JP2019191133A - 位置推定装置 - Google Patents

位置推定装置 Download PDF

Info

Publication number
JP2019191133A
JP2019191133A JP2018087826A JP2018087826A JP2019191133A JP 2019191133 A JP2019191133 A JP 2019191133A JP 2018087826 A JP2018087826 A JP 2018087826A JP 2018087826 A JP2018087826 A JP 2018087826A JP 2019191133 A JP2019191133 A JP 2019191133A
Authority
JP
Japan
Prior art keywords
image
imaging device
current position
error
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087826A
Other languages
English (en)
Other versions
JP7190261B2 (ja
Inventor
アレックス益男 金子
Alex Masuo Kaneko
アレックス益男 金子
山本 健次郎
Kenjiro Yamamoto
健次郎 山本
茂規 早瀬
Shigenori Hayase
茂規 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2018087826A priority Critical patent/JP7190261B2/ja
Priority to DE112019001542.7T priority patent/DE112019001542T5/de
Priority to PCT/JP2019/013964 priority patent/WO2019208101A1/ja
Priority to US17/049,656 priority patent/US11538241B2/en
Publication of JP2019191133A publication Critical patent/JP2019191133A/ja
Application granted granted Critical
Publication of JP7190261B2 publication Critical patent/JP7190261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Astronomy & Astrophysics (AREA)

Abstract

【課題】高精度の位置推定を行うことができる位置推定装置を提供する。【解決手段】本発明の位置推定装置1は、撮像装置12a、12b、・・・12nを搭載した移動体100の現在位置を推定する。位置推定装置1は、移動体100の現在位置を推定し、その現在位置に基づいて複数の仮想位置を作成し、複数の仮想位置での仮想画像をそれぞれ作成し、複数の仮想画像を実際画像と比較して比較誤差を算出し、撮像装置により取得された情報と、移動体の現在位置誤差の情報の少なくとも一つに基づいて重みを算出し、重みを用いて比較誤差に重み付けを行い、重み付けされた比較誤差に基づいて現在位置を補正する。【選択図】図1

