JP2019174124A - Delayed fracture property evaluation method of high strength steel plate - Google Patents

Delayed fracture property evaluation method of high strength steel plate Download PDF

Info

Publication number
JP2019174124A
JP2019174124A JP2018058955A JP2018058955A JP2019174124A JP 2019174124 A JP2019174124 A JP 2019174124A JP 2018058955 A JP2018058955 A JP 2018058955A JP 2018058955 A JP2018058955 A JP 2018058955A JP 2019174124 A JP2019174124 A JP 2019174124A
Authority
JP
Japan
Prior art keywords
test piece
delayed fracture
steel sheet
tensile
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018058955A
Other languages
Japanese (ja)
Other versions
JP6835023B2 (en
Inventor
新宮 豊久
Toyohisa Shingu
豊久 新宮
隼佑 飛田
Shunsuke Tobita
隼佑 飛田
雄司 山▲崎▼
Yuji Yamazaki
雄司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018058955A priority Critical patent/JP6835023B2/en
Publication of JP2019174124A publication Critical patent/JP2019174124A/en
Application granted granted Critical
Publication of JP6835023B2 publication Critical patent/JP6835023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To evaluate a delayed fracture property to be generated in a material end part of a flange part or the like when press-working a high strength steel plate.SOLUTION: Deep drawing by a metallic mold having a punch 10 with a regular polygonal shape cross section is performed in a test piece 1 of a high strength steel plate with a regular polygonal shape having a number of angles being equal to or more than those of a regular tetragon. Then, the molded test piece 1 is placed under a hydrogen penetration environment (hydrogen penetration atmosphere), so as to evaluate a delayed fracture property of a high strength steel plate on the basis of a crack formation state in the test piece 1. In this case, relation between a molding height H and a draw ratio δ (a length of a diagonal of the test piece 1/a length of a diagonal of the punch 10) and the maximum tensile residual stress to be generated in an end part of the test piece 1 is obtained, so as to test an appropriate deep drawing working condition on the basis of the obtained relation.SELECTED DRAWING: Figure 1

Description

本発明は、製品形状にプレス成形される高張力鋼板の遅れ破壊特性の評価方法に関する技術である。特に、自動車のセンターピラーやAピラーロアなどの、プレス成形された車体構造部材におけるフランジ端部などにおける遅れ破壊特性の評価方法に好適な技術である。   The present invention is a technique related to a method for evaluating delayed fracture characteristics of a high-tensile steel sheet press-formed into a product shape. In particular, it is a technique suitable for a method for evaluating delayed fracture characteristics at a flange end portion of a press-formed vehicle body structural member such as an automobile center pillar or A pillar lower.

近年、CO排出量などの環境規制の厳格化を受け、自動車は燃費向上を目的とした車体の軽量化が求められている。同時に、衝突時に人や車にダメージが少ない、安全性の高い車体が求められている。このニーズに対して、車体構造部材では1GPa以上の引張強度を持つ高張力鋼板の適用が進んでいる。
自動車の車体構造部材は、一般にプレス成形によって製造されるが、例えば引張強度で980MPaを超える高強度の部材では、プレス成形後の残留応力と使用中の環境から侵入する水素に起因した遅れ破壊が懸念される。そのため、高張力鋼板を上述のような車体構造部材として適用するためには、その高張力鋼板が遅れ破壊特性に優れていることの評価が必要となる。
In recent years, in response to stricter environmental regulations such as CO 2 emissions, automobiles are required to be lighter in weight to improve fuel efficiency. At the same time, there is a need for a highly safe car body that causes less damage to people and vehicles in the event of a collision. In response to this need, high-strength steel sheets having a tensile strength of 1 GPa or more are being applied to body structural members.
Automobile body structural members are generally manufactured by press molding. For example, in a high-strength member having a tensile strength exceeding 980 MPa, delayed fracture due to residual stress after press molding and hydrogen entering from the environment in use is caused. Concerned. Therefore, in order to apply a high-tensile steel plate as a vehicle body structural member as described above, it is necessary to evaluate that the high-tensile steel plate is excellent in delayed fracture characteristics.

従来から高強度化の検討が進められてきたボルトやPC鋼棒、ラインパイプなどに使用される鋼材の遅れ破壊特性は、非特許文献1に述べられているように、公的規格を含む種々の手法が確立されている。しかし、薄鋼板、特に高張力鋼板の遅れ破壊特性評価の方法については、いまだ確立されていないのが現状である。
その理由としては、薄鋼板をプレス加工によって種々の形状に成形して使用することが一因として挙げられる。すなわち、薄鋼板は、プレス加工によるひずみや部品として使用される際の組み付けなどによる残留応力など、ボルト部材などの使用条件下では考慮しなくても良い遅れ破壊特性に影響を及ぼす因子がある。従って、ボルト部材などの遅れ破壊特性評価方法を薄鋼板にそのまま適用しても、十分に正しい評価が行えるとは言えない。
The delayed fracture characteristics of steel materials used for bolts, PC steel rods, line pipes, etc., for which high strength has been studied, are various, including public standards, as described in Non-Patent Document 1. A method has been established. However, the method for evaluating delayed fracture characteristics of thin steel sheets, particularly high-tensile steel sheets, has not yet been established.
One reason for this is that thin steel plates are formed into various shapes by press working. That is, the thin steel sheet has factors that affect delayed fracture characteristics that do not need to be taken into account under use conditions such as bolt members, such as strain due to press working and residual stress due to assembly when used as a part. Therefore, even if the delayed fracture characteristic evaluation method for bolt members or the like is applied to a thin steel plate as it is, it cannot be said that a sufficiently correct evaluation can be performed.

