JP2019173143A - Method of producing manganese raw material and method of producing manganese-containing steel - Google Patents

Method of producing manganese raw material and method of producing manganese-containing steel

Info

Publication number
JP2019173143A
JP2019173143A JP2018065704A JP2018065704A JP2019173143A JP 2019173143 A JP2019173143 A JP 2019173143A JP 2018065704 A JP2018065704 A JP 2018065704A JP 2018065704 A JP2018065704 A JP 2018065704A JP 2019173143 A JP2019173143 A JP 2019173143A
Authority
JP
Japan
Prior art keywords
manganese
raw material
manganese oxide
pulverized
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018065704A
Other languages
Japanese (ja)
Other versions
JP6848920B2 (en
Inventor
信彦 小田
Nobuhiko Oda
信彦 小田
雄太 日野
Yuta Hino
雄太 日野
勇輝 ▲高▼木
勇輝 ▲高▼木
Yuki Takagi
西名 慶晃
Yoshiaki Nishina
慶晃 西名
菊池 直樹
Naoki Kikuchi
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018065704A priority Critical patent/JP6848920B2/en
Publication of JP2019173143A publication Critical patent/JP2019173143A/en
Application granted granted Critical
Publication of JP6848920B2 publication Critical patent/JP6848920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method of producing a manganese raw material and a method of producing a manganese-containing steel capable of reducing a refining cost of manganese-containing molten iron by recovering the manganese raw material having a low impurity concentration from a manganese oxide-containing material.SOLUTION: The method of producing the manganese raw material includes a grinding step (S100) for producing, using the manganese oxide-containing material containing at least manganese, calcium, silicon and phosphorus as a raw material, a ground manganese oxide-containing material by grinding the manganese oxide-containing material, an underwater magnetic separation step (S102) for separating, by dispersing the ground manganese oxide-containing material in water and applying a magnetic field to the water containing the ground manganese oxide-containing material, into a magnetic material and a non-magnetic material, and a step (S104) for recovering the magnetic material separated at the underwater magnetic separation step as the manganese raw material.SELECTED DRAWING: Figure 1

Description

本発明は、マンガン原料の製造方法及びマンガン含有鋼の溶製方法に関する。   The present invention relates to a method for producing a manganese raw material and a method for melting a manganese-containing steel.

近年の自動車等の車体の軽量化ニーズに伴い、ハイテン材と呼ばれる高張力鋼板の需要が高まっている。このようなハイテン材では、マンガン(Mn)などの金属を添加することで高い引張強度を持たせることが一般的である。
マンガン原料として主に用いられるものとして、マンガン鉱石に代表されるマンガン酸化物含有物やフェロマンガン、金属マンガンなどが挙げられる。マンガン純分あたりのコスト(単価)は、マンガン鉱石、フェロマンガン、金属マンガンの順に低くなる。このため、マンガン原料としてマンガン鉱石に代表されるマンガン酸化物含有物を選択することで、コスト低減を図ることができる。
With recent needs for weight reduction of automobile bodies such as automobiles, demand for high-tensile steel sheets called high-tensile materials is increasing. In such a high-tensile material, it is common to give a high tensile strength by adding a metal such as manganese (Mn).
Manganese oxide-containing materials represented by manganese ores, ferromanganese, metallic manganese, and the like are mainly used as manganese raw materials. The cost (unit price) per pure manganese decreases in the order of manganese ore, ferromanganese, and metal manganese. For this reason, cost reduction can be aimed at by selecting the manganese oxide containing material represented by manganese ore as a manganese raw material.

しかし、一般的に安価なマンガン原料であるマンガン鉱石やフェロマンガンは、炭素(C)やりん(P)に代表される不純物を多く含んでおり、特にPが0.02mass%〜0.2mass%程度含まれている。このため、安価なマンガン原料を用いてマンガン含有溶銑もしくは溶鋼(合わせて「溶鉄」ともいう。)を溶製する場合、これらのマンガン原料に含まれるPがマンガン含有溶鉄へと移るため、マンガン含有溶鉄に脱りん処理を施す必要が生じる。
マンガンの含有濃度の高い溶鉄に対して、脱りん処理を施す方法としては、例えば特許文献1に記載の方法が知られている。
However, manganese ore and ferromanganese, which are generally inexpensive manganese raw materials, contain many impurities typified by carbon (C) and phosphorus (P), and in particular, P is 0.02 mass% to 0.2 mass%. Degree included. For this reason, when melting manganese-containing hot metal or molten steel (also referred to as “molten iron” together) using inexpensive manganese raw materials, P contained in these manganese raw materials moves to manganese-containing molten iron, It is necessary to dephosphorize the molten iron.
For example, a method described in Patent Document 1 is known as a method for subjecting molten iron having a high manganese concentration to a dephosphorization treatment.

特開平7−034114号公報Japanese Patent Laid-Open No. 7-034114

特許文献1に記載の方法では、BaOやBaCO、Ba(OH)、BaSO、BaCl、BaF等のBaを含有するフラックスを使用する。しかしながら、生成するBaOは日本国内では劇物に指定されており、取り扱いについては法律により規制がある。そのため、Baを含有するフラックスを用いる特許文献1の方法では、スラグ処理などに大きな課題が残る。 In the method described in Patent Document 1, a flux containing Ba such as BaO, BaCO 3 , Ba (OH) 2 , BaSO 4 , BaCl 2 , or BaF 2 is used. However, the generated BaO is designated as a deleterious substance in Japan, and its handling is regulated by law. Therefore, in the method of Patent Document 1 using a flux containing Ba, a big problem remains in slag processing and the like.

マンガン含有溶鉄を製造する際のマンガン酸化物含有物及びフェロマンガンといった安価なマンガン原料の使用可能量は、製品のP規格(Pの上限濃度)により支配されている。従って、マンガン含有量が3mass%以上と高い、高マンガン鋼を溶製する場合、マンガン原料としてはP濃度が低く高コストな金属マンガンを用いる割合を高くせざるを得なく、溶製に掛かるコストが非常に高くなることが問題であった。   The usable amount of inexpensive manganese raw materials such as manganese oxide-containing materials and ferromanganese when producing manganese-containing molten iron is governed by the P standard (the upper limit concentration of P) of the product. Therefore, when melting high manganese steel with a manganese content as high as 3 mass% or more, the proportion of using manganese manganese with low P concentration and high cost as a manganese raw material has to be increased, and the cost for melting is high. It was a problem that became very high.

そこで、本発明は、上記の課題に着目してなされたものであり、マンガン酸化物含有物から不純物濃度の低いマンガン原料を回収することで、マンガン含有溶鉄の溶製コストを低減することができる、マンガン原料の製造方法及びマンガン含有鋼の溶製方法を提供することを目的としている。   Therefore, the present invention has been made paying attention to the above problems, and by recovering a manganese raw material having a low impurity concentration from a manganese oxide-containing material, the melting cost of manganese-containing molten iron can be reduced. It aims at providing the manufacturing method of manganese raw material, and the melting method of manganese containing steel.

本発明の一態様によれば、マンガン、カルシウム、シリコン及び燐を少なくとも含むマンガン酸化物含有物を原料とし、上記マンガン酸化物含有物を粉砕することで、粉砕マンガン酸化物含有物を生成する粉砕工程と、上記粉砕マンガン酸化物含有物を水中に分散させ、上記粉砕マンガン酸化物含有物を含む液体に対し、磁場を印加することで磁着物と非磁着物とに分離する水中磁選工程と、上記水中磁選工程で分離された磁着物をマンガン原料として回収する工程と、を備えることを特徴とするマンガン原料の製造方法が提供される。
本発明の一態様によれば、マンガン含有鋼の溶製方法であって、上記のマンガン原料の製造方法によって回収されたマンガン原料を、溶銑または溶鋼に添加することで、上記溶銑または上記溶鋼のマンガン濃度を調整することを特徴とするマンガン含有鋼の溶製方法が提供される。
According to one aspect of the present invention, a pulverized manganese oxide-containing material is produced by pulverizing the manganese oxide-containing material using a manganese oxide-containing material containing at least manganese, calcium, silicon, and phosphorus as a raw material. An underwater magnetic separation process in which the pulverized manganese oxide-containing material is dispersed in water, and the liquid containing the pulverized manganese oxide-containing material is separated into a magnetic material and a non-magnetic material by applying a magnetic field; And a step of recovering the magnetic deposit separated in the submerged magnetic separation step as a manganese raw material.
According to one aspect of the present invention, a manganese-containing steel melting method, wherein the manganese raw material recovered by the above-described manganese raw material manufacturing method is added to hot metal or molten steel, thereby A method for melting manganese-containing steel, characterized by adjusting the manganese concentration, is provided.