Description

本発明は,ロボットや自動車などの移動体の位置を推定する技術に関する。
ロボット及び自動車などの移動体がその周囲の情報を収集し,移動体の現在位置及び走行状態を推定し,移動体の走行を制御する自律走行技術及び運転支援技術が開発されている。移動体の周囲の情報検出のためには様々なセンサが用いられる。一般に,周囲の情報を計測するためのセンサとしては,カメラなどの撮像装置,レーザセンサ,ミリ波レーダなどがある。移動体の位置を測定するためのセンサとしては,GPS(Global Positioning System)またはIMU(Inertial Measurement Unit)が用いられる。
自律走行制御では,移動体に搭載された制御装置において,例えばIMUで算出した移動体の速度または角速度を積算したり,GPS測位を用いたりして,移動体自身の位置(自己位置)を推定する。また,地図情報とランドマークがなく,GPSも使えない場合は,移動体の周囲に存在する物体との相対位置を推定しながら走行中環境の地図を作成するSLAM(Simultaneous Localization and Mapping)法が用いられる。SLAMで推定した相対位置の誤差は,蓄積するため,位置修正が必須となる。位置修正は,例えば,制御装置は,レーザセンサあるいはカメラなどで周囲の情報を収集し,位置推定の際の基準となる立体物の位置や形状を検出する。そして,検出された立体物の位置を地図情報と比較(マップマッチング)することにより,移動体の現在位置を修正する。従って,検出された立体物の位置誤差が大きい場合,移動体の位置を修正できない。また,修正前は,すでに位置誤差が大きい場合は,マップマッチングを行っても,現在位置を修正できない。
ここで,例えば,非特許文献1は,正確な現在位置を推定するために,複数の仮想の現在位置を作成し,それぞれの仮想位置,地図情報,センサの内部と外部パラメータを用い,仮想の強度画像と視差画像を作成する。それぞれの作成した仮想の強度画像と視差画像を実際に取得した強度画像と視差画像とマッチングし,それぞれの強度画像と視差画像のマッチング結果に固定の重みを付けてマッチング誤差を算出する。最もマッチング誤差の小さい仮想位置を現在位置とする。
Yuquan Xu, et al. 3D Point Cloud Map Based Vehicle Localization Using Stereo Camera. 2017 IEEE Intelligent Vehicles Symposium. USA.
しかし,非特許文献1のように,それぞれの仮想位置からマッチング誤差を算出する際,強度画像のマッチング結果と視差画像のマッチング結果に固定の重みを付けるため,走行環境の明るさや撮像装置のキャリブレーション誤差による撮像装置が取得した情報の信頼度が低くなり,マッチングで推定した現在位置精度が低くなる。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、高精度の位置推定を行うことができる位置推定装置を提供することである。
上記課題を解決するために,本発明の位置推定装置は,移動体に搭載した撮像装置であって,
撮像装置を搭載した移動体の現在位置を推定する位置推定装置であって、
前記移動体の現在位置を推定する現在位置推定手段と、
該現在位置推定手段により推定された現在位置に基づいて複数の仮想位置を作成する仮想位置作成手段と、
前記撮像装置により前記複数の仮想位置で撮像したと仮定した場合の複数の仮想画像をそれぞれ作成する仮想画像作成手段と、
前記複数の仮想画像を前記撮像装置により前記現在位置で撮像された画像と比較してそれぞれの比較誤差を算出する画像マッチング手段と、
前記撮像装置により取得された情報と、前記現在位置推定手段で得られた前記移動体の現在位置誤差の情報との少なくとも一つに基づいて重みを算出し、該重みを用いて前記それぞれの比較誤差に重み付けを行う重み付け手段と、
前記現在位置推定手段で推定されている現在位置を前記重み付けされた比較誤差に基づいて補正する位置補正手段と、
を有することを特徴とする。
本発明によれば、雨天や日差しが強い条件(逆光、照り返し、反射)や撮像装置のキャリブレーション誤差が大きい場合などのように画像によるマッチングが難しい状況でも,走行状況に応じて高精度にマッチングができる。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る移動体の位置推定装置の構成図。 画像処理部が行う画像処理手順を示すフローチャート。 仮想位置作成方法の一例を説明する図。 仮想画像作成方法の一例を説明する図。 キャリブレーション誤差による重みを算出する方法の一例を説明する図。 視差画像誤差による重みを算出する方法の一例を説明する図。 画像強度による重みを算出する方法を説明する図。 画像解像度による重みを算出する方法を説明する図。 特徴点による重みを算出する方法を説明する図。 画像マッチング方法の一例を説明する図。 本発明の実施例を説明する図。 本発明の実施例を説明する図。 異常な場合の説明。 障害物の影響と対策の説明。
以下,本発明の実施形態に係る移動体の位置推定装置について,図面を用いて説明する。
図1は,本発明の一実施形態に係る位置推定装置1の構成図である。
位置推定装置1は,撮像装置を搭載した移動体の現在位置を推定するものであり、自動車またはロボットなどの移動体100に搭載されている。位置推定装置1は,一台以上の撮像装置12(12a,12b,・・・12n)と,情報処理装置13を有する。撮像装置12は,例えばスチルカメラまたはビデオカメラである。また,撮像装置12は単眼カメラまたは複眼カメラでもよい。
情報処理装置13は,撮像装置12で撮像された画像を処理して移動体100の位置または移動量を算出する。情報処理装置13は,算出された位置または移動量に応じた表示を行ってもよく,または移動体100の制御に関する信号を出力してもよい。
情報処理装置13は,例えば一般的なコンピュータであって,撮像装置12によって撮像された画像を処理する画像処理部14と,画像処理結果に基づく処理を行う制御部(CPU)15と,メモリ16と,ディスプレイなどの表示部17と,これら構成要素を相互に接続するバス18とを有する。情報処理装置13は,画像処理部14及び制御部15が所定のコンピュータプログラムを実行することにより,以下の処理を行う。
撮像装置12aは,例えば,移動体100の前方に設置されている。撮像装置12aのレンズは移動体100の前方に向けられている。撮像装置12aは,例えば,移動体100の前方の遠景を撮像する。他の撮像装置12b,・・・撮像装置12nは,撮像装置12aと異なる位置に設置され,撮像装置12aと異なる撮像方向または領域を撮像する。撮像装置12bは,例えば,移動体100の後方で下方に向けて設置されていてもよい。撮像装置12bは,移動体100後方の近景を撮像するものでよい。
撮像装置12が単眼カメラの場合,路面が平らであれば,画像上のピクセル位置と実際の地上位置関係(x,y)が一定になるため,撮像装置12から特徴点までの距離を幾何学的に計算できる。撮像装置12がステレオカメラの場合,画像上の特徴点までの距離をより正確に計測できる。以下の説明では,単眼の標準レンズを有するカメラを採用した事例について説明するが,これ以外のカメラ(広角レンズを有するカメラまたはステレオカメラなど)でもよい。
また,撮像装置12a,撮像装置12b,・・・撮像装置12nが,ある時刻で撮像する対象物は,それぞれ互いに異なるものでよい。例えば,撮像装置12aは,移動体100の前方の遠景を撮像するものでよい。この場合,遠景を撮像した画像からは,立体物,または位置推定のためのランドマークなどの特徴点が抽出されるようにしてもよい。撮像装置12bは,移動体100周辺の路面などの近景を撮像するようにしてもよい。この場合,近景を撮像した画像からは,移動体100の周囲の白線,または路面ペイントなどが検出されるようにしてもよい。
また,撮像装置12a,撮像装置12b,・・・撮像装置12nは,同時に雨や日差しなどの環境外乱の影響を受けないような条件で移動体100に設置されてもよい。例えば,撮像装置12aは移動体100の前方で前向きに設置されるのに対して,撮像装置12bは移動体100の後方で後ろ向きまたは下向きに設置されてもよい。これにより,例えば,降雨時に撮像装置12aのレンズに雨滴が付着した場合でも,進行方向の逆向きまたは下向きの撮像装置12bのレンズには雨滴が付着しにくい。このため,撮像装置12aが撮像した画像が雨滴の影響で不鮮明であっても,撮像装置12bが撮像した画像は雨滴の影響を受けにくい。あるいは,日差しの影響で撮像装置12aの画像が不鮮明であっても,撮像装置12bが撮像した画像は鮮明である可能性がある。
また,撮像装置12a,撮像装置12b,・・・撮像装置12nは,互いに異なる撮像条件(絞り値,ホワイトバランス,等)で撮影してもよい。例えば,明るい場所用にパラメータを調整した撮像装置と,暗い場所用にパラメータを調整した撮像装置とを搭載することで,環境の明暗によらず撮像可能としてもよい。
撮像装置12a,撮像装置12b,・・・撮像装置12nは,制御部15から撮影開始の指令を受けたとき,または一定の時間間隔で画像を撮像する。撮像された画像のデータ及び撮像時刻は,メモリ16に格納される。メモリ16は,情報処理装置13の主記憶装置(メインメモリ)およびストレージなどの補助記憶装置を含む。
画像処理部14がメモリ16に格納された画像データ及び撮像時刻に基づいて,様々な画像処理を行う。この画像処理では,例えば,中間画像が作成されてメモリ16に保存される。中間画像は,画像処理部14による処理の他,制御部15などの判断や処理に利用されてもよい。
バス18は,IEBUS(Inter Equipment Bus)やLIN(Local Interconnect Network)やCAN(Controller Area Network)などで構成できる。
地図19は,移動体100が走行する環境の情報を有する(環境情報記憶手段)。地図19は,例えば,走行環境にある静止物(木,建物,道路,車線,信号,標識,路面ペイント,路端など)の形状や位置の情報を記憶している。地図19のそれぞれの情報を数式で表してもよい。例えば,線情報を複数点で構成せず,線の傾きと切片のみでよい。また,地図19の情報を区別せずに,点群で表してもよい。点群は3D(x,y,z),4D(x,y,z,色)などで表してもよい。最終的に,移動体100の現在位置から走行環境を検出し,マップマッチングができれば,地図19の情報をどんな形にしてもよい。
画像処理部14は,地図19とメモリ16に格納された移動体100の現在位置と撮像装置12の内部パラメータに基づいて,撮像装置12で撮像された画像に地図情報を投影する。画像処理部14は,撮像装置12で撮像された画像に基づいて移動体100の複数の位置候補を特定し,その複数の位置候補と移動体100の移動速度とに基づいて移動体100の位置を推定する。
画像処理部14は,例えば,移動体100の走行中に撮像装置12が撮像した画像を処理して,移動体100の位置を推定する。例えば,画像処理部14は,撮像装置12が撮像したビデオ画像で移動体100の移動量を算出し,過去の位置に移動量を加算して現在位置を推定する。画像処理部14は,ビデオ画像の各フレーム画像で特徴点を抽出してもよい。画像処理部14は,さらに,次以降のフレーム画像で同じ特徴点を抽出する。そして,画像処理部14は,特徴点のトラッキングにより移動体100の移動量を算出する。
