JP2019188483A - Robot hand - Google Patents

Robot hand Download PDF

Info

Publication number
JP2019188483A
JP2019188483A JP2018080348A JP2018080348A JP2019188483A JP 2019188483 A JP2019188483 A JP 2019188483A JP 2018080348 A JP2018080348 A JP 2018080348A JP 2018080348 A JP2018080348 A JP 2018080348A JP 2019188483 A JP2019188483 A JP 2019188483A
Authority
JP
Japan
Prior art keywords
robot hand
drive shaft
parallel
closing mechanism
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018080348A
Other languages
Japanese (ja)
Inventor
卓也 村北
Takuya MURAKITA
卓也 村北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakita Robotics Corp
Original Assignee
Murakita Robotics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakita Robotics Corp filed Critical Murakita Robotics Corp
Priority to JP2018080348A priority Critical patent/JP2019188483A/en
Publication of JP2019188483A publication Critical patent/JP2019188483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

To provide a multipurpose robot hand which includes a gripping force sensor with excellent sealability and a safe shape.SOLUTION: A robot hand includes: four flat and parallel links (1); a driving device (2); and a cover (3). Each of the flat and parallel links (1) has a finger (1a) and is supported by a cover (3). Each of the flat and parallel links has a fixed plate, a moving plate, a drive shaft, support shafts, and a finger. The fixed plate is fixed to the cover (3). The drive shaft and each support shaft are connected to the fixed plate and the moving plate, respectively, through bearings. The moving plate is moved in parallel with the fixed plate by force applied to a driving section of the drive shaft. The driving device (2) drives the driving section of the drive shaft.SELECTED DRAWING: Figure 1

Description

把持力センサを備え、密閉性に優れ、安全な形状を備えた多用途ロボットハンドに関する。 The present invention relates to a versatile robot hand having a gripping force sensor, excellent airtightness, and a safe shape.

従来、部品の搬送などの単調な繰り返し作業に産業用ロボットが用いられて来たが、近年は、機械組立などの複雑な作業にも使用されるようになり、ロボットの多能工化が進んでいる。 Conventionally, industrial robots have been used for monotonous repetitive work such as parts transportation, but in recent years, they have also been used for complex work such as machine assembly, and robots are becoming more versatile. It is out.

そのため、部品や工具などを効率的に持ち替える必要があり、エンドエフェクタやロボットハンドの汎用性がますます重要となっている。 For this reason, it is necessary to efficiently change parts and tools, and the versatility of end effectors and robot hands is becoming increasingly important.

しかし、汎用性を効果的に実現することは容易ではなく、種々の方式が試みられているのが現状である(例えば文献1,文献2)。 However, it is not easy to effectively realize versatility, and various methods have been tried (for example, Reference 1 and Reference 2).

特開2014―188646JP 2014-188646 A 特開2017―104967JP 2017-104967 特開2017―47481JP 2017-47481 特開2018―1281JP2018-1281 特開2013―240843JP2013-240843A 特開2013―91121JP2013-91121A

近年では、人と同じ生産ラインで使用される協働ロボットの普及が進んでおり、ロボットハンドにも上記の汎用性に加えて協働性が求められる。すなわち、巻き込みを検知するためのセンサを備え、鋭利で危険な突起などを排した安全な形状を備えること、望ましくは、衛生的な環境で使用できるよう、潤滑油等の飛散を防止する密閉性を備えることが求められる。 In recent years, collaborative robots used on the same production line as humans are becoming popular, and robot hands are also required to have collaboration in addition to the above versatility. That is, it is equipped with a sensor for detecting entrainment and has a safe shape that eliminates sharp and dangerous protrusions, and preferably seals to prevent splashing of lubricating oil etc. so that it can be used in a sanitary environment. Is required.

以上の問題を鑑み、把持力センサを備え、密閉性に優れ、安全な形状を備えた多用途ロボットハンドを提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a multipurpose robot hand that includes a gripping force sensor, has an excellent sealing property, and has a safe shape.