本発明によれば、マンガン鉱石に代表されるマンガン酸化物含有物から不純物濃度の低いマンガン原料を回収することで、マンガン含有溶鉄の溶製コストを低減することができる、マンガン原料の製造方法及びマンガン含有鋼の溶製方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the manganese raw material which can reduce the melting cost of manganese containing molten iron by collect | recovering the manganese raw material with low impurity concentration from the manganese oxide containing material represented by manganese ore, and A method for melting manganese-containing steel is provided.

本発明の一実施形態に係るマンガン原料の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the manganese raw material which concerns on one Embodiment of this invention. 実施例1における、超音波による解砕処理前後の粉砕マンガン鉱石の粒度分布の測定結果を示すグラフである。It is a graph which shows the measurement result of the particle size distribution of the pulverized manganese ore before and after the crushing process by the ultrasonic wave in Example 1. 実施例3の結果を示すグラフである。10 is a graph showing the results of Example 3.

マンガン酸化物含有物の一つであるマンガン鉱石はマンガン以外の成分として主に、Ca,Si(シリコン),Mg(マグネシウム),Al(アルミニウム),Fe(鉄)並びにPの酸化物及び硫化物を含有している。ここで、マンガン酸化物とは、マンガン化合物が元素として少なくとも酸素を含有しているという意味であり、MnSiO12に代表されるケイ酸塩や、MnFeに代表されるスピネル化合物を含む。なお、マンガン鉱石に含まれる酸化物としては、ケイ酸塩及びスピネル化合物の少なくとも一方が含まれていればよい。 Manganese ore, which is one of the manganese oxide-containing materials, is mainly composed of Ca, Si (silicon), Mg (magnesium), Al (aluminum), Fe (iron), and P oxides and sulfides as components other than manganese. Contains. Here, the manganese oxide means that the manganese compound contains at least oxygen as an element. A silicate represented by Mn 7 SiO 12 or a spinel compound represented by MnFe 2 O 4 is used. Including. In addition, as an oxide contained in manganese ore, at least one of a silicate and a spinel compound should just be contained.

発明者らは、発明に先立ち、マンガン鉱石の鉱物相をXRD(X‐ray diffraction)及びEPMA(Electron Probe Micro Analyzer)を用いて調査した。その結果、Mn含有相は、非磁性体であるMnO、MnFeに代表される強磁性体のスピネル化合物(以下、「スピネル相」ともいう。)、及びMnSiO12に代表される弱磁性体のケイ酸塩(以下、「ケイ酸塩相」ともいう。)として存在することが確認された。ここで、強磁性体、弱磁性体、非磁性体とは、透磁率の大きさにより分類したものであり、ある一定の磁場強度による磁選を行った場合に磁着しやすいものから順に強磁性体、弱磁性体、非磁性体とする。一方、P含有相は、非磁性体のnCaO・Pの化合物相(以下、「nCaO・P相」ともいう。)を主成分とすることが確認された。また、P含有相は、鉱物により異なるものの大きさが最小で1μm程度であり、Mn含有相とは別の相に存在していることが確認された。 Prior to the invention, the inventors investigated the mineral phase of manganese ore using XRD (X-ray diffraction) and EPMA (Electron Probe Micro Analyzer). As a result, the Mn-containing phase is represented by MnO 2 which is a non-magnetic material, a ferromagnetic spinel compound represented by MnFe 2 O 4 (hereinafter also referred to as “spinel phase”), and Mn 7 SiO 12 . It was confirmed that it exists as a weak magnetic silicate (hereinafter also referred to as “silicate phase”). Here, the ferromagnetic material, weak magnetic material, and non-magnetic material are classified according to the magnitude of the magnetic permeability, and are ferromagnetic in order from those that are likely to be magnetized when magnetic separation is performed with a certain magnetic field strength. Body, weak magnetic material, non-magnetic material. On the other hand, it was confirmed that the P-containing phase was mainly composed of a non-magnetic nCaO · P 2 O 5 compound phase (hereinafter also referred to as “nCaO · P 2 O 5 phase”). In addition, it was confirmed that the P-containing phase had a minimum size of about 1 μm depending on the mineral and was present in a phase different from the Mn-containing phase.

発明者らは、上述の知見から、Mn含有相およびP含有相の磁気特性が異なることに着目し、鋭意検討した結果、粉砕と磁気分離によりマンガン鉱石に代表されるマンガン酸化物含有物から効果的に不純物を分離できる方法を見出した。
なお、以下の詳細な説明では、本発明の完全な理解を提供するように、本発明の実施形態を例示して多くの特定の細部について説明する。しかしながら、かかる特定の細部の説明がなくても1つ以上の実施態様が実施できることは明らかである。また、図面は、簡潔にするために、周知の構造及び装置が略図で示されている。
Based on the above findings, the inventors have paid attention to the fact that the magnetic properties of the Mn-containing phase and the P-containing phase are different, and as a result of intensive studies, the inventors have obtained effects from manganese oxide-containing materials typified by manganese ore by pulverization and magnetic separation. We found a method that can separate impurities.
In the following detailed description, numerous specific details are set forth to illustrate the embodiments of the present invention in order to provide a thorough understanding of the present invention. It will be apparent, however, that one or more embodiments may be practiced without such specific details. In the drawings, well-known structures and devices are schematically shown for simplicity.

<マンガン原料の製造方法>
図1及び図2を参照して、本発明の一実施形態に係るマンガン原料の製造方法について説明する。本実施形態において、用いられるマンガン酸化物含有物は、マンガン鉱石に代表されるように、マンガン、カルシウム、シリコン及び燐を少なくとも含む。また、マンガン、カルシウム、シリコン及び燐の大部分は、酸化物としてマンガン酸化物含有物に含まれる。
<Manufacturing method of manganese raw material>
With reference to FIG.1 and FIG.2, the manufacturing method of the manganese raw material which concerns on one Embodiment of this invention is demonstrated. In the present embodiment, the manganese oxide-containing material used includes at least manganese, calcium, silicon, and phosphorus, as represented by manganese ore. Most of manganese, calcium, silicon and phosphorus are contained in the manganese oxide-containing material as oxides.

まず、図1に示すように、原料であるマンガン酸化物含有物を粉砕する粉砕工程を行う(S100)。粉砕工程では、粉砕後のマンガン酸化物含有物(以下、「粉砕マンガン物酸物化含有物」ともいう。)が、90%体積累積径が2mm以下となるように、マンガン酸化物含有物の粉砕が行われることが好ましい。また、粉砕工程における粉砕方法は、マンガン酸化物含有物を上述の大きさに粉砕可能な方法であれば制限されない。例えば、粉砕方法としては、振動ミルやカッターミル、ボールミル等を用いた粉砕方法が用いられてもよい。さらに、粉砕工程では、粉砕マンガン酸化物含有物の90%体積累積径を2mm以下とすることで、水中磁選工程において、粉砕マンガン酸化物含有物の表面積が大きくなることから、後述する解砕効果を高めることができる。   First, as shown in FIG. 1, a pulverization step of pulverizing a manganese oxide-containing material as a raw material is performed (S100). In the pulverization step, the manganese oxide-containing material is pulverized so that the 90% volume cumulative diameter is 2 mm or less in the pulverized manganese oxide-containing material (hereinafter also referred to as “ground manganic acidified content”). Is preferably performed. Moreover, the grinding | pulverization method in a grinding | pulverization process will not be restrict | limited if it is a method which can grind | pulverize a manganese oxide containing material to the above-mentioned magnitude | size. For example, as a pulverization method, a pulverization method using a vibration mill, a cutter mill, a ball mill, or the like may be used. Furthermore, in the pulverization step, the 90% volume cumulative diameter of the pulverized manganese oxide-containing material is 2 mm or less, so that the surface area of the pulverized manganese oxide-containing material is increased in the underwater magnetic separation step. Can be increased.