制御部15は,画像処理部14の画像処理の結果に基づいて,移動体100に対して移動速度に関する指令を出力してもよい。例えば,制御部15は,画像内の立体物の画素数,画像内の特徴点のうちの外れ値の数または画像処理の種類等に応じて,移動体100の移動速度を増加させる指令,減少させる指令または維持させる指令を出力してもよい。
図2は,画像処理部14が行う画像処理手順を示すフローチャートである。
現在位置推定手段201は,移動体100の現在位置を推定する手段である。現在位置推定手段201は,例えば,絶対位置を推定するGPSで構成する。また,現在位置推定手段201は,ある基準点から相対位置を推定するオドメトリで構成してもよい。前述のGPSやオドメトリに基づく位置推定手法には,位置誤差が発生するが,後述する位置補正手段211で補正する。
環境情報抽出手段202は,移動体100に搭載されている撮像装置12a,撮像装置12b,・・・撮像装置12nで取得した移動体100の周囲の環境情報を抽出する手段である。環境情報抽出手段202では,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像された移動体100の周囲のグレースケール画像やカラー画像を取得する。また,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像から作成された視差画像を取得してもよい。そして,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像された画像上の特徴点の情報を取得してもよい。また,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像上の線情報を取得してもよい。
仮想位置作成手段203は,現在位置推定手段201で推定した現在位置に基づいて仮想位置を作成する手段である。仮想位置作成手段203で作成する仮想位置の個数は1個以上であり、固定値にせず,走行環境に応じて変更する。仮想位置作成手段203の詳細は後述する。
地図参照手段204は,地図19から情報を取得する手段である。制御部15の指令に基づいて,地図19から情報を取得する。制御部15の指令で,地図19にある情報を全て取得してもよい。また,移動体100の周囲の情報のみを取得してもよい。
仮想画像作成手段205は,地図参照手段204で取得した地図情報と仮想位置作成手段203で作成したそれぞれの仮想位置を用い,それぞれの仮想画像を作成する。仮想画像は、撮像装置で仮想位置から撮像したと仮定した場合の画像である。例えば,地図19 が3D(x,y,z)の点群で構成される場合,それぞれの点をピクセル(u,v)に変換する。また,仮想画像作成手段205は,地図19の情報に合わせて画像を作成する。例えば,地図19 が3D(x,y,z)の点群で構成される場合,それぞれの点をピクセル(u,v)に変換し,ピクセル(u,v)に距離情報を追加する。従って,(u,v,距離)で構成した仮想画像とする。
また,地図19 が4D(x,y,z,色)の点群で構成される場合,それぞれの点をピクセル(u,v)に色情報を追加し,(u,v,色)で構成した仮想画像にしてもよい。また,地図19 が3D(x,y,z)の点群で構成される場合,それぞれの点をピクセル(u,v)に深さ情報を追加し,(u,v,深さ)で構成した仮想視差画像にしてもよい。色情報は、ピクセルの強度である。画像はカラーかグレースケールで表示され、グレースケールの場合、画像のそれぞれのピクセルの強度は0から255(黒から白)となり、カラーの場合、R(0〜255)+G(0〜255)+B(0〜255)の3チャネルとなる。そして、深さ情報は、撮像装置などのセンサの検出方向であるZ軸方向の長さである。
画像マッチング手段206は,環境情報抽出手段202で撮像装置12a,撮像装置12b,・・・撮像装置12nにより実際に撮像した画像を、仮想画像作成手段205で作成した仮想画像とマッチングする(比較する)手段である。画像マッチング手段206については後述する。
条件分岐209は,仮想位置作成手段203で最後の仮想位置が作成されたかをチェックする。最後の仮想位置が作成されなかった場合,仮想位置作成手段203に進み,最後の仮想位置が作成された場合,重み付け手段210に進む。
重み付け手段210は,画像マッチング手段206で得られたそれぞれのマッチング結果(比較誤差)に重みを付ける手段である。重み付け手段210は,走行環境やセンサの状態に応じた重みを算出する。重み付け手段210は,撮像装置により取得された情報と、現在位置推定手段で得られた移動体100の現在位置誤差の情報の少なくとも一つに基づいて重みを算出する。撮像装置により取得された情報には、撮像装置のキャリブレーション誤差の情報と、撮像装置により撮像された画像から抽出された画像上の特徴点の情報と、撮像装置により撮像された画像から取得された視差画像誤差の情報と、撮像装置により撮像された画像から取得された画像強度の情報と、撮像装置により撮像された画像から取得された画像解像度の情報の少なくとも一つが含まれる。重み付け手段210は,撮像装置キャリブレーション誤差推定手段210a,特徴点抽出手段210b,視差画像誤差推定手段210c,現在位置誤差推定手段210d,画像強度取得手段210e,画像解像度取得手段210fなどで構成される。
重み付け手段210の撮像装置キャリブレーション誤差推定手段210aは,撮像装置12a,撮像装置12b,・・・撮像装置12nのそれぞれのキャリブレーション誤差を推定する。前述のキャリブレーションは,撮像装置12a,撮像装置12b,・・・撮像装置12nのそれぞれの歪みを補正するためのステップであり,既知のパターンを用いて撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像する。一方,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像の枚数,又は,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した時の距離,位置,角度などによって,キャリブレーション結果が異なるため,誤差が発生する。撮像装置キャリブレーション誤差推定手段210aが前述の誤差を求めて,重み付け手段210に結果を出力する。
重み付け手段210の特徴点抽出手段210bは,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像上で特徴点を抽出する。前述の特徴点は,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像上でのコーナー,エッジ,最大値,最小値などである。特徴点抽出手段210bで抽出した特徴点を重み付け手段210に出力する。
重み付け手段210の視差画像誤差推定手段210cは,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像された画像を用いて視差画像を作成する際の誤差を推定する。前述の視差画像誤差は,例えば,視差画像を作成するためのキャリブレーションによる誤差である。視差画像を作成する場合,撮像装置12a,撮像装置12b,・・・撮像装置12nのお互いの相対位置を正確に推定する必要があり,誤差が発生する場合,出力の視差画像の誤差が大きくなる。また,視差画像を作成する場合,撮像装置12a,撮像装置12b,・・・撮像装置12nに写る情報をそれぞれの撮像装置の画像で探索し,検索する必要があるため,探索誤差が発生するときは,出力の視差画像の誤差が大きくなる。
重み付け手段210の現在位置誤差推定手段210dは,現在位置推定手段201で推定した位置の誤差を推定する。例えば,現在位置推定手段201でGPSにより移動体100の現在位置を推定する場合,GPSが出力する誤差を現在位置誤差とする。また,ある基準から相対位置を推定する手法において現在位置推定手段201で移動体100の現在位置を推定する場合,走行距離に比例した誤差を現在位置誤差としてもよい。
重み付け手段210の画像強度取得手段210eは,撮像装置12a,撮像装置12b,・・・撮像装置12nで取得した画像のそれぞれのピクセル強度(画像強度)を取得する手段である。撮像装置12a,撮像装置12b,・・・撮像装置12nで取得した画像のそれぞれのピクセル強度を取得した後,下限値以下の暗すぎるピクセルと上限値以上の明るすぎるピクセルを探索する。
重み付け手段210の画像解像度取得手段210fは,撮像装置12a,撮像装置12b,・・・撮像装置12nで取得した画像のそれぞれの解像度を取得する手段である。重み付け手段210の詳細は後述する。
位置補正手段211は,重み付け手段210を用い,現在位置推定手段201で推定した現在位置を補正する手段である。重み付け手段210で重み付けたそれぞれの仮想画像のマッチング誤差(比較誤差)の中で,最小誤差を探索する。そして、最小誤差を有した仮想位置を現在位置にする。
図3は、仮想位置作成方法の一例を説明する図である。この図3を用いて,仮想位置作成手段203の詳細を説明する。座標系301は移動体100の現在位置推定手段201で推定した現在位置を原点とする。仮想位置(302A,302B,・・・302N)は座標系301上の位置であり,それぞれの仮想位置の座標を303A,303B,・・・303Nとする。
推定した位置誤差304は,現在位置誤差推定手段210dで推定した移動体100の位置誤差である。位置誤差304の範囲は、現在位置推定手段201で推定された移動体100の現在位置を中心とした範囲であり、その大きさは、現在位置誤差推定手段210dで推定した位置誤差に応じて変化する。
範囲R305は,仮想位置が作成される範囲である。仮想位置作成手段203は、現在位置推定手段201で推定された移動体100の現在位置に基づいて複数の仮想位置を作成する。仮想位置作成手段203が作成する仮想位置の個数Nは,移動体100の走行環境や状況に依存するため,現在位置誤差推定手段210dで推定した位置誤差304に基づいて,範囲R305を設定する。仮想位置は、移動体の推定された現在位置を中心とした所定範囲内に設定される位置と向きである。
仮想位置の互いの間隔k306は、移動体100の現在位置推定手段201で推定した現在位置301から仮想位置範囲R305までの間を所定数で分割した間隔である。間隔k306は求めた位置精度や撮像装置12a,撮像装置12b,・・・撮像装置12nの精度で調整する。位置推定手段211で推定した位置精度がRの場合,予め設定した間隔kを用いて仮想位置を作成するが、走行中環境に必要な位置推定精度に基づいてkを調整してもよい。例えば、位置推定手段211で指定した位置精度がRの場合、間隔kを用いて位置補正手段211で補正する位置精度がkとなる。一方、走行中環境に必要な精度が0.5Rの場合,間隔kから間隔0.5Rとし、位置補正する。簡単のため,図3をX−Y座標で示しているが,Z,ロール,ピッチ,ヨー(6DOF)で仮想位置を作成してもよい。