このように、より正確に薄鋼板の遅れ破壊特性を評価するためには、加工によるひずみの影響や組み付けなどによって発生が予想される残留応力の影響、さらには使用環境からの材料への水素侵入量の影響等を適切に反映できる試験方法が必要となる。
このような高張力鋼板の遅れ破壊特性評価方法として、特許文献1では、高張力鋼板をU字形状に曲げ加工して薄鋼板にひずみを導入し、この曲げ加工後に発生するスプリングバックした鋼板をボルトで締め込むことで応力を付加した試験片を作成し、電気チャージ法によって試験片中に水素を導入し、破壊が生じるまでの時間を測定する手法を提案している。
Thus, in order to more accurately evaluate the delayed fracture characteristics of thin steel sheets, the effects of strain due to processing and the effects of residual stress expected to occur due to assembly, etc., as well as hydrogen intrusion into the material from the usage environment A test method that can appropriately reflect the effect of the amount is required.
As a method for evaluating delayed fracture characteristics of such a high-tensile steel sheet, in Patent Document 1, a high-strength steel sheet is bent into a U-shape, strain is introduced into the thin steel sheet, and a spring-backed steel sheet generated after this bending process is used. A method is proposed in which a test piece to which stress is applied by bolting is created, hydrogen is introduced into the test piece by an electric charging method, and the time until failure occurs is measured.

特許文献2では、引張強度1180MPa以上の高張力鋼板において、鋼板の伸び量の20〜80%の引張予ひずみを付与した後に、曲げ部の角度が30〜90度となるV字形状に曲げ加工した試験片を用意し、その試験片の両端部をボルトで締め付けることによって、試験片に残留応力を付加させた状態での遅れ破壊特性の評価を提案している。
さらに特許文献3では、V曲げ成形した試験片にボルトによる締め込みを行う際に、ボルト周辺のたわみによって評価したい曲げ部の応力に影響を及ぼさないように、試験片の対向する板面に面接触する傾斜面を設けた治具を提案し、車体構造部材の遅れ破壊特性の評価を行うことが記載されている。
In Patent Document 2, in a high-tensile steel sheet having a tensile strength of 1180 MPa or more, after applying a tensile pre-strain of 20 to 80% of the elongation of the steel sheet, the bending portion is bent into a V-shape with an angle of 30 to 90 degrees. Proposed evaluation of delayed fracture characteristics in a state in which residual stress is applied to the test piece by preparing the test piece and tightening both ends of the test piece with bolts.
Further, in Patent Document 3, when a V-bending test piece is tightened with a bolt, the surface of the opposing plate surface of the test piece is not affected so as not to affect the stress of the bending portion to be evaluated by the deflection around the bolt. It describes that a jig provided with a contact inclined surface is proposed, and the delayed fracture characteristics of a vehicle body structural member are evaluated.

松山晋作著、「遅れ破壊」、第1版、日刊工業新聞、1989年8月31日出版Matsuyama Atsushi, “Delayed Destruction”, 1st Edition, published by Nikkan Kogyo Shimbun, August 31, 1989

特許第3892842号公報Japanese Patent No. 3892842 特許第4646134号公報Japanese Patent No. 4646134 特開2010−107297号公報JP 2010-107297 A

上記の特許文献1および3に記載の評価方法は、曲げ加工部に発生する遅れ破壊の評価方法である。実際の部品は絞り加工で製造されることもあり、絞り加工では成形中にフランジ端部が縮み変形を受け、成形後にフランジ端部(ブランクの端部)に高い引張応力が残留する場合がある。
また、フランジ端部などのブランク端部は、通常、せん断加工を受けており、せん断加工は材料に大きな塑性ひずみ(ダメージ)が入る。そのためフランジ端部に引張残留応力が発生する箇所は遅れ破壊の危険性が非常に高く、この遅れ破壊の形態は曲げ部の評価方法である上記の特許文献1から3では評価することができない。
The evaluation methods described in Patent Documents 1 and 3 are evaluation methods for delayed fracture occurring in a bent portion. Actual parts may be manufactured by drawing. In drawing, the flange end may undergo shrinkage and deformation during molding, and high tensile stress may remain at the flange end (blank end) after molding. .
Also, blank ends such as flange ends are usually subjected to a shearing process, and the shearing process causes a large plastic strain (damage) in the material. Therefore, the location where the tensile residual stress is generated at the flange end portion has a very high risk of delayed fracture, and this delayed fracture mode cannot be evaluated in the above-mentioned Patent Documents 1 to 3 which are methods for evaluating a bent portion.

本発明は、上記のような点に鑑みてなされたもので、高張力鋼板を絞り加工などのプレス加工した際に、フランジ部などの材料端部に発生する遅れ破壊特性を評価することを目的としている。   The present invention has been made in view of the above points, and an object of the present invention is to evaluate delayed fracture characteristics generated at a material end portion such as a flange portion when a high-strength steel sheet is subjected to press working such as drawing. It is said.

課題を解決するために、本発明の一態様である高張力鋼板の遅れ破壊特性評価方法では、正四角形形状以上の角数の正多角形形状の高張力鋼板の試験片に対し、断面正多角形形状のパンチを備えた金型で深絞り成形を施し、成形後の試験片を水素侵入環境下(水素侵入雰囲気)に置いて当該試験片の亀裂の発生状況によって高張力鋼板の遅れ破壊性を評価し、
上記深絞り成形における、成形高さ及び絞り比(試験片の対角線長さ/パンチの対角線長さ)と、試験片端部に発生する最大引張残留応力との関係を予め求め、その求めた関係に基づき適切な深絞り加工条件を検定する。
In order to solve the problem, in the method for evaluating delayed fracture characteristics of a high-tensile steel sheet according to one aspect of the present invention, the cross-sectional regularity of a test piece of a regular polygonal high-tensile steel sheet having a number of corners equal to or greater than a regular tetragonal shape is provided. Deep drawing is performed with a die equipped with a square punch, and the molded specimen is placed in a hydrogen intrusion environment (hydrogen intrusion atmosphere). Evaluate and
In the above deep drawing, the relationship between the forming height and drawing ratio (diagonal length of the test piece / diagonal length of the punch) and the maximum tensile residual stress generated at the end of the test piece is obtained in advance, and the obtained relationship Appropriate deep drawing processing conditions are verified based on this.

