JP2019182987A - Polishing liquid composition for synthetic quartz glass substrate - Google Patents

Polishing liquid composition for synthetic quartz glass substrate Download PDF

Info

Publication number
JP2019182987A
JP2019182987A JP2018074950A JP2018074950A JP2019182987A JP 2019182987 A JP2019182987 A JP 2019182987A JP 2018074950 A JP2018074950 A JP 2018074950A JP 2018074950 A JP2018074950 A JP 2018074950A JP 2019182987 A JP2019182987 A JP 2019182987A
Authority
JP
Japan
Prior art keywords
polishing
quartz glass
glass substrate
synthetic quartz
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018074950A
Other languages
Japanese (ja)
Other versions
JP7008564B2 (en
Inventor
恒平 松岡
Kohei Matsuoka
恒平 松岡
哲史 山口
Tetsushi Yamaguchi
哲史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2018074950A priority Critical patent/JP7008564B2/en
Publication of JP2019182987A publication Critical patent/JP2019182987A/en
Application granted granted Critical
Publication of JP7008564B2 publication Critical patent/JP7008564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To provide a polishing liquid composition for synthetic quartz glass substrate capable of polishing a synthetic quartz glass substrate at high speed, and a polishing method of the synthetic quartz glass substrate to be polished and a manufacturing method of the synthetic quartz glass substrate using the composition.SOLUTION: The polishing liquid composition for synthetic quartz glass substrate contains a silica particle and a water-based medium, secondary particle diameter D50 of a particle when cumulative volume from a small particle diameter side reaches 50% in a particle size distribution calculated by a laser diffraction scattering method of the silica particle is 70 nm to 200 nm, and skewness of the particle size distribution is 1.30 to 2.05. pH of the polishing liquid composition at 25°C is preferably 8 to 12, and content of the silica particle in the polishing liquid composition is preferably 25 mass% to 50 mass%.SELECTED DRAWING: None

Description

本発明は、合成石英ガラス基板を研磨するための研磨液組成物に関する。また、上記研磨液組成物を用いた被合成石英ガラス基板の研磨方法、合成石英ガラス基板の製造方法に関する。   The present invention relates to a polishing liquid composition for polishing a synthetic quartz glass substrate. Further, the present invention relates to a method for polishing a synthetic quartz glass substrate using the polishing composition, and a method for producing a synthetic quartz glass substrate.

半導体修正回路等の製造には、フォトリソグラフィ技術が用いられている。フォトリソグラフィ技術に使用されるフォトマスクは、マスクブランクスに所定の波長の光を透過させない材料で一定の回路パターンが形成されたものである。マスクブランクスには、光の透過率が高く耐熱性が優れた合成石英ガラス基板が使用されているが、LSIの微細化と高集積化にともない、合成石英ガラス基板に対し平坦度の要求が一段と厳しくなっている。   A photolithography technique is used for manufacturing a semiconductor correction circuit or the like. A photomask used in the photolithography technique is a mask blank in which a constant circuit pattern is formed of a material that does not transmit light of a predetermined wavelength. For mask blanks, synthetic quartz glass substrates with high light transmittance and excellent heat resistance are used, but with the miniaturization and high integration of LSIs, the flatness requirements for synthetic quartz glass substrates are further increased. It is getting strict.

石英ガラス基板を研磨により平坦化するための技術として、特許文献1には、高精度に平滑な研磨表面が効率的に得られる研磨剤の製造方法が開示されており、当該製造方法では、セリウム化合物の昇温過程で加湿したガスを供給しながら加熱する段階を経由する。当該製造方法により得られた酸化セリウム粒子の(D50−D10)/(D90-D50)の比は、0.1〜0.3である。   As a technique for flattening a quartz glass substrate by polishing, Patent Document 1 discloses a manufacturing method of an abrasive that can efficiently obtain a smooth polishing surface with high accuracy. In the manufacturing method, cerium is disclosed. It goes through a stage of heating while supplying a humidified gas in the temperature rising process of the compound. The ratio of (D50-D10) / (D90-D50) of the cerium oxide particles obtained by the production method is 0.1 to 0.3.

特許文献2には、バリア層および絶縁膜に対する高い研磨速度を十分に維持でき、かつファングやエロージョンといった表面欠陥を抑制し、金属配線層に対する高い研磨速度を維持したままディッシング等の段差欠陥の低減を実現しうる研磨液組成物であって、砥粒と、酸化剤と、金属防食剤と、pH調整剤と、水と、を含み、前記砥粒のアスペクト比が1.22以下であり、かつ、前記砥粒のレーザー回折散乱法により求められる粒度分布において微粒子側から積算粒子重量が全粒子重量の90%に達するときの粒子の直径D90と全粒子の全粒子重量の10%に達するときの粒子の直径D10の比D90/D10が1.5以上3.0以下である、研磨用組成物が開示されている。   In Patent Document 2, a high polishing rate for the barrier layer and the insulating film can be sufficiently maintained, surface defects such as fangs and erosion are suppressed, and step defects such as dishing are reduced while maintaining a high polishing rate for the metal wiring layer. A polishing liquid composition that comprises abrasive grains, an oxidizer, a metal anticorrosive, a pH adjuster, and water, wherein the aspect ratio of the abrasive grains is 1.22 or less, In addition, when the cumulative particle weight reaches 90% of the total particle weight from the fine particle side in the particle size distribution obtained by the laser diffraction scattering method of the abrasive grains, and reaches 10% of the total particle weight of all the particles. A polishing composition in which the ratio D90 / D10 of the diameter D10 of the particles is 1.5 or more and 3.0 or less is disclosed.

特許文献3には、ガラス光学素子等を研磨するための研磨材粒子であって、研磨材粒子を構成する全希土類元素の総含有量に対し、セリウムの平均含有率が81mol%以上であり、横座標に研磨材粒子の粒子径をプロットし縦座標に研磨材粒子の累積粒子個数をプロットして作成された粒子径累積分布曲線から求められる、累積粒子個数が50%における粒子径D50(nm)が,300〜500nm範囲内である研磨材粒子が開示されている。   Patent Document 3 discloses abrasive particles for polishing glass optical elements and the like, and the average content of cerium is 81 mol% or more with respect to the total content of all rare earth elements constituting the abrasive particles, Particle diameter D50 (nm) when the cumulative particle number is 50%, which is obtained from a cumulative particle diameter distribution curve created by plotting the particle diameter of abrasive particles on the abscissa and plotting the cumulative number of abrasive particles on the ordinate. ) Are disclosed in the 300-500 nm range.

特許文献4には、研磨用途に適用して、線状痕やスクラッチ等の発生が抑制され、優れた研磨速度を持続して示すことが可能とする、シリカ微粒子が分散媒に分散してなるシリカゾルであって、該シリカ微粒子の粒子径分布における最頻値粒子径が5〜100nmの範囲にあり、更に以下の1)および2)の条件を満たすことを特徴とする研磨用シリカゾルが開示されている。1)最頻値粒子径を超えるシリカ微粒子の割合が、全シリカ微粒子に対して5〜30体積%の範囲である。2)最頻値粒子径以下の粒子径分布における粒子径変動係数が、30〜70%の範囲である。   In Patent Document 4, silica fine particles are dispersed in a dispersion medium, which is applied to polishing applications and suppresses the occurrence of linear marks, scratches, etc., and can continuously exhibit an excellent polishing rate. Disclosed is a silica sol for polishing, characterized in that the mode particle size in the particle size distribution of the silica fine particles is in the range of 5 to 100 nm and further satisfies the following conditions 1) and 2): ing. 1) The ratio of the silica fine particles exceeding the mode particle diameter is in the range of 5 to 30% by volume with respect to the total silica fine particles. 2) The particle size variation coefficient in the particle size distribution below the mode value particle size is in the range of 30 to 70%.

