JP2019190586A - Manufacturing method of raceway member - Google Patents

Manufacturing method of raceway member Download PDF

Info

Publication number
JP2019190586A
JP2019190586A JP2018085028A JP2018085028A JP2019190586A JP 2019190586 A JP2019190586 A JP 2019190586A JP 2018085028 A JP2018085028 A JP 2018085028A JP 2018085028 A JP2018085028 A JP 2018085028A JP 2019190586 A JP2019190586 A JP 2019190586A
Authority
JP
Japan
Prior art keywords
outer ring
raceway
track
peripheral surface
finish grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018085028A
Other languages
Japanese (ja)
Inventor
晴美 高梨
Harumi Takanashi
晴美 高梨
達男 若林
Tatsuo Wakabayashi
達男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018085028A priority Critical patent/JP2019190586A/en
Publication of JP2019190586A publication Critical patent/JP2019190586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

To obtain a manufacturing method of a raceway member which can prevent the formation of an edge road, and can easily determine whether or not the shape accuracy of a raceway is sufficiently secured, in a bearing device using balls as rolling bodies.SOLUTION: A manufacturing method of a raceway member comprises a finish polishing process for forming an outer ring raceway by polishing a preparatory outer ring raceway 13 which is formed at an internal peripheral face of an intermediate raw material 14 by using a rotating grindstone 15 having a single circular busbar shape, and rotating with a reference axis C which is inclined to a center axis O of the intermediate raw material 14 with a center when viewed from a sending direction of the rotating grindstone 15.SELECTED DRAWING: Figure 3

Description

本発明は、転動体として玉を使用する軸受装置の軌道部材の製造方法に関する。   The present invention relates to a method for manufacturing a raceway member of a bearing device that uses balls as rolling elements.

各種回転機械装置の回転部材は、たとえば図1に示すような玉軸受1により、ハウジングなど、使用時にも回転しない部分に回転可能に支持される。図示の玉軸受1は、複列アンギュラ玉軸受であり、内周面に複列の外輪軌道2を有する外輪3と、それぞれの外周面に内輪軌道4を有する1対の内輪5と、外輪軌道2と内輪軌道4との間にそれぞれ複数個ずつ転動自在に配置された玉6とを備える。それぞれの列の玉6には、背面組み合わせ(DB)型の接触角αが付与されている。 Rotating members of various rotary machine devices are rotatably supported by a ball bearing 1 as shown in FIG. 1 on a portion such as a housing that does not rotate during use. The illustrated ball bearing 1 is a double-row angular ball bearing, an outer ring 3 having a double-row outer ring raceway 2 on an inner peripheral surface, a pair of inner rings 5 having an inner ring raceway 4 on each outer peripheral surface, and an outer ring raceway. 2 and the inner ring raceway 4 are each provided with a plurality of balls 6 arranged so as to be able to roll. The balls 6 of each column, the contact angle alpha 1 of the rear combination (DB) type is granted.

回転機械装置の使用時に、玉軸受1に軸方向の力が加わると、一方の列の玉6の接触角αが大きくなる。具体的には、たとえば、外輪3に、図1の時計方向のモーメント荷重が作用すると、図1の上側部において、軸方向片側(図1の右側)の列の玉6が、軸方向片側の外輪軌道2の軸方向他側に存在する外輪肩部7、および、軸方向片側の内輪5の内輪軌道4の軸方向片側に存在する内輪肩部8に乗り上げようとする。前記モーメント荷重が大きくなって、玉6が外輪肩部7や内輪肩部8に乗り上がると、玉6の転動面に、エッジロードと呼ばれる過大な面圧が加わる。この結果、玉6の転動面に、早期剥離などの損傷が発生し、玉軸受1の寿命が低下してしまう可能性がある。 When an axial force is applied to the ball bearing 1 during use of the rotating machine device, the contact angle α 1 of the balls 6 in one row increases. Specifically, for example, when the clockwise moment load in FIG. 1 acts on the outer ring 3, the balls 6 in the row on the one axial side (the right side in FIG. 1) in the upper side in FIG. It tries to ride on the outer ring shoulder 7 existing on the other axial side of the outer ring raceway 2 and the inner ring shoulder 8 existing on one axial side of the inner ring raceway 4 of the inner ring 5 on one axial side. When the moment load increases and the ball 6 rides on the outer ring shoulder 7 or the inner ring shoulder 8, an excessive surface pressure called edge load is applied to the rolling surface of the ball 6. As a result, damage such as early peeling may occur on the rolling surface of the ball 6, and the life of the ball bearing 1 may be reduced.

特開2004−52784号公報には、軌道面のうちで肩部に対する近位側の端部に、曲率の小さな曲線または直線からなる断面形状を有する補助軌道面を設けることにより、接触角が増大した場合でも、エッジロードの発生を防止することができる軸受装置が記載されている。   In JP-A-2004-52784, the contact angle is increased by providing an auxiliary track surface having a cross-sectional shape consisting of a curved line or a straight line with a small curvature at the end portion on the proximal side with respect to the shoulder portion of the track surface. In such a case, a bearing device that can prevent the occurrence of an edge load is described.

特開2004−52784号公報JP 2004-52784 A

しかしながら、特開2004−52784号公報に記載の軸受装置では、軌道面を構成する補助軌道面と残りの部分との境界を明確に識別することが難しく、形状測定機を用いても、研削加工後の軌道面の母線形状が、設計通りの所望形状となっているか、すなわち、形状精度が十分に確保されているかの判断が難しい。   However, in the bearing device described in Japanese Patent Application Laid-Open No. 2004-52784, it is difficult to clearly identify the boundary between the auxiliary raceway surface constituting the raceway surface and the remaining portion. It is difficult to determine whether the bus bar shape of the later raceway surface is a desired shape as designed, that is, whether the shape accuracy is sufficiently ensured.

本発明は、上述の様な事情に鑑みて、転動体として玉を使用する軸受装置において、エッジロードの発生を防止でき、かつ、軌道の形状精度が十分に確保されているかを容易に判断することができる、軌道部材を得られる、軌道部材の製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can easily determine whether or not the edge load can be prevented and the shape accuracy of the track is sufficiently secured in a bearing device that uses balls as rolling elements. The invention has been invented to realize a method of manufacturing a race member that can obtain a race member.