本発明の一態様によれば、正多角形形状の試験片を適正な条件で深絞り加工することにより、高張力鋼板のフランジ部等、ブランク端部(プレス成形品端部)での遅れ破壊特性を精度よく評価することが可能となる。
ここで、せん断加工によって試験片を所定の輪郭形状に成形した場合には、上記最大引張残留応力として、フランジ端部における稜線方向(周方向)に発生する最大引張残留応力を採用すればよい。
なお、本発明の一態様によれば、深絞り加工によって試験片端部(フランジ部)に残留応力を付与するが、対象とする製品形状へのプレス成形は、深絞り加工に限定されるものではない。本発明では、試験片端部(フランジ部)に目的の残留応力を付与する手段として深絞り加工を採用している。
According to one aspect of the present invention, delayed fracture at a blank edge (press-molded product edge), such as a flange portion of a high-tensile steel plate, by deep drawing a regular polygonal test piece under appropriate conditions. It becomes possible to accurately evaluate the characteristics.
Here, when the test piece is formed into a predetermined contour shape by shearing, the maximum tensile residual stress generated in the ridge line direction (circumferential direction) at the flange end may be adopted as the maximum tensile residual stress.
In addition, according to one aspect of the present invention, residual stress is applied to the end portion (flange portion) of the test piece by deep drawing, but press forming to the target product shape is not limited to deep drawing. Absent. In the present invention, deep drawing is employed as means for imparting a desired residual stress to the end portion (flange portion) of the test piece.

遅れ破壊特性評価の工程を示す図である。It is a figure which shows the process of delayed fracture characteristic evaluation. 深絞り成形用の試験片の一例を示す図である。It is a figure which shows an example of the test piece for deep drawing. 本発明に基づく実施形態に係るパンチを説明する図である。It is a figure explaining the punch which concerns on embodiment based on this invention. 深絞り成形の金型配置や成形を説明する模式図である。It is a schematic diagram explaining the die arrangement | positioning and shaping | molding of deep drawing. 試験片とパンチとの配置関係をプレス方向から見た図である。It is the figure which looked at the arrangement | positioning relationship between a test piece and a punch from the press direction. 工程Cの一例を示す図であり、(a)は離型後の試験片を、(b)が試験片を浸漬した状態を示す図である。It is a figure which shows an example of the process C, (a) is a figure which shows the state which immersed the test piece after mold release, and (b) immersed the test piece. 深絞り成形条件と最大引張残留応力の関係をCAE解析により求めた例である。It is the example which calculated | required the relationship between deep drawing molding conditions and the maximum tensile residual stress by CAE analysis.

次に、本発明の実施形態について図面を参照して説明する。
まず、本実施形態の前提とする、高張力鋼板の遅れ破壊特性評価方法は、図1に示すように、せん断加工による試験片作製の工程A、深絞り成形の工程B、及び水素侵入環境下設置の工程Cを有する。そして、水素侵入環境下に置かれた試験片のフランジ端部(試験片端部)における亀裂の発生状況を評価することで、高張力鋼板の遅れ破壊特性を評価する。亀裂発生状況の評価方法自体は、従来の方法と同様に評価を行い、例えば、水素侵入環境下で予め設定した以上の亀裂が発生するまでの時間で評価する。
ここで、本実施形態は、高張力鋼板が、引張強度が980MPa以上の高張力鋼板の場合に特に好適である。
Next, embodiments of the present invention will be described with reference to the drawings.
First, as shown in FIG. 1, a method for evaluating delayed fracture characteristics of a high-strength steel sheet, which is a premise of the present embodiment, is a test piece preparation process A by shearing, a deep drawing process B, and a hydrogen intrusion environment. It has installation process C. Then, the delayed fracture characteristics of the high-tensile steel sheet are evaluated by evaluating the occurrence of cracks at the flange end (test piece end) of the test piece placed in a hydrogen intrusion environment. The evaluation method of the crack occurrence status itself is evaluated in the same manner as the conventional method, for example, by the time until cracks more than preset in the hydrogen intrusion environment occur.
Here, this embodiment is particularly suitable when the high-tensile steel plate is a high-tensile steel plate having a tensile strength of 980 MPa or more.

<試験片作製の工程A>
工程Aは、作製する製品と同じ材料及び厚さからなる鋼板、すなわち製品に使用する鋼板と同じ鋼板を用意し、その鋼板をせん断加工して、所定形状の試験片1を作製する工程である。試験片1の所定形状は、外周の輪郭形状が、辺(稜線)が4本以上の正多角形形状、つまり正四角形形状以上の角数の正多角形形状に設定する。
試験片1の形状の例を図2に示す。図2(a)は正八角形形状の試験片1の場合を例示し、図2(b)は正方形形状の試験片1の場合を例示している。
角数(稜線)を4以上としているのは、角数が3の正三角形形状の試験片1を採用した場合、深絞り加工時のしわ抑えが不十分となる領域が発生しやすいためである。フランジ部にしわが発生すると、本発明の評価に適さない場合が多い。
せん断加工によって試験片1を作製した場合には、製品形状に成形される材料端部にせん断加工で負荷される塑性ひずみ(ダメージ)と同様な塑性ひずみを、試験片1の端部に付与出来る。
<Process A for Specimen Production>
Step A is a step of preparing a test piece 1 having a predetermined shape by preparing a steel plate made of the same material and thickness as the product to be produced, that is, the same steel plate as that used for the product, and shearing the steel plate. . The predetermined shape of the test piece 1 is set such that the outer peripheral contour shape is a regular polygon shape having four or more sides (ridge lines), that is, a regular polygon shape having a number of corners greater than or equal to a regular square shape.
An example of the shape of the test piece 1 is shown in FIG. 2A illustrates the case of the regular octagonal test piece 1, and FIG. 2B illustrates the case of the square test piece 1.
The reason why the number of corners (ridgeline) is 4 or more is that when the equilateral triangle-shaped test piece 1 having three corners is adopted, a region where wrinkle suppression at the time of deep drawing is insufficient is likely to occur. . If wrinkles occur in the flange portion, it is often not suitable for the evaluation of the present invention.
When the test piece 1 is produced by shearing, the end of the test piece 1 can be imparted with plastic strain similar to the plastic strain (damage) applied to the end of the material molded into the product shape by shearing. .