図2は、本発明の基本的な機能を説明する図であり、親平行開閉機構(4)と、2つの子平行開閉機構(5,6)とを備え、親平行開閉機構の接続部(4a、4b)はそれぞれの子平行開閉機構と接続し、子平行開閉機構の各接続部(例えば6a)はフィンガ(例えば7)と接続し、フィンガ(例えば7)は円筒形の把持面を備え、親平行開閉機構および子平行開閉機構は、フィンガが互いに長手方向の平行を保つように接続部(4a、4b、例えば6a)を駆動することを特徴とするロボットハンドを示したものである。 FIG. 2 is a diagram for explaining the basic function of the present invention, which includes a parent parallel opening / closing mechanism (4) and two child parallel opening / closing mechanisms (5, 6), and a connecting portion ( 4a, 4b) are connected to respective child parallel opening / closing mechanisms, each connecting portion (for example, 6a) of the child parallel opening / closing mechanism is connected to a finger (for example, 7), and the finger (for example, 7) has a cylindrical gripping surface. The parent parallel opening / closing mechanism and the child parallel opening / closing mechanism show a robot hand characterized in that the connecting portions (4a, 4b, for example, 6a) are driven so that the fingers are kept parallel to each other in the longitudinal direction.

接続部の駆動方法は公知の発明であってよく、典型的には文献4のように、直動アクチュエータがシャフト(本発明においては接続部)を左右対称に駆動する発明や、文献5の図5のように、平行リンク機構が把持爪を平行に移動させる発明であってよい。接続部の移動は対称でも独立でもよく、寸法やコストに応じて自由度を決定すればよい。 The driving method of the connecting portion may be a known invention. Typically, as in Reference 4, the linear motion actuator drives the shaft (in the present invention, the connecting portion) symmetrically, as shown in FIG. 5, the parallel link mechanism may move the gripping claws in parallel. The movement of the connecting portion may be symmetric or independent, and the degree of freedom may be determined according to the size and cost.

図3は把持の方法を下面視で示した図である。4本のフィンガの円筒形の把持面を対象物と外接させることで、様々な形状の対象物(イ)〜(ト)を把持することができる。親平行開閉機構および子平行開閉機構の接続部がそれぞれ対称に開閉するとき、すなわち、比較的自由度の少ない3自由度の構成であってもこれらの把持が実現できるため、効果的である。 FIG. 3 is a diagram showing a gripping method in a bottom view. By making the cylindrical gripping surfaces of the four fingers circumscribe the object, it is possible to grip the objects (i) to (g) of various shapes. This is effective when the connection portions of the parent parallel opening / closing mechanism and the child parallel opening / closing mechanism are opened / closed symmetrically, that is, even in a configuration with three degrees of freedom with relatively few degrees of freedom, these grips can be realized.

図3(ト)に示すように4つのV溝面を設ければ特に強固な把持が可能となるため、手工具のグリップなどにこの形状を適用すれば、人の握力把持(手全体で包み込んで力強く把持する方法)と同じ効果を得ることができる。また、フィンガの寸法上、把持が難しい微細部品や細径部品を把持したいときは、例えば文献6のように受動機構を備えるツールを介して把持すれば、ハンド自体を交換する必要がなく効率的である。 As shown in Fig. 3 (g), if the four V-groove surfaces are provided, particularly strong gripping is possible. If this shape is applied to the grip of a hand tool, etc., the gripping force of a person (wrapping the entire hand) The same effect as the method of gripping with high force) can be obtained. In addition, when it is desired to grip a fine part or a small diameter part that is difficult to grip due to the size of the finger, for example, if it is gripped via a tool having a passive mechanism as in Reference 6, it is not necessary to replace the hand itself, which is efficient. It is.

フィンガの把持面は、接触面積を大きくするため、D形のように接触部分を平面としても良いが、内外の円筒面を把持(図3ホ、ヘ)するために、それぞれに接触する部分は少なくとも円筒面でなければならない。 In order to increase the contact area of the finger gripping surface, the contact portion may be flat as in the D shape. However, in order to grip the inner and outer cylindrical surfaces (Fig. 3F, F), Must be at least cylindrical.

ただし、フィンガの表面をゴムなどの柔軟な素材とすれば、接触部分の変形により接触面積が増し、肉厚をさらに増せば、曲面や凹凸や突起を含む不定形物の把持が可能となるため、必ずしも円筒面を含まなくてもよい。 However, if the finger surface is made of a flexible material such as rubber, the contact area increases due to deformation of the contact part, and if the wall thickness is further increased, it becomes possible to grip irregular shapes including curved surfaces, irregularities and protrusions. The cylindrical surface does not necessarily have to be included.

特に、図4の断面図に示すように、柔軟な基材(8)で構成されるフィンガであって、円筒形の取付面(8a)と、その長手方向と同軸に整列する椀形の襞(ひだ)列(8b)とを備え、対象物の把持による力で襞列が圧潰し、襞先端が対象物の突起に掛止することで滑りを防止することを特徴とするフィンガを用いれば、対象物の表面に襞列が倣うことで、不定形物を効果的に把持できる。 In particular, as shown in the cross-sectional view of FIG. 4, the finger is composed of a flexible base material (8), and has a cylindrical mounting surface (8a) and a bowl-shaped ridge aligned coaxially with the longitudinal direction thereof. A finger having a pleat row (8b), wherein the heel row is crushed by the force of gripping the object, and the tip of the heel is hooked on the projection of the object to prevent slipping. The irregular shape can be effectively gripped by the row of lines following the surface of the object.