特許文献5には、CMPにおけるポリッシングレートをより高めるための窒化物半導体基板の製造方法が開示されており、当該製造方法の窒化物半導体結晶の表面を平坦化する工程において、所定の粒度分布のコロイダルシリカを含むスラリーを用いて研磨を行うことが開示されている。   Patent Document 5 discloses a method of manufacturing a nitride semiconductor substrate for further increasing the polishing rate in CMP, and in the step of planarizing the surface of the nitride semiconductor crystal of the manufacturing method, a predetermined grain size distribution is disclosed. It is disclosed that polishing is performed using a slurry containing colloidal silica.

特開2004−168639号公報Japanese Patent Laid-Open No. 2004-168639 特許第6113741号公報Japanese Patent No. 6113741 WO2015/019888号公報WO2015 / 019888 特開2010−105136号公報JP 2010-105136 A 特開2015−153852号公報JP2015-153852A

しかし、合成石英ガラス基板は化学的に非常に安定で加工効率が低いため、研磨速度の更なる向上の要請がある。   However, since the synthetic quartz glass substrate is chemically very stable and has low processing efficiency, there is a demand for further improvement of the polishing rate.

本発明では、高速で合成石英ガラス基板を研磨可能とする、合成石英ガラス基板用研磨液組成物、及びこれを用いた、被研磨合成石英ガラス基板の研磨方法、合成石英ガラス基板の製造方法を提供する。   In the present invention, there are provided a polishing composition for a synthetic quartz glass substrate capable of polishing a synthetic quartz glass substrate at a high speed, a method for polishing a synthetic quartz glass substrate to be polished, and a method for producing a synthetic quartz glass substrate using the same. provide.

本発明の合成石英ガラス基板用研磨液組成物は、シリカ粒子と、水系媒体とを含有し、前記シリカ粒子のレーザー回折散乱法により求められる粒度分布において小粒径側からの累積体積が50%に達するときの粒子の二次粒径D50が、70nm以上200nm以下であり、前記粒度分布の歪度が1.30以上2.05以下である、合成石英ガラス基板用研磨液組成物に関する。   The polishing composition for a synthetic quartz glass substrate of the present invention contains silica particles and an aqueous medium, and has a cumulative volume of 50% from the small particle size side in the particle size distribution obtained by the laser diffraction scattering method of the silica particles. The secondary particle diameter D50 of the particles when reaching a diameter of 70 nm or more and 200 nm or less, and the degree of distortion of the particle size distribution is 1.30 or more and 2.05 or less.

本発明の合成石英ガラス基板の研磨方法は、
被研磨合成石英ガラス基板と研磨パッドとの間に、本発明の合成石英ガラス基板用研磨液組成物を供給し、前記被研磨合成石英ガラス基板と前記研磨パッドとが接した状態で、前記研磨パッドを前記被研磨合成石英ガラス基板に対して相対運動させることにより、前記被研磨合成石英ガラス基板を研磨する工程を含む。
The method for polishing a synthetic quartz glass substrate of the present invention is as follows.
The polishing composition for a synthetic quartz glass substrate of the present invention is supplied between the synthetic quartz glass substrate to be polished and the polishing pad, and the polishing is performed in a state where the synthetic quartz glass substrate to be polished and the polishing pad are in contact with each other. And polishing the synthetic quartz glass substrate to be polished by moving the pad relative to the synthetic quartz glass substrate to be polished.

本発明の合成石英ガラス基板の製造方法は、
被研磨合成石英ガラス基板と研磨パッドとの間に、本発明の合成石英ガラス基板用研磨液組成物を供給し、前記被研磨合成石英ガラス基板と前記研磨パッドとが接した状態で、前記研磨パッドを前記被研磨合成石英ガラス基板に対して相対運動させることにより、前記被研磨合成石英ガラス基板を研磨する工程を含む。
The method for producing the synthetic quartz glass substrate of the present invention comprises:
The polishing composition for a synthetic quartz glass substrate of the present invention is supplied between the synthetic quartz glass substrate to be polished and the polishing pad, and the polishing is performed in a state where the synthetic quartz glass substrate to be polished and the polishing pad are in contact with each other. And polishing the synthetic quartz glass substrate to be polished by moving the pad relative to the synthetic quartz glass substrate to be polished.

本発明によれば、高速で研磨対象物を研磨可能とする合成石英ガラス基板用研磨液組成物、及びこれを用いた、被研磨合成石英ガラス基板の研磨方法、合成石英ガラス基板の製造方法を提供できる。   According to the present invention, there are provided a polishing composition for a synthetic quartz glass substrate capable of polishing an object to be polished at a high speed, a method for polishing a synthetic quartz glass substrate to be polished, and a method for producing a synthetic quartz glass substrate using the same. Can be provided.

本発明は、合成石英ガラス基板用研磨液組成物中に砥粒として含まれるシリカ粒子のレーザー回折散乱法により求められる粒度分布において小粒径側からの累積体積が50%に達するときの粒子の二次粒径D50、及び前記粒度分布の歪度(skewness)が、各々所定の範囲内の値であると、合成石英ガラス基板の研磨速度が向上するという知見に基づく。   The present invention relates to the particle size distribution when the cumulative volume from the small particle size side reaches 50% in the particle size distribution determined by the laser diffraction scattering method of the silica particles contained as abrasive grains in the polishing composition for a synthetic quartz glass substrate. It is based on the knowledge that the polishing rate of the synthetic quartz glass substrate is improved when the secondary particle size D50 and the skewness of the particle size distribution are values within a predetermined range.

すなわち、本発明は、一態様において、シリカ粒子と、水系媒体とを含有し、前記シリカ粒子のレーザー回折散乱法により求められる粒度分布において小粒径側からの累積体積が50%に達するときの粒子の二次粒径D50が、70nm以上200nm以下であり、前記粒度分布の歪度が1.30以上2.05以下である、合成石英ガラス基板用研磨液組成物(以下、「本発明の研磨液組成物」と略称する場合もある。)に関する。   That is, the present invention, in one aspect, includes silica particles and an aqueous medium, and the cumulative volume from the small particle size side reaches 50% in the particle size distribution obtained by the laser diffraction scattering method of the silica particles. A polishing liquid composition for synthetic quartz glass substrate (hereinafter referred to as “the present invention”) having a secondary particle diameter D50 of 70 nm or more and 200 nm or less and a skewness of the particle size distribution of 1.30 or more and 2.05 or less. It may be abbreviated as “polishing liquid composition”).