<深絞り成形の工程B>
工程Bは、工程Aで作製した試験片1に対し、断面正多角形状のパンチ10、ダイ11(上型)及びブランクホルダー12(シワ押さえ)を備えた金型(図4参照)によって深絞り成形を施す工程である。金型は、一般的な深絞り成形で使用される金型を使用すれば良く、パンチ10は、例えば図3のような断面正多角形状(図3は正12角形形状の例である)の柱形状となっている。ここで、ブランクホルダー12に、材料の流入を制御するビードを付与しても良いが、本発明では材料端部(フランジ部1a)に応力を発生させることが重要なため、ブランクホルダー12にビードを付与しない方が好ましい。
<Deep-drawing process B>
Step B is a deep drawing of the test piece 1 produced in Step A by a die (see FIG. 4) provided with a punch 10 having a regular polygonal cross section, a die 11 (upper die), and a blank holder 12 (wrinkle presser). This is a process of forming. The die may be a die used in general deep drawing, and the punch 10 has, for example, a regular polygonal cross section as shown in FIG. 3 (FIG. 3 is an example of a regular dodecagon). It has a pillar shape. Here, the blank holder 12 may be provided with a bead for controlling the inflow of the material. However, in the present invention, it is important to generate a stress at the material end (flange portion 1a). It is preferable not to give.

ここで、試験片1の正多角形形状の角数と、パンチ10の正多角形状の角数を一致させる必要はないが、パンチ10の正多角形状の角数は、好ましくは試験片1の正多角形形状の角数以上、より好ましくは試験片1の正多角形状の角数より大きいことである。
深絞り成形の工程Bを、模式図である図4を参照して説明する。深絞り加工は、一般的な深絞り成形を採用すればよい。まず図4(a)のように、試験片1の外周であるフランジ部1aを、上型であるダイ11とブランクホルダー12とで、所定のシワ押さえ力で挟持する。その状態で、パンチ10をプレス方向に移動させて、図4(b)のように、試験片1を所定の成形高さHに深絞りする。
Here, it is not necessary to match the number of corners of the regular polygon of the test piece 1 and the number of corners of the regular polygon of the punch 10, but the number of corners of the regular polygon of the punch 10 is preferably that of the specimen 1. More than the number of corners of the regular polygonal shape, more preferably larger than the number of corners of the regular polygonal shape of the test piece 1.
The deep drawing process B will be described with reference to FIG. For the deep drawing process, general deep drawing may be employed. First, as shown in FIG. 4A, the flange portion 1 a that is the outer periphery of the test piece 1 is sandwiched between the upper die 11 and the blank holder 12 with a predetermined wrinkle pressing force. In this state, the punch 10 is moved in the pressing direction, and the test piece 1 is deep-drawn to a predetermined molding height H as shown in FIG.

成形はフランジ部1aを残した状態で終了し、成形高さHを調整してフランジ端部に発生する応力を調整する。すなわち、所定のシワ押さえ力は、深絞り成形中にフランジ部1aにシワが発生しないシワ押さえ力に設定する。
また、パンチ肩で割れが発生すると、フランジ端部の応力状態に変化を及ぼす可能性があるため、材料の延性に応じて割れが発生しないパンチ10の肩Rを選定する。
また、図3及び図4では、断面正多角形状のパンチ10であって、縦壁10aが直壁(プレス方向に対する角度が0度)である場合を例示しているが、縦壁10aが斜壁であっても問題ない。縦壁10aに対し、鉛直方向(プレス方向)から角度(傾斜)を付けるほど、成形高さHを増加させることが難しくなるため、パンチ10の縦壁10aの傾斜角は、プレス方向に対して0度(直壁)以上45度以下が好ましい。
Molding ends with the flange portion 1a left, and the molding height H is adjusted to adjust the stress generated at the flange end. That is, the predetermined wrinkle pressing force is set to a wrinkle pressing force that does not generate wrinkles in the flange portion 1a during deep drawing.
Further, if a crack occurs in the punch shoulder, there is a possibility of changing the stress state at the flange end, and therefore the shoulder R of the punch 10 that does not generate a crack is selected according to the ductility of the material.
3 and 4 exemplify the case where the punch 10 has a regular polygonal cross section, and the vertical wall 10a is a straight wall (the angle with respect to the pressing direction is 0 degree), the vertical wall 10a is oblique. There is no problem even if it is a wall. As the vertical wall 10a is angled (inclined) from the vertical direction (press direction), it becomes more difficult to increase the forming height H. Therefore, the inclination angle of the vertical wall 10a of the punch 10 is relative to the press direction. It is preferably 0 degree (straight wall) or more and 45 degrees or less.

また、試験片1の全周にわたり均等な成形状態に近づけるために、図5に示すように、試験片1の中心とパンチ10の中心とを合わせるように、試験片1を金型にセッティングして成形を実施する。
ここで、成形後のフランジ端部に発生する引張応力は、試験片1の対角線長さD1とパンチ10の対角線長さD0との比(D1/D0)である絞り比δによっても変化させることが可能である。絞り比δが小さいと成形終了時にフランジを残すことが困難となるおそれがあり、絞り比δが大きいと材料が流入しないため成形直後にパンチ肩で割れが発生する。よって、絞り比δは1.2以上2.0以下の範囲が好ましい。
In addition, in order to approach a uniform molding state over the entire circumference of the test piece 1, the test piece 1 is set in the mold so that the center of the test piece 1 and the center of the punch 10 are aligned as shown in FIG. To perform molding.
Here, the tensile stress generated at the flange end after molding is also changed by the drawing ratio δ which is the ratio (D1 / D0) of the diagonal length D1 of the test piece 1 and the diagonal length D0 of the punch 10. Is possible. If the drawing ratio δ is small, it may be difficult to leave the flange at the end of molding, and if the drawing ratio δ is large, the material does not flow in, so a crack occurs at the punch shoulder immediately after molding. Therefore, the aperture ratio δ is preferably in the range of 1.2 to 2.0.