ただし、これらの発明にも課題が残り、例えば、平行開閉機構を直動機構で実施した場合、移動量を大きく取ることが難しいことから把持寸法が限られ、また、シール性が低いため衛生的な防塵防滴構造とすることが難しい。直動機構でなくとも、親平行開閉機構の接続部に加わる機械的な負担が大きくなることで剛性が低下する傾向があり、構造上、巻き込みの検知に多数のセンサが必要になり、経済性が低下する傾向もある。 However, problems still remain in these inventions. For example, when the parallel opening / closing mechanism is implemented by a linear motion mechanism, it is difficult to take a large amount of movement, so the gripping dimension is limited, and the hygiene is low due to low sealing performance. It is difficult to achieve a dustproof and splashproof structure. Even if it is not a linear motion mechanism, the mechanical load applied to the connection part of the parent parallel opening / closing mechanism tends to decrease the rigidity, and because of the structure, many sensors are required to detect the entrainment, making it economical. There is also a tendency to decrease.

そこで、図5に示すように、固定板(9)と、移動板(10)と、駆動軸(11)と、支持軸(12,13)とを備え、駆動軸(11)はひずみゲージ(14)を含み、駆動軸(11)および各支持軸(12,13)は、固定板(9)および移動板(10)に、それぞれ軸受(15、16、17、18、19、20)を介して接続し、駆動軸(11)の駆動部(11a)に加わる力により、移動板(10)が固定板(9)に対して平行に運動することを特徴とする平面平行リンクを用いれば、図2に示したロボットハンドと同様のフィンガの動きが実現できる。 Therefore, as shown in FIG. 5, a fixed plate (9), a movable plate (10), a drive shaft (11), and support shafts (12, 13) are provided, and the drive shaft (11) is a strain gauge ( 14), and the drive shaft (11) and the support shafts (12, 13) have bearings (15, 16, 17, 18, 19, 20) on the fixed plate (9) and the movable plate (10), respectively. If a plane parallel link is used, the moving plate (10) moves in parallel with the fixed plate (9) by the force applied to the driving portion (11a) of the driving shaft (11). The finger movement similar to that of the robot hand shown in FIG. 2 can be realized.

支持軸(12,13)の軸受(17、18、19、20)は球面軸受を用いれば単純に構成できるが、固定板(9)と移動板(10)の平行運動を妨げないものであれば、ジンバル機構など種々の公知発明であってよい。また、カルダン継手などの自由継手を用いれば軸のねじれを規制することができ、ねじれ剛性を高めることができる。 The bearings (17, 18, 19, 20) of the support shafts (12, 13) can be configured simply by using spherical bearings, but they do not interfere with the parallel movement of the fixed plate (9) and the movable plate (10). For example, various known inventions such as a gimbal mechanism may be used. Further, if a free joint such as a cardan joint is used, the torsion of the shaft can be restricted and the torsional rigidity can be increased.

駆動軸(11)の軸受(15、16)も支持軸と同様に種々の軸受が利用できるが、図13に示すように、駆動部(11a)は固定板(9)または固定板を固定するカバー(3)を突出して容易に駆動できる形態でなければならない。 Various bearings can be used for the bearings (15, 16) of the drive shaft (11) as well as the support shaft. However, as shown in FIG. 13, the drive unit (11a) fixes the fixed plate (9) or the fixed plate. The cover (3) must protrude and can be driven easily.

駆動部(11a)を駆動する方法は、カム機構、空圧機構など公知の発明を用いればよく、例えば図6に示すように、ブロック(21)と球面軸受(22)とを備え、球面軸受(22)はブロック(21)に固定され、ブロック(21)は固定板(9)と摺動自在に結合し、駆動部(11a)は球面軸受(22)の内輪と摺動自在に結合し、ブロック(21)の平面運動が、駆動軸(11)の回転運動に変換されることを特徴とする駆動装置を用いることができる。 As a method for driving the drive unit (11a), a known invention such as a cam mechanism or a pneumatic mechanism may be used. For example, as shown in FIG. 6, a block (21) and a spherical bearing (22) are provided. (22) is fixed to the block (21), the block (21) is slidably coupled to the fixing plate (9), and the drive unit (11a) is slidably coupled to the inner ring of the spherical bearing (22). A driving device characterized in that the planar motion of the block (21) is converted into rotational motion of the drive shaft (11) can be used.