次いで、粉砕マンガン酸化物含有物を、水中で磁気分離する水中磁選工程を行う(S102)。
ステップS102では、粉砕マンガン酸化物含有物を水中に投入することで、水中に粉砕マンガン酸化物含有物を分散させる。これにより、Mn含有相の一部が水酸化物であるMn(OH)を形成し始める。このとき、もとのマンガン鉱石中のMn含有相であるマンガンケイ酸塩やスピネル化合物等の体積変化を伴う反応が粉砕マンガン酸化物含有物内で起こるため、内部で発生する応力によって、粉砕マンガン酸化物含有物が解砕する。この解砕では、水酸化物生成時の体積変化による破壊が主であるため、相の境目での分離が促進される。よって、nCaO・P相は、MnFeに代表される強磁性体のスピネル化合物やMnSiO12に代表される弱磁性体のケイ酸塩と分離される。この反応を用いずに粉砕を行おうとする場合、nCaO・P相をMn含有相と引き離すためには、粉砕マンガン酸化物含有物を数μm程度の大きさにまで粉砕する必要があり、非常に粉砕負荷の大きい処理となる。しかし、水酸化物の形成による解砕を用いた方法では、nCaO・P相とMn含有相とを容易に分離することができる。
Next, an underwater magnetic separation process for magnetically separating the pulverized manganese oxide-containing material in water is performed (S102).
In step S102, the pulverized manganese oxide-containing material is introduced into water to disperse the pulverized manganese oxide-containing material in water. Thereby, a part of the Mn-containing phase starts to form Mn (OH) 4 which is a hydroxide. At this time, since a reaction accompanied by volume change of manganese silicate or spinel compound, which is a Mn-containing phase in the original manganese ore, occurs in the pulverized manganese oxide-containing material, The oxide-containing material is crushed. In this crushing, the breakage is mainly caused by the volume change at the time of hydroxide generation, so that the separation at the phase boundary is promoted. Therefore, the nCaO · P 2 O 5 phase is separated from a ferromagnetic spinel compound represented by MnFe 2 O 4 and a weak magnetic silicate represented by Mn 7 SiO 12 . When pulverizing without using this reaction, in order to separate the nCaO · P 2 O 5 phase from the Mn-containing phase, it is necessary to pulverize the pulverized manganese oxide-containing material to a size of about several μm. It is a process with a very large grinding load. However, the nCaO.P 2 O 5 phase and the Mn-containing phase can be easily separated by the method using crushing by the formation of hydroxide.

そして、ステップS102では、粉砕マンガン酸化物含有物を水中に投入した後、粉砕マンガン酸化物含有物を分散させた液体を、磁場を印加した網目状の金属製の枠(以下、単に「網」ともいう。)に通すことで、磁着物と非磁着物とに分離する。この際、磁着物は網側、非磁着物は液体と同じく網下へとそれぞれ移行する。網に磁力印加をする際には、電磁力を使用することで、磁場強度を調整することができる。磁場強度としては、網にMnFeに代表される強磁性体のスピネル化合物及びMnSiO12に代表される弱磁性体のケイ酸塩を磁着させるためには、500G以上とすることが好ましい。また、磁場強度はが大きすぎると、非磁性体を抱き込むことによって、不純物濃度が増加するため、磁場強度を10000G以下とすることが好ましい。なお、現実的に実現できる一般的な設備条件からは、磁場強度を1000G以上、5000G以下とすることがより好ましい。 In step S102, after the pulverized manganese oxide-containing material is poured into water, the liquid in which the pulverized manganese oxide-containing material is dispersed is added to a mesh-like metal frame (hereinafter simply referred to as “net”) to which a magnetic field is applied. It is separated into magnetic and non-magnetized materials. At this time, the magnetized product moves to the net side, and the non-magnetized product moves to the net side like the liquid. When applying a magnetic force to the net, the magnetic field strength can be adjusted by using an electromagnetic force. The magnetic field strength should be 500 G or more in order to magnetize a ferromagnetic spinel compound represented by MnFe 2 O 4 and a weak magnetic silicate represented by Mn 7 SiO 12 on the net. Is preferred. In addition, if the magnetic field strength is too high, the impurity concentration increases by embedding the non-magnetic material. Therefore, the magnetic field strength is preferably 10000 G or less. In addition, it is more preferable that the magnetic field strength is 1000 G or more and 5000 G or less from the general equipment conditions that can be practically realized.

さらに、水中磁選工程では、粉砕マンガン酸化物含有物を水中に投入し、粉砕マンガン酸化物含有物を解砕する際に、水中に撹拌を印加することが好ましい。水中に撹拌を印加する方法としては、水中にガスを吹き付けるバブリング法や、液体を棒や羽を用いて物理的にかき混ぜる方法等が挙げられる。これにより、粉砕マンガン酸化物含有物の解砕を促進させることができる。撹拌の印加強度は特に限定されないが、印加強度を大きくすることで、解砕をより促進させることができる。   Furthermore, in the underwater magnetic separation step, it is preferable to apply stirring to the water when the pulverized manganese oxide-containing material is introduced into water and the pulverized manganese oxide-containing material is crushed. Examples of methods for applying agitation in water include a bubbling method in which gas is blown into water, and a method in which a liquid is physically agitated using a stick or a wing. Thereby, crushing of the pulverized manganese oxide-containing material can be promoted. Although the application intensity | strength of stirring is not specifically limited, Crushing can be accelerated | stimulated more by making application intensity large.

さらに、水中磁選工程では、粉砕マンガン酸化物含有物を水中に投入し、粉砕マンガン酸化物含有物を解砕する際に、水中に超音波を印加することが好ましい。これにより、粉砕マンガン酸化物含有物の表面近傍での撹拌力が増加すると共に、粉砕マンガン酸化物含有物の表面近傍での微小気泡の破裂も起こるため、解砕効果がさらに高められる。超音波を印加する際には、市販の超音波発生機を用いることができる。
このように、水中磁選工程において、撹拌もしくは超音波を印加し、粉砕マンガン酸化物含有物の解砕を促進させる処理を、解砕処理ともいう。水中磁選工程において、解砕処理をさらに行うことにより、解砕効果が高まり、不純物の除去効率を向上させることができる。なお、解砕処理では、撹拌の印加と超音波の印加とを同時に行わってもよい。
Furthermore, in the underwater magnetic separation process, it is preferable to apply ultrasonic waves to the water when the pulverized manganese oxide-containing material is introduced into water and the pulverized manganese oxide-containing material is crushed. As a result, the stirring force in the vicinity of the surface of the pulverized manganese oxide-containing material is increased, and microbubbles are ruptured in the vicinity of the surface of the pulverized manganese oxide-containing material, thereby further enhancing the crushing effect. When applying ultrasonic waves, a commercially available ultrasonic generator can be used.
As described above, in the underwater magnetic separation process, the process of applying stirring or ultrasonic waves to promote the crushing of the pulverized manganese oxide-containing material is also referred to as a crushing process. In the underwater magnetic separation process, by further performing the crushing treatment, the crushing effect is enhanced and the impurity removal efficiency can be improved. In the crushing treatment, the application of stirring and the application of ultrasonic waves may be performed simultaneously.

