device 24 with the circular shape (ra, θ), so that the diameter r of the improved body 8 is the reference diameter ra. It can be easily determined whether or not the above is secured.

また、管理端末21は、改良体8の断面形状(r,θ)を表示装置24に表示する場合に、基準径raに比べて改良体8の径rが小さい径不足部の断面形状を表す線とそれ以外の部分の断面形状を表す線を、それぞれ異なる色(たとえば、赤と緑)、線種または太さで表示する。これにより、施工管理者は、表示装置24に表示される改良体8の断面形状(r,θ)を表す線の違いによって、改良体8の径rが不足する部分を即座に見つけ出すことができる。   In addition, when the management terminal 21 displays the cross-sectional shape (r, θ) of the improved body 8 on the display device 24, the management terminal 21 represents the cross-sectional shape of the insufficient diameter portion where the diameter r of the improved body 8 is smaller than the reference diameter ra. The line and the line representing the cross-sectional shape of the other part are displayed in different colors (for example, red and green), line type, or thickness. Thereby, the construction manager can instantly find a portion where the diameter r of the improved body 8 is insufficient due to the difference in the line representing the cross-sectional shape (r, θ) of the improved body 8 displayed on the display device 24. .

また、管理端末21は、改良体8の造成中に、基準径raに比べて改良体8の径rが小さい径不足部が発生した場合に、それまでに記憶装置に記憶されるデータ、すなわち改良体8の径rとロッド4の回転角度θおよびロッド4の挿入量Dとを対応付けたデータを用いて径不足部の位置を特定する。これにより、改良体8の造成中に、基準径raに比べて改良体8の径rが小さい径不足部が発生した場合、管理端末21が特定した径不足部の位置に応じてロッド4を所定量だけ下降させてノズル5から固化材スラリーSを噴射させることにより、改良体8の径rの不足を解消することができる。   In addition, the management terminal 21, when the improved body 8 is being created, when a diameter deficient portion having a smaller diameter r of the improved body 8 than the reference diameter ra occurs, The position of the insufficient diameter portion is specified using data in which the diameter r of the improved body 8 is associated with the rotation angle θ of the rod 4 and the insertion amount D of the rod 4. Thereby, during construction of the improved body 8, when a diameter deficient portion having a diameter r of the improved body 8 smaller than the reference diameter ra occurs, the rod 4 is moved according to the position of the diameter deficient portion specified by the management terminal 21. By injecting the solidifying material slurry S from the nozzle 5 while being lowered by a predetermined amount, the shortage of the diameter r of the improved body 8 can be solved.

なお、上記実施形態においては、固化材スラリーSの原料となる固化材に、固化材よりも密度が高い密度増大物質を混合して固化材スラリーSを生成し、これをノズル5から噴射させて改良体を造成するとしたが、本発明はこれに限らない。たとえば、固化材スラリーSの原料となる固化材に、固化材よりも密度が低い密度減少物質を混合して固化材スラリーSを生成し、これをノズル5から噴射させて改良体を造成してもよい。密度減少物質としては、たとえば、気泡または発泡ビーズを挙げることができる。   In the above embodiment, the solidified material that is the raw material of the solidified material slurry S is mixed with a density increasing substance having a higher density than the solidified material to generate the solidified material slurry S, and this is injected from the nozzle 5. Although the improved body is formed, the present invention is not limited to this. For example, a solidified material that is a raw material of the solidified material slurry S is mixed with a density-reducing substance having a density lower than that of the solidified material to produce a solidified material slurry S, which is injected from the nozzle 5 to form an improved body. Also good. Examples of the density reducing substance include air bubbles or expanded beads.

2 地盤、4 ロッド、5 ノズル、8 改良体、9 境界位置、10 計測センサ、11 発信器、12 受信器、24 表示装置、31 固化材、32 密度増大物質、E1 改良領域、E2 非改良領域、S 固化材スラリー、r 改良体の径、θ ロッドの回転角度。   2 ground, 4 rod, 5 nozzle, 8 improved body, 9 boundary position, 10 measuring sensor, 11 transmitter, 12 receiver, 24 display device, 31 solidified material, 32 density increasing material, E1 improved area, E2 non-improved area , S solidified material slurry, r diameter of improved body, θ rod rotation angle.