球面軸受(22)の代わりにジンバル機構を用いる場合は、各軸を個別に駆動する必要があるため、駆動部(11a)が2つに分かれるが、駆動部(11a)の平面運動を駆動軸(11)の回転運動に変換するという作用効果においては特段の違いはない。 When a gimbal mechanism is used instead of the spherical bearing (22), it is necessary to drive each axis individually, so that the drive unit (11a) is divided into two, but the planar movement of the drive unit (11a) is driven by the drive shaft. There is no particular difference in the effect of converting to the rotational motion of (11).

ひずみゲージ(14)は、必要な数だけ設けることにより、直接的には軸受(16)が駆動軸(11)に加えるモーメントや軸力を検出することができる。固定板(9)以下の可動部分に加わるいずれの外力も、移動板(10)を通して、結果的に軸受(16)に伝わるため、ひずみゲージ(14)は可動部分に加わる外力を効果的に検出することができる。したがって、把持力の測定だけでなく、巻き込みの検出においても有効である。 By providing the required number of strain gauges (14), it is possible to directly detect the moment and axial force applied by the bearing (16) to the drive shaft (11). Since any external force applied to the movable part below the fixed plate (9) is transmitted to the bearing (16) through the moving plate (10), the strain gauge (14) effectively detects the external force applied to the movable part. can do. Therefore, it is effective not only for measuring the gripping force but also for detecting the entrainment.

なお、図14に示すように、平面平行リンクを3つ備える3指ロボットハンドを構成することもできるが、開閉機構という原理上、駆動系を対称構造とした方がよく、図3に示したような把持形態を実現したい場合、かえって駆動系が複雑化する傾向がある。 As shown in FIG. 14, a three-fingered robot hand having three plane parallel links can also be configured. However, it is better to have a symmetric structure in the drive system based on the principle of the opening / closing mechanism, as shown in FIG. When it is desired to realize such a gripping form, the drive system tends to be complicated.

ただし、平面平行リンクの数にかかわらず、図13ないし図14に示したように、固定板(9)を含むカバー(3)によって、潤滑油等に汚染されやすい駆動装置と、清浄としやすい平面平行リンクとを分離できるため、密閉性や安全な形状の点で効果的である。 However, regardless of the number of plane parallel links, as shown in FIG. 13 to FIG. 14, a drive device that is easily contaminated with lubricating oil or the like by a cover (3) including a fixing plate (9) and a plane that is easy to clean. Since the parallel link can be separated, it is effective in terms of hermeticity and a safe shape.

フィンガが平行を保ちながら運動する機構により、種々の把持物に対して効果的にフィンガを外接させ、把持することができる。平面平行リンクを用いる場合、ひずみゲージを把持力センサとして用いることができるほか、可動部分に加わる外力を検出する巻き込みセンサとしても使用することができる。さらに、駆動部分を筐体で完全に覆うことができ、平面平行リンク以外の可動部分が露出しない形状とすることができるため、安全の観点で効果的である。また、密閉性に優れるため、防塵防滴が必要な環境や、衛生環境での使用に適する。 By the mechanism in which the fingers move while being kept parallel, the fingers can be effectively circumscribed and gripped with respect to various gripped objects. When a plane parallel link is used, a strain gauge can be used as a gripping force sensor, and can also be used as an entrainment sensor that detects an external force applied to a movable part. Furthermore, since the drive part can be completely covered with the housing and the movable part other than the plane parallel link can be formed in a shape that is not exposed, it is effective in terms of safety. In addition, since it has excellent sealing properties, it is suitable for use in an environment where dustproof and drip-proof is required, and in a sanitary environment.