ステップS102の後、磁選工程で分離した分離物のうち磁着物をマンガン原料として回収する(S104)。上述のように、磁選工程で分離した磁着物には、MnFeに代表される強磁性体のスピネル化合物やMnSiO12に代表される弱磁性体のケイ酸塩が多く含まれる。このため、ステップS104で回収されたマンガン原料は、回収前のマンガン酸化物含有物に比べ、P濃度が低く、Mn濃度が高いものとなる。
一方、ステップS102の後、磁選工程で分離した分離物のうち非磁着物を不純物として回収する(S106)。ステップS106で回収される非磁着物は、非磁性体のnCaO・Pの化合物を多く含むものであり、回収前のマンガン酸化物含有物に比べ、P濃度が高く、Mn濃度が低いものとなる。
After step S102, the magnetized material among the separated materials separated in the magnetic separation process is recovered as a manganese raw material (S104). As described above, the magnetic deposits separated in the magnetic separation process include a lot of ferromagnetic spinel compounds typified by MnFe 2 O 4 and weak magnetic silicates typified by Mn 7 SiO 12 . For this reason, the manganese raw material collect | recovered by step S104 becomes a thing with a low P density | concentration and a high Mn density | concentration compared with the manganese oxide containing material before collection | recovery.
On the other hand, after step S102, non-magnetized substances among the separated substances separated in the magnetic separation process are collected as impurities (S106). The non-magnetized substance recovered in step S106 contains a large amount of non-magnetic nCaO · P 2 O 5 compound, and has a higher P concentration and lower Mn concentration than the manganese oxide-containing material before recovery. It will be a thing.

以上の工程を経ることで、マンガン酸化物含有物からP濃度の低いマンガン原料を回収することができる。ステップS104で回収されたマンガン原料は、その後、マンガン含有鋼の溶製に用いられる。例えば、転炉型精錬炉等による脱炭処理が施される前の溶銑に、回収されたマンガン原料を添加することで、マンガン濃度の高い溶銑を溶製することができる。また、転炉型精錬炉等での精錬処理時、転炉型精錬炉等からの出湯時、または真空脱ガス装置や取鍋精錬装置といった2次精錬設備での溶製時において、溶鉄に回収されたマンガン原料を添加することで、マンガン濃度の高い溶鉄を溶製することができる。回収されたマンガン原料は、粉砕前のマンガン酸化物含有物に比べてP濃度が低いため、P濃度が低く高価な他のマンガン原料の少なくとも一部の代替として用いることができるようになり、溶製コストを大幅に低減することができるようになる。   By passing through the above process, the manganese raw material with a low P concentration can be recovered from the manganese oxide-containing material. Thereafter, the manganese raw material recovered in step S104 is used for melting manganese-containing steel. For example, hot metal having a high manganese concentration can be produced by adding the recovered manganese raw material to hot metal before being subjected to decarburization treatment using a converter-type refining furnace or the like. Also, recovered in molten iron during refining treatment in a converter-type refining furnace, at the time of tapping from a converter-type refining furnace, etc., or at the time of melting at a secondary refining facility such as a vacuum degasser or ladle refining equipment By adding the produced manganese raw material, molten iron with a high manganese concentration can be produced. Since the recovered manganese raw material has a lower P concentration than the manganese oxide-containing material before pulverization, it can be used as a substitute for at least a part of another manganese raw material having a low P concentration and high cost. Manufacturing costs can be greatly reduced.

この効果は、ハイテン材のようにMn濃度が高い高マンガン鋼の溶製においては、特に顕著なものとなる。また、Mnを含有する鋼種であれば、効果に違いはあるものの、高マンガン鋼に限らず適用することで溶製コストを低減することができる。特に、2次精錬設備で溶製をする際には、当該の溶製工程を含むそれ以降の工程において、脱りん処理を行うことが難しいため、回収されたマンガン原料を使用することによる効果が大きくなる。   This effect becomes particularly remarkable in the production of high manganese steel having a high Mn concentration such as high tensile steel. Moreover, if it is a steel type containing Mn, although there is a difference in effect, melting costs can be reduced by applying not only to high manganese steel. In particular, when smelting at a secondary refining facility, it is difficult to perform a dephosphorization process in the subsequent processes including the smelting process, so the effect of using the recovered manganese raw material is growing.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. By referring to the description of the present invention, other embodiments of the present invention will be apparent to those skilled in the art, including various modifications along with the disclosed embodiments. Therefore, it should be understood that the embodiments of the present invention described in the claims also include embodiments including these modifications described in the present specification alone or in combination.

例えば、上記実施形態では、粉砕マンガン酸化物含有物を水中に投入し、粉砕マンガン酸化物含有物を解砕する際に、撹拌もしくは超音波を印加する解砕処理を行ってもよいとしたが本発明はかかる例に限定されない。解砕処理は、粉砕マンガン酸化物含有物を分散させた液体を、磁場を印加した網に通す際、つまり磁選をする際に行われてもよい。この際、設備の構成を簡易にする観点からは、水中に超音波を印加することが好ましい。   For example, in the above embodiment, when the pulverized manganese oxide-containing material is put into water and the pulverized manganese oxide-containing material is crushed, a crushing treatment in which stirring or ultrasonic waves are applied may be performed. The present invention is not limited to such an example. The crushing treatment may be performed when the liquid in which the pulverized manganese oxide-containing material is dispersed is passed through a net to which a magnetic field is applied, that is, when magnetic separation is performed. At this time, it is preferable to apply ultrasonic waves in water from the viewpoint of simplifying the configuration of the equipment.

また、上記実施形態では、粉砕マンガン酸化物含有物を分散させた液体を、磁場を印加した網に通すことで磁選を行うとしたが、本発明はかかる例に限定されない。磁選工程では、粉砕マンガン酸化物含有物を分散させた液体中の磁性体を磁着可能な構成であれば、他の磁選方法や装置を用いてもよい。
さらに、マンガン酸化物含有物は、マンガン鉱石に限らず、MnSiO12、CaMnSiO12、Mn及びMnFeの少なくとも一つを鉱物相として有していればよい。なお、マンガン酸化物含有物は、これらの鉱物相を、合計で50mass%以上含んでいることが好ましい。また、マンガン鉱石においても、上記実施形態に限らず、マンガン酸化物の鉱物相として、MnSiO12、CaMnSiO12、Mn及びMnFeの少なくとも一つを有していればよい。
In the above embodiment, the magnetic separation is performed by passing the liquid in which the pulverized manganese oxide-containing material is dispersed through a net to which a magnetic field is applied. However, the present invention is not limited to such an example. In the magnetic separation process, other magnetic separation methods and apparatuses may be used as long as the magnetic substance in the liquid in which the pulverized manganese oxide-containing material is dispersed can be magnetically attached.
Furthermore, the manganese oxide-containing material is not limited to manganese ore, and may have at least one of Mn 7 SiO 12 , CaMn 6 SiO 12 , Mn 3 O 4 and MnFe 2 O 4 as a mineral phase. In addition, it is preferable that the manganese oxide containing material contains 50 mass% or more of these mineral phases in total. Further, the manganese ore is not limited to the above-described embodiment, and may contain at least one of Mn 7 SiO 12 , CaMn 6 SiO 12 , Mn 3 O 4 and MnFe 2 O 4 as a manganese oxide mineral phase. That's fine.