本発明の対象となる軌道部材は、転動体として玉を使用する軸受装置に使用されるものであり、内周面または外周面である軌道側周面に、少なくとも1つの軌道を有する。   The track member that is the subject of the present invention is used in a bearing device that uses balls as rolling elements, and has at least one track on a track side peripheral surface that is an inner peripheral surface or an outer peripheral surface.

本発明の軌道部材の製造方法は、前記軌道部材に回転砥石により仕上研削を施す工程を備える。
前記回転砥石は、単一円弧形の母線形状を有する。
前記仕上研削を施す工程においては、前記回転砥石の送り方向から見て、前記軌道部材の中心軸に対し傾斜した基準軸を中心に回転する前記回転砥石によって、前記軌道側周面に仕上研削を施すことにより、前記軌道を形成する。
The track member manufacturing method of the present invention includes a step of performing finish grinding on the track member with a rotating grindstone.
The rotating grindstone has a single arc-shaped bus bar shape.
In the step of performing the finish grinding, the raceway side peripheral surface is subjected to finish grinding by the rotary grindstone that rotates around a reference axis that is inclined with respect to the center axis of the raceway member as viewed from the feed direction of the rotary grindstone. By applying, the track is formed.

前記軌道部材が、前記軌道側周面に前記軌道を1つのみ有する場合、前記基準軸と前記軌道部材の中心軸とを、前記軌道部材の軸方向に関して前記軌道の溝底位置で交差させることが好ましい。この場合、前記基準軸と前記軌道部材の中心軸とのなす角度を、2°以上10°以下とすることが好ましく、4°以上8°以下とすることがより好ましく、5°以上7°以下とすることがさらに好ましい。   When the track member has only one track on the track-side peripheral surface, the reference axis and the center axis of the track member intersect at the groove bottom position of the track with respect to the axial direction of the track member. Is preferred. In this case, the angle formed by the reference axis and the central axis of the track member is preferably 2 ° or more and 10 ° or less, more preferably 4 ° or more and 8 ° or less, and more preferably 5 ° or more and 7 ° or less. More preferably.

前記軌道部材が、前記軌道側周面に前記軌道を1対有する場合、前記基準軸と前記軌道部材の中心軸とを、前記軌道部材の軸方向に関して1対の軌道同士の間の中央位置で交差させることが好ましい。この場合も、前記軌道側周面の法線方向より前記仕上研削工具を押し付けるため、前記基準軸と前記軌道部材の中心軸とのなす角度を、2°以上10°以下とすることが好ましく、4°以上8°以下とすることがより好ましく、5°以上7°以下とすることがさらに好ましい。   When the track member has a pair of tracks on the track-side peripheral surface, the reference axis and the center axis of the track member are arranged at a central position between the pair of tracks in the axial direction of the track member. It is preferable to cross. Also in this case, in order to press the finish grinding tool from the normal direction of the track-side peripheral surface, the angle formed by the reference axis and the center axis of the track member is preferably 2 ° or more and 10 ° or less, The angle is more preferably 4 ° or more and 8 ° or less, and further preferably 5 ° or more and 7 ° or less.

上述のような本発明により得られる軌道部材は、軌道の曲率が、溝底位置から軸方向に離れるほど連続的に大きくなる。したがって、本発明の軌道部材の製造方法によれば、エッジロードの発生を防止でき、かつ、軌道の形状精度が十分に確保されているかを容易に判断することができる、軌道部材を得ることができる。   In the raceway member obtained by the present invention as described above, the curvature of the raceway increases continuously as it moves away from the groove bottom position in the axial direction. Therefore, according to the track member manufacturing method of the present invention, it is possible to obtain a track member that can prevent the occurrence of edge load and can easily determine whether or not the shape accuracy of the track is sufficiently secured. it can.

図1は、玉に背面組み合わせ型の接触角が付与された複列アンギュラ玉軸受の1例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a double-row angular contact ball bearing in which a contact angle of a rear combination type is imparted to the ball. 図2は、単列アンギュラ玉軸受の1例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a single-row angular contact ball bearing. 図3は、本発明の実施の形態の第1例について、仕上研削工程の様子を示す略断面図である。FIG. 3 is a schematic cross-sectional view showing a state of the finish grinding process in the first example of the embodiment of the present invention. 図4は、本発明の実施の形態の第1例について、仕上研削工具を取り出して示す側面図である。FIG. 4 is a side view showing the finish grinding tool taken out from the first example of the embodiment of the present invention. 図5は、外輪軌道の母線形状を示す模式図である。FIG. 5 is a schematic diagram showing a bus bar shape of the outer ring raceway. 図6は、本発明の実施の形態の第2例を示す、図3と同様の図である。FIG. 6 is a view similar to FIG. 3, showing a second example of the embodiment of the present invention. 図7は、本発明の実施の形態の第3例を示す、図3と同様の図である。FIG. 7 is a view similar to FIG. 3, showing a third example of the embodiment of the present invention.

まず、本発明の軌道部材の製造方法の対象となる軌道部材である内輪および外輪を備えた玉軸受の例について、図1および図2により説明する。   First, an example of a ball bearing provided with an inner ring and an outer ring, which are track members that are objects of the track member manufacturing method of the present invention, will be described with reference to FIGS.

<背面組み合わせ型複列アンギュラ玉軸受>
図1は、転動体である玉6に、背面組み合わせ(DB)型の接触角αが付与された複列アンギュラ玉軸受である玉軸受1を示している。玉軸受1は、内周面に複列の外輪軌道2を有する外輪3と、それぞれの外周面に内輪軌道4を有する1対の内輪5と、外輪軌道2と内輪軌道4との間のそれぞれに、複数個ずつ転動自在に配置された玉6とを備える。
<Back combination double row angular contact ball bearing>
FIG. 1 shows a ball bearing 1 which is a double row angular ball bearing in which a contact angle α 1 of a back surface combination (DB) type is given to a ball 6 which is a rolling element. The ball bearing 1 includes an outer ring 3 having a double row outer ring raceway 2 on an inner peripheral surface, a pair of inner rings 5 having an inner ring raceway 4 on each outer peripheral surface, and an outer ring raceway 2 and an inner ring raceway 4 respectively. In addition, a plurality of balls 6 are arranged so as to be able to roll plurally.