一方,次元が多い場合,処理時間が増えるため,それぞれの次元の誤差に応じて仮想位置を作成する。例えば,移動体100が走行する一車線の道路であり,白線検出機能が移動体100に搭載された場合,移動体100のY方向の誤差は低くなるため,仮想位置作成手段203でY方向の仮想位置を作成しなくてもよい。また,X方向とY方向の異なった間隔k306を設定し,それぞれの方向の仮想位置の個数を調整してもよい。また,移動体100が走行する環境に凹凸が少ない場合,Z方向,ピッチ,ロールの仮想位置を作成せず,短い処理時間でX,Y,ヨーのみ精度よく推定する。なお、仮想位置における車両の向きとして、ある範囲αとそれを分割した間隔Kを用いて設定してもよい。間隔Kは、仮想位置を作成したときと同じk(k=K)を設定するが、現在位置誤差推定手段210dで推定した現在位置誤差に基づいて、Kを調整(K>k or K<k)してもよい。
図4は、仮想画像作成方法の一例を説明する図である。この図4を用いて,仮想画像作成手段205の説明をする。
地図情報401,402,403は地図19に記載された情報である。仮想画像404Aは仮想位置302Aから撮像装置12a,撮像装置12b,・・・撮像装置12nにより撮像したと仮定した場合の画像であり,仮想画像404Nは仮想位置302Nから撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像したと仮定した場合の画像である。この時,地図19に対する座標303Aと座標303Nの位置と撮像装置12a,撮像装置12b,・・・撮像装置12nの内部パラメータは既知であるため,地図情報401,402,403は仮想画像404A上で情報401A,402A,403Aとして映し出され,仮想画像404N上で情報401N,402N,403Nとして映し出される。
地図情報19に走行環境の位置(x,y,z)情報のみが記載されていれば,地図19の情報は3次元(x,y,z)となるため,仮想画像404Aと仮想画像404Nを(u,v,距離)又は(u,v,深さ)で表せる。また,地図情報19に走行環境の位置(x,y,z)と色情報が記載されていれば,地図19の情報は4次元(x,y,z,色)となるため,仮想画像404Aと仮想画像404Nを(u,v,色)で表せる。
地図19に移動体100の現在位置の近傍情報と遠方情報が含まれているため,全ての情報を用いて仮想画像を作成する場合,処理時間が長くなる。従って,移動体100の現在位置から予め定められた閾値内(高さ,距離など)の情報のみを画像に変換してもよい。また,撮像装置12a,撮像装置12b,・・・撮像装置12nの撮像範囲が決まっているため,その撮像範囲内の情報を用いて,仮想画像を作成してもよい。
図5Aから図5Eを用いて重み付け手段210の詳細を説明する。
図5Aは、キャリブレーション誤差による重みを算出する方法の一例を説明する図であり、撮像装置12a,撮像装置12b,・・・撮像装置12nのキャリブレーションパラメータを用いた重み付けを表す。撮像装置キャリブレーション誤差推定手段210aで、撮像装置12a,撮像装置12b,・・・撮像装置12nのそれぞれのキャリブレーション誤差を推定する。
パターン500は撮像装置12a,撮像装置12b,・・・撮像装置12nが撮像するパターンである。画像501は撮像装置12a,撮像装置12b,・・・撮像装置12nがキャリブレーションされる前に取得した画像である。キャリブレーション前のため,取得した画像が歪んでいて,パターン500を撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像する場合,誤って撮像する。
一方,画像502は従来のキャリブレーション技術で補正した画像を表す。この場合,歪みが補正されたため,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像502は実際のパターン500と同じとなる。
キャリブレーションを行っても,完全に補正できない場合がある。キャリブレーションを行う際,パターン500のコーナー位置が等間隔に配置されているため,補正後のコーナーの位置推定が可能であり,推定したコーナーの位置をピクセル503とする。一方,コーナーの画像502上での実際の位置がピクセル504の場合,推定したピクセル503からの誤差E505が発生する。従って,撮像装置12a,撮像装置12b,・・・撮像装置12nのピクセル毎に推定したピクセル位置と実際の位置の誤差を算出することで,誤差E1,E2,・・・ETを含めた誤差マップ506(キャリブレーション誤差の情報)が得られる。ピクセル数がU×Vの場合,T=U×Vの誤差マップとなる。
式(1)と前述の誤差マップ506から重みλcを付ける。誤差マップ506のそれぞれの算出した誤差E1,E2,・・・ETがある閾値Ethresholdより低い場合,パラメータIが増える。パラメータIの全ピクセル(U×V)に対する割合を重みλcとする。
if E > Ethreshold, I++
λc = I/(U×V)・・・(1)
キャリブレーションは、例えば移動体100が走行しながら定期的に実施してもよく、キャリブレーションするごとに重みを算出してもよい。
図5Bは、視差画像誤差による重みを算出する方法の一例を説明する図である。この図5Bを用いて、撮像装置12a,撮像装置12b,・・・撮像装置12nで視差画像を作成した時のパラメータを用いた重み付けの説明をする。画像507Lは視差画像を作成するための左画像であり,画像507Rは視差画像を作成するための右画像である。視差画像を作成する時,画像507Lのそれぞれのピクセル情報と同じ情報を持つ画像507Rのピクセルで探索する。従来の視差画像作成技術はピクセル強度で探索を行い,強度の最も近いピクセルとマッチングする。
例えば,ピクセル508Lを画像507Lのピクセルとし,画像507Rでそれぞれのピクセル強度と比較(探索)すると,グラフ509が得られる。グラフ509の縦軸Cは、左右の画像のピクセル同士を比較した誤差量である。最も誤差の小さい(Cmin510)ピクセルを508Rとする。式(2)に示すとおり,画像507Lのそれぞれのピクセルで得られた最小誤差量Cminが予め定められた閾値Cthresholdより小さければ,パラメータJが増える。パラメータJの全ピクセル(U×V)に対する割合を重みλsとする。視差画像誤差が小さくなるほど重みλsが高くなる。
if Cmin < Cthreshold, J++
λs = J/(U×V)・・・(2)
図5Cは、画像強度による重みを算出する方法を説明する図である。この図5Cを用いてピクセル強度による重み付けの説明をする。
画像511は現在位置から撮像装置12a,撮像装置12b,・・・撮像装置12nが取得した画像である。
路面512は、移動体100が走行している道路の路面である。
この時,静止物513の影514の影響で,画像511の一部が暗くなった(強度が0になった)。この時の画像511は、暗いピクセルが多いため,画像511で位置推定を行う場合,誤差が大きくなる。従って,明るいピクセル(強度=100%)と暗いピクセル(強度=0%)の個数をパラメータKで表す。明るいピクセル(強度=100%),又は暗いピクセル(強度=0%)が増えると,信頼度が低くなるため,ピクセル強度による重みλIは、式(3)を用いて算出される。
if 強度=0% OR 強度=100%, K++
λI = 1−K/(U×V)・・・(3)
簡単のため,暗いピクセルで説明したが,ピクセルの強度が高すぎる(明るすぎる)場合でも,信頼度が低くなるため,式(3)で重みλIが低くなる。上記した式(3)により、例えば雨天等のピクセルの強度が弱すぎる場合及び逆光などのピクセル強度が強すぎる場合には重みλIが低くなる。
図5Dは、画像解像度による重みを算出する方法を説明する図である。この図5dを用いて,撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像の解像度による重み付けの説明をする。
画像515は撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像できる最大の解像度であり,合計U×Vピクセルで構成される。解像度の高い画像で位置推定する場合,信頼度が高くなる。一方,画像516は画像515より解像度の低い画像である(V’<V,U’<U)。また,画像517は画像516より解像度の低い画像である(V’’<V’,U’’<U’)。従って,画像516で位置推定する場合,画像515の位置推定より信頼度が低くなり,画像517で位置推定する場合の信頼度がさらに低くなる。ここで,式(4)のとおり撮像装置12a,撮像装置12b,・・・撮像装置12nで撮像した画像の画像解像度によって重み付ける。画像解像度が大きくなるに応じて重みも高くなる。
λr = (画像解像度)/(U×V)・・・(4)
図5Eは、特徴点による重みを算出する方法を説明する図である。この図5Eを用いて,撮像装置12a,撮像装置12b,・・・撮像装置12n上での抽出した特徴点数による重み付けの説明をする。
画像520は撮像装置12a,撮像装置12b,・・・撮像装置12nで取得した画像である。静止物521は,画像520に写っている静止物である。特徴点522は,画像520上で静止物521から抽出した特徴点である。一方,画像523は撮像装置12a,撮像装置12b,・・・撮像装置12nで画像520を取得した時とは違う環境の画像である。静止物524は画像523に写っている静止物である。特徴点525は,画像523上で静止物524から抽出した特徴点である。
画像520の静止物521から抽出した特徴点数は画像523の静止物524から抽出した特徴点数より多いため,画像520のマッチング結果の信頼度が高い。従って,式(5)のとおり,特徴点数を用いて重みを算出する。特徴点数が多くなるに応じて重みも高くなる。
λT = (特徴点数)/(U×V)・・・(5)
図6は、画像マッチング方法の一例を説明する図である。この図6を用いて,画像マッチング手段206の説明をする。本実施例では、仮想画像と実際に撮像した画像とのマッチングと、仮想距離画像と実際に撮像した画像から作成した距離画像とのマッチングを行い、仮想画像の比較誤差と仮想距離画像の比較誤差とを算出し、仮想画像の比較誤差と仮想距離画像の比較誤差とを組み合わせて平均した比較誤差を算出する。
仮想画像601A,601B,・・・,601Nは,仮想位置302A,302B,・・・,302Nからのそれぞれの作成した仮想画像(u,v,色)である。仮想距離画像602A,602B,・・・,602Nは,仮想位置302A,302B,・・・,302Nからのそれぞれの作成した仮想距離画像(u,v,距離)である。画像603は,移動体100の現在位置から撮像装置12a,撮像装置12b,・・・撮像装置12nで実際に撮像した画像(u,v,色)である。画像604は,移動体100の現在位置から撮像装置12a,撮像装置12b,・・・撮像装置12nで実際に撮像した距離画像(u,v,距離)である。
それぞれの仮想位置302A,302B,・・・,302Nから作成した仮想画像601A,601B,・・・,601Nを実際に撮像した画像603と比較し,それぞれの比較誤差をEiA,EiB,・・・,EiNとする。それぞれの仮想位置302A,302B,・・・,302Nから作成した仮想画像601A,601B,・・・,601Nのピクセル(u,v)の色を色A,色B,・・・,色Nとし,実際に撮像した画像603のピクセル(u,v)の色を色rとする。従って,前述の比較は,例えば,式(6)に示す通り,ピクセル(u,v)毎の差である。それぞれのピクセルで得られたEiA,EiB,・・・,EiNの平均を式(6’)の通り,EiA’,EiB’,・・・,EiN’とする。
EiA(u,v) = |色r−色A|・・・(6)
EiB(u,v) = |色r−色B|