[シリカ粒子]
本発明の研磨液組成物は、砥粒としてシリカ粒子を含有する。前記シリカ粒子としては、例えば、コロイダルシリカ、フュームドシリカ等が挙げられる。また、官能基でシリカを表面修飾あるいは表面改質したもの等もシリカ粒子として用いることができる。中でも、研磨速度向上及び被研磨合成石英ガラス基板(以下、「被研磨基板」と略称する場合もある。)の表面粗さ低減の観点から、コロイダルシリカが好ましい。これらのシリカ粒子は単独で又は2種以上を混合して用いてもよい。シリカ粒子は、例えば、珪酸ナトリウム等の珪酸アルカリ金属塩を原料とし、水溶液中で縮合反応させて粒子を成長させる水ガラス法、またはテトラエトキシシラン等のアルコキシシランを原料とし、アルコール等の水溶性有機溶媒を含有する水中で縮合反応させて成長させるアルコキシシラン法で得られる。
[Silica particles]
The polishing composition of the present invention contains silica particles as abrasive grains. Examples of the silica particles include colloidal silica and fumed silica. In addition, silica surface-modified or surface-modified with functional groups can be used as the silica particles. Among these, colloidal silica is preferable from the viewpoint of improving the polishing rate and reducing the surface roughness of the synthetic quartz glass substrate to be polished (hereinafter, sometimes referred to as “subject substrate”). These silica particles may be used alone or in admixture of two or more. Silica particles are, for example, alkali glass silicates such as sodium silicate as raw materials, water glass method in which particles are grown by condensation reaction in aqueous solution, or alkoxysilanes such as tetraethoxysilane as raw materials, and water-soluble such as alcohol It is obtained by an alkoxysilane method which is grown by condensation reaction in water containing an organic solvent.

本発明の研磨液組成物の調製に用いる前記シリカ粒子のD50は、研磨速度向上の観点から、70nm以上であり、好ましくは75nm以上、より好ましくは80nm以上であり、そして、表面粗さ低減の観点から、200nm以下であり、好ましくは160nm以下、より好ましくは120nm以下である。本発明においてD50は、実施例に記載の方法により測定できる。   From the viewpoint of improving the polishing rate, D50 of the silica particles used for preparing the polishing composition of the present invention is 70 nm or more, preferably 75 nm or more, more preferably 80 nm or more, and the reduction in surface roughness. From the viewpoint, it is 200 nm or less, preferably 160 nm or less, more preferably 120 nm or less. In the present invention, D50 can be measured by the method described in Examples.

本発明の研磨液組成物の調製に用いる前記シリカ粒子の前記粒度分布の歪度は、研磨速度向上の観点から、1.30以上であり、好ましくは1.35以上、より好ましくは1.40以上であり、そして、同様の観点から、2.05以下であり、好ましくは2.00以下、より好ましくは1.95以下である。前記歪度は下記式により算出される値であり、粒子分布における左右対称性を表す尺度である。歪度が0である場合、粒子分布は左右対称であり、歪度が0よりも大きい場合、シリカ粒子の二次粒径D50は最頻値よりも大きく、逆に歪度が0よりも小さい場合、前記二次粒径D50は最頻値よりも小さい。   The degree of distortion of the particle size distribution of the silica particles used for the preparation of the polishing liquid composition of the present invention is 1.30 or more, preferably 1.35 or more, more preferably 1.40, from the viewpoint of improving the polishing rate. From the same viewpoint, it is 2.05 or less, preferably 2.00 or less, more preferably 1.95 or less. The skewness is a value calculated by the following formula, and is a scale representing left-right symmetry in the particle distribution. When the skewness is 0, the particle distribution is symmetrical, and when the skewness is larger than 0, the secondary particle diameter D50 of the silica particles is larger than the mode value, and conversely, the skewness is smaller than 0. In this case, the secondary particle diameter D50 is smaller than the mode value.

Figure 2019182987
Figure 2019182987

但し、上記式中、nはデータの個数、xはデータ全体の平均値、sはデータ全体の標準偏差、Skは歪度である。   In the above formula, n is the number of data, x is the average value of the entire data, s is the standard deviation of the entire data, and Sk is the skewness.

シリカ粒子の歪度の調整は、例えば、粒度分布が広いシリカ粒子aと、粒度分布がシリカ粒子aよりも狭く、二次粒径D50がシリカ粒子aのそれと異なるシリカ粒子bとを用意し、それらを、適切な比率で混合することにより行える。粒度分布が広いシリカ粒子aは、例えば、特公昭48−13833号公報等に記載の方法により調製できる。特公昭48−13833号公報等に記載の方法では、水酸化アンモニウムを含有する水性コロイダルシリカのヒール(元粒子)に金属珪素を添加することによって、ヒール粒子の粒子径を増大させている。シリカ粒子aと混合されるシリカ粒子bは、1種のみならず2種以上であってもよい。   For adjusting the degree of distortion of the silica particles, for example, silica particles a having a wide particle size distribution and silica particles b having a particle size distribution narrower than that of the silica particles a and a secondary particle size D50 different from that of the silica particles a are prepared. They can be mixed by mixing them at an appropriate ratio. Silica particles a having a wide particle size distribution can be prepared, for example, by the method described in JP-B-48-13833. In the method described in Japanese Patent Publication No. 48-13833, the particle diameter of heel particles is increased by adding metal silicon to the heel (original particles) of aqueous colloidal silica containing ammonium hydroxide. The silica particles b mixed with the silica particles a may be not only one type but also two or more types.

本発明の研磨液組成物の調製に用いる前記シリカ粒子のレーザー回折散乱法により求められる粒度分布において小粒径側からの累積体積が90%に達するときの粒子の二次粒径D90は、研磨速度向上の観点から、好ましくは150nm以上、より好ましくは153nm以上、更に好ましくは155nm以上であり、そして、表面粗さ低減の観点から、好ましくは171以下、より好ましくは165nm以下、更に好ましくは160nm以下である。   In the particle size distribution obtained by the laser diffraction scattering method of the silica particles used for the preparation of the polishing liquid composition of the present invention, the secondary particle size D90 of the particles when the cumulative volume from the small particle size side reaches 90% is the polishing From the viewpoint of speed improvement, it is preferably 150 nm or more, more preferably 153 nm or more, further preferably 155 nm or more, and from the viewpoint of surface roughness reduction, it is preferably 171 or less, more preferably 165 nm or less, and further preferably 160 nm. It is as follows.

本発明の研磨液組成物の調製に用いる前記シリカ粒子のレーザー回折散乱法により求められる粒度分布において小粒径側からの累積体積が10%に達するときの粒子の二次粒径D10は、研磨速度向上の観点から、好ましくは53.0nm以上、より好ましくは55.0nm以上、更に好ましくは60.0nm以上であり、そして、表面粗さ低減の観点から、好ましくは72.1以下、より好ましくは70.0nm以下、更に好ましくは65.0nm以下である。   In the particle size distribution obtained by the laser diffraction scattering method of the silica particles used for the preparation of the polishing liquid composition of the present invention, the secondary particle size D10 of the particles when the cumulative volume from the small particle size side reaches 10% is the polishing From the viewpoint of speed improvement, it is preferably 53.0 nm or more, more preferably 55.0 nm or more, still more preferably 60.0 nm or more, and from the viewpoint of surface roughness reduction, preferably 72.1 or less, more preferably Is 70.0 nm or less, more preferably 65.0 nm or less.