外輪3は、内周面のうちの1対の外輪軌道2同士の間部分に、小径円筒部9を有し、かつ、小径円筒部9のうちで外輪軌道2と軸方向に隣接する部分にそれぞれ、外輪肩部7を有する。また、外輪3は、内周面のうちで外輪軌道2のそれぞれに対して小径円筒部9と反対側に隣接する部分にそれぞれ、大径円筒部10を有する。   The outer ring 3 has a small diameter cylindrical portion 9 in a portion between a pair of outer ring raceways 2 on the inner peripheral surface, and a portion of the small diameter cylindrical portion 9 adjacent to the outer ring raceway 2 in the axial direction. Each has an outer ring shoulder 7. Moreover, the outer ring | wheel 3 has the large diameter cylindrical part 10 in the part adjacent to the opposite side to the small diameter cylindrical part 9 with respect to each of the outer ring | wheel track 2 among inner peripheral surfaces, respectively.

内輪5のそれぞれは、外周面のうちで内輪軌道4の大径側端部と軸方向に隣接する部分に内輪肩部8を有し、かつ、外周面のうちで内輪軌道4の小径側端部と軸方向に隣接する部分に円筒部11を有する。   Each of the inner rings 5 has an inner ring shoulder portion 8 at a portion adjacent to the large diameter side end portion of the inner ring raceway 4 in the axial direction in the outer peripheral surface, and a small diameter side end of the inner ring raceway 4 in the outer peripheral surface. A cylindrical portion 11 is provided in a portion adjacent to the portion in the axial direction.

<単列アンギュラ玉軸受>
図2は、玉6に接触角αが付与された単列アンギュラ玉軸受である玉軸受1aを示している。玉軸受1aは、内周面に外輪軌道2aを有する外輪3aと、外周面に内輪軌道4aを有する内輪5aと、外輪軌道2aと内輪軌道4aとの間に転動自在に配置された複数個の玉6とを備える。
<Single row angular contact ball bearing>
FIG. 2 shows a ball bearing 1 a that is a single-row angular contact ball bearing in which a contact angle α 2 is given to the ball 6. The ball bearing 1a includes a plurality of outer rings 3a having an outer ring raceway 2a on an inner peripheral surface, an inner ring 5a having an inner ring raceway 4a on an outer peripheral surface, and a plurality of balls arranged between the outer ring raceway 2a and the inner ring raceway 4a. The ball 6 is provided.

外輪3aは、図1に示した、背面組み合わせ型の複列アンギュラ玉軸受である玉軸受1の外輪3の軸方向片半部と基本的に同じ構造を有する。すなわち、外輪3aは、内周面のうちで外輪軌道2aの小径側端部と軸方向に隣接する部分に外輪肩部7aを有し、かつ、内周面のうちで外輪軌道2aの大径側端部と軸方向に隣接する部分(カウンタボア側)に円筒部12を有する。   The outer ring 3a has basically the same structure as that of the half piece in the axial direction of the outer ring 3 of the ball bearing 1 which is a double-row angular ball bearing of the back combination type shown in FIG. That is, the outer ring 3a has an outer ring shoulder 7a in a portion adjacent to the small diameter side end of the outer ring raceway 2a in the inner circumferential surface in the axial direction, and a large diameter of the outer ring raceway 2a in the inner circumferential surface. A cylindrical portion 12 is provided in a portion (counter bore side) adjacent to the side end portion in the axial direction.

内輪5aは、図1に示した、背面組み合わせ型の複列アンギュラ玉軸受である玉軸受1の内輪5と基本的に同じ構造を有する。すなわち、内輪5aは、外周面のうちで内輪軌道4aの大径側端部と軸方向に隣接する部分に内輪肩部8aを有し、かつ、外周面のうちで内輪軌道4aの小径側端部と軸方向に隣接する部分に円筒部11aを有する。   The inner ring 5a basically has the same structure as the inner ring 5 of the ball bearing 1 shown in FIG. That is, the inner ring 5a has an inner ring shoulder portion 8a in a portion adjacent to the large diameter side end portion of the inner ring raceway 4a in the outer circumferential surface in the axial direction, and the small diameter side end of the inner ring raceway 4a in the outer circumferential surface. A cylindrical portion 11a is provided in a portion adjacent to the portion in the axial direction.

次に、軌道部材である外輪3、3aや内輪5、5aのそれぞれの製造方法について説明する。   Next, each manufacturing method of outer ring 3, 3a and inner ring 5, 5a which are track members is explained.

[実施の形態の第1例]
本例の実施の形態の第1例について、図3〜図5により説明する。本例の軌道部材の製造方法は、図1に示した、背面組み合わせ型の複列アンギュラ玉軸受である玉軸受1の外輪3を対象とする。すなわち、本例では、外輪3が軌道部材であり、外輪3の内周面が軌道側周面であり、外輪軌道2のそれぞれが軌道である。本例の軌道部材の製造方法は、予備成形工程と、仕上研削工程とを備える。
[First example of embodiment]
A first example of this embodiment will be described with reference to FIGS. The track member manufacturing method of this example is directed to the outer ring 3 of the ball bearing 1 shown in FIG. 1, which is a rear combination type double-row angular ball bearing. That is, in this example, the outer ring 3 is a track member, the inner peripheral surface of the outer ring 3 is a track-side peripheral surface, and each of the outer ring tracks 2 is a track. The manufacturing method of the track member of this example includes a preforming step and a finish grinding step.

まず、予備成形工程では、軸受鋼や肌焼鋼などの硬質金属製の素材に、鍛造加工や切削加工などを施して、内周面に母線形状が単一円弧形の予備外輪軌道13を形成し、その後、焼き入れや焼き戻しなどの熱処理を行い、円筒形状の中間素材14を得る。なお、中間素材14は、軸方向中間部内周面に小径円筒部9を有し、かつ、軸方向両側部内周面に大径円筒部10をそれぞれ有する。また、予備外輪軌道13の母線形状を構成する円弧形の曲率半径は、玉軸受1の玉6の曲率半径よりもわずかに大きい。   First, in the pre-forming step, a hard metal material such as bearing steel or case-hardened steel is subjected to forging or cutting, so that a preliminary outer ring raceway 13 having a single arc shape on the inner peripheral surface is formed. Then, heat treatment such as quenching and tempering is performed to obtain a cylindrical intermediate material 14. The intermediate material 14 has a small-diameter cylindrical portion 9 on the inner peripheral surface in the axial direction and a large-diameter cylindrical portion 10 on both inner peripheral surfaces in the axial direction. Further, the radius of curvature of the arc shape forming the generatrix of the spare outer ring raceway 13 is slightly larger than the radius of curvature of the ball 6 of the ball bearing 1.