本発明の基本的な構成を示した図である。It is the figure which showed the basic composition of this invention. 本発明の基本的な機能を説明する図である。It is a figure explaining the basic function of this invention. 把持の方法を下面視で示した図である。It is the figure which showed the method of grip by the bottom view. 不定形物の把持に有効なフィンガ形態を示した図である。It is the figure which showed the finger form effective for the grip of an indeterminate thing. 平面平行リンクの基本構造を示した図である。It is the figure which showed the basic structure of the plane parallel link. 平面平行リンクの駆動方法を示した図である。It is the figure which showed the drive method of the plane parallel link. 平面平行リンクの実施例を示した図である。It is the figure which showed the Example of the plane parallel link. 駆動装置の一部であり、第1の自由度を駆動する部分を示した図である。It is a figure which showed a part which is a part of drive device and drives a 1st freedom degree. 第1の自由度を駆動する部分の断面図である。It is sectional drawing of the part which drives a 1st freedom degree. 駆動装置の一部であり、第2の自由度を駆動する部分を示した図である。It is a figure which showed the part which is a part of drive device and drives a 2nd freedom degree. 第2の自由度を駆動する部分の断面図である。It is sectional drawing of the part which drives a 2nd freedom degree. ブロックの構造を示した図である。It is the figure which showed the structure of the block. 駆動軸の駆動部が突出した様子を示す図である。It is a figure which shows a mode that the drive part of the drive shaft protruded. 平面平行リンクを3つ備える3指ロボットハンドの例を示した図である。It is the figure which showed the example of the three-fingered robot hand provided with three plane parallel links.

図1は、4つの平面平行リンク(1)と、駆動装置(2)と、カバー(3)とを備え、平面平行リンク(1)はフィンガ(1a)を含み、カバー(3)に支持され、駆動装置(2)は、平面平行リンクを駆動することを特徴とするロボットハンドの実施例を示したものである。 FIG. 1 includes four plane parallel links (1), a drive device (2), and a cover (3). The plane parallel link (1) includes a finger (1a) and is supported by the cover (3). The drive device (2) shows an embodiment of a robot hand characterized by driving a plane parallel link.

図7は、図1に示した実施例における平面平行リンクの詳細図であり、固定板(9)と、移動板(10)と、駆動軸(11)と、支持軸(12,13)とを備え、駆動軸(11)はひずみゲージ(14)を含み、駆動軸(11)および各支持軸(12,13)は、固定板(9)および移動板(10)に、それぞれ軸受(15、16、17、18、19、20)を介して接続し、駆動軸(11)の駆動部(11a)に加わる力により、移動板(10)が固定板(9)に対して平行に運動することを特徴とする平面平行リンクの実施例を示したものである。 FIG. 7 is a detailed view of the plane parallel link in the embodiment shown in FIG. 1, and shows a fixed plate (9), a moving plate (10), a drive shaft (11), and support shafts (12, 13). The drive shaft (11) includes a strain gauge (14), and the drive shaft (11) and the support shafts (12, 13) are respectively mounted on the fixed plate (9) and the movable plate (10) with bearings (15 16, 16, 17, 18, 19, 20), and the moving plate (10) moves in parallel with the fixed plate (9) by the force applied to the driving portion (11 a) of the driving shaft (11). The Example of the plane parallel link characterized by doing is shown.

ステー(23)は、支持軸(12,13)からそれぞれ突出したピン(12a、13a)を回転自在に結合し、移動板(10)が固定板(9)に対してねじれる運動を規制するものである。 The stay (23) rotatably couples the pins (12a, 13a) protruding from the support shafts (12, 13), respectively, and restricts the movement of the moving plate (10) twisting with respect to the fixed plate (9). It is.

図8(断面図を図9に示す)は、図1に示した実施例における駆動装置の詳細図であり、説明を容易にするため、第1の自由度を駆動する部分だけを示したものである。この部分は対称構造をもつ開閉機構であって、左右ねじ(24)と、フレーム(25)と、歯車列(26)とを備え、左右ねじ(24)は、ベアリング(27)とベアリングナット(28)を介してカバー(3)と回転自在に結合し、中央に小歯車(26a)を備え、フレーム(25)のハウジング部分(25a)は左右ねじ(24)を滑動するナットを内蔵し、直動ベアリング(29)に案内され、歯車列(26)は、小歯車(26a)と噛み合う大歯車(26b)と、大歯車(26b)を駆動する小歯車列(26c)とを含み、大歯車(26b)は、カバー(3)と回転自在に結合する回転軸(30)に支持され、モータが小歯車列(26c)にトルクを印加すると、大歯車(26b)で合力され、小歯車(26a)を同位相で駆動し、左右ねじ(24)を回転させ、フレーム(25)が開閉運動することを特徴とする機構である。 FIG. 8 (sectional view shown in FIG. 9) is a detailed view of the driving device in the embodiment shown in FIG. 1, and only the portion that drives the first degree of freedom is shown for ease of explanation. It is. This part is an opening / closing mechanism having a symmetrical structure, and includes a left and right screw (24), a frame (25), and a gear train (26). The left and right screw (24) includes a bearing (27) and a bearing nut ( 28) through a cover (3) rotatably, provided with a small gear (26a) in the center, the housing part (25a) of the frame (25) has a built-in nut that slides the left and right screws (24), The gear train (26) guided by the linear motion bearing (29) includes a large gear (26b) meshing with the small gear (26a) and a small gear train (26c) for driving the large gear (26b). The gear (26b) is supported by a rotating shaft (30) that is rotatably coupled to the cover (3), and when the motor applies torque to the small gear train (26c), the large gear (26b) is combined, (26a) is driven in the same phase, Rotate the right screw (24), the frame (25) is a mechanism, characterized in that the opening and closing movement.