本発明の研磨液組成物の調製に用いる前記シリカ粒子の(D90/D10)は、研磨速度向上の観点から、好ましくは2.14以上、より好ましくは2.20以上、更に好ましくは2.30以上であり、そして、同様の観点から、好ましくは3.06以下、より好ましくは3.00以下、更に好ましくは2.90以下である。   From the viewpoint of improving the polishing rate, (D90 / D10) of the silica particles used for the preparation of the polishing composition of the present invention is preferably 2.14 or more, more preferably 2.20 or more, and still more preferably 2.30. From the same viewpoint, it is preferably 3.06 or less, more preferably 3.00 or less, and still more preferably 2.90 or less.

本発明の研磨液組成物の調製に用いる前記シリカ粒子の(D50−D10)/(D90−D50)は、研磨速度向上及び表面粗さ低減の両立の観点から、好ましくは0.40以上、より好ましくは0.42以上、更に好ましくは0.44以上であり、そして、同様の観点から、好ましくは0.56以下、より好ましくは0.55以下、更に好ましくは0.52以下である。   (D50-D10) / (D90-D50) of the silica particles used in the preparation of the polishing liquid composition of the present invention is preferably 0.40 or more from the viewpoint of both improvement of the polishing rate and reduction of the surface roughness. Preferably, it is 0.42 or more, more preferably 0.44 or more, and from the same viewpoint, it is preferably 0.56 or less, more preferably 0.55 or less, and further preferably 0.52 or less.

本発明の研磨液組成物の調製に用いる前記シリカ粒子の(D90/D50)は、研磨速度向上の観点から、好ましくは1.52以上、より好ましくは1.55以上、更に好ましくは1.58以上であり、そして、同様の観点から、好ましくは1.89以下、より好ましくは1.85以下、更に好ましくは1.79以下である。   From the viewpoint of improving the polishing rate, (D90 / D50) of the silica particles used for preparing the polishing composition of the present invention is preferably 1.52 or more, more preferably 1.55 or more, and still more preferably 1.58. From the same viewpoint, it is preferably 1.89 or less, more preferably 1.85 or less, and still more preferably 1.79 or less.

本発明の研磨液組成物の調製に用いる前記シリカ粒子の(D10/D50)は、研磨速度向上の観点から、好ましくは0.62以上、より好ましくは0.63以上、更に好ましくは0.64以上であり、そして、同様の観点から、好ましくは0.71以下、より好ましくは0.70以下、更に好ましくは0.69以下である。   From the viewpoint of improving the polishing rate, (D10 / D50) of the silica particles used for the preparation of the polishing composition of the present invention is preferably 0.62 or more, more preferably 0.63 or more, and still more preferably 0.64. From the same viewpoint, it is preferably 0.71 or less, more preferably 0.70 or less, and still more preferably 0.69 or less.

本発明の研磨液組成物中の前記シリカ粒子の含有量は、研磨速度向上の観点から、好ましくは25質量%以上、より好ましくは30質量%以上、更に好ましくは35質量%以上であり、そして、同様の観点から、好ましくは50質量%以下、より好ましくは47質量%以下、更に好ましくは45質量%以下である。   The content of the silica particles in the polishing liquid composition of the present invention is preferably 25% by mass or more, more preferably 30% by mass or more, still more preferably 35% by mass or more, from the viewpoint of improving the polishing rate. From the same viewpoint, it is preferably 50% by mass or less, more preferably 47% by mass or less, and still more preferably 45% by mass or less.

[水系媒体]
本発明の研磨液組成物に含まれる水系媒体としては、例えば、水、及び水と水に可溶な溶媒との混合物等が挙げられる。水に可溶な溶媒としては、メタノール、エタノール、イソプロパノール等の低級アルコールが挙げられ、研磨工程での安全性の観点から、エタノールが好ましい。水系媒体としては、合成石英ガラス基板の品質向上の観点から、イオン交換水、蒸留水、超純水等の水からなるとより好ましい。本発明の研磨液組成物における水系媒体の含有量は、本発明のシリカ粒子と下記任意成分と水系媒体との合計質量を100質量%とすると、本発明のシリカ粒子及び後述する任意成分を除いた残余とすることができる。
[Aqueous medium]
Examples of the aqueous medium contained in the polishing composition of the present invention include water and a mixture of water and a water-soluble solvent. Examples of the water-soluble solvent include lower alcohols such as methanol, ethanol, and isopropanol, and ethanol is preferable from the viewpoint of safety in the polishing process. The aqueous medium is more preferably made of water such as ion-exchanged water, distilled water or ultrapure water from the viewpoint of improving the quality of the synthetic quartz glass substrate. The content of the aqueous medium in the polishing liquid composition of the present invention is such that when the total mass of the silica particles of the present invention, the following optional components and the aqueous medium is 100% by mass, the silica particles of the present invention and the optional components described below are excluded. Can be leftover.

本発明の研磨液組成物には、任意成分として、濡れ剤、pH調整剤、防腐剤等が含まれていてもよい。中でも、スクラッチ低減の観点から、濡れ剤が含まれていると好ましい。本発明の研磨液組成物中におけるこれらの任意成分の含有量としては、スクラッチ低減の観点から、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましい。   The polishing composition of the present invention may contain a wetting agent, a pH adjusting agent, a preservative, and the like as optional components. Among these, it is preferable that a wetting agent is included from the viewpoint of reducing scratches. The content of these optional components in the polishing composition of the present invention is preferably 20% by weight or less, more preferably 15% by weight or less, and still more preferably 10% by weight or less from the viewpoint of reducing scratches.

[濡れ剤]
本発明の研磨液組成物には、研磨速度の向上及び表面粗さ低減の観点から、濡れ剤が含まれていると好ましい。濡れ剤としては、好ましくは、グリセリン、ジグリセリン、トリグリセリンから選ばれる少なくとも1種であり、スクラッチ低減と保存安定性の両立の観点からより好ましくはグリセリンである。これらの濡れ剤は、スクラッチの原因となる被研磨基板の乾燥防止に効果的であると考えられる。
[Wetting agent]
The polishing composition of the present invention preferably contains a wetting agent from the viewpoint of improving the polishing rate and reducing the surface roughness. The wetting agent is preferably at least one selected from glycerin, diglycerin, and triglycerin, and is more preferably glycerin from the viewpoint of achieving both scratch reduction and storage stability. These wetting agents are considered to be effective in preventing drying of the substrate to be polished, which causes scratches.

[防腐剤]
防腐剤としては、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2−ベンズイソチアゾリン−3−オン、(5−クロロ−)2−メチル−4−イソチアゾリン−3−オン、過酸化水素、または次亜塩素酸塩等が挙げられる。
[Preservative]
Examples of preservatives include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or hypochlorite Examples include acid salts.

本発明の研磨液組成物の25℃におけるpHは、研磨速度向上の観点から、8以上が好ましく、9以上がより好ましく、そして、12以下が好ましく、10.5以下がより好ましい。研磨液組成物のpHはpH調整剤を用いて調整されてもよい。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。   From the viewpoint of improving the polishing rate, the pH at 25 ° C. of the polishing composition of the present invention is preferably 8 or more, more preferably 9 or more, and preferably 12 or less, more preferably 10.5 or less. The pH of the polishing composition may be adjusted using a pH adjuster. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after immersion of the electrode in the polishing composition.

pH調整剤としては、塩基性化合物、または酸性化合物等が挙げられる。塩基性化合物としては、アンモニア、水酸化カリウム等の無機アルカリ化合物、水溶性有機アミンおよび四級アンモニウムハイドロオキサイド等が挙げられる。酸性化合物としては、硫酸、塩酸、硝酸またはリン酸等の無機酸、酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸または安息香酸等の有機酸等が挙げられる。   Examples of the pH adjuster include basic compounds and acidic compounds. Examples of basic compounds include inorganic alkali compounds such as ammonia and potassium hydroxide, water-soluble organic amines and quaternary ammonium hydroxides. Examples of the acidic compound include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.