<水素侵入環境下設置の工程C>
工程Cでは、工程Bで深絞り成形し離型した試験片1を水素侵入環境下(水素侵入雰囲気)に設置して、当該試験片1のフランジ端部における亀裂の発生状況(例えば発生までの時間)によって、上記高張力鋼板の遅れ破壊性を評価する。
試験片1の水素侵入環境下への設置は、例えば、図6(b)のように、塩酸やNHSCN水溶液などの酸液20を収容した浴槽21内に、成形後の試験片1(図6(a)参照)を浸漬することで実施する。
ここで、本実施形態における高張力鋼板の遅れ破壊特性評価方法では、上記の各工程A〜Cに加えて、必要なフランジ端部の最大引張応力を付与させることができる深絞り成形時の絞り比δや成形高さHを決定する成形条件決定工程Dを有する(図1参照)。
次に、その成形条件決定工程Dについて説明する。
<Process C in a hydrogen intrusion environment>
In step C, the test piece 1 that has been deep-drawn and released in step B is placed in a hydrogen intrusion environment (hydrogen intrusion atmosphere), and cracks occur at the flange end of the test piece 1 (for example, up to the occurrence). The delayed fracture property of the high-tensile steel sheet is evaluated according to time.
For example, as shown in FIG. 6B, the test piece 1 is placed in a hydrogen intrusion environment in a bathtub 21 containing an acid solution 20 such as hydrochloric acid or an NH 4 SCN aqueous solution, as shown in FIG. It implements by immersing FIG. 6 (a).
Here, in the method for evaluating delayed fracture characteristics of a high-tensile steel plate according to the present embodiment, in addition to the above-described steps A to C, drawing at the time of deep drawing that can give the required maximum tensile stress at the flange end. A molding condition determining step D for determining the ratio δ and the molding height H is included (see FIG. 1).
Next, the molding condition determining step D will be described.

<成形条件決定工程D>
工程Dでは、遅れ破壊用の試験片1を作製するための深絞り成形の成形条件を決定する。
遅れ破壊用の試験片1を作製するための、工程Bにおける深絞り成形の成形条件は、以下の手順で決定する。
まず、成形高さHおよび絞り比δと、金型から離型した試験片1のフランジ端部に発生する稜線方向の最大引張残留応力との関係を、使用する金型構成、深絞りした試験片1の形状、試験片1の材料に応じて予め求める。なお、金型からの離型によって、試験片1にはスプリングバックが発生する。
<Molding condition determination step D>
In step D, the molding conditions for deep drawing for producing the test piece 1 for delayed fracture are determined.
The molding conditions for deep drawing in step B for producing the test piece 1 for delayed fracture are determined by the following procedure.
First, the relationship between the molding height H and the drawing ratio δ and the maximum tensile residual stress in the ridge line direction generated at the flange end of the test piece 1 released from the die, the die configuration to be used, and the deep drawing test It calculates | requires previously according to the shape of the piece 1, and the material of the test piece 1. FIG. Note that springback occurs in the test piece 1 by releasing from the mold.

次に、必要な最大引張応力から、上記の関係を用いて深絞り成形条件を決定する。
上記の成形高さHおよび絞り比δと最大引張残留応力との関係は、例えば図7に示す関係となっている。
図7に示すような、成形高さHおよび絞り比δと最大引張残留応力との関係は、例えばコンピュータによるシミュレーション解析を用いることが出来る。
ここで、図7に示す関係は、正八角形の試験片1(図2(a)参照)と、柱状の断面正多角形状のパンチ10(図3参照)を用いて、図4に示すような金型構成で深絞り成形した際の上記関係であって、シミュレーション解析で求めた例である。このとき、パンチ10の対角線長さD0を50mmに設定し、試験片1を、引張強度1470MPa級の冷延鋼板(板厚1.4mm)から作製して、絞り比δ1.6では成形高さを8.2mm、絞り比1.8では成形高さを10.5mmに設定して、成形高さHとフランジ端部における稜線方向に発生する最大引張残留応力との関係を求めた。なお、シミュレーション解析は2次元のシェル要素を用いて実施した。
Next, the deep drawing molding conditions are determined from the necessary maximum tensile stress using the above relationship.
The relationship between the molding height H and the drawing ratio δ and the maximum tensile residual stress is, for example, the relationship shown in FIG.
As shown in FIG. 7, for example, a computer simulation analysis can be used for the relationship between the molding height H and the drawing ratio δ and the maximum tensile residual stress.
Here, the relationship shown in FIG. 7 is as shown in FIG. 4 using a regular octagonal test piece 1 (see FIG. 2 (a)) and a columnar punch 10 having a regular polygonal cross section (see FIG. 3). This is the above relationship when deep drawing is performed with a mold configuration, and is an example obtained by simulation analysis. At this time, the diagonal length D0 of the punch 10 is set to 50 mm, and the test piece 1 is made from a cold-rolled steel sheet (sheet thickness: 1.4 mm) having a tensile strength of 1470 MPa, and the forming height is as high as the drawing ratio δ1.6. Was set to 8.2 mm and the draw ratio was set to 10.5 mm, and the relationship between the molding height H and the maximum tensile residual stress generated in the ridgeline direction at the flange end was determined. The simulation analysis was performed using a two-dimensional shell element.