Claims (5)

地盤に挿入したロッドを回転させながら引き上げるとともに、前記ロッドに設けられたノズルから固化材スラリーを噴射させることにより、前記地盤の原土と前記固化材スラリーとを混合して改良体を造成する地盤改良方法であって、
前記固化材スラリーの原料となる固化材に、該固化材よりも密度が高い密度増大物質または該固化材よりも密度が低い密度減少物質を混合して固化材スラリーを生成し、前記生成した固化材スラリーを前記ノズルから噴射させて前記改良体を造成する
地盤改良方法。
The ground which is pulled up while rotating the rod inserted into the ground and injects the solidifying material slurry from the nozzle provided on the rod, thereby mixing the raw soil of the ground and the solidifying material slurry to create an improved body An improved method,
The solidified material that is the raw material of the solidified material slurry is mixed with a density increasing material having a higher density than the solidified material or a density decreasing material having a lower density than the solidified material to generate a solidified material slurry, and the generated solidified material A ground improvement method in which a material slurry is sprayed from the nozzle to create the improved body.
前記密度増大物質は鉄粉である
請求項1に記載の地盤改良方法。
The ground improvement method according to claim 1, wherein the density increasing substance is iron powder.
前記密度減少物質は気泡または発泡ビーズである
請求項1に記載の地盤改良方法。
The ground improvement method according to claim 1, wherein the density-reducing substance is air bubbles or foam beads.
距離測長波を発信する発信器および該距離測長波を受信する受信器を有する計測センサを前記ロッドに設けておき、
前記改良体の造成中に、前記ロッドの径方向外側に向かって前記発信器から前記距離測長波を発信し、前記密度増大物質または前記密度減少物質を混合した前記固化材スラリーの噴射によって改良される改良領域と該改良領域よりも外側の非改良領域との境界位置で反射した距離測長波を前記受信器で受信することにより、前記改良体の径を測定する
請求項1〜3のいずれか一項に記載の地盤改良方法。
A measurement sensor having a transmitter for transmitting a distance measurement wave and a receiver for receiving the distance measurement wave is provided on the rod,
During the formation of the improved body, the distance measuring wave is transmitted from the transmitter toward the outside in the radial direction of the rod, and the solidified material slurry mixed with the density increasing substance or the density decreasing substance is improved by injection. The diameter of the improved body is measured by receiving a distance measuring wave reflected at a boundary position between the improved area and the non-improved area outside the improved area by the receiver. The ground improvement method according to one item.
前記改良体の造成中に、前記改良体の径と前記ロッドの回転角度とを対応付けたデータを用いて前記改良体の断面形状を求め、該断面形状を表示装置に表示する
請求項4に記載の地盤改良方法。
The cross-sectional shape of the improved body is obtained using data in which the diameter of the improved body and the rotation angle of the rod are associated with each other during creation of the improved body, and the cross-sectional shape is displayed on a display device. The ground improvement method described.
JP2018089503A 2018-05-07 2018-05-07 Improved body measurement method for ground improvement Active JP6998266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089503A JP6998266B2 (en) 2018-05-07 2018-05-07 Improved body measurement method for ground improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089503A JP6998266B2 (en) 2018-05-07 2018-05-07 Improved body measurement method for ground improvement

Publications (2)

Publication Number Publication Date
JP2019196594A true JP2019196594A (en) 2019-11-14
JP6998266B2 JP6998266B2 (en) 2022-01-18

Family

ID=68538660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089503A Active JP6998266B2 (en) 2018-05-07 2018-05-07 Improved body measurement method for ground improvement

Country Status (1)