次に、仕上研削工程では、中間素材14の内周面に形成された予備外輪軌道13のそれぞれに、回転砥石15のそれぞれによって、仕上研削を施すことにより、外輪軌道2のそれぞれを形成して、外輪3を得る。回転砥石15のそれぞれは、単一円弧形の母線形状を有し、かつ、回転砥石15の送り方向から見て、中間素材14の中心軸Oに対し傾斜した基準軸Cを中心に回転する。   Next, in the finish grinding step, each of the outer ring raceways 2 is formed by subjecting each of the spare outer ring raceways 13 formed on the inner peripheral surface of the intermediate material 14 to finish grinding with each of the rotating grindstones 15. The outer ring 3 is obtained. Each of the rotating grindstones 15 has a single arc-shaped bus bar shape, and rotates about a reference axis C inclined with respect to the central axis O of the intermediate material 14 when viewed from the feed direction of the rotating grindstone 15. .

仕上研削工程で使用する仕上研削工具16は、シャフト17と、1対の回転砥石15とを備える。回転砥石15のそれぞれは、全体が円盤状に構成されており、研削加工面である外周面は単一円弧形の母線形状を有し、かつ、シャフト17の先端部と中間部とにそれぞれ支持固定されている。したがって、回転砥石15のそれぞれは、シャフト17を回転駆動すると、このシャフト17とともに回転する。なお、回転砥石15の母線形状を構成する円弧形の曲率半径は、玉6の曲率半径よりもわずかに大きい。なお、外輪3に形成される1対の外輪軌道2は、互いの軌道径(内径寸法)および曲率半径が等しい。したがって、仕上研削工具16の1対の回転砥石15は、互いの外径寸法および外周面の母線形状の曲率半径が等しい。換言すれば、1対の回転砥石15は、同一形状を有しており、シャフト17に、同軸に、かつ、軸方向に所定の間隔をあけて支持固定されている。   The finish grinding tool 16 used in the finish grinding process includes a shaft 17 and a pair of rotating grindstones 15. Each of the rotating grindstones 15 is configured in a disc shape as a whole, and the outer peripheral surface, which is a grinding surface, has a single arc-shaped bus bar shape, and the shaft 17 has a distal end portion and an intermediate portion, respectively. The support is fixed. Therefore, each of the rotating grindstones 15 rotates with the shaft 17 when the shaft 17 is driven to rotate. It should be noted that the radius of curvature of the arc that forms the generatrix of the rotating grindstone 15 is slightly larger than the radius of curvature of the balls 6. The pair of outer ring raceways 2 formed on the outer ring 3 have the same track diameter (inner diameter dimension) and radius of curvature. Therefore, the pair of rotary grindstones 15 of the finish grinding tool 16 have the same outer diameter and the same radius of curvature of the generatrix shape of the outer peripheral surface. In other words, the pair of rotating grindstones 15 have the same shape, and are supported and fixed to the shaft 17 coaxially and at a predetermined interval in the axial direction.

中間素材14の中心軸Oと基準軸Cとは、中間素材14の軸方向に関して1対の予備外輪軌道13同士の間の中央位置で交差する。換言すれば、中間素材14の中心軸Oと基準軸Cとの交点Xは、仕上研削工具16の送り方向(図3の表側から裏側へ向かう方向)から見て、1対の予備外輪軌道13同士の間の中央位置に位置する。   The center axis O and the reference axis C of the intermediate material 14 intersect at a central position between the pair of spare outer ring raceways 13 with respect to the axial direction of the intermediate material 14. In other words, the intersection X between the center axis O of the intermediate material 14 and the reference axis C is a pair of spare outer ring raceways 13 as viewed from the feed direction of the finish grinding tool 16 (direction from the front side to the back side in FIG. 3). Located in the middle position between each other.

中間素材14の中心軸Oと基準軸Cとのなす角度θは、1対の予備外輪軌道13同士の間の間隔にもよるが、乗用車の車輪を懸架装置に対し支持するためのハブユニット軸受として使用する、複列アンギュラ型の玉軸受1の外輪3を製造する場合、2°以上10°以下とすることが好ましく、4°以上8°以下とすることがより好ましく、5°以上7°以下とすることがさらに好ましい。   Although the angle θ between the central axis O of the intermediate material 14 and the reference axis C depends on the distance between the pair of spare outer ring raceways 13, a hub unit bearing for supporting the wheels of the passenger car with respect to the suspension device When the outer ring 3 of the double-row angular ball bearing 1 is manufactured, the angle is preferably 2 ° to 10 °, more preferably 4 ° to 8 °, and more preferably 5 ° to 7 °. More preferably, it is as follows.

仕上研削工程では、まず、仕上研削工具16の先端側部分を中間素材14の径方向内側に挿入し、かつ、仕上研削工具16の中心軸を、仕上研削工具16の送り方向から見て基準軸Cと一致するように、中間素材14の中心軸Oに対し傾斜させる。また、中間素材14を、この中間素材14の中心軸Oを中心に回転させる。そして、仕上研削工具16を、この仕上研削工具16の中心軸を中心に回転させながら、回転砥石15のそれぞれを予備外輪軌道13のそれぞれに径方向内側から押し付ける。具体的には、回転砥石15のそれぞれの軸方向中央位置を、予備外輪軌道13のそれぞれの溝底位置P、すなわち内径が最大となる位置に押し付け、予備外輪軌道13のそれぞれに仕上研削加工を施す。具体的には、予備外輪軌道13のそれぞれを、基準軸Cの方向と仕上研削工具16の送り方向とにより画成される仮想平面に関して断面円弧形に研削する。これにより、予備外輪軌道13のそれぞれを、1対の外輪軌道2に加工することにより外輪3を得る。   In the finish grinding process, first, the tip side portion of the finish grinding tool 16 is inserted inside the intermediate material 14 in the radial direction, and the center axis of the finish grinding tool 16 is viewed from the feed direction of the finish grinding tool 16 as a reference axis. The intermediate material 14 is inclined with respect to the central axis O so as to coincide with C. Further, the intermediate material 14 is rotated around the central axis O of the intermediate material 14. Then, while rotating the finish grinding tool 16 about the center axis of the finish grinding tool 16, each of the rotating grindstones 15 is pressed against each of the spare outer ring raceways 13 from the radially inner side. Specifically, the center position in the axial direction of each of the rotating grindstones 15 is pressed against the respective groove bottom position P of the auxiliary outer ring raceway 13, that is, the position where the inner diameter becomes maximum, and finish grinding is applied to each of the auxiliary outer ring raceways 13. Apply. Specifically, each of the spare outer ring raceways 13 is ground into a circular arc shape with respect to a virtual plane defined by the direction of the reference axis C and the feed direction of the finish grinding tool 16. As a result, the outer ring 3 is obtained by processing each of the spare outer ring raceways 13 into a pair of outer ring raceways 2.