上記シミュレーション解析は3次元ソリッドモデルを用いても構わない。また、深絞り成形実験後の試験片1を用いて最大引張残留応力を実際に計測することで、上記関係を求めても良い。
そして、プレス加工した製品において、例えば、最大引張残留応力600MPaが必要な場合、図7の関係から、絞り比δ=1.6では成形高さH=8.2mm、絞り比δ=1.8では成形高さH=10.5mmと決定することができる。
このように成形条件決定工程Dで求めた成形条件で、上記の深絞り成形によって試験片1を成形し(工程B)、その所定の最大引張残留応力が付与された試験片1を、水素侵入環境下に置いて当該試験片1の亀裂の発生状況によって高張力鋼板の遅れ破壊性を評価する(工程C)。ここで、自動車のセンターピラーなどの車体構造部材は、素材の0.2%耐力の50%〜150%の範囲の残留応力が付加されている状態で組み付けられることが多いことから、成形条件決定工程Dにおいて、深絞り試験片1の最大引張残留応力を上記の応力範囲内に設定することで、実際の自動車部品に近い状態で遅れ破壊特性の評価を行うことができて、評価精度が向上する。
The simulation analysis may use a three-dimensional solid model. Moreover, you may obtain | require the said relationship by actually measuring the maximum tensile residual stress using the test piece 1 after a deep drawing experiment.
For example, if the maximum tensile residual stress of 600 MPa is required in the pressed product, the molding height H = 8.2 mm and the drawing ratio δ = 1.8 from the relationship shown in FIG. Then, it can be determined that the forming height H = 10.5 mm.
In this way, the test piece 1 is formed by the above-described deep drawing under the molding conditions obtained in the molding condition determination step D (step B), and the test piece 1 to which the predetermined maximum tensile residual stress is applied is hydrogen-invaded. The delayed fracture property of the high-tensile steel sheet is evaluated according to the state of occurrence of cracks in the test piece 1 under the environment (Step C). Here, body condition members such as automobile center pillars are often assembled with a residual stress in the range of 50% to 150% of the 0.2% proof stress of the material. In step D, by setting the maximum tensile residual stress of the deep-drawn test piece 1 within the above-mentioned stress range, it is possible to evaluate delayed fracture characteristics in a state close to that of an actual automobile part, thereby improving the evaluation accuracy. To do.

次に、本発明に基づく実施例について説明する。
板厚1.4mmの1470MPa級鋼板を供試材とし、一連の評価を実施した。表1に供試材の引張特性を示す。
Next, examples according to the present invention will be described.
A series of evaluations were performed using a 1470 MPa class steel plate having a thickness of 1.4 mm as a test material. Table 1 shows the tensile properties of the test materials.

この供試材を用いて、せん断加工で正八角形の試験片1を作製し、柱形状の断面正多角形状のパンチ10を用いて、図4に示すような金型構成で深絞り成形を実施した。
パンチ10の寸法(対角線長さ)D0は50mmとし、試験片1の寸法D1は90mmとし、絞り比δを1.8に設定した。図5のように、試験片1とパンチ10の中心が一致するようにして、試験片1を金型に設定して、成形高さH=15mmまで成形した。
Using this specimen, a regular octagonal test piece 1 is produced by shearing, and deep drawing is performed with a die configuration as shown in FIG. did.
The dimension (diagonal length) D0 of the punch 10 was 50 mm, the dimension D1 of the test piece 1 was 90 mm, and the drawing ratio δ was set to 1.8. As shown in FIG. 5, the test piece 1 was set as a mold so that the center of the test piece 1 and the center of the punch 10 coincided with each other, and was molded to a molding height H = 15 mm.

ここで、図7から、成形高さH=15mm時の最大引張残留応力は、0.2%耐力のほぼ100%と同じである。
図7のような成形高さHおよび絞り比δと、金型から離型した試験片1のフランジ端部に発生する稜線方向の最大引張残留応力との関係は、上述の通りシミュレーション解析により求めた。このとき、解析には有限要素法ソフトウェアLS−DYNA ver.971を用いた。
上記プレス成形で作製した試験片1の遅れ破壊特性を評価するため、水素侵入条件下で試験片1を保持した。水素を試験片1に侵入させる条件としては種々あるが、今回はpH1の塩酸に試験片1を浸漬させ、試験片1に水素が十分侵入して飽和状態となると考えられる100時間保持した。
表2に実験結果を示す。
Here, from FIG. 7, the maximum tensile residual stress at the molding height H = 15 mm is the same as almost 100% of the 0.2% proof stress.
The relationship between the molding height H and the drawing ratio δ as shown in FIG. 7 and the maximum tensile residual stress in the ridge line direction generated at the flange end of the test piece 1 released from the mold is obtained by simulation analysis as described above. It was. At this time, the finite element method software LS-DYNA ver. 971 was used.
In order to evaluate the delayed fracture characteristics of the test piece 1 produced by the press molding, the test piece 1 was held under hydrogen intrusion conditions. There are various conditions for allowing hydrogen to enter the test piece 1, but this time, the test piece 1 was immersed in hydrochloric acid having a pH of 1, and the test piece 1 was held for 100 hours, which is considered to be sufficiently saturated with hydrogen.
Table 2 shows the experimental results.

実験結果から、試験片1のフランジ部1aの端部に発生する最大残留応力が本供試材の0.2%耐力の50%である600MPa以下の条件下の評価では、遅れ破壊が発生しないが、600MPaを超える条件では遅れ破壊が発生した。
以上のことから、本発明によれば、プレス加工で製造される高張力鋼板を適用したセンターピラーやサイドシル等の自動車車体構造部材において、使用中に生じる遅れ破壊の可能性を部材の設計段階で適切に評価することが可能となり、自動車車体構造部材を効率的に設計、開発することができることが分かる。
From the experimental results, delayed fracture does not occur in the evaluation under the condition of 600 MPa or less where the maximum residual stress generated at the end of the flange portion 1a of the test piece 1 is 50% of the 0.2% proof stress of the specimen. However, delayed fracture occurred under conditions exceeding 600 MPa.
From the above, according to the present invention, in automobile body structure members such as center pillars and side sills, to which high-tensile steel plates manufactured by press working are applied, the possibility of delayed fracture that occurs during use is determined at the member design stage. It becomes possible to evaluate appropriately, and it turns out that a vehicle body structural member can be designed and developed efficiently.