次に、本実施形態の研磨液組成物の調製方法の一例について説明する。   Next, an example of a method for preparing the polishing composition of this embodiment will be described.

本実施形態の研磨液組成物の製造方法の一例は、何ら制限されず、例えば、シリカ粒子と、水系媒体と、必要に応じて任意成分とを混合することによって調製できる。   An example of the manufacturing method of the polishing liquid composition of this embodiment is not restrict | limited at all, For example, it can prepare by mixing a silica particle, an aqueous medium, and an arbitrary component as needed.

シリカ粒子を水系媒体と混合する場合、濃縮されたスラリーの状態で混合されてもよいし、水等で希釈してから混合されてもよい。シリカ粒子の水系媒体への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。シリカ粒子を水系媒体に分散した後は、シリカ粒子が凝集等してできた粗大粒子が水系媒体中に含まれる場合、遠心分離やフィルターろ過等により、当該粗大粒子を除去すると好ましい。シリカ粒子は、必要に応じて分散剤の存在下で水系媒体に分散させることが好ましい。   When silica particles are mixed with an aqueous medium, they may be mixed in a concentrated slurry, or may be mixed after being diluted with water or the like. Dispersion of silica particles in an aqueous medium can be performed using a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill, for example. After the silica particles are dispersed in the aqueous medium, when the coarse particles formed by the aggregation of the silica particles are contained in the aqueous medium, it is preferable to remove the coarse particles by centrifugation or filter filtration. The silica particles are preferably dispersed in an aqueous medium in the presence of a dispersant as required.

次に、本発明の研磨液組成物を用いた、被研磨合成石英ガラス基板の研磨方法(以下、「本発明の研磨方法」と略称する場合もある。)、及びフォトマスク用合成石英ガラス基板の製造方法(以下、「本発明の製造方法」と略称する場合もある。)について説明する。   Next, a method for polishing a synthetic quartz glass substrate to be polished using the polishing composition of the present invention (hereinafter sometimes abbreviated as “the polishing method of the present invention”), and a synthetic quartz glass substrate for a photomask. Will be described below (hereinafter sometimes abbreviated as “production method of the present invention”).

合成石英ガラス基板の製造は、例えば、円柱状の合成石英ガラスインゴットを高温で加熱溶融して四角いブロック状に熱間成型し、歪除去のためのアニール処理後、スライスして薄い四角形の合成石英ガラス基板を得、その後、一般には、研削工程、端面加工工程、研磨工程が行われる。   A synthetic quartz glass substrate is manufactured, for example, by heating and melting a cylindrical synthetic quartz glass ingot at a high temperature and hot-molding it into a square block shape. After obtaining the glass substrate, generally, a grinding step, an end face processing step, and a polishing step are performed.

研削工程は、例えば1段あるいは2段の研削工程(1次ラッピング、2次ラッピング)からなり、ある程度基板表面を平滑化する。研削工程では、炭化ケイ素やアルミナ等の硬質な研磨剤が広く用いられている。この後、複数枚の基板を重ねた状態でその側面を研磨して各基板の端面に鏡面加工を施す(端面加工工程)。   The grinding process comprises, for example, one or two stages of grinding (primary lapping and secondary lapping), and the substrate surface is smoothed to some extent. In the grinding process, hard abrasives such as silicon carbide and alumina are widely used. Thereafter, the side surfaces are polished in a state where a plurality of substrates are stacked, and the mirror surface processing is performed on the end surfaces of the respective substrates (end surface processing step).

研磨工程は、一般に、第一研磨工程と第二研磨工程に分かれるが、表面品質の向上を目的として更に最終(仕上げ)研磨工程を行う場合が多い。第一研磨工程では砥粒として酸化セリウム粒子が、最終(仕上げ)研磨工程では砥粒としてシリカ粒子が好適に用いられる。従って、本発明の研磨液組成物は、合成石英ガラス基板の製造工程において、第二研磨工程以降に用いられることが好ましく、表面粗さを顕著に低減し、優れた表面平滑性を得る観点から、仕上げ研磨工程に用いられることがより好ましい。   The polishing step is generally divided into a first polishing step and a second polishing step, but a final (finishing) polishing step is often performed for the purpose of improving the surface quality. In the first polishing process, cerium oxide particles are suitably used as abrasive grains, and in the final (finish) polishing process, silica particles are suitably used as abrasive grains. Therefore, the polishing composition of the present invention is preferably used after the second polishing step in the production process of the synthetic quartz glass substrate, from the viewpoint of significantly reducing the surface roughness and obtaining excellent surface smoothness. More preferably, it is used in the finish polishing step.

研磨工程後は、合成石英ガラス基板表面に残留したシリカ粒子や研磨屑を除去するために、例えば中性洗剤により洗浄され、さらに合成石英ガラス基板に対して溶解力をもつ薬液(強アルカリ溶液、HF溶液等)に基板を浸漬し、基板の研磨面の最表層をエッチングして不純物を除去する。次いで純水、イソプロパノール等での浸漬洗浄、及びイソプロパノール等での蒸気乾燥が行われる。   After the polishing process, in order to remove silica particles and polishing debris remaining on the surface of the synthetic quartz glass substrate, for example, it is washed with a neutral detergent, and further a chemical solution (strong alkaline solution, The substrate is immersed in an HF solution or the like, and the outermost layer on the polished surface of the substrate is etched to remove impurities. Next, immersion cleaning with pure water, isopropanol, or the like, and steam drying with isopropanol or the like are performed.

その後、フォトマスク製造工程において、蒸着やスパッタにてクロム等の金属薄膜をつけ、これにレジスト等を塗布した後に露光し、エッチングして表面にパターンを形成してフォトマスクが得られる。次いで純水、イソプロパノール等での浸漬洗浄、及びイソプロパノール等での蒸気乾燥が行われる。   Thereafter, in a photomask manufacturing process, a metal thin film such as chromium is deposited by vapor deposition or sputtering, a resist or the like is applied thereto, and then exposed and etched to form a pattern on the surface to obtain a photomask. Next, immersion cleaning with pure water, isopropanol, or the like, and steam drying with isopropanol or the like are performed.

合成石英ガラス基板には、微細化されたパターンを精度良く露光できる平滑性が要求される。即ち、基板表面の平坦性(粗さ、うねり等)が高く、欠陥(砥粒等の凸部、スクラッチやピット等の凹部)数が少ないことが求められ、基板の製造工程の中で研磨工程がその役割を担い、第二研磨工程、又は最終(仕上げ)研磨工程が特に重要である。   The synthetic quartz glass substrate is required to have smoothness capable of accurately exposing a miniaturized pattern. That is, the substrate surface is required to have high flatness (roughness, waviness, etc.) and a small number of defects (projections such as abrasive grains, recesses such as scratches and pits), and the polishing step in the substrate manufacturing process. Plays a role, and the second polishing step or the final (finishing) polishing step is particularly important.