上述のような仕上研削工程後、超仕上工程を行う。超仕上工程では、外輪3を回転させながら、外輪軌道2の母線形状に沿って揺動する砥石を、外輪軌道2に押し付けることにより、外輪軌道2の表面粗さを向上させる。したがって、外輪軌道2の母線形状は、超仕上工程前後で基本的に同じである。なお、外輪3は、必要に応じて洗浄する。   After the finish grinding process as described above, a super finishing process is performed. In the super finishing step, the surface roughness of the outer ring raceway 2 is improved by pressing a grindstone that swings along the shape of the generatrix of the outer ring raceway 2 against the outer ring raceway 2 while rotating the outer ring 3. Therefore, the bus bar shape of the outer ring raceway 2 is basically the same before and after the super finishing process. In addition, the outer ring | wheel 3 is wash | cleaned as needed.

本例の軌道部材の製造方法により得られる外輪3は、図5に示すように、外輪軌道2のそれぞれの曲率が、溝底位置Pから軸方向に離れる(図5の左側に向かう)ほど連続的に大きくなっている。換言すれば、外輪軌道2の母線形状は、溝底位置Pにおける曲率半径を短径とする略楕円形、すなわち歪円形aの一部である。したがって、外輪3を組み込んだ玉軸受1では、玉6に付与された接触角αが大きくなった場合でも、玉6が、外輪肩部7まで乗り上がりにくくできて、エッジロードの発生を防止することができる。なお、図5中、二点鎖線bは、溝底位置Pにおける曲率半径を半径とする真円である。 As shown in FIG. 5, the outer ring 3 obtained by the track member manufacturing method of the present example is continuous as the respective curvatures of the outer ring raceway 2 move away from the groove bottom position P in the axial direction (toward the left side in FIG. 5). It is getting bigger. In other words, the generatrix shape of the outer ring raceway 2 is a substantially elliptical shape with the radius of curvature at the groove bottom position P as the short axis, that is, a part of the distorted circle a. Thus, the ball bearing 1 incorporating the outer ring 3, even if the contact angle alpha 1 given to the ball 6 is increased, the ball 6 is made difficult rides up the outer ring shoulder 7, prevent the occurrence of an edge load can do. In FIG. 5, a two-dot chain line b is a perfect circle having a radius of curvature at the groove bottom position P as a radius.

回転砥石15のそれぞれの外周面の母線形状は、総形ダイヤモンドドレッサーあるいは旋回ドレッサーなどにより、単一円弧形に成形される。そして、外輪軌道2の母線形状は、回転砥石15の送り方向から見て、中間素材14の中心軸Oに対し回転砥石15の中心軸を傾斜させた状態で、母線形状が単一円弧形である回転砥石15の外周面を、中間素材14の内周面に形成された予備外輪軌道13に押し付けることにより、幾何学的に形成されている。したがって、外輪軌道2の母線形状には、特開2004−52784号公報に記載の軸受装置における補助軌道面と残りの部分との境界のように、曲率が不連続に変化する部分が存在しない。このため、本例の軌道部材の製造方法により得られる外輪3は、仕上研削工程後の外輪軌道2の母線形状が、設計通りの所望形状となっているか、すなわち形状精度が十分に確保されているかの判断が、特開2004−52784号公報に記載の軸受装置の軌道面と比較して容易である。具体的には、形状測定機により、外輪軌道2の母線形状が不連続に変化する部分がないことを確認することで、外輪軌道2の母線形状の形状精度が十分に確保されているかを容易に確認することができる。   The bus bar shape of each outer peripheral surface of the rotating grindstone 15 is formed into a single circular arc shape by a total diamond dresser or a swivel dresser. The bus bar shape of the outer ring raceway 2 is a single arc shape with the bus bar shape being inclined with respect to the central axis O of the intermediate material 14 when viewed from the feed direction of the rotary wheel 15. The outer peripheral surface of the rotating grindstone 15 is geometrically formed by pressing it against the preliminary outer ring raceway 13 formed on the inner peripheral surface of the intermediate material 14. Accordingly, the shape of the bus bar of the outer ring raceway 2 does not have a portion where the curvature changes discontinuously like the boundary between the auxiliary raceway surface and the remaining portion in the bearing device described in JP-A-2004-52784. For this reason, the outer ring 3 obtained by the manufacturing method of the track member of the present example has a generatrix shape of the outer ring raceway 2 after the finish grinding process that is a desired shape as designed, that is, sufficient shape accuracy is ensured. It is easier to determine whether or not the raceway surface of the bearing device described in JP-A-2004-52784. Specifically, it is easy to confirm whether the shape accuracy of the bus bar shape of the outer ring raceway 2 is sufficiently ensured by confirming that there is no portion where the bus bar shape of the outer ring raceway 2 changes discontinuously with a shape measuring machine. Can be confirmed.

[実施の形態の第2例]
本例の実施の形態の第2例について、図6により説明する。本例は、図2の単列アンギュラ玉軸受である玉軸受1aの外輪3aを対象とする。
[Second Example of Embodiment]
A second example of the embodiment of this example will be described with reference to FIG. This example is directed to the outer ring 3a of the ball bearing 1a that is the single-row angular ball bearing of FIG.