<実施形態の効果>
(1)本発明の一態様に係るマンガン原料の製造方法は、マンガン、カルシウム、シリコン及び燐を少なくとも含むマンガン酸化物含有物を原料とし、マンガン酸化物含有物を粉砕することで、粉砕マンガン酸化物含有物を生成する粉砕工程(S100)と、粉砕マンガン酸化物含有物を水中に分散させ、粉砕マンガン酸化物含有物を含む液体に対し、磁場を印加することで磁着物と非磁着物とに分離する水中磁選工程(S102)と、水中磁選工程で分離された磁着物をマンガン原料として回収する工程(S104)と、を備える。
<Effect of embodiment>
(1) The manufacturing method of the manganese raw material which concerns on 1 aspect of this invention uses the manganese oxide containing material which contains manganese, calcium, a silicon | silicone, and phosphorus as a raw material, and grind | pulverizes a manganese oxide containing material. A pulverizing step (S100) for generating a material-containing material, a pulverized manganese oxide-containing material dispersed in water, and applying a magnetic field to a liquid containing the pulverized manganese oxide-containing material, And a step (S104) of collecting the magnetic deposit separated in the submerged magnetic separation process as a manganese raw material (S104).

上記(1)の構成によれば、水中磁選工程では、Mn含有相の一部が水酸化物を形成することで、粉砕マンガン酸化物含有物が解砕し、nCaO・P相が強磁性体のスピネル化合物や弱磁性体のケイ酸塩と分離される。そして、この分離した強磁性体のスピネル化合物や弱磁性体のケイ酸塩を、水中磁選工程で分離することで、P濃度が低くMn濃度が低い、マンガン原料が回収される。このマンガン原料は、粉砕前のマンガン酸化物含有物に比べてP濃度が低いため、マンガン含有鋼の溶製に用いることで、フェロマンガンや金属マンガンといった高価なマンガン原料の使用量を低減させることができ、溶製に掛かるコストを低減することができる。 According to the configuration of (1) above, in the underwater magnetic separation process, a part of the Mn-containing phase forms a hydroxide, whereby the pulverized manganese oxide-containing material is crushed, and the nCaO · P 2 O 5 phase is They are separated from ferromagnetic spinel compounds and weak magnetic silicates. Then, the separated ferromagnetic spinel compound and weak silicate silicate are separated by an underwater magnetic separation process, whereby a manganese raw material having a low P concentration and a low Mn concentration is recovered. Since this manganese raw material has a lower P concentration than the manganese oxide-containing material before pulverization, the amount of expensive manganese raw materials such as ferromanganese and metal manganese can be reduced by using it for melting manganese-containing steel. And the cost for melting can be reduced.

また、上記(1)の構成によれば、マンガン酸化物含有物を用いた場合において、溶製する溶鉄を脱りん処理する必要がなくなる。このため、BaOに代表される劇物を使用することなく、マンガン鋼を溶製することができるようになる。
さらに、上記(1)の構成によれば、粉砕工程にてマンガン酸化物含有物を粉砕することで、粉砕マンガン酸化物含有物の表面積を大きくすることができ、上記の解砕を促進させることができる。
Moreover, according to the structure of said (1), when a manganese oxide containing material is used, it becomes unnecessary to carry out the dephosphorization process of the molten iron to melt. For this reason, manganese steel can be melted without using a deleterious substance represented by BaO.
Furthermore, according to the structure of said (1), the surface area of a grinding | pulverization manganese oxide containing material can be enlarged by grind | pulverizing a manganese oxide containing material in a grinding | pulverization process, and said crushing is accelerated | stimulated. Can do.

(2)上記(1)の構成において、マンガン酸化物含有物は、MnSiO12、CaMnSiO12、Mn及びMnFeの少なくとも一つの鉱物相として有する。
上記(2)の構成によれば、磁性がある鉱物相を分離・回収することができるようになる。
上記(2)の構成とすることで、磁着側のマンガン濃度を高位に保つことができる。
(2) In the configuration of (1) above, the manganese oxide-containing material has at least one mineral phase of Mn 7 SiO 12 , CaMn 6 SiO 12 , Mn 3 O 4 and MnFe 2 O 4 .
According to the configuration of (2) above, the magnetic mineral phase can be separated and recovered.
With the configuration of (2) above, the manganese concentration on the magnetized side can be kept high.

(3)上記(1)または(2)の構成において、粉砕工程では、粉砕マンガン酸化物含有物の90%体積累積径が2mm以下となるまで粉砕する。
上記(3)の構成によれば、粉砕マンガン酸化物含有物の表面積を十分に大きくすることができ、上記の解砕がより促進される。
(3) In the configuration of (1) or (2) above, in the pulverization step, the pulverized manganese oxide-containing material is pulverized until the 90% volume cumulative diameter becomes 2 mm or less.
According to the configuration of (3) above, the surface area of the pulverized manganese oxide-containing material can be sufficiently increased, and the above-mentioned crushing is further promoted.

(4)上記(1)〜(3)のいずれか1つの構成において、水中磁選工程では、粉砕マンガン酸化物含有物を水中に分散させた後、粉砕マンガン酸化物含有物を含む液体に、撹拌及び超音波の少なくともいずれか一方を印加し、磁力による分離を行う。
上記(4)の構成によれば、水中の粉砕マンガン酸化物含有物の解砕が促進されることから、よりP濃度が低くMn濃度が高いマンガン原料を回収することができる。なお、上記(4)の構成において、撹拌及び超音波の少なくともいずれか一方を印加する解砕処理は、磁力による分離の前に行われてもよく、磁力による分離と同時に行われてもよい。
(4) In any one of the configurations (1) to (3) above, in the underwater magnetic separation step, after the pulverized manganese oxide-containing material is dispersed in water, the liquid containing the pulverized manganese oxide-containing material is stirred. And at least one of ultrasonic waves is applied to perform separation by magnetic force.
According to the configuration of the above (4), since the pulverization of the pulverized manganese oxide-containing material in water is promoted, a manganese raw material having a lower P concentration and a higher Mn concentration can be recovered. In the configuration of (4) above, the crushing treatment that applies at least one of stirring and ultrasonic waves may be performed before the separation by magnetic force, or may be performed simultaneously with the separation by magnetic force.

(5)本発明の一態様に係るマンガン含有鋼の溶製方法は、マンガン含有鋼の溶製方法であって、上記(1)〜(4)のいずれか1つに記載のマンガン原料の製造方法によって回収されたマンガン原料を、溶銑または溶鋼に添加することで、溶銑または溶鋼のマンガン濃度を調整する。
上記(5)の構成によれば、上記(1)〜(4)と同様な効果を得ることができる。
(5) The method for melting manganese-containing steel according to one aspect of the present invention is a method for melting manganese-containing steel, and the manufacturing of the manganese raw material according to any one of (1) to (4) above By adding the manganese raw material recovered by the method to hot metal or molten steel, the manganese concentration of the molten iron or molten steel is adjusted.
According to the configuration of (5), the same effects as (1) to (4) can be obtained.

次に、本発明者らが行った実施例1について説明する。実施例1では、はじめに、マンガン酸化物含有物の一つとして、組成成分の異なる2種類のマンガン鉱石について、成分組成の分析と、XRDによる鉱物相の調査を行った。次に、この2種類のマンガン鉱石を異なる粉砕方法または粉砕条件で粉砕し、水中で磁選を行い、磁着物及び非磁着物の成分組成をそれぞれ調査した。
表1には、条件1及び条件2とした成分組成の異なるマンガン鉱石の成分組成の分析結果を示す。また、表2には、条件1及び条件2のマンガン鉱石のXRDによる鉱物相の分析結果を示す。さらに、表3には、実施例1で用いた各種の粉砕方法と、粉砕条件(90%体積累積径及び20%体積累積径)とを示す。実施例1では、粉砕水準1がカッターミル、粉砕水準2,3が粉砕条件を変えたジェットミルとした。なお、以下では、粉砕工程により粉砕されたマンガン鉱石を、粉砕マンガン鉱石ともいう。
Next, Example 1 performed by the present inventors will be described. In Example 1, first, as one of the manganese oxide-containing materials, two types of manganese ores having different composition components were analyzed for the component composition and examined for the mineral phase by XRD. Next, these two types of manganese ores were pulverized by different pulverization methods or pulverization conditions, magnetically selected in water, and component compositions of the magnetized material and the non-magnetized material were investigated.
Table 1 shows the analysis results of the component compositions of manganese ores with different component compositions as Condition 1 and Condition 2. Table 2 shows the analysis results of the mineral phase by XRD of the manganese ores of Condition 1 and Condition 2. Further, Table 3 shows various grinding methods used in Example 1 and grinding conditions (90% volume cumulative diameter and 20% volume cumulative diameter). In Example 1, the grinding level 1 was a cutter mill, and the grinding levels 2 and 3 were jet mills with different grinding conditions. Hereinafter, the manganese ore pulverized in the pulverization step is also referred to as pulverized manganese ore.