EiN(u,v) = |色r−色N|
EiA’=[EiA(1,0)+・・・+EiA(U,V)]/(U×V)・・・(6’)
EiB’=[EiB(1,0)+・・・+EiB(U,V)]/(U×V)



EiN’=[EiN(1,0)+・・・+EiN(U,V)]/(U×V)
それぞれの仮想位置302A,302B,・・・,302Nから作成した仮想距離画像602A,602B,・・・,602Nを、撮像装置で実際に撮像した画像から作成した距離画像604と比較し,それぞれの比較誤差をEsA,EsB,・・・,EsNとする。それぞれの仮想位置302A,302B,・・・,302Nから作成した仮想画像601A,601B,・・・,601Nのピクセル(u,v)の距離を距離A,距離B,・・・,距離Nとし,実際に撮像した距離画像604のピクセル(u,v)の距離を距離rとする。従って,前述の比較は,例えば,式(7)に示す通り,ピクセル(u,v)毎の差である。それぞれのピクセルで得られたEsA,EsB,・・・,EsNの平均を式(7’)のとおり,EsA’,EsB’,・・・,EsN’とする。
EsA(u,v) = |距離r−距離A|・・・(7)
EsB(u,v) = |距離r−距離B|



EsN(u,v) = |距離r−距離N|
EsA’=[EsA(1,0)+・・・+EsA(U,V)]/(U×V)・・・(7’)
EsB’=[EsB(1,0)+・・・+EsB(U,V)]/(U×V)



EsN’=[EsN(1,0)+・・・+EsN(U,V)]/(U×V)
この時,移動体100の現在位置から実際に撮像した画像603の重みWiは,図5で説明した重みを用いて式(8)に示す通り算出する。
Wi = λc・λI・λr・λT・・・(8)
また,移動体100の現在位置から実際に撮像した距離画像604の重みWsは,前述の図5で説明した重みを用いて式(9)に示す通り算出する。
Ws = λc・λs・λr・λT・・・(9)
従って,それぞれの仮想位置302A,302B,・・・,302Nから作成した仮想画像601A,601B,・・・,601Nと仮想距離画像602A,602B,・・・,602Nで得られた平均誤差EiA’,EiB’,・・・,EiN’とEsA’,EsB’,・・・,EsN’の組み合わせを比較誤差EfA,EfB,・・・,EfNとする。式(10)で比較誤差EfA,EfB,・・・,EfNの詳細を表す。
EfA = (Wi・EiA’+Ws・EsA’)/(Wi+Ws)・・・(10)
EfB = (Wi・EiB’+Ws・EsB’)/(Wi+Ws)