本例の軌道部材の製造方法では、硬質金属製の素材に、鍛造加工や切削加工などを施して、内周面に母線形状が単一円弧形の予備外輪軌道13aを形成し、その後、熱処理を行うことで、中間素材14aを得る。中間素材14aは、軸方向片側部(図6の左側部)内周面に形成された外輪肩部7aと、軸方向他側部(図6の右側部)内周面に形成された円筒部12と、軸方向中間部内周面に形成された予備外輪軌道13aとを備える。   In the track member manufacturing method of the present example, a hard metal material is subjected to forging or cutting to form a spare outer ring raceway 13a having a single arc shape on the inner peripheral surface, and then The intermediate material 14a is obtained by performing heat treatment. The intermediate material 14a includes an outer ring shoulder portion 7a formed on the inner peripheral surface of one axial side portion (left side portion in FIG. 6) and a cylindrical portion formed on the inner peripheral surface of the other axial side portion (right side portion in FIG. 6). 12 and a spare outer ring raceway 13a formed on the inner circumferential surface of the axially intermediate portion.

次いで、仕上研削工程において、中間素材14aの軸方向中間部内周面に形成された予備外輪軌道13aに、回転砥石15aによって仕上研削を施すことにより、外輪軌道2aを形成して、外輪3aを得る。回転砥石15は、単一円弧形の母線形状を有し、かつ、回転砥石15の送り方向から見て、中間素材14aの中心軸Oに対し傾斜した基準軸Cを中心に回転する。   Next, in the finish grinding step, the outer ring raceway 2a is formed by subjecting the preliminary outer ring raceway 13a formed on the inner peripheral surface of the intermediate portion 14a in the axial direction to the outer ring raceway 15a, thereby forming the outer ring raceway 3a. . The rotary grindstone 15 has a single arc-shaped bus bar shape, and rotates around a reference axis C inclined with respect to the central axis O of the intermediate material 14a when viewed from the feed direction of the rotary grindstone 15.

仕上研削工程で使用する仕上研削工具16aは、シャフト17aと、回転砥石15aとを備える。回転砥石15aは、単一円弧形の母線形状を有し、かつ、シャフト17aの先端部に支持固定されている。したがって、回転砥石15aは、シャフト17aを回転駆動すると、このシャフト17aとともに回転する。   The finish grinding tool 16a used in the finish grinding step includes a shaft 17a and a rotating grindstone 15a. The rotating grindstone 15a has a single arc-shaped bus bar shape, and is supported and fixed to the tip of the shaft 17a. Accordingly, when the shaft 17a is rotationally driven, the rotating grindstone 15a rotates together with the shaft 17a.

中間素材14aの中心軸Oと基準軸Cとは、中間素材14aの軸方向に関して予備外輪軌道13aの溝底位置で交差する。換言すれば、中間素材14aの中心軸Oと基準軸Cとの交点Xは、仕上研削工具16aの送り方向(図6の表側から裏側へ向かう方向)から見て、予備外輪軌道13aの溝底位置に位置する。中間素材14aの中心軸Oと基準軸Cとのなす角度θは、2°以上10°以下とすることが好ましく、4°以上8°以下とすることがより好ましく、5°以上7°以下とすることがさらに好ましい。   The center axis O of the intermediate material 14a and the reference axis C intersect at the groove bottom position of the spare outer ring raceway 13a with respect to the axial direction of the intermediate material 14a. In other words, the intersection X between the central axis O of the intermediate material 14a and the reference axis C is the groove bottom of the spare outer ring raceway 13a when viewed from the feed direction of the finish grinding tool 16a (the direction from the front side to the back side in FIG. 6). Located in position. The angle θ formed by the central axis O of the intermediate material 14a and the reference axis C is preferably 2 ° or more and 10 ° or less, more preferably 4 ° or more and 8 ° or less, and 5 ° or more and 7 ° or less. More preferably.

仕上研削工程では、仕上研削工具16aの中心軸を、仕上研削工具16aの送り方向から見て基準軸Cと一致するように、中間素材14aの中心軸Oに対し傾斜させる。そして、中間素材14aを、この中間素材14aの中心軸Oを中心に回転させ、かつ、仕上研削工具16aを、この仕上研削工具16aの中心軸を中心に回転させながら、回転砥石15aを予備外輪軌道13aに径方向内側から押し付ける。具体的には、回転砥石15aの軸方向中央位置を、予備外輪軌道13aの溝底位置に押し付ける。これにより、予備外輪軌道13aに仕上研削加工を施して、予備外輪軌道13aを外輪軌道2aに加工することにより外輪3aを得る。なお、仕上研削工程後、必要に応じて超仕上工程および洗浄を行う。   In the finish grinding step, the center axis of the finish grinding tool 16a is inclined with respect to the center axis O of the intermediate material 14a so as to coincide with the reference axis C when viewed from the feed direction of the finish grinding tool 16a. Then, while rotating the intermediate material 14a around the center axis O of the intermediate material 14a and rotating the finish grinding tool 16a around the center axis of the finish grinding tool 16a, the rotating grindstone 15a is moved to the spare outer ring. The track 13a is pressed from the inside in the radial direction. Specifically, the axial center position of the rotating grindstone 15a is pressed against the groove bottom position of the spare outer ring raceway 13a. Thereby, the outer ring 3a is obtained by subjecting the auxiliary outer ring raceway 13a to finish grinding and processing the auxiliary outer ring raceway 13a into the outer ring raceway 2a. In addition, after a finish grinding process, a super finishing process and washing | cleaning are performed as needed.

本例の製造方法により得られる外輪3aは、外輪軌道2aの曲率が、溝底位置Pから軸方向に離れるほど連続的に大きくなっている。このため、外輪3aを組み込んだ玉軸受1aにおいて、エッジロードの発生を防止でき、かつ、外輪軌道2aの母線形状の形状精度が十分に確保されているかを容易に確認することができる。その他の部分の構成および作用効果は、実施の形態の第1例と同様である。   In the outer ring 3a obtained by the manufacturing method of this example, the curvature of the outer ring raceway 2a continuously increases as the distance from the groove bottom position P increases in the axial direction. For this reason, in the ball bearing 1a incorporating the outer ring 3a, it is possible to prevent the occurrence of edge load and easily check whether the shape accuracy of the bus bar shape of the outer ring raceway 2a is sufficiently ensured. Other configurations and operational effects are the same as in the first example of the embodiment.