すなわち、本発明の研磨方法及び本発明の製造方法では、被研磨基板と研磨装置を構成する研磨パッドとの間に、本発明の研磨液組成物を供給し、被研磨基板と研磨パッドとが接した状態で、研磨パッドを被研磨基板に対して相対運動させることにより、被研磨基板を研磨する工程を含む。   That is, in the polishing method of the present invention and the manufacturing method of the present invention, the polishing liquid composition of the present invention is supplied between the substrate to be polished and the polishing pad constituting the polishing apparatus, and the substrate to be polished and the polishing pad are A process of polishing the substrate to be polished by moving the polishing pad relative to the substrate to be polished while in contact with the substrate.

具体的には、例えば、被研磨基板をキャリアで保持し、研磨パッドを貼り付けた研磨定盤で挟み込み、本発明の研磨液組成物を研磨パッドと被研磨基板との間に供給し、所定の圧力の下で研磨定盤及び/又は被研磨基板を動かすことにより、本発明の研磨液組成物を被研磨基板に接触させながら研磨する研磨方法が挙げられる。研磨装置は、板状の被研磨基板の両主面を同時に研磨可能とする両面研磨装置であってもよいし、片面のみを研磨可能とする片面研磨装置であってもよい。   Specifically, for example, the substrate to be polished is held by a carrier and sandwiched by a polishing surface plate to which a polishing pad is attached, and the polishing composition of the present invention is supplied between the polishing pad and the substrate to be polished. A polishing method in which the polishing liquid composition of the present invention is polished while being brought into contact with the substrate to be polished by moving the polishing platen and / or the substrate to be polished under the pressure of the above can be mentioned. The polishing apparatus may be a double-side polishing apparatus capable of simultaneously polishing both main surfaces of a plate-like substrate to be polished, or may be a single-side polishing apparatus capable of polishing only one surface.

研磨工程における研磨荷重は、研磨速度の向上の観点から、好ましくは60g/cm2以上であり、より好ましくは70g/cm2以上、更に好ましくは80g/cm2以上であり、そして、表面品質向上の観点から、好ましくは200g/cm2以下、より好ましくは170g/cm2以下、更に好ましくは150g/cm2以下である。 The polishing load in the polishing step is preferably 60 g / cm 2 or more, more preferably 70 g / cm 2 or more, further preferably 80 g / cm 2 or more, from the viewpoint of improving the polishing rate, and the surface quality is improved. In view of the above, it is preferably 200 g / cm 2 or less, more preferably 170 g / cm 2 or less, and still more preferably 150 g / cm 2 or less.

研磨パッドの回転数は、5〜200rpmが好ましく、より好ましくは10〜150rpmであり、更に好ましくは20〜60rpmである。   The rotational speed of the polishing pad is preferably 5 to 200 rpm, more preferably 10 to 150 rpm, and still more preferably 20 to 60 rpm.

研磨工程におけるにおける研磨液組成物の好ましい供給速度は、被研磨合成石英ガラス基板と接触する研磨パッドの面積と投入した基板の総面積によって異なるため、一概には決められないが、研磨速度の向上及び経済性の観点から、被研磨基板の単位被研磨面積(1cm2)当り、0.01〜0.50mL/minが好ましく、0.03〜0.40mL/minがより好ましく、0.05〜0.30mL/minが更に好ましい。 The preferable supply rate of the polishing composition in the polishing process varies depending on the area of the polishing pad that comes into contact with the synthetic quartz glass substrate to be polished and the total area of the substrate that has been charged. From the viewpoint of economy, the unit polishing area (1 cm 2 ) of the substrate to be polished is preferably 0.01 to 0.50 mL / min, more preferably 0.03 to 0.40 mL / min, 0.05 to 0.30 mL / min is more preferable.

研磨パッドとしては、有機高分子系の発泡体、無発泡体、不織布状の研磨パッドを用いることができ、例えば、第一研磨工程ではスウェード調のウレタン製硬質パッド、第二研磨工程及び最終研磨工程ではスウェード調のウレタン製軟質パッドが好適に用いられる。   As the polishing pad, organic polymer foam, non-foamed, non-woven polishing pad can be used. For example, in the first polishing step, a suede-like urethane hard pad, the second polishing step and the final polishing are used. In the process, a suede-like urethane soft pad is preferably used.

1.各種パラメータの測定方法
[シリカ粒子のD10、D50、D90の測定]
研磨液組成物中のシリカ粒子について、動的光散乱(DLS)粒径分布計(マルバーン社製、ゼータサイザーナノS)を用いて下記の条件で、体積換算平均二次粒径(D10,D50,D90)を求めた。
溶媒:水(屈折率1.333)
砥粒:コロイダルシリカ粒子(屈折率1.45、減衰係数0.02)
測定温度:25℃
1. Measuring method of various parameters [Measurement of D10, D50, D90 of silica particles]
About the silica particle in polishing liquid composition, the volume conversion average secondary particle diameter (D10, D50) on condition of the following using a dynamic light scattering (DLS) particle size distribution meter (Malvern company make, Zetasizer nano S). , D90).
Solvent: water (refractive index 1.333)
Abrasive grains: colloidal silica particles (refractive index 1.45, attenuation coefficient 0.02)
Measurement temperature: 25 ° C

[歪度]
本発明においては、動的光散乱(DLS)粒径分布計で得られたデータをもとに、各二次粒径の粒子数割合を算出し、下記式を用いて粒度分布の歪度を求めている。
[skewness]
In the present invention, based on the data obtained by a dynamic light scattering (DLS) particle size distribution meter, the ratio of the number of particles of each secondary particle size is calculated, and the skewness of the particle size distribution is calculated using the following formula. Looking for.

Figure 2019182987
Figure 2019182987

但し、上記式中、nはデータの個数、xはデータ全体の平均値、sはデータ全体の標準偏差、Skは歪度である。   In the above formula, n is the number of data, x is the average value of the entire data, s is the standard deviation of the entire data, and Sk is the skewness.

2.研磨液組成物の調製
[シリカ粒子A〜O]
下記のようにして調製されたシリカ粒子aと市販品であるシリカ粒子b1,b2,b3(詳細は下記記載)とを、表1に記載の質量割合で混合し、研磨液組成物調製用の、シリカ粒子A〜Oを用意した。
2. Preparation of polishing composition [silica particles A to O]
Silica particles a prepared as described below and commercially available silica particles b1, b2, and b3 (details are described below) are mixed at a mass ratio shown in Table 1 to prepare a polishing liquid composition. Silica particles A to O were prepared.

[シリカ粒子aの調製]
水酸化アンモニウムを含有する水性シリカゾルのヒール(元粒子)に、微細に粉砕した金属珪素を導入し、アンモニア存在下で珪素と水とを反応させてシリカ粒子を成長させ、ヒール中のシリカ濃度と表面積および反応混合物中のシリカの生成速度を調節する。このとき、シリカが新しい核を形成するよりも既存のヒール上でシリカを重合させ、水性シリカゾル中の粒子サイズを増大させることにより(ビルドアップ)、従来よりも大きなサイズまで含んだシリカ粒子aを用意した。
[Preparation of silica particles a]
Finely ground metal silicon is introduced into the heel (original particle) of an aqueous silica sol containing ammonium hydroxide, and silica particles are grown by reacting silicon and water in the presence of ammonia to obtain the silica concentration in the heel. Control the surface area and rate of silica formation in the reaction mixture. At this time, silica is polymerized on the existing heel rather than forming new nuclei, and by increasing the particle size in the aqueous silica sol (build-up), the silica particles a containing a larger size than before are contained. Prepared.