EfN = (Wi・EiN’+Ws・EsN’)/(Wi+Ws)
位置補正手段211では、式(10)で得られた比較誤差EfA,EfB,・・・,EfNの中で最小誤差を求め,最小誤差の仮想位置を現在位置とする。例えば,位置補正手段211で求めた最小誤差がEfAの場合,現在位置推定手段201で推定した現在位置301(X,Y,Z)を式(11)に示す通り,仮想位置302A(XA,YA,ZA)とする。
X=XA・・・(11)
Y=YA
Z=ZA
また,式(10)で得られた誤差EfA,EfB,・・・,EfNに基づいて,位置補正手段211で位置を補正してもよい。例えば,式(12)の通り,現在位置301を算出する。
X=(XA/EfA+・・・+XN/EfN)/(1/EfA+・・・+1/EfN)
Y=(YA/EfA+・・・+YN/EfN)/(1/EfA+・・・+1/EfN)
Z=(ZA/EfA+・・・+ZN/EfN)/(1/EfA+・・・+1/EfN)
・・・(12)
図7Aと図7Bを用いて本発明の実施例について説明する。
図7Aの道路700aは移動体100が走行中の道路である。誤差701aは,現在位置誤差推定手段210dで得られた現在位置誤差である。影702は,移動体100が走行している道路700の上にある影である。実施例の説明のため,以下の条件(a1)〜(f1)とする。
(a1)撮像装置キャリブレーション誤差推定手段210aで得られた誤差が大きい
(b1)特徴点抽出手段210bで抽出した特徴点数が多い
(c1)視差画像誤差推定手段210cで得られた視差画像誤差が小さい
(d1)現在位置誤差推定手段210dで推定した現在位置誤差701aが小さい
(e1)影702のため,画像強度取得手段210eで得られた強度の低いピクセルの数が多い
(f1)画像解像度取得手段210fで取得した画像解像度が高い
上記条件(a1)〜(f1)によれば,現在位置誤差推定手段210dで推定した誤差701aが小さいため,仮想位置作成手段203で仮想位置を作成せず,現在位置推定手段201で推定した現在位置のみから環境情報抽出手段202,地図参照204,仮想画像作成205,画像マッチング206を実施する。式(6)と式(7)で平均誤差を算出し,式(8)と式(9)で仮想画像と仮想距離画像のそれぞれの重みを算出する。ここで,撮像装置キャリブレーション誤差推定手段210aで得られた撮像装置12a,撮像装置12b,・・・撮像装置12nのキャリブレーション誤差が大きいため,λcの重みが低くなる。影702の影響で画像強度取得手段210eで取得した撮像装置12a,撮像装置12b,・・・撮像装置12nでの暗いピクセルが多いため,重みλIが低くなる。しかし,画像解像度取得手段210fで得られた撮像装置12a,撮像装置12b,・・・撮像装置12nの解像度が高いため,重みλrが高くなり,視差画像誤差推定手段210cで得られた誤差が小さかったため,重みλsが高くなった。従って,式(8)と式(9)で仮想画像の重みWiと仮想距離画像の重みWsを算出する場合,Wi<Wsとなる。
一方,図7Bの場合,移動体が走行中の道路700bに横断歩道703があり,現在位置推定手段201で推定した現在位置誤差701bが大きい。そして、横断歩道703を用いて撮像装置12a,撮像装置12b,・・・撮像装置12nのキャリブレーション補正ができたため,
(a2)撮像装置キャリブレーション誤差推定手段210aで得られたキャリブレーション誤差が小さい
(b2)特徴点抽出手段210bで抽出した特徴点数が多い
(c2)視差画像誤差推定手段210cで得られた視差画像誤差が大きい
(d2)現在位置誤差推定手段210dで推定した現在位置誤差701bが大きい
(e2)明るすぎるピクセルと暗すぎるピクセルはないため,画像強度取得手段210eで得られた強度の低いピクセルか強度の高いピクセルが少ない
(f2)画像解像度取得手段210fで取得した画像解像度が高い
上記条件(a2)〜(f2)によれば,図7Bの場合,現在位置誤差推定手段210dで推定した誤差701bが大きいため,仮想位置作成手段203で仮想位置を複数作成し,それぞれの仮想位置から地図参照手段204で地図情報を得て,それぞれの仮想位置から仮想画像作成手段205で仮想画像を作成する。そして、それぞれの仮想位置から作成した仮想画像を撮像装置12a,撮像装置12b,・・・撮像装置12nで実際に取得した画像とマッチングし,誤差を算出する。ここで,式(6)と式(7)で平均誤差を算出し,式(8)と式(9)で仮想画像と仮想距離画像のそれぞれの重みを算出する。
図7Bの場合,横断歩道703を用いて撮像装置12a,撮像装置12b,・・・撮像装置12nのキャリブレーション補正ができるため,撮像装置キャリブレーション誤差推定手段210aで得られたキャリブレーション誤差が小さくなり,λcの重みが高くなる。そして、画像強度取得手段210eで得られた強度の低いピクセルか強度の高いピクセルが少ないため,重みλIが高くなる。また、画像解像度取得手段210fで取得した画像解像度が高いため,重みλrが高くなる。一方,距離画像を作成した時の視差画像誤差推定手段210cで得られた誤差が大きかったため,重みλsが低くなった。従って,式(8)と式(9)で算出する仮想画像の重みWiが仮想距離画像の重みWsより高い(Wi>Ws)。
図8は異常な場合を説明する図である。図8は、普段であれば地図情報のとおりに制限なく道路800を走行できるが、事故などの影響で一時的に車線が制限された状況を示している。
道路800は移動体100が走行している道路である。走行可能な領域801aは道路800の走行可能な領域である。走行禁止領域801bは,道路800の一時的に走行できない領域である。障害物802は,走行禁止領域801を区別するための障害物である。経路803は,障害物802を避けるために作成された経路である。移動体804は走行可能な領域801aの先行車である。推定した誤差805は移動体100の現在位置誤差推定手段210dで推定した誤差である。
移動体100が道路800を走行している時に,撮像装置12a,撮像装置12b,・・・撮像装置12nを用いて障害物802を検出する。この時,移動体100の現在位置誤差推定手段210dで推定した誤差805は大きくないが,障害物802のため,走行可能な領域801aは道路800より狭くなっている。従って,普段道路800を走行する時より,正確に位置推定を行いながら走行することが必要となる。このため,仮想位置作成手段203で作成する仮想位置の個数と仮想画像作成手段205で作成する仮想画像の個数を増やす。そして、移動体100が経路803の通り、走行可能な領域801aを走行した後は,道路800の幅が元に戻り、走行可能な領域801aよりも幅広くなる。したがって,通常どおり現在位置誤差推定手段210dで推定した誤差805に基づいて仮想位置を作成する。
簡単のため,障害物802を撮像装置12a,撮像装置12b,・・・撮像装置12nで認識したとしたが,障害物802の情報を地図19に記載してもよい。例えば,移動体804が障害物802を認識してすぐに地図19に記載し,他車と共有してもよい。また,地図19に記載せず,障害物802情報をV2V(Vehicle to Vehicle)技術を用いて領域801aを走行済みの移動体804から、これから走行する移動体100へ直接送信してもよい。また,V2V技術で障害物802の情報を送信せず,仮想位置を増やすための指令を移動体804から移動体100に送信してもよい。
図9は障害物の影響と対策を説明する。
道路900は,移動体100が走行中の道路である。位置誤差901は,重み付け手段210の現在位置誤差推定手段210dで推定した移動体100の現在位置誤差である。画像902は,撮像装置12a,撮像装置12b,・・・撮像装置12nで取得した画像である。
静止物903は道路900にある静止物であり,画像902上で静止物903aとして写っている。障害物904は道路900にある障害物であり,画像902上で障害物904aとして写っている。静止物905は道路900にある静止物であり,画像902上で静止物905aとして写っている。
点906は画像902に投影した道路900上での地図情報である。点907は画像902に投影した静止物903上での地図情報である。点908は画像902に投影した静止物905上での地図情報である。この時,障害物904aは静止物905aの前に写っている。地図19の情報を(x,y,z)の形とした時,点908のピクセル情報は(u,v,距離A)となるが,撮像装置12a,撮像装置12b,・・・撮像装置12nで検出した静止物905への実際の距離は距離Aではなく,静止物905の前にある障害物904への距離Bとなってしまう。従って,位置補正手段211による位置誤差が大きくなる。
前述の障害物による位置誤差を避けるための対策を説明する。移動体100が走行中環境の地図情報を区別して,マッチングを行う。例えば,道路900上には他車や歩行者が存在する確率が高いため,道路900上での地図情報906を位置補正手段211で使わない。また,静止物905上での地図情報が周囲の障害物に影響される可能性が高いため,静止物905上での地図情報908も使わない。従って,移動体100の現在位置推定手段201で推定した位置により,ある高さ以上の地図情報のみを用いて、位置補正手段211で位置推定を行う。すると,障害物の影響を受ける確率の低い点907のみで位置補正手段211で位置推定を行うため,移動体100が走行中環境の障害物の影響を削減できる。
また,移動体100の位置推定だけでなく,前述の対策で障害物の位置推定や検出もできる。例えば,点907のみで位置補正手段211で高精度に位置推定を行った後,位置補正手段211で使わなかった点907と点908への距離を撮像装置12a,撮像装置12b,・・・撮像装置12nで計測する。ここで,例えば,地図19の情報による静止物905へ距離は距離Bであるが,実際に計測した距離は距離Aとなってしまうため,画像902上での点908は外れ値,又は,障害物であることが明確になる。従って,点907のみで位置補正手段211で推定した位置と,点908を用いて検出した障害物904の位置の正確さが高くなる。
簡単のため,点908を一点にして説明したが,複数点であってもよい。複数点の場合,それぞれの点の距離と点907のみで位置補正手段211で推定した位置から計測した距離を比較し,障害物検出を行ってもよい。また,画像902を様々な領域に分けて,ある領域内の点908をひとつの障害物としてもよい。また,信頼度を向上させるため,図9の時の地図情報19と撮像装置12a,撮像装置12b,・・・撮像装置12nの情報とは限らず,時系列に観測し,統計的に障害物検出を行ってもよい。また,移動体100の現在位置誤差901に基づいて障害物検出を行う。例えば,移動体100の現在位置誤差901が低い場合,位置補正手段211で位置推定し,障害物かどうか判断する。一方,移動体100の現在位置誤差901が高い場合,位置補正手段211で位置推定を何回か行って,信頼度が高くなった後に障害物検出を行う。
上述の実施形態では、現在位置推定手段で得られた移動体100の現在位置誤差の情報と、撮像装置により取得された情報である撮像装置のキャリブレーション誤差の情報と、撮像装置により撮像された画像から抽出された画像上の特徴点の情報と、撮像装置により撮像された画像から取得された視差画像誤差の情報と、撮像装置により撮像された画像から取得された画像強度の情報と、撮像装置により撮像された画像から取得された画像解像度の情報を用いて重みを算出しているが、これらの情報の少なくとも一つに基づいて算出してもよい。
上述の実施形態によれば、撮像装置12により取得された情報と、現在位置推定手段で得られた移動体100の現在位置誤差の情報に基づいて重みを算出し、複数の仮想画像と実際に撮像した画像とをそれぞれ比較して算出した比較誤差に重み付けを行い、複数の仮想位置の中から、重み付けされた比較誤差が最も小さい仮想位置を移動体100の現在位置とする処理を行っている。重みは、従来のように固定ではなく、状況に応じた値が算出されるので、情報の信頼性が高くなり、高精度の位置推定を行うことができる。したがって、例えば雨天や日差しが強い条件(逆光、照り返し、反射)や撮像装置のキャリブレーション誤差が大きい場合などのように、画像によるマッチングが難しい状況でも,走行状況に応じて高精度にマッチングができる。
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 位置推定装置
12 撮像装置
13 情報処理装置
14 画像処理部
15 制御部
16 メモリ
17 表示部
100 移動体