対称構造であるため、小歯車列(26c)およびそれを駆動するモータは2つあり、ひとつの大歯車(26b)で合力され、一対の左右ねじを同位相で駆動する。1自由度の機構であるが、モータを2個として対称構造とすることにより、装置全体の寸法が小さくなる効果がある。 Due to the symmetrical structure, there are two small gear trains (26c) and two motors that drive them, and they are combined by one large gear (26b) to drive a pair of left and right screws in the same phase. Although it is a mechanism with one degree of freedom, the use of two motors and a symmetrical structure has the effect of reducing the overall size of the apparatus.

図10(断面図を図11に示す)は、図1に示した実施例における駆動装置の詳細図であり、第2の自由度を駆動する部分のうち、前記フレーム(25)に附帯する範囲のみ示したものである。第3の自由度を駆動する部分もこれと同じ構成であり、この部分も対称構造をもつ開閉機構であって、左右ねじ(31)と、左ブロック(32)と、右ブロック(33)と、歯車列(34)とを備え、左右ねじ(31)は、ベアリング(35)とベアリングナット(36)を介してフレーム(25)と回転自在に結合し、中央に小歯車(34a)を備え、左ブロック(32)と右ブロック(33)はそれぞれ左右ねじ(31)を滑動するナットを内蔵し、上側の直動ベアリング(37)と下側の直動ベアリング(38)に案内され、モータが歯車列(34)にトルクを印加すると、それと噛み合う小歯車(34a)と、左右ねじ(31)とを駆動し、左ブロック(32)と右ブロック(33)とが開閉運動することを特徴とする機構である。 FIG. 10 (a cross-sectional view is shown in FIG. 11) is a detailed view of the drive device in the embodiment shown in FIG. 1, and the range attached to the frame (25) in the portion that drives the second degree of freedom. It is only shown. The part that drives the third degree of freedom also has the same configuration as this, and this part is also an opening / closing mechanism having a symmetrical structure, including a left and right screw (31), a left block (32), and a right block (33). The left and right screws (31) are rotatably coupled to the frame (25) via bearings (35) and bearing nuts (36), and have a small gear (34a) in the center. The left block (32) and the right block (33) each have a built-in nut for sliding the left and right screws (31), and are guided by the upper linear motion bearing (37) and the lower linear motion bearing (38). When a torque is applied to the gear train (34), the small gear (34a) meshed with the gear train (34) and the left and right screws (31) are driven, and the left block (32) and the right block (33) are opened and closed. It is a mechanism.

左ブロック(32)と右ブロック(33)は対称形をしており、例えば左ブロック(32)は、図12に示すように、下面に球面軸受(39)を備え、図11に示すように、この内輪(39a)に、駆動軸(11)の駆動部(11a)が摺動自在に結合することで平面平行リンクを駆動することができる。 The left block (32) and the right block (33) are symmetrical. For example, the left block (32) has a spherical bearing (39) on its lower surface as shown in FIG. 12, and as shown in FIG. The plane parallel link can be driven by the drive part (11a) of the drive shaft (11) slidably coupled to the inner ring (39a).

このような構成によれば3自由度の駆動装置が実現でき、図2に示したロボットハンドにおいて、開閉機構が対称の運動をする場合と同等の動作が実現できる。図7において、平面平行リンクの駆動軸(11)は、軸受(16)を中心とする回転運動をするため、移動板(10)およびそれと結合するフィンガは、平行面と垂直な方向に変位するが、特にフィンガの把持面を円筒形とし、その長手方向を平行面と垂直な方向に整列した場合は、下面視ではフィンガが常に円形を保つため、図3に示した種々の把持を妨げない。































According to such a configuration, a three-degree-of-freedom drive device can be realized, and in the robot hand shown in FIG. 2, an operation equivalent to the case where the opening / closing mechanism performs a symmetric motion can be realized. In FIG. 7, since the drive shaft (11) of the plane parallel link rotates around the bearing (16), the moving plate (10) and the finger coupled thereto are displaced in a direction perpendicular to the parallel plane. However, especially when the gripping surface of the finger is cylindrical and the longitudinal direction thereof is aligned in a direction perpendicular to the parallel surface, the finger always maintains a circular shape when viewed from the bottom, so that the various gripping shown in FIG. 3 is not hindered. .