Country Link
JP (1) JP6998266B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082812A (en) * 1973-11-22 1975-07-04
JPS59106624A (en) * 1982-12-06 1984-06-20 Mitsui Constr Co Ltd Underground excavator
JPH06158638A (en) * 1992-09-24 1994-06-07 Nit Co Ltd Method and device for constructing improved ground
JP2006045999A (en) * 2004-08-06 2006-02-16 Nishimatsu Constr Co Ltd Soil improving method
JP2011106105A (en) * 2009-11-13 2011-06-02 Toko Geotech Corp Soil improvement bubble material suitable for ground improvement method reducing the amount of mud, and ground improvement method
JP2012172329A (en) * 2011-02-18 2012-09-10 Fujimi Consultants Co Ltd Shape measuring method for unconsolidated deep layer mixture treated soil improved body, injection rod for cement-based deep layer mixture treatment method, and agitation rod
US20120308306A1 (en) * 2011-06-03 2012-12-06 Kruse Darin R Lubricated Soil Mixing System and Methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082812A (en) * 1973-11-22 1975-07-04
JPS59106624A (en) * 1982-12-06 1984-06-20 Mitsui Constr Co Ltd Underground excavator
JPH06158638A (en) * 1992-09-24 1994-06-07 Nit Co Ltd Method and device for constructing improved ground
JP2006045999A (en) * 2004-08-06 2006-02-16 Nishimatsu Constr Co Ltd Soil improving method
JP2011106105A (en) * 2009-11-13 2011-06-02 Toko Geotech Corp Soil improvement bubble material suitable for ground improvement method reducing the amount of mud, and ground improvement method
JP2012172329A (en) * 2011-02-18 2012-09-10 Fujimi Consultants Co Ltd Shape measuring method for unconsolidated deep layer mixture treated soil improved body, injection rod for cement-based deep layer mixture treatment method, and agitation rod
US20120308306A1 (en) * 2011-06-03 2012-12-06 Kruse Darin R Lubricated Soil Mixing System and Methods

Also Published As

Publication number Publication date
JP6998266B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
CN104727358B (en) A kind of underground pile hole hole wall detector of 360 degree of three-dimensional imagings
US6870793B2 (en) Automatically tracking scanning sonar
JP5283875B2 (en) Ultrasonic diagnostic apparatus and control program for ultrasonic diagnostic apparatus
CN105134170B (en) A kind of method for evaluating cased well second interface Cementation Quality
CN107870202A (en) A kind of detection method of cable connector internal flaw
JP2019196595A (en) Ground improvement method
CN110378616A (en) Jet grouting pile construction real-time monitoring method for quality
JP5952254B2 (en) Ultrasonic diagnostic equipment
JP2012172329A (en) Shape measuring method for unconsolidated deep layer mixture treated soil improved body, injection rod for cement-based deep layer mixture treatment method, and agitation rod
JP6998266B2 (en) Improved body measurement method for ground improvement
CN106643589A (en) High-pressure jet grouting pile construction formed-pile diameter real-time monitoring method and monitoring device
JP2007217963A (en) Ground improvement method
CN107589425A (en) Ultrasonic ranging equipment and its detection of the backscatter signal method, apparatus and aircraft
JP2010037812A (en) Method of estimating origin position gel time of ground injection chemical
CN110455915A (en) Tunnel Second Lining supplements grouting method
CN104237388B (en) Spherical ultrasonic probe for detecting defects of nonmetal solid material and detection method
JP2013144892A (en) Pile hole drilling management method and pile hole drilling head
CN209043421U (en) Ultrasonic wave spacing Multi point measuring apparatus
JP2015212513A (en) Liquefaction countermeasure method for ground
JP6886860B2 (en) Method of confirming the range of ground improvement in the high-pressure injection stirring method
CN110185080A (en) A kind of auxiliary twists the method and device of suction ship sand fetching construction
CN105891331A (en) Concrete structure defect online positioning method based on tubular piezoelectric intelligent aggregate
JP2021067113A (en) Data transmission system
JP2007301180A (en) Ultrasonic diagnostic apparatus and method of generating ultrasonic diagnostic image
JP2003337015A (en) Measuring method for shape of pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150