Figure 2019173143
Figure 2019173143

Figure 2019173143
Figure 2019173143

Figure 2019173143
Figure 2019173143

表4には、粉砕条件1〜3でそれぞれ粉砕した条件1のマンガン鉱石を、ステップS102と同様に水中で磁気分離し、分離した磁着物及び非磁着物を分析した成分組成の分析結果を示す。また、表5には、粉砕条件1〜3でそれぞれ粉砕した条件2のマンガン鉱石を水中で磁気分離し、分離した磁着物及び非磁着物を分析した成分組成の分析結果を示す。なお、本試験において、磁気分離する際の磁場強度は、5000Gとした。また、表4,5の左側の列に記載の「磁選分離無し」の条件は、粉砕マンガン鉱石の成分を示している。   Table 4 shows the analysis results of the component compositions obtained by magnetically separating the manganese ore of Condition 1 pulverized in the pulverization conditions 1 to 3 in water in the same manner as in Step S102 and analyzing the separated magnetic and non-magnetic substances. . Table 5 shows the analysis results of the component composition obtained by magnetically separating the manganese ore of Condition 2 pulverized under the pulverization conditions 1 to 3 in water and analyzing the separated magnetic deposits and non-magnetic deposits. In this test, the magnetic field strength at the time of magnetic separation was set to 5000G. The conditions of “no magnetic separation” in the left column of Tables 4 and 5 indicate the components of the pulverized manganese ore.

Figure 2019173143
Figure 2019173143

Figure 2019173143
Figure 2019173143

表4に示すように、条件1のマンガン鉱石の場合、いずれの粉砕方法及び粉砕条件においても、磁着物及び非磁着物として処理前の条件1のマンガン鉱石と異なる成分組成の粉砕マンガン鉱石が得られることが確認できた。特に、磁着物については、処理前の条件1のマンガン鉱石に対して、PやCaOといった不純物の濃度が低くなり、Mn濃度が高くなることが確認できた。一方、非磁着物については、処理前の条件1のマンガン鉱石に対して、Mn濃度が低くなり、不純物の濃度が高くなることが確認できた。   As shown in Table 4, in the case of the manganese ore of Condition 1, in any pulverization method and pulverization condition, a pulverized manganese ore having a component composition different from that of the condition 1 manganese ore before treatment is obtained as a magnetic deposit and a non-magnetic deposit. It was confirmed that In particular, for magnetic deposits, it was confirmed that the concentration of impurities such as P and CaO was low and the Mn concentration was high with respect to the manganese ore of Condition 1 before the treatment. On the other hand, it was confirmed that the non-magnetized material had a lower Mn concentration and higher impurity concentration than the manganese ore of Condition 1 before treatment.

条件2のマンガン鉱石の場合においても、粉砕条件3では、磁選分離無しのものと比較して、非磁着物のP濃度が低下しており、不純物の効果があることが確認できた。しかしながら、粉砕条件1,2では、分析に十分な量の磁着物が採取できなかった。これは、磁性を持つMn含有相が少なかったためであると考えられる。これらの粉砕条件で粉砕したマンガン鉱石に対して、10000Gで磁選分離を行ったところ,少量ではあるが、磁気分離前の粉砕マンガン鉱石よりもP濃度の低いマンガン原料を得られることを確認している。   Even in the case of the manganese ore of Condition 2, the P concentration of the non-magnetized material was reduced in the pulverizing condition 3 as compared with the one without magnetic separation, and it was confirmed that there was an effect of impurities. However, under the pulverization conditions 1 and 2, a sufficient amount of magnetic deposits for analysis could not be collected. This is presumably because there were few magnetic Mn-containing phases. When magnetic separation was performed at 10,000 G on manganese ore pulverized under these pulverization conditions, it was confirmed that a manganese raw material having a lower P concentration than pulverized manganese ore before magnetic separation was obtained, although in a small amount. Yes.

また、実施例1では、条件1のマンガン鉱石について、ステップS100,S102の処理を行い、ステップS102の水中磁選工程において、粉砕マンガン鉱石をミキサーを用いて水中で1分間撹拌した後、磁気分離を行う条件でマンガン原料の回収の試験を行った。また、この試験では、磁場強度を、1000G、2000G、5000Gまたは10000Gと変えた。なお、上記以外の条件については、表4に示す粉砕条件2と同じとした。   Moreover, in Example 1, the processing of Steps S100 and S102 is performed on the manganese ore of Condition 1, and in the submerged magnetic separation process of Step S102, the pulverized manganese ore is stirred in water using a mixer for 1 minute, and then magnetic separation is performed. A test for recovery of manganese raw material was conducted under the conditions used. In this test, the magnetic field intensity was changed to 1000G, 2000G, 5000G, or 10000G. The conditions other than the above were the same as the pulverization conditions 2 shown in Table 4.

表6に、撹拌を印加した磁場強度が異なる条件での、磁着物及び非磁着物の成分組成の分析結果を示す。表6に示すように、水中での撹拌処理により、得られたマンガン原料の不純物濃度が低下し、品位が向上することが確認できた。これは、撹拌により解砕が促進され、不純物の単体分離効果が向上したためであると考えられる。また、磁場強度を大きくすると、マンガン原料の回収率は向上することが確認できた。しかし、磁場強度の増加に伴い、不純物濃度もゆるやかに増加するため、目標の品位に合わせて磁場強度を調整する必要があることが確認できた。   Table 6 shows the analysis results of the component composition of the magnetically adhered material and the non-magnetically adhered material under different conditions of the magnetic field strength to which stirring was applied. As shown in Table 6, it was confirmed that the impurity concentration of the obtained manganese raw material was lowered and the quality was improved by the stirring treatment in water. This is considered to be because crushing was promoted by stirring, and the effect of separating impurities by itself was improved. Further, it was confirmed that the recovery rate of the manganese raw material was improved when the magnetic field strength was increased. However, as the magnetic field strength increases, the impurity concentration gradually increases, and it has been confirmed that the magnetic field strength needs to be adjusted according to the target quality.

Figure 2019173143
Figure 2019173143

さらに、実施例1では、解砕処理として超音波を印加することによる、マンガン酸化物含有物の水中での解砕促進効果についての、原理確認の試験を行った。この試験では、粉砕水準2で粉砕された条件1のマンガン鉱石を水中に投入し、この液体に超音波を15秒間印加した。さらに、超音波による解砕処理前後の粉砕マンガン鉱石の粒度分布をそれぞれ測定した。図2には、解砕処理前後の粉砕マンガン鉱石の粒度分布の測定結果を示す。図2に示すように、超音波を印加することで、粉砕マンガン鉱石の解砕を進み、粒径が小さくなることが確認できた。つまり、解砕処理において、超音波を印加することで、容易かつ高速に粉砕マンガン鉱石を解砕できることが確認された。   Furthermore, in Example 1, a test for confirming the principle of the effect of promoting the crushing of the manganese oxide-containing material in water by applying ultrasonic waves as the crushing treatment was performed. In this test, the manganese ore of condition 1 pulverized at the pulverization level 2 was put into water, and ultrasonic waves were applied to this liquid for 15 seconds. Furthermore, the particle size distribution of the pulverized manganese ore before and after pulverization by ultrasonic waves was measured. In FIG. 2, the measurement result of the particle size distribution of the pulverized manganese ore before and after the pulverization treatment is shown. As shown in FIG. 2, by applying ultrasonic waves, it was confirmed that the pulverized manganese ore proceeded to be crushed and the particle size was reduced. That is, it was confirmed that the pulverized manganese ore can be crushed easily and at high speed by applying ultrasonic waves in the pulverization treatment.