[シリカ粒子a,b1,b2,b3の詳細]
(1)シリカ粒子a(D10:65.1nm、D50:99.0nm、D90:171.0nm、D90/D10=2.63)
(2)シリカ粒子b1(日揮触媒化成社製、品名SI-80P、D10:71.8nm、D50:100.0nm、D90:146.0nm、D90/D10=2.03)
(3)シリカ粒子b2(日揮触媒化成社製、品名SI-50、D10:22.4nm、D50:31.4nm、D90:47.1nm、D90/D10=2.10)
(4)シリカ粒子b3(日揮触媒化成社製、品名SI-550、D10:4.3nm、D50:6.1nm、D90:7.7nm、D90/D10=1.79)
[Details of silica particles a, b1, b2, b3]
(1) Silica particles a (D10: 65.1 nm, D50: 99.0 nm, D90: 171.0 nm, D90 / D10 = 2.63)
(2) Silica particles b1 (manufactured by JGC Catalysts & Chemicals, product name SI-80P, D10: 71.8 nm, D50: 100.0 nm, D90: 146.0 nm, D90 / D10 = 2.03)
(3) Silica particles b2 (manufactured by JGC Catalysts & Chemicals, product name SI-50, D10: 22.4 nm, D50: 31.4 nm, D90: 47.1 nm, D90 / D10 = 2.10)
(4) Silica particles b3 (manufactured by JGC Catalysts & Chemicals, product name SI-550, D10: 4.3 nm, D50: 6.1 nm, D90: 7.7 nm, D90 / D10 = 1.79)

Figure 2019182987
Figure 2019182987

[実施例1〜10、比較例1〜7の研磨液組成物の調製]
シリカ粒子A〜Oおよびイオン交換水を用いて、実施例1〜10、比較例1〜7の研磨液組成物を調製した。実施例1〜9、比較例1〜6の研磨液組成物中のシリカ粒子の含有量は40質量%であり、残余はイオン交換水である。実施例10、比較例7の研磨液組成物中のシリカ粒子の含有量は36質量%であり、残余はイオン交換水である。実施例1〜10、比較例1〜7の研磨液組成物の25℃におけるpHは表2に示した通りである。
[Preparation of polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 7]
The polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 7 were prepared using silica particles A to O and ion exchange water. Content of the silica particle in the polishing liquid composition of Examples 1-9 and Comparative Examples 1-6 is 40 mass%, and the remainder is ion-exchange water. The content of the silica particles in the polishing liquid compositions of Example 10 and Comparative Example 7 is 36% by mass, and the balance is ion exchange water. The pH at 25 ° C. of the polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 7 is as shown in Table 2.

3.研磨速度の評価
下記の研磨条件で、被研磨石英ガラス基板を研磨した。
[研磨条件]
両面研磨機;スピードファム社製「両面9B研磨機」
研磨パッド;スウェード調のウレタン製硬質パッド
研磨荷重;80g/cm2
定盤回転数;30rpm
キャリア回転数;30rpm
研磨剤流量;30mL/min
研磨時間:30min
3. Evaluation of Polishing Rate The quartz glass substrate to be polished was polished under the following polishing conditions.
[Polishing conditions]
Double-sided polishing machine; "Double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad; Suede-like urethane hard pad Polishing load: 80 g / cm 2
Plate rotation speed: 30 rpm
Carrier rotation speed: 30 rpm
Abrasive flow rate: 30 mL / min
Polishing time: 30 min

(研磨速度の算出方法)
被研磨合成石英ガラス基板の研磨前後の重量変化を求め、合成石英ガラス密度(2.2g・cm2)、合成石英ガラス基板面積(100cm2)から研磨速度(μm/h)を算出した。表2において、実施例1〜9、比較例2〜6の研磨液組成物を用いた場合の研磨速度は、比較例1の研磨液組成物を用いた場合の研磨速度を「100」とした場合の相対値で示し、実施例10の研磨液組成物を用いた場合の研磨速度は、比較例7の研磨液組成物を用いた場合の研磨速度を「100」とした場合の相対値で示した。
(Calculation method of polishing rate)
The weight change before and after polishing of the synthetic quartz glass substrate to be polished was determined, and the polishing rate (μm / h) was calculated from the synthetic quartz glass density (2.2 g · cm 2 ) and the synthetic quartz glass substrate area (100 cm 2 ). In Table 2, the polishing rate when the polishing liquid compositions of Examples 1 to 9 and Comparative Examples 2 to 6 were used was “100” when the polishing liquid composition of Comparative Example 1 was used. The polishing rate when the polishing liquid composition of Example 10 is used is the relative value when the polishing rate when the polishing liquid composition of Comparative Example 7 is used is “100”. Indicated.

Figure 2019182987
Figure 2019182987

表2に示されるように、実施例1〜10の研磨液組成物を用いて研磨する場合は、比較例1〜7の研磨液組成物を用いて研磨する場合よりも、研磨速度が速い。   As shown in Table 2, when polishing is performed using the polishing liquid compositions of Examples 1 to 10, the polishing rate is faster than when polishing is performed using the polishing liquid compositions of Comparative Examples 1 to 7.

本発明のガラス基板用研磨液組成物を用いれば、フォトマスク用合成石英ガラス基板を効率よく研磨できるので、フォトマスクの生産性の向上に寄与できる。   If the polishing composition for glass substrates of the present invention is used, a synthetic quartz glass substrate for photomasks can be efficiently polished, which can contribute to the improvement of photomask productivity.

Claims (6)