1 試験片
1a フランジ部(試験片端部)
10 パンチ
11 ダイ
12 ブランクホルダー
20 酸液
21 浴槽
A 試験片作製の工程
B 深絞り成形の工程
C 水素侵入環境下設置の工程
D 成形条件決定工程
H 成形高さ
δ 絞り比
1 Test piece 1a Flange (test piece end)
10 Punch 11 Die 12 Blank holder 20 Acid solution 21 Bathtub A Test piece production process B Deep drawing process C Installation process under hydrogen intrusion environment D Molding condition determination process H Molding height δ Drawing ratio

Claims (6)

正四角形形状以上の角数の正多角形形状の高張力鋼板からなる試験片に対し、断面正多角形形状のパンチ、ダイ及びブランクホルダーを備えた金型によって深絞り成形を施し、成形後の上記試験片を水素侵入環境下に設置することによる当該試験片のフランジ部に発生する亀裂発生状況によって上記高張力鋼板の遅れ破壊性を評価し、
上記深絞り成形における、成形高さ及び絞り比(試験片の対角線長さ/パンチの対角線長さ)と、上記成形後の試験片のフランジ部に発生する最大引張残留応力との関係を求め、その求めた関係に基づき、上記高張力鋼板と同じ材料及び厚さからなる鋼板を目的とする製品形状に成形することでその製品形状の材料端部に発生する残留応力の範囲内に、上記最大引張残留応力が存在する上記成形高さ及び絞り比の範囲を求め、
上記求めた深絞り成形の成形高さ及び絞り比の範囲内となるように上記深絞り成形条件を設定して、上記遅れ破壊性の評価を実施することを特徴とする高張力鋼板の遅れ破壊特性評価方法。
A test piece made of a high-tensile steel plate with a regular polygon shape with a number of squares or more is subjected to deep drawing with a die equipped with a punch, die and blank holder with a regular polygonal cross section. By evaluating the delayed fracture property of the high-tensile steel sheet according to the state of cracks generated in the flange portion of the test piece by installing the test piece in a hydrogen intrusion environment,
In the deep drawing, the relationship between the forming height and the drawing ratio (diagonal length of the test piece / diagonal length of the punch) and the maximum tensile residual stress generated in the flange portion of the test piece after the forming is obtained. Based on the obtained relationship, the maximum stress within the range of residual stress generated at the material end of the product shape by forming a steel plate made of the same material and thickness as the high-tensile steel plate into the target product shape. Obtain the range of the above molding height and drawing ratio where tensile residual stress exists,
Delayed fracture of a high-tensile steel sheet, characterized in that the above-mentioned deep drawing forming conditions are set so as to be within the range of the obtained deep drawing forming height and drawing ratio, and the delayed fracture property is evaluated. Characterization method.
正四角形形状以上の角数の正多角形形状の高張力鋼板からなる試験片に対し、断面正多角形形状のパンチ、ダイ及びブランクホルダーを備えた金型によって深絞り成形を施し、成形後の上記試験片を水素侵入環境下に設置することによる当該試験片のフランジ部に発生する亀裂発生状況によって上記高張力鋼板の遅れ破壊性を評価し、
上記深絞り成形における、成形高さ及び絞り比(試験片の対角線長さ/パンチの対角線長さ)と、上記試験片のフランジ部に発生する最大引張残留応力との関係から、上記最大引張残留応力が上記高張力鋼板の0.2%耐力の50%以上150%以下の範囲に収まる上記最大引張残留応力が存在する上記成形高さ及び絞り比の範囲を求め、
上記求めた深絞り成形の成形高さ及び絞り比の範囲内となるように、上記深絞り成形条件を設定して、上記遅れ破壊性の評価を実施することを特徴とする高張力鋼板の遅れ破壊特性評価方法。
A test piece made of a high-tensile steel plate with a regular polygon shape with a number of squares or more is subjected to deep drawing with a die equipped with a punch, die and blank holder with a regular polygonal cross section. By evaluating the delayed fracture property of the high-tensile steel sheet according to the state of cracks generated in the flange portion of the test piece by installing the test piece in a hydrogen intrusion environment,
From the relationship between forming height and drawing ratio (diagonal length of test piece / diagonal length of punch) and maximum tensile residual stress generated in the flange portion of the test piece in deep drawing, the maximum tensile residual is obtained. The range of the forming height and the drawing ratio in which the maximum tensile residual stress exists within which the stress falls within the range of 50% to 150% of the 0.2% proof stress of the high-tensile steel sheet,
The delay of the high-tensile steel sheet is characterized in that the deep-drawing conditions are set and the delayed fracture property is evaluated so as to be within the range of the forming height and drawing ratio of the deep drawing formed above. Destructive property evaluation method.
上記最大引張残留応力と上記成形高さ及び絞り比との関係は、コンピュータによるシミュレーション解析によって求めることを特徴とする請求項1又は請求項2に記載した高張力鋼板の遅れ破壊特性評価方法。   The method for evaluating delayed fracture characteristics of a high-tensile steel sheet according to claim 1 or 2, wherein the relationship between the maximum tensile residual stress, the forming height, and the drawing ratio is obtained by simulation analysis using a computer. 上記ブランクホルダーによる試験片端部へのしわ抑え力は、上記深絞り成形中にフランジ部にしわが発生しないしわ抑え力に設定することを特徴とする請求項1〜請求項3のいずれか1項に記載した高張力鋼板の遅れ破壊特性評価方法。   The wrinkle restraining force to the test piece end by the blank holder is set to a wrinkle restraining force that does not generate wrinkles in the flange portion during the deep drawing. Described method for evaluating delayed fracture characteristics of high strength steel sheets. 上記試験片は、高張力鋼板をせん断加工によって目的の形状に成形することを特徴とする請求項1〜請求項4のいずれか1項に記載した高張力鋼板の遅れ破壊特性評価方法。   The method for evaluating delayed fracture characteristics of a high-strength steel sheet according to any one of claims 1 to 4, wherein the test piece is formed by subjecting a high-strength steel sheet to a target shape by shearing. 上記高張力鋼板の引張強度が980MPa以上であることを特徴とする請求項1〜請求項5のいずれか1項に記載した高張力鋼板の遅れ破壊特性評価方法。   The tensile strength of the high-tensile steel sheet is 980 MPa or more, The delayed fracture property evaluation method for a high-tensile steel sheet according to any one of claims 1 to 5.
JP2018058955A 2018-03-26 2018-03-26 Method for evaluating delayed fracture characteristics of high-strength steel sheets Active JP6835023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058955A JP6835023B2 (en) 2018-03-26 2018-03-26 Method for evaluating delayed fracture characteristics of high-strength steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058955A JP6835023B2 (en) 2018-03-26 2018-03-26 Method for evaluating delayed fracture characteristics of high-strength steel sheets