さらに、実施例1では、条件1のマンガン鉱石について、ステップS100,S102の処理を行い、ステップS102の水中磁選工程において、超音波を印加しながら磁気分離を行う条件でマンガン原料の回収の試験を行った。また、この試験では、粉砕水準1〜3の粉砕方法または粉砕条件を変えた複数の条件とした。さらに、水中磁選工程における磁場強度は5000Gとした。   Furthermore, in Example 1, the processing of steps S100 and S102 is performed on the manganese ore of condition 1, and a test for recovering manganese raw material is performed under the condition of performing magnetic separation while applying ultrasonic waves in the underwater magnetic separation process of step S102. went. Moreover, in this test, it was set as the several conditions which changed the grinding | pulverization method or grinding | pulverization conditions of the grinding | pulverization levels 1-3. Furthermore, the magnetic field strength in the underwater magnetic separation process was set to 5000G.

表7に、粉砕水準の異なる粉砕マンガン鉱石について超音波を印加した条件での、磁着物及び非磁着物の成分組成の分析結果を示す。表7に示すように、超音波を印加し、解砕がさらに進行することで、単体分離効果がさらに向上することが確認できた。また、この方法によれば、撹拌を印加するよりも短い時間で、粉砕マンガン鉱石の解砕を行うことができることが確認できた。   Table 7 shows the analysis results of the component compositions of the magnetized material and the non-magnetized material under the condition in which ultrasonic waves were applied to the pulverized manganese ore having different pulverization levels. As shown in Table 7, it was confirmed that the single substance separation effect was further improved by applying ultrasonic waves and further proceeding the crushing. Further, according to this method, it was confirmed that the pulverized manganese ore can be crushed in a shorter time than when stirring is applied.

Figure 2019173143
Figure 2019173143

以上の実施例1の結果から、磁気特性の違いを利用してマンガン鉱石から不純物を取り除くため、粉砕後に水中へ投入することでマンガン含有相と不純物相とを分離し、その後磁力による分離処理を行うことで,不純物相の少ないマンガン含有相を得られることが実証された。また、撹拌や超音波を印加することで単体分離効果が向上することが確認できた。   From the results of Example 1 above, in order to remove impurities from the manganese ore using the difference in magnetic properties, the manganese-containing phase and the impurity phase are separated by being put into water after pulverization, and then subjected to separation treatment by magnetic force. By doing so, it was proved that a manganese-containing phase with few impurity phases can be obtained. Moreover, it has confirmed that a single-piece | unit separation effect improved by applying stirring and an ultrasonic wave.

次に、本発明者らが行った実施例2について説明する。実施例2では、実施例1における条件1のマンガン鉱石について、上記実施形態と同様にマンガン原料の回収を行い、回収したマンガン原料のMn濃度及びP濃度を分析した。また、実施例2では、粉砕前のマンガン鉱石に含まれるマンガン量に対する、回収されたマンガン原料のマンガン量を示す、マンガン原料の回収歩留りを調べた。   Next, Example 2 performed by the present inventors will be described. In Example 2, for the manganese ore of Condition 1 in Example 1, the manganese raw material was recovered in the same manner as in the above embodiment, and the recovered manganese raw material was analyzed for Mn concentration and P concentration. Moreover, in Example 2, the recovery yield of the manganese raw material indicating the amount of manganese of the recovered manganese raw material with respect to the amount of manganese contained in the manganese ore before pulverization was examined.

実施例2における条件を表8に示す。表8に示すように、実施例2では、条件の異なる実施例2−1〜2−4の4条件でマンガン原料の回収を行った。また、比較として、比較例2−1〜2−4の4条件でもマンガン原料の回収を行った。
実施例2の粉砕工程では、実施例2−1〜2−3及び比較例2−3でカッターミル、実施例2−4でジェットミル、比較例2−4でボールミルをそれぞれ用いてマンガン鉱石を粉砕した。また、粉砕工程では、粉砕後の90%体積累積径を、実施例2−1及び比較例2−3で2mm、実施例2−3,2−4で1mm、実施例2−4及び比較例2−4で50μmとした。なお、比較例2−1,2−2では、粉砕工程を行わず、90%体積累積径を40mmとした。
Table 8 shows conditions in Example 2. As shown in Table 8, in Example 2, the manganese raw material was recovered under the four conditions of Examples 2-1 to 2-4 under different conditions. For comparison, the manganese raw material was also recovered under the four conditions of Comparative Examples 2-1 to 2-4.
In the pulverization step of Example 2, manganese ore was obtained using a cutter mill in Examples 2-1 to 2-3 and Comparative Example 2-3, a jet mill in Example 2-4, and a ball mill in Comparative Example 2-4. Crushed. In the pulverization step, the 90% volume cumulative diameter after pulverization is 2 mm in Example 2-1 and Comparative Example 2-3, 1 mm in Examples 2-3 and 2-4, Example 2-4 and Comparative Example. 2-4 was 50 μm. In Comparative Examples 2-1 and 2-2, the pulverization step was not performed, and the 90% volume cumulative diameter was 40 mm.

さらに、実施例2−1では、解砕処理を行わずに水中磁選工程を行い、磁場強度の条件を2000Gとした。実施例2−2では、水中磁選工程にて、解砕処理としてミキサーを用いて撹拌を印加した後に、2000Gの磁場強度で磁選分離を行った。実施例2−3,2−4では、水中磁選工程にて、解砕処理として超音波を印加した後に、5000Gの磁場強度で磁選分離を行った。また、比較例2−1では、水中磁選工程を行わなかった。比較例2−2では、解砕処理を行わずに水中磁選工程を行い、磁場強度の条件を2500Gとした。比較例2−3では、水中磁選工程の代わりに、粉砕したマンガン鉱石をそのまま磁選する、乾式の磁選を、2500Gの磁場強度で行った。   Furthermore, in Example 2-1, the underwater magnetic separation process was performed without performing the crushing process, and the condition of the magnetic field strength was set to 2000G. In Example 2-2, magnetic separation was performed at a magnetic field strength of 2000 G after applying stirring using a mixer as a crushing process in the underwater magnetic separation process. In Examples 2-3 and 2-4, magnetic separation was performed with a magnetic field strength of 5000 G after applying ultrasonic waves as a crushing process in the underwater magnetic separation process. Moreover, in Comparative Example 2-1, the underwater magnetic separation process was not performed. In Comparative Example 2-2, the underwater magnetic separation process was performed without performing the crushing process, and the condition of the magnetic field strength was 2500G. In Comparative Example 2-3, instead of the underwater magnetic separation process, dry magnetic separation, in which the pulverized manganese ore was magnetically selected as it was, was performed with a magnetic field strength of 2500G.

Figure 2019173143
Figure 2019173143

実施例2の結果を表9に示す。ここで、回収歩留は下記(1)式で表される計算式をもって算出した。
回収歩留(%)=(S104で回収されたマンガン原料の重量)
÷粉砕前のマンガン含有酸化物全体の重量×100 ・・・(1)
また、回収されるマンガン原料のP濃度の目標は、粉砕前のマンガン含有酸化物の90%である、0.036mass%以下とし、回収歩留の目標は、60%として評価を行った。
The results of Example 2 are shown in Table 9. Here, the recovery yield was calculated by a calculation formula represented by the following formula (1).
Recovery yield (%) = (weight of manganese raw material recovered in S104)
÷ Weight of manganese-containing oxide before grinding x 100 (1)
Moreover, the target of P concentration of the manganese raw material collect | recovered was set to 0.036 mass% or less which is 90% of the manganese containing oxide before grinding | pulverization, and the target of collection | recovery yield was evaluated as 60%.