シリカ粒子と、水系媒体とを含有し、
前記シリカ粒子のレーザー回折散乱法により求められる粒度分布において小粒径側からの累積体積が50%に達するときの粒子の二次粒径D50が、70nm以上200nm以下であり、
前記粒度分布の歪度が1.30以上2.05以下である、合成石英ガラス基板用研磨液組成物。
Containing silica particles and an aqueous medium,
In the particle size distribution determined by the laser diffraction scattering method of the silica particles, the secondary particle size D50 of the particles when the cumulative volume from the small particle size side reaches 50% is 70 nm or more and 200 nm or less,
A polishing composition for a synthetic quartz glass substrate, wherein the degree of distortion of the particle size distribution is 1.30 to 2.05.
前記研磨液組成物の25℃におけるpHが8以上12以下である、請求項1に記載の研磨液組成物。   The polishing composition according to claim 1, wherein the polishing composition has a pH of 8 or more and 12 or less at 25 ° C. 前記研磨液組成物中の前記シリカ粒子の含有量が、25質量%以上50質量%以下である、請求項1又は2に記載の研磨液組成物。   The polishing composition according to claim 1 or 2, wherein the content of the silica particles in the polishing composition is 25% by mass or more and 50% by mass or less. (D50−D10)/(D90-D50)が、0.40以上0.56以下である、請求項1から3のいずれかの項に記載の研磨液組成物。
但し、D10は前記粒度分布において小粒径側からの累積体積が10%に達するときの粒子の二次粒径であり、D90は前記粒度分布において小粒径側からの累積体積が90%に達するときの粒子の二次粒径である。
The polishing composition according to any one of claims 1 to 3, wherein (D 50 -D 10 ) / (D 90 -D 50 ) is 0.40 or more and 0.56 or less.
However, D 10 is the secondary particle diameter of the particles when the cumulative volume from the smaller particle size side in the particle size distribution reaches 10%, D 90 is the cumulative volume from the smaller particle size side in the particle size distribution is 90 The secondary particle size of the particles when reaching%.
被研磨合成石英ガラス基板と研磨パッドとの間に、請求項1から4の何れかの項に記載の研磨液組成物を供給し、前記被研磨合成石英ガラス基板と前記研磨パッドとが接した状態で、前記研磨パッドを前記被研磨合成石英ガラス基板に対して相対運動させることにより、前記被研磨合成石英ガラス基板を研磨する工程を含む、被研磨合成石英ガラス基板の研磨方法。   The polishing liquid composition according to any one of claims 1 to 4 is supplied between a synthetic quartz glass substrate to be polished and a polishing pad, and the polished synthetic quartz glass substrate and the polishing pad are in contact with each other. A polishing method for a synthetic quartz glass substrate to be polished, comprising: polishing the synthetic quartz glass substrate to be polished by moving the polishing pad relative to the synthetic quartz glass substrate to be polished in a state. 被研磨合成石英ガラス基板と研磨パッドとの間に、請求項1から4の何れかの項に記載の研磨液組成物を供給し、前記被研磨合成石英ガラス基板と前記研磨パッドとが接した状態で、前記研磨パッドを前記被研磨合成石英ガラス基板に対して相対運動させることにより、前記被研磨合成石英ガラス基板を研磨する工程を含む、合成石英ガラス基板の製造方法。   The polishing liquid composition according to any one of claims 1 to 4 is supplied between a synthetic quartz glass substrate to be polished and a polishing pad, and the polished synthetic quartz glass substrate and the polishing pad are in contact with each other. A method for producing a synthetic quartz glass substrate, comprising: polishing the synthetic quartz glass substrate to be polished by moving the polishing pad relative to the synthetic quartz glass substrate to be polished in a state.
JP2018074950A 2018-04-09 2018-04-09 Abrasive liquid composition for synthetic quartz glass substrate Active JP7008564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018074950A JP7008564B2 (en) 2018-04-09 2018-04-09 Abrasive liquid composition for synthetic quartz glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018074950A JP7008564B2 (en) 2018-04-09 2018-04-09 Abrasive liquid composition for synthetic quartz glass substrate

Publications (2)

Publication Number Publication Date
JP2019182987A true JP2019182987A (en) 2019-10-24
JP7008564B2 JP7008564B2 (en) 2022-01-25

Family

ID=68339738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018074950A Active JP7008564B2 (en) 2018-04-09 2018-04-09 Abrasive liquid composition for synthetic quartz glass substrate

Country Status (1)

Country Link
JP (1) JP7008564B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220043424A (en) * 2020-09-29 2022-04-05 에스케이씨솔믹스 주식회사 Polishing pad, manufacturing method thereof and preparing method of semiconductor device using the same
JP7411498B2 (en) 2020-05-01 2024-01-11 花王株式会社 polishing liquid composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080352A (en) * 1998-06-11 2000-03-21 Allied Signal Inc Aqueous sol of metal oxide as slurry for polishing low dielectric material
JP2001323254A (en) * 2000-05-12 2001-11-22 Kao Corp Polishing liquid composition
JP2002180034A (en) * 2000-12-12 2002-06-26 Showa Denko Kk Abrasive slurry and abrasive fine powder
JP2004168639A (en) * 2002-10-28 2004-06-17 Nissan Chem Ind Ltd Cerium oxide particle, and production method by humidifying firing
JP2006007399A (en) * 2004-06-29 2006-01-12 Kao Corp Method for increasing polishing speed
WO2013161701A1 (en) * 2012-04-26 2013-10-31 株式会社 フジミインコーポレーテッド Method for manufacturing polishing composition
JP2015155139A (en) * 2014-01-20 2015-08-27 信越化学工業株式会社 Manufacturing method of synthetic quartz glass substrate
JP2017155242A (en) * 2013-04-02 2017-09-07 信越化学工業株式会社 Colloidal silica polishing agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080352A (en) * 1998-06-11 2000-03-21 Allied Signal Inc Aqueous sol of metal oxide as slurry for polishing low dielectric material
JP2001323254A (en) * 2000-05-12 2001-11-22 Kao Corp Polishing liquid composition
JP2002180034A (en) * 2000-12-12 2002-06-26 Showa Denko Kk Abrasive slurry and abrasive fine powder
JP2004168639A (en) * 2002-10-28 2004-06-17 Nissan Chem Ind Ltd Cerium oxide particle, and production method by humidifying firing
JP2006007399A (en) * 2004-06-29 2006-01-12 Kao Corp Method for increasing polishing speed
WO2013161701A1 (en) * 2012-04-26 2013-10-31 株式会社 フジミインコーポレーテッド Method for manufacturing polishing composition
JP2017155242A (en) * 2013-04-02 2017-09-07 信越化学工業株式会社 Colloidal silica polishing agent
JP2015155139A (en) * 2014-01-20 2015-08-27 信越化学工業株式会社 Manufacturing method of synthetic quartz glass substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411498B2 (en) 2020-05-01 2024-01-11 花王株式会社 polishing liquid composition
KR20220043424A (en) * 2020-09-29 2022-04-05 에스케이씨솔믹스 주식회사 Polishing pad, manufacturing method thereof and preparing method of semiconductor device using the same
KR102421888B1 (en) 2020-09-29 2022-07-15 에스케이씨솔믹스 주식회사 Polishing pad, manufacturing method thereof and preparing method of semiconductor device using the same

Also Published As

Publication number Publication date
JP7008564B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
TW531555B (en) Cerium oxide slurry for polishing, process for preparing the slurry, and process for polishing with the slurry
JP4231632B2 (en) Polishing liquid composition
JP4781693B2 (en) Method for reducing nano scratch on magnetic disk substrate
JP6352060B2 (en) Polishing liquid composition for polishing silicon oxide film
US20050208883A1 (en) Polishing composition
US20050274080A1 (en) Polishing composition
JP4863524B2 (en) Chemical mechanical polishing slurry composition for polishing polycrystalline silicon film and method for producing the same
JP2016127139A (en) Polishing particles for polishing silicon oxide film
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP3841873B2 (en) Polishing abrasive grains and polishing composition
JP4027929B2 (en) Polishing liquid composition for semiconductor substrate
JP2003059877A (en) Polishing composition and polishing method using the same
JP7008564B2 (en) Abrasive liquid composition for synthetic quartz glass substrate
JP4414292B2 (en) Polishing speed improvement method
JP4214093B2 (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2007301721A (en) Polishing liquid composition
JPH10106988A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10154673A (en) Cerium oxide abrasive material and substrate polishing method
JP4955253B2 (en) Polishing composition for polishing device wafer edge, method for producing the same, and polishing method
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10172934A (en) Composition for polishing
JP2003158101A (en) Cmp abrasive and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111