Publications (2)

Publication Number Publication Date
JP2019174124A true JP2019174124A (en) 2019-10-10
JP6835023B2 JP6835023B2 (en) 2021-02-24

Family

ID=68166702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058955A Active JP6835023B2 (en) 2018-03-26 2018-03-26 Method for evaluating delayed fracture characteristics of high-strength steel sheets

Country Status (1)

Country Link
JP (1) JP6835023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077857A (en) * 2019-12-17 2021-06-28 주식회사 신영 Shear test apparatus of high strength steel formed parts
JP2022014784A (en) * 2020-07-07 2022-01-20 Jfeスチール株式会社 Method for manufacturing test piece and method for evaluating delayed fracture characteristics of high tensile strength steel plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090519A (en) * 1973-12-13 1975-07-19
JPH05281133A (en) * 1992-04-02 1993-10-29 Nippon Steel Corp Method for evaluating environmental embrittlement of metal material
JP2004324213A (en) * 2003-04-24 2004-11-18 Matsushita Electric Ind Co Ltd Heating panel for snow melting device
JP2004325213A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Characteristic analysis method of structure including press formed metal component, characteristic analysis program, and storage medium for recording program
JP2005014002A (en) * 2003-06-23 2005-01-20 Kobe Steel Ltd Hot-drawing method of steel plate
US20050268685A1 (en) * 2002-10-24 2005-12-08 Pieter Jan Bolt Method and apparatus for reducing wrinkle formation in deep drawing
JP2011033600A (en) * 2009-08-06 2011-02-17 Kobe Steel Ltd Method for evaluating resistance to delayed fracture of steel plate molding
JP6610607B2 (en) * 2017-04-25 2019-11-27 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090519A (en) * 1973-12-13 1975-07-19
JPH05281133A (en) * 1992-04-02 1993-10-29 Nippon Steel Corp Method for evaluating environmental embrittlement of metal material
US20050268685A1 (en) * 2002-10-24 2005-12-08 Pieter Jan Bolt Method and apparatus for reducing wrinkle formation in deep drawing
JP2004324213A (en) * 2003-04-24 2004-11-18 Matsushita Electric Ind Co Ltd Heating panel for snow melting device
JP2004325213A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Characteristic analysis method of structure including press formed metal component, characteristic analysis program, and storage medium for recording program
JP2005014002A (en) * 2003-06-23 2005-01-20 Kobe Steel Ltd Hot-drawing method of steel plate
JP2011033600A (en) * 2009-08-06 2011-02-17 Kobe Steel Ltd Method for evaluating resistance to delayed fracture of steel plate molding
JP6610607B2 (en) * 2017-04-25 2019-11-27 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077857A (en) * 2019-12-17 2021-06-28 주식회사 신영 Shear test apparatus of high strength steel formed parts
KR102283901B1 (en) 2019-12-17 2021-08-03 주식회사 신영 Shear test apparatus of high strength steel formed parts
JP2022014784A (en) * 2020-07-07 2022-01-20 Jfeスチール株式会社 Method for manufacturing test piece and method for evaluating delayed fracture characteristics of high tensile strength steel plate
JP7318602B2 (en) 2020-07-07 2023-08-01 Jfeスチール株式会社 METHOD FOR MANUFACTURE OF TEST SPECIMEN AND METHOD FOR EVALUATION OF DELAYED FRACTURE CHARACTERISTICS OF HIGH-STRENGTH STEEL STEEL

Also Published As

Publication number Publication date
JP6835023B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6610607B2 (en) Method for evaluating delayed fracture characteristics of high strength steel sheets
CN111163875B (en) Deformation limit evaluation method, fracture prediction method, and press die design method
JP6614197B2 (en) Method for evaluating delayed fracture characteristics of high strength steel sheets
CN110997172B (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting crack, and method for designing press die
JP6835023B2 (en) Method for evaluating delayed fracture characteristics of high-strength steel sheets
JP2014085250A (en) Collision performance evaluation method of compression bent part
JP7004126B1 (en) Delayed rupture characterization method and program
JP6380423B2 (en) Method for evaluating delayed fracture characteristics of high strength steel sheets
CN107206454B (en) The manufacturing method and manufacturing equipment of manufacturing press-molded products and the manufacturing press-molded products column
JP7327313B2 (en) Method for evaluating delayed fracture characteristics of metal plate, and method for manufacturing pressed parts
JP2015036147A (en) Punch for burring processing and burring processing method
JP6784346B1 (en) Manufacturing method of pressed parts
JP2010107297A (en) Method for evaluating delayed fracture characteristic of steel sheet and stress application jig
JP7318602B2 (en) METHOD FOR MANUFACTURE OF TEST SPECIMEN AND METHOD FOR EVALUATION OF DELAYED FRACTURE CHARACTERISTICS OF HIGH-STRENGTH STEEL STEEL
JP5900751B2 (en) Evaluation method and prediction method of bending inner crack
Said et al. Analysis of springback effects in deep drawing processes: simulation and experimental studies
JP7452520B2 (en) Press molding crack determination method, press molding crack determination device, press molding crack determination program, and press molding crack suppression method
Park et al. Design of the trimming process of an Al6061 alloy bolt head using finite element analysis and the taguchi method
KR102641979B1 (en) Manufacturing method of center pipe for battery pack case
WO2022118497A1 (en) Delayed fracture characteristic evaluation method and program
JP2023044079A (en) Delayed Fracture Evaluation Method
López et al. Formability of dual-phase steels in deep drawing of rectangular parts: Influence of blank thickness and die radius
JP2023049072A (en) Shape change prediction method of press formed good
CN117897239A (en) Method for improving delayed fracture characteristics of metal plate, method for producing blank, method for producing press-formed article, and press-formed article
CN117251933A (en) Method and system for evaluating bending performance of longitudinal shearing girder plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6835023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250