[実施の形態の第3例]
本発明の実施の形態の第3例について、図7により説明する。本例は、図1の背面組み合わせ型の複列アンギュラ玉軸受である玉軸受1の内輪5や、図2の単列アンギュラ玉軸受である玉軸受1aの内輪5aを対象とする。
[Third example of embodiment]
A third example of the embodiment of the present invention will be described with reference to FIG. This example is directed to the inner ring 5 of the ball bearing 1 that is the double-row angular contact ball bearing of FIG. 1 and the inner ring 5a of the ball bearing 1a that is the single-row angular ball bearing of FIG.

本例では、硬質金属製の素材に、鍛造加工や切削加工などを施して、外周面に母線形状が単一円弧形の予備内輪軌道18を形成し、その後、熱処理を行うことで、中間素材19を得る。中間素材19は、軸方向片側部(図7の左側部)外周面に形成された内輪肩部8(8a)と、軸方向他側部(図7の右側部)外周面に形成された円筒部11(11a)と、軸方向中間部外周面に形成された予備内輪軌道18とを備える。   In this example, a hard metal material is subjected to forging, cutting, or the like to form a preliminary inner ring raceway 18 having a single arc shape on the outer peripheral surface, and then subjected to heat treatment, so that intermediate Material 19 is obtained. The intermediate material 19 includes an inner ring shoulder 8 (8a) formed on the outer circumferential surface of one axial side (left side in FIG. 7) and a cylinder formed on the outer circumferential surface of the other axial side (right side in FIG. 7). And a spare inner ring raceway 18 formed on the outer peripheral surface of the axially intermediate portion.

次いで、仕上研削工程において、中間素材19の軸方向中間部内周面に形成された予備内輪軌道18に、回転砥石15bによって仕上研削を施すことにより、内輪軌道4(4a)を形成して、内輪5(5a)を得る。回転砥石15bは、単一円弧形の母線形状を有し、かつ、回転砥石15bの送り方向から見て、中間素材19の中心軸Oに対し傾斜した基準軸Cを中心に回転する。仕上研削工程で使用される仕上研削工具16bは、シャフト17bと、回転砥石15bとを備える。   Next, in the finish grinding step, the inner ring raceway 4 (4a) is formed by subjecting the preliminary inner ring raceway 18 formed on the inner circumferential surface of the intermediate portion 19 in the axial direction to the preliminary inner ring raceway 15b by the rotating grindstone 15b. 5 (5a) is obtained. The rotating grindstone 15b has a single arc-shaped bus bar shape, and rotates around a reference axis C inclined with respect to the central axis O of the intermediate material 19 when viewed from the feed direction of the rotating grindstone 15b. The finish grinding tool 16b used in the finish grinding process includes a shaft 17b and a rotating grindstone 15b.

中間素材19の中心軸Oと基準軸Cとは、中間素材19の軸方向に関して予備内輪軌道18の溝底位置、すなわち予備内輪軌道18の外径が最も小さい位置で交差する。換言すれば、中間素材19の中心軸Oと基準軸Cとの交点Xは、仕上研削工具16bの送り方向(図7の表側から裏側へ向かう方向)から見て、予備内輪軌道18の溝底位置に位置する。   The central axis O of the intermediate material 19 and the reference axis C intersect with respect to the axial direction of the intermediate material 19 at the groove bottom position of the spare inner ring raceway 18, that is, at the position where the outer diameter of the spare inner ring raceway 18 is the smallest. In other words, the intersection X between the center axis O and the reference axis C of the intermediate material 19 is the groove bottom of the spare inner ring raceway 18 when viewed from the feed direction of the finish grinding tool 16b (the direction from the front side to the back side in FIG. 7). Located in position.

仕上研削工程では、仕上研削工具16bの中心軸を、仕上研削工具16bの送り方向から見て基準軸Cと一致するように、中間素材19の中心軸Oに対し傾斜させる。そして、中間素材19を、この中間素材19の中心軸Oを中心に回転させ、かつ、仕上研削工具16bを、この仕上研削工具16bの中心軸を中心に回転させながら、回転砥石15bを予備内輪軌道18に径方向外側から押し付ける。具体的には、回転砥石15bの軸方向中央位置を、予備内輪軌道18の溝底位置に押し付ける。これにより、予備内輪軌道18に仕上研削加工を施して、予備内輪軌道18を内輪軌道4(4a)に加工することにより内輪5(5a)を得る。   In the finish grinding step, the center axis of the finish grinding tool 16b is inclined with respect to the center axis O of the intermediate material 19 so as to coincide with the reference axis C when viewed from the feed direction of the finish grinding tool 16b. Then, while rotating the intermediate material 19 around the central axis O of the intermediate material 19 and rotating the finish grinding tool 16b around the center axis of the finish grinding tool 16b, the rotating grindstone 15b is moved to the spare inner ring. The track 18 is pressed from outside in the radial direction. Specifically, the axial center position of the rotating grindstone 15 b is pressed against the groove bottom position of the spare inner ring raceway 18. As a result, the inner ring 5 (5a) is obtained by subjecting the spare inner ring raceway 18 to finish grinding and machining the spare inner ring raceway 18 into the inner ring raceway 4 (4a).

本例の製造方法により得られる内輪5(5a)は、内輪軌道4(4a)の曲率が、溝底位置から軸方向に離れるほど連続的に大きくなっている。その他の部分の構成および作用効果は、実施の形態の第1例および第2例と同様である。   In the inner ring 5 (5a) obtained by the manufacturing method of this example, the curvature of the inner ring raceway 4 (4a) continuously increases as the distance from the groove bottom position increases in the axial direction. Other configurations and operational effects are the same as those in the first and second examples of the embodiment.

上述した実施の形態のそれぞれでは、アンギュラ玉軸受である玉軸受1、1aの外輪3、3aや内輪5、5aを製造する場合について説明したが、本発明は、これらに限らず、転動体として玉を使用する軸受装置の軌道部材の製造方法に適用することができる。具体的には、たとえば、深溝玉軸受を構成する外輪や内輪、あるいは、ハブユニット軸受を構成するハブや外輪を、本発明の軌道部材の製造方法により製造することができる。   In each of the above-described embodiments, the case where the outer rings 3, 3a and the inner rings 5, 5a of the ball bearings 1, 1a that are angular ball bearings are manufactured has been described. However, the present invention is not limited thereto, and the rolling elements are used as rolling elements. The present invention can be applied to a method for manufacturing a raceway member of a bearing device that uses balls. Specifically, for example, an outer ring and an inner ring constituting a deep groove ball bearing, or a hub and an outer ring constituting a hub unit bearing can be manufactured by the raceway member manufacturing method of the present invention.