Claims (5)

  1. 撮像装置を搭載した移動体の現在位置を推定する位置推定装置であって、
    前記移動体の現在位置を推定する現在位置推定手段と、
    該現在位置推定手段により推定された現在位置に基づいて複数の仮想位置を作成する仮想位置作成手段と、
    前記撮像装置により前記複数の仮想位置で撮像したと仮定した場合の複数の仮想画像をそれぞれ作成する仮想画像作成手段と、
    前記複数の仮想画像を前記撮像装置により前記現在位置で撮像された画像と比較してそれぞれの比較誤差を算出する画像マッチング手段と、
    前記撮像装置により取得された情報と、前記現在位置推定手段で得られた前記移動体の現在位置誤差の情報との少なくとも一つに基づいて重みを算出し、該重みを用いて前記それぞれの比較誤差に重み付けを行う重み付け手段と、
    前記現在位置推定手段で推定されている現在位置を前記重み付けされた比較誤差に基づいて補正する位置補正手段と、
    を有することを特徴とする位置推定装置。
  2. 前記位置補正手段は、前記複数の仮想位置の中から前記重み付けされた比較誤差が最も小さい仮想位置を前記移動体の現在位置とすることを特徴とする請求項1に記載の位置推定装置。
  3. 前記移動体の現在位置誤差の情報に基づいて、前記仮想位置の個数と現在位置からの間隔を調整することを特徴とする請求項1または2に記載の位置推定装置。
  4. 前記移動体の現在位置誤差の情報に基づいて、前記撮像装置の画像解像度を変更することを特徴とする請求項1から請求項3のいずれか一項に記載の位置推定装置。
  5. 前記撮像装置により取得された情報には、
    前記撮像装置のキャリブレーション誤差の情報と、
    前記撮像装置により撮像された画像上の特徴点の情報と、
    前記撮像装置により撮像された画像から視差画像を作成する際の視差画像誤差の情報と、
    前記撮像装置により撮像された画像から取得された画像強度の情報と、
    前記撮像装置により撮像された画像から取得された画像解像度の情報と、
    の少なくとも一つが含まれることを特徴とする請求項1から請求項4のいずれか一項に記載の位置推定装置。
JP2018087826A 2018-04-27 2018-04-27 位置推定装置 Active JP7190261B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018087826A JP7190261B2 (ja) 2018-04-27 2018-04-27 位置推定装置
DE112019001542.7T DE112019001542T5 (de) 2018-04-27 2019-03-29 Positionsschätzvorrichtung
PCT/JP2019/013964 WO2019208101A1 (ja) 2018-04-27 2019-03-29 位置推定装置
US17/049,656 US11538241B2 (en) 2018-04-27 2019-03-29 Position estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087826A JP7190261B2 (ja) 2018-04-27 2018-04-27 位置推定装置