Claims (6)

親平行開閉機構と、2つの子平行開閉機構とを備え、親平行開閉機構の接続部はそれぞれの子平行開閉機構と接続し、子平行開閉機構の各接続部はフィンガと接続し、フィンガは円筒形の把持面を備え、親平行開閉機構および子平行開閉機構は、フィンガが互いに長手方向の平行を保つように接続部を駆動することを特徴とするロボットハンド A parent parallel opening / closing mechanism and two child parallel opening / closing mechanisms are provided, the connecting portions of the parent parallel opening / closing mechanism are connected to the respective child parallel opening / closing mechanisms, the respective connecting portions of the child parallel opening / closing mechanism are connected to the fingers, A robot hand having a cylindrical gripping surface, wherein the parent parallel opening / closing mechanism and the child parallel opening / closing mechanism drive the connecting portion so that the fingers are kept parallel to each other in the longitudinal direction. 3以上の平面平行リンクと、駆動装置と、カバーとを備え、平面平行リンクは、固定板と、移動板と、駆動軸と、支持軸と、フィンガとを備え、固定板はカバーに固定され、駆動軸および各支持軸は、固定板および移動板に、それぞれ軸受を介して接続し、駆動軸の駆動部に加わる力により、移動板が固定板に対して平行に運動し、駆動装置は、駆動軸の駆動部を駆動することを特徴とするロボットハンド Three or more plane parallel links, a driving device, and a cover are provided. The plane parallel link includes a fixed plate, a moving plate, a drive shaft, a support shaft, and a finger, and the fixed plate is fixed to the cover. The drive shaft and each support shaft are connected to the fixed plate and the moving plate through bearings, respectively, and the moving plate moves in parallel to the fixed plate by the force applied to the drive unit of the drive shaft. A robot hand characterized by driving a drive unit of a drive shaft 前記平面平行リンクを4つ備える3自由度ロボットハンドであって、前記駆動装置の第1の自由度を駆動する部分が対称構造をもつ開閉機構であって、左右ねじと、フレームと、歯車列とを備え、左右ねじは、ベアリングとベアリングナットを介してカバーと回転自在に結合し、中央に小歯車を備え、フレームのハウジング部分は左右ねじを滑動するナットを内蔵し、直動ベアリングに案内され、歯車列は、小歯車と噛み合う大歯車と、大歯車を駆動する小歯車列とを含み、大歯車は、カバーと回転自在に結合する回転軸に支持され、モータが小歯車列にトルクを印加すると、大歯車で合力され、小歯車を同位相で駆動し、左右ねじを回転させ、フレームが開閉運動することを特徴とする機構であって、前記駆動装置の第2ないし第3の自由度を駆動する部分も対称構造をもつ開閉機構であって、左右ねじと、左ブロックと、右ブロックと、歯車列とを備え、左右ねじは、ベアリングとベアリングナットを介して該フレームと回転自在に結合し、中央に小歯車を備え、左ブロックと右ブロックはそれぞれ左右ねじを滑動するナットを内蔵し、上側の直動ベアリングと下側の直動ベアリングに案内され、モータが歯車列にトルクを印加すると、それと噛み合う小歯車と、左右ねじとを駆動し、左ブロックと右ブロックとが開閉運動することを特徴とする機構であることを特徴とする前記請求項2に記載のロボットハンド A three-degree-of-freedom robot hand having four plane parallel links, wherein the first driving degree of the driving device is an opening / closing mechanism having a symmetrical structure, and includes a left-right screw, a frame, and a gear train. The left and right screws are rotatably connected to the cover via bearings and bearing nuts, with a small gear in the center, and the housing part of the frame has a built-in nut that slides the left and right screws and guides to the linear bearing The gear train includes a large gear that meshes with the small gear and a small gear train that drives the large gear. The large gear is supported by a rotating shaft that is rotatably coupled to the cover, and the motor torques the small gear train. Is applied by the large gear, the small gear is driven in the same phase, the left and right screws are rotated, and the frame is opened and closed. freedom The opening / closing mechanism with a symmetrical structure is also provided with a left / right screw, left block, right block, and gear train, and the left / right screw is rotatable with the frame via a bearing and a bearing nut. Combined with a small gear in the center, the left block and right block each have built-in nuts that slide left and right screws, guided by the upper linear bearing and the lower linear bearing, and the motor torques the gear train 3. The robot hand according to claim 2, wherein when applied, the mechanism is characterized in that a small gear meshing with the left and right screws are driven to open and close the left block and the right block. 前記駆動軸がひずみゲージを含むことを特徴とする、前記請求項2〜3のいずれかに記載のロボットハンド The robot hand according to claim 2, wherein the drive shaft includes a strain gauge. 前記フィンガが円筒形の把持面を備えることを特徴とする、前記請求項2〜4のいずれかに記載のロボットハンド The robot hand according to claim 2, wherein the finger has a cylindrical gripping surface. 前記フィンガが柔軟な基材で構成されるフィンガであって、円筒形の取付面と、その長手方向と同軸に整列する椀形の襞列とを備え、対象物の把持による力で襞列が圧潰し、襞先端が対象物の突起に掛止することで滑りを防止することを特徴とする、前記請求項2〜5のいずれかに記載のロボットハンド
The finger is a finger composed of a flexible base material, and includes a cylindrical mounting surface and a saddle-shaped saddle row aligned coaxially with the longitudinal direction thereof, and the saddle row is formed by a force by gripping an object. The robot hand according to any one of claims 2 to 5, wherein the robot hand is crushed and the tip of the heel is hooked on a protrusion of an object to prevent slipping.
JP2018080348A 2018-04-19 2018-04-19 Robot hand Pending JP2019188483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018080348A JP2019188483A (en) 2018-04-19 2018-04-19 Robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080348A JP2019188483A (en) 2018-04-19 2018-04-19 Robot hand