1、1a 玉軸受
2、2a 外輪軌道
3、3a 外輪
4、4a 内輪軌道
5、5a 内輪
6 玉
7、7a 外輪肩部
8、8a 内輪肩部
9 小径円筒部
10 大径円筒部
11、11a 円筒部
12 円筒部
13、13a 予備外輪軌道
14、14a 中間素材
15 回転砥石
16、16a、16b 仕上研削工具
17、17a、17b シャフト
18 予備内輪軌道
19 中間素材
DESCRIPTION OF SYMBOLS 1, 1a Ball bearing 2, 2a Outer ring raceway 3, 3a Outer ring 4, 4a Inner ring raceway 5, 5a Inner ring 6 Ball 7, 7a Outer ring shoulder 8, 8a Inner ring shoulder 9 Small diameter cylindrical part 10 Large diameter cylindrical part 11, 11a Cylinder Part 12 Cylindrical part 13, 13a Preliminary outer ring raceway 14, 14a Intermediate material 15 Rotary grinding wheel 16, 16a, 16b Finish grinding tool 17, 17a, 17b Shaft 18 Preliminary inner ring raceway 19 Intermediate material

Claims (3)

内周面または外周面である軌道側周面に、少なくとも1つの軌道を有し、かつ、転動体として玉を使用する軸受装置に使用される軌道部材に、回転砥石により仕上研削を施す工程を備える、軌道部材の製造方法であって、
前記回転砥石が、単一円弧形の母線形状を有しており、前記仕上研削を施す工程においては、前記回転砥石の送り方向から見て前記軌道部材の中心軸に対し傾斜した基準軸を中心に回転する前記回転砥石によって、前記軌道側周面に仕上研削を施すことにより、前記軌道を形成する、軌道部材の製造方法。
A step of performing finish grinding with a rotating grindstone on a raceway member used in a bearing device having at least one raceway on a raceway side peripheral surface which is an inner peripheral surface or an outer peripheral surface and using balls as rolling elements. A method for manufacturing a raceway member comprising:
The rotating grindstone has a single arc-shaped bus bar shape, and in the step of performing the finish grinding, a reference axis inclined with respect to the central axis of the raceway member as viewed from the feed direction of the rotating grindstone is used. A method for manufacturing a race member, wherein the raceway is formed by subjecting the raceway side peripheral surface to finish grinding with the rotary grindstone rotating to the center.
前記軌道部材が、前記軌道側周面に前記軌道を1つのみ有しており、
前記基準軸と前記軌道部材の中心軸とを、前記軌道部材の軸方向に関して前記軌道の溝底位置で交差させる、請求項1に記載の軌道部材の製造方法。
The track member has only one track on the track-side peripheral surface,
The method for manufacturing a track member according to claim 1, wherein the reference axis and the center axis of the track member intersect at the groove bottom position of the track with respect to the axial direction of the track member.
前記軌道部材が、前記軌道側周面に前記軌道を1対有しており、
前記基準軸と前記軌道部材の中心軸とを、前記軌道部材の軸方向に関して1対の軌道同士の間の中央位置で交差させる、請求項1に記載の軌道部材の製造方法。
The track member has a pair of tracks on the track-side peripheral surface,
The manufacturing method of the track member according to claim 1, wherein the reference axis and the center axis of the track member intersect at a central position between a pair of tracks in the axial direction of the track member.
JP2018085028A 2018-04-26 2018-04-26 Manufacturing method of raceway member Pending JP2019190586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085028A JP2019190586A (en) 2018-04-26 2018-04-26 Manufacturing method of raceway member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085028A JP2019190586A (en) 2018-04-26 2018-04-26 Manufacturing method of raceway member

Publications (1)

Publication Number Publication Date
JP2019190586A true JP2019190586A (en) 2019-10-31

Family

ID=68389683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085028A Pending JP2019190586A (en) 2018-04-26 2018-04-26 Manufacturing method of raceway member

Country Status (1)

Country Link
JP (1) JP2019190586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043124A (en) * 2021-03-30 2021-06-29 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Grinding method for improving ovality of outer raceway of cylindrical roller bearing ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043124A (en) * 2021-03-30 2021-06-29 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Grinding method for improving ovality of outer raceway of cylindrical roller bearing ring

Similar Documents

Publication Publication Date Title
CN104948576A (en) Bearing device for wheel
JP4211718B2 (en) Machining method of raceway surface of outer ring of double row angular contact ball bearing
JP2019190586A (en) Manufacturing method of raceway member
JP2004092830A (en) Manufacturing method for bearing unit for wheel
WO2018074186A1 (en) Raceway groove machining method, bearing, ball screw device, machine, and vehicle production method
JP5549218B2 (en) Method of manufacturing inner ring in wheel bearing device
JP2006194293A (en) Method for manufacturing bearing unit for wheel
JP2000002251A (en) Conical roller bearing
JP2009024708A (en) Method of manufacturing rolling bearing ring
JP5895360B2 (en) Manufacturing method of outer ring for bearing
JP4268793B2 (en) Method of manufacturing inner ring member for tapered roller bearing, inner ring member for tapered roller bearing, tapered roller bearing device for axle
JP4064440B1 (en) Manufacturing method of wheel bearing device
JP2018001398A (en) Tapered roller grinding tool and tapered roller grinding method, and manufacturing method for tapered roller bearing
JP4284951B2 (en) Method of manufacturing bearing ring for ball bearing
JP2009248246A (en) Manufacturing method of bearing device
WO2005028890A1 (en) Self-aligning roller bearing and method of processing the same
JP2009024859A (en) Method of manufacturing race ring for rolling bearing
JP3539770B2 (en) Roller for self-aligning roller bearing and its processing method
WO2015050144A1 (en) Manufacturing method for tapered roller, and tapered roller bearing
JP2008215567A (en) Rolling bearing unit for supporting wheel
JP2008062336A (en) Manufacturing method of wheel bearing device
JP6517105B2 (en) Superfinishing method of roller bearing rolling surface
JP2004225752A (en) Manufacturing method for bearing unit for wheel
WO2022202530A1 (en) Vehicle wheel bearing device
JP2008064203A (en) Wheel bearing device manufacturing method