Publications (2)

Publication Number Publication Date
JP2019191133A true JP2019191133A (ja) 2019-10-31
JP7190261B2 JP7190261B2 (ja) 2022-12-15

Family

ID=68295223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087826A Active JP7190261B2 (ja) 2018-04-27 2018-04-27 位置推定装置

Country Status (4)

Country Link
US (1) US11538241B2 (ja)
JP (1) JP7190261B2 (ja)
DE (1) DE112019001542T5 (ja)
WO (1) WO2019208101A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468392B2 (ja) 2021-02-12 2024-04-16 株式会社豊田自動織機 自己位置推定装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019002662A1 (de) * 2019-04-10 2020-10-15 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Auswertung von Radarsystemen
US11372091B2 (en) * 2019-06-28 2022-06-28 Toyota Research Institute, Inc. Systems and methods for correcting parallax
DE112020002514T5 (de) * 2019-07-11 2022-02-24 Hitachi Astemo, Ltd. Fahrzeugsteuervorrichtung
JP7409330B2 (ja) * 2021-01-28 2024-01-09 トヨタ自動車株式会社 自己位置推定精度検証方法、自己位置推定システム
JP2022132882A (ja) * 2021-03-01 2022-09-13 キヤノン株式会社 ナビゲーションシステム、ナビゲーション方法およびプログラム
JP7274707B1 (ja) 2021-12-13 2023-05-17 アイサンテクノロジー株式会社 評価システム、コンピュータプログラム、及び評価方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090393A (ja) * 1998-09-16 2000-03-31 Sumitomo Electric Ind Ltd 車載型走行路環境認識装置
JP2005326168A (ja) * 2004-05-12 2005-11-24 Fuji Photo Film Co Ltd 運転支援システム、車両、および運転支援方法
JP2007255979A (ja) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd 物体検出方法および物体検出装置
JP2008175717A (ja) * 2007-01-19 2008-07-31 Xanavi Informatics Corp 現在位置算出装置、現在位置算出方法
JP2010286298A (ja) * 2009-06-10 2010-12-24 Sanyo Electric Co Ltd 位置表示装置
WO2013133129A1 (ja) * 2012-03-06 2013-09-12 日産自動車株式会社 移動物***置姿勢推定装置及び移動物***置姿勢推定方法
JP2016188806A (ja) * 2015-03-30 2016-11-04 シャープ株式会社 移動体及びシステム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126642B2 (en) * 2008-10-24 2012-02-28 Gray & Company, Inc. Control and systems for autonomously driven vehicles
US10533850B2 (en) * 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
US9802317B1 (en) * 2015-04-24 2017-10-31 X Development Llc Methods and systems for remote perception assistance to facilitate robotic object manipulation
US9652896B1 (en) * 2015-10-30 2017-05-16 Snap Inc. Image based tracking in augmented reality systems
JP6232649B2 (ja) * 2016-02-18 2017-11-22 国立大学法人名古屋大学 仮想空間表示システム
US10522320B2 (en) * 2016-03-28 2019-12-31 Hitachi High-Technologies Corporation Charged particle beam device and method for adjusting charged particle beam device
KR20180051836A (ko) * 2016-11-09 2018-05-17 삼성전자주식회사 주행 차량을 위한 가상의 주행 차선을 생성하는 방법 및 장치
DE102017222534B3 (de) * 2017-12-12 2019-06-13 Volkswagen Aktiengesellschaft Verfahren, computerlesbares Speichermedium mit Instruktionen, Vorrichtung und System zum Einmessen einer Augmented-Reality-Brille in einem Fahrzeug, für das Verfahren geeignetes Fahrzeug und für das Verfahren geeignete Augmented-Reality-Brille
US10657721B2 (en) * 2018-02-09 2020-05-19 Paccar Inc Systems and methods for providing augmented reality support for vehicle service operations
WO2019175956A1 (ja) * 2018-03-13 2019-09-19 三菱電機株式会社 表示制御装置、表示装置、及び表示制御方法
US10767997B1 (en) * 2019-02-25 2020-09-08 Qualcomm Incorporated Systems and methods for providing immersive extended reality experiences on moving platforms
US10719966B1 (en) * 2019-06-11 2020-07-21 Allstate Insurance Company Accident re-creation using augmented reality

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090393A (ja) * 1998-09-16 2000-03-31 Sumitomo Electric Ind Ltd 車載型走行路環境認識装置
JP2005326168A (ja) * 2004-05-12 2005-11-24 Fuji Photo Film Co Ltd 運転支援システム、車両、および運転支援方法
JP2007255979A (ja) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd 物体検出方法および物体検出装置
JP2008175717A (ja) * 2007-01-19 2008-07-31 Xanavi Informatics Corp 現在位置算出装置、現在位置算出方法
JP2010286298A (ja) * 2009-06-10 2010-12-24 Sanyo Electric Co Ltd 位置表示装置
WO2013133129A1 (ja) * 2012-03-06 2013-09-12 日産自動車株式会社 移動物***置姿勢推定装置及び移動物***置姿勢推定方法
JP2016188806A (ja) * 2015-03-30 2016-11-04 シャープ株式会社 移動体及びシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468392B2 (ja) 2021-02-12 2024-04-16 株式会社豊田自動織機 自己位置推定装置

Also Published As

Publication number Publication date
JP7190261B2 (ja) 2022-12-15
DE112019001542T5 (de) 2020-12-10
US11538241B2 (en) 2022-12-27
US20210256260A1 (en) 2021-08-19
WO2019208101A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
CA3028653C (en) Methods and systems for color point cloud generation
WO2019208101A1 (ja) 位置推定装置
CA3027921C (en) Integrated sensor calibration in natural scenes
CN111448478A (zh) 用于基于障碍物检测校正高清地图的***和方法
US11061122B2 (en) High-definition map acquisition system
US11151729B2 (en) Mobile entity position estimation device and position estimation method
JP6552448B2 (ja) 車両位置検出装置、車両位置検出方法及び車両位置検出用コンピュータプログラム
US20200341150A1 (en) Systems and methods for constructing a high-definition map based on landmarks
US11132813B2 (en) Distance estimation apparatus and method
WO2020113425A1 (en) Systems and methods for constructing high-definition map
WO2018225480A1 (ja) 位置推定装置
WO2020230410A1 (ja) 移動体
AU2018102199A4 (en) Methods and systems for color point cloud generation
WO2022133986A1 (en) Accuracy estimation method and system
JP7302966B2 (ja) 移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R150 Certificate of patent or registration of utility model

Ref document number: 7190261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150