Publications (1)

Publication Number Publication Date
JP2019188483A true JP2019188483A (en) 2019-10-31

Family

ID=68388681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080348A Pending JP2019188483A (en) 2018-04-19 2018-04-19 Robot hand

Country Status (1)

Country Link
JP (1) JP2019188483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112519251A (en) * 2020-10-20 2021-03-19 重庆前卫表业有限公司 Automatic diaphragm assembling line
CN113043305A (en) * 2021-04-16 2021-06-29 商丘工学院 Material handling's transportation manipulator
CN114425784A (en) * 2021-03-17 2022-05-03 兰州交通大学 Clamping device of multi-joint mechanical gripper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112519251A (en) * 2020-10-20 2021-03-19 重庆前卫表业有限公司 Automatic diaphragm assembling line
CN112519251B (en) * 2020-10-20 2022-07-05 重庆前卫表业有限公司 Automatic diaphragm assembling line
CN114425784A (en) * 2021-03-17 2022-05-03 兰州交通大学 Clamping device of multi-joint mechanical gripper
CN113043305A (en) * 2021-04-16 2021-06-29 商丘工学院 Material handling's transportation manipulator
CN113043305B (en) * 2021-04-16 2022-11-18 商丘工学院 Material handling's transportation manipulator

Similar Documents

Publication Publication Date Title
EP2252437B1 (en) Two degree-of-freedom parallel manipulator
WO2018157643A1 (en) Anthropomorphic full-drive five-finger dexterous robotic hand
JP5388966B2 (en) Wrist joint assembly and humanoid robot
JP5403303B2 (en) Parallel mechanism
JP2019188483A (en) Robot hand
TWI418452B (en) A wrist unit for an industrial robot
Kim et al. Low-cost robot arm with 3-DOF counterbalance mechanism
KR100710968B1 (en) Link drive mechanism and industrial robot using the same
US8839689B2 (en) Robot arm assembly
EP1777044A2 (en) Parallel link mechanism and industrial robot with such a mechanism
JP5270449B2 (en) Robot joint structure and robot including the same
KR20110125377A (en) Industrial manipulators having attachable and detachable 4-bar-linkage-typed mechanical driving module
JP6730351B2 (en) Robot arm structure and robot
JP5503702B2 (en) Low stroke operation for serial robots
Yamaguchi et al. Underactuated robot hand for dual-arm manipulation
JP2017047509A (en) Hand device and finger
WO2018033716A1 (en) An Improved Gripper
CN112296989A (en) Underwater five-degree-of-freedom rotary manipulator
CN102848375A (en) Spatial six-degree-of-freedom mechanism capable of separately controlling rotation motion and translation motion
KR101050229B1 (en) Robot hand with torque sensor
JP5301934B2 (en) Robot hand drive mechanism
CN102581848A (en) Parallel positioning platform with three-rotation one-translation freedom degree
JPS63251186A (en) Hand for robot
JPS63102886A (en) Rope drive type manipulator
JP2015161382A (en) Gear mechanism, speed change gear and multi-joint robot arm