表9に示すように、実施例2−1では、比較例2−1,2−3,2−4に対して、P濃度の低いマンガン原料を得ることができており、水中で磁選することによる優位性が確認できた。また、実施例2−1では、比較例2−2よりもマンガン原料のP濃度を低くすることができており、90%体積累積径を2mm以下とすることによる粉砕促進効果があることが確認できた。実施例2−2では、ミキサーによる解砕処理を追加しているが、これにより実施例2−1よりもP濃度の低いマンガン原料が得られることが確認できた。また、超音波印加による粉砕マンガン酸化物含有物の解砕促進を図った実施例2−3,2−4では、実施例2−2よりもさらにP濃度の低いマンガン原料が得られることが確認できた。以上の結果から、本発明によれば、磁気特性の違いを利用して不純物相の少ないマンガン原料を得ることができることが確認された。   As shown in Table 9, in Example 2-1, compared with Comparative Examples 2-1, 2-3, and 2-4, a manganese raw material with a low P concentration can be obtained, and magnetically selected in water. The superiority by was confirmed. Further, in Example 2-1, it was confirmed that the P concentration of the manganese raw material could be made lower than that of Comparative Example 2-2, and that there was a pulverization promoting effect by setting the 90% volume cumulative diameter to 2 mm or less. did it. In Example 2-2, although the crushing process by a mixer was added, it has confirmed that the manganese raw material with lower P concentration than Example 2-1 was obtained by this. Further, in Examples 2-3 and 2-4 in which pulverization of the pulverized manganese oxide-containing material was promoted by application of ultrasonic waves, it was confirmed that a manganese raw material having a lower P concentration than that in Example 2-2 was obtained. did it. From the above results, according to the present invention, it was confirmed that a manganese raw material with few impurity phases can be obtained by utilizing the difference in magnetic characteristics.

Figure 2019173143
Figure 2019173143

次に、本発明者らが行った実施例3について説明する。実施例3では、実施例2−4で回収されたマンガン原料を用いて、マンガン含有鋼の溶製を行った。実施例3では、350tの転炉型精錬炉に溶銑を装入し、底吹き撹拌と共に上吹きランスからOガスを炉内の溶銑に噴射することで脱炭吹錬を行い、この脱炭吹錬の際に、Mn源として実施例2−4で回収されたマンガン原料を上添加した。また、比較例3として、比較例2−1のマンガン原料であるマンガン酸化物含有物を優先的に用いて、マンガン含有鋼の溶製を行った。比較例3では、マンガン原料以外の条件を実施例3と同様な条件とした。また、比較例3では、Pの上限濃度から、マンガン酸化物含有物が利用できない場合には、P濃度が低い金属マンガンを用いた。 Next, Example 3 performed by the present inventors will be described. In Example 3, the manganese-containing steel was melted using the manganese raw material recovered in Example 2-4. In Example 3, hot metal was charged into a 350-ton converter-type refining furnace, and decarburization blowing was performed by injecting O 2 gas from the top blowing lance into the hot metal in the furnace with bottom blowing stirring. During the blowing, the manganese raw material recovered in Example 2-4 was added as a Mn source. Moreover, as Comparative Example 3, the manganese-containing steel was melted preferentially using the manganese oxide-containing material that is the manganese raw material of Comparative Example 2-1. In Comparative Example 3, the conditions other than the manganese raw material were the same as those in Example 3. Moreover, in the comparative example 3, when manganese oxide containing material was not available from the upper limit concentration of P, metal manganese having a low P concentration was used.

図3に、実施例3及び比較例3における、マンガン鉱石(実施例3の場合にはマンガン鉱石から回収されたマンガン原料)の使用量を示す。なお、図3に示す例は、マンガン含有鋼のPの上限濃度に対する、要求されるMn濃度の比が、1000程度の鋼種における、溶製時のマンガン鉱石の使用量を示す。また、図3の縦軸は、比較例3をマンガン鉱石の使用量を1とした指標である。図3に示すように、実施例3では、比較例3に比べてマンガン鉱石の使用量が飛躍的に増加することが確認できた。これにより、マンガン含有鋼の溶製時の溶製コスト(特に、合金コスト)を低減できることが確認できた。   In FIG. 3, the usage-amount of the manganese ore (The manganese raw material collect | recovered from the manganese ore in the case of Example 3) in Example 3 and Comparative Example 3 is shown. In addition, the example shown in FIG. 3 shows the usage-amount of the manganese ore at the time of melting in the steel grade whose ratio of the required Mn density | concentration with respect to the upper limit density | concentration of P of manganese containing steel is about 1000. Moreover, the vertical axis | shaft of FIG. 3 is an parameter | index which used the usage-amount of the manganese ore for the comparative example 3 as 1. FIG. As shown in FIG. 3, in Example 3, it was confirmed that the amount of manganese ore used was dramatically increased as compared with Comparative Example 3. Thereby, it has confirmed that the melting cost (especially alloy cost) at the time of melting of manganese containing steel could be reduced.

Claims (5)

マンガン、カルシウム、シリコン及び燐を少なくとも含むマンガン酸化物含有物を原料とし、前記マンガン酸化物含有物を粉砕することで、粉砕マンガン酸化物含有物を生成する粉砕工程と、
前記粉砕マンガン酸化物含有物を水中に分散させ、前記粉砕マンガン酸化物含有物を含む液体に対し、磁場を印加することで磁着物と非磁着物とに分離する水中磁選工程と、
前記水中磁選工程で分離された磁着物をマンガン原料として回収する工程と、
を備えることを特徴とするマンガン原料の製造方法。
Using a manganese oxide-containing material containing at least manganese, calcium, silicon and phosphorus as a raw material, and crushing the manganese oxide-containing material to produce a pulverized manganese oxide-containing material,
Dispersing the pulverized manganese oxide-containing material in water, with respect to the liquid containing the pulverized manganese oxide-containing material, an underwater magnetic separation step of separating the magnetically adsorbed material and the non-magnetically adsorbed material by applying a magnetic field;
Recovering the magnetic deposit separated in the underwater magnetic separation process as a manganese raw material;
A method for producing a manganese raw material, comprising:
前記マンガン酸化物含有物は、MnSiO12、CaMnSiO12、Mn及びMnFeの少なくとも一つの鉱物相として有することを特徴とする請求項1に記載のマンガン原料の製造方法。 The manganese oxide inclusions, production of manganese raw material according to claim 1, characterized in that it comprises as at least one mineral phase of Mn 7 SiO 12, CaMn 6 SiO 12, Mn 3 O 4 and MnFe 2 O 4 Method. 前記粉砕工程では、前記粉砕マンガン酸化物含有物の90%体積累積径が2mm以下となるまで粉砕することを特徴とする請求項1または2に記載のマンガン原料の製造方法。   3. The method for producing a manganese raw material according to claim 1, wherein in the pulverizing step, pulverization is performed until a 90% volume cumulative diameter of the pulverized manganese oxide-containing material becomes 2 mm or less. 前記水中磁選工程では、前記粉砕マンガン酸化物含有物を水中に分散させた後、前記粉砕マンガン酸化物含有物を含む液体に、撹拌及び超音波の少なくともいずれか一方を印加し、磁力による分離を行うことを特徴とする請求項1〜3のいずれか1項に記載のマンガン原料の製造方法。   In the underwater magnetic separation step, after the pulverized manganese oxide-containing material is dispersed in water, at least one of stirring and ultrasonic waves is applied to the liquid containing the pulverized manganese oxide-containing material, and separation by magnetic force is performed. It performs, The manufacturing method of the manganese raw material of any one of Claims 1-3 characterized by the above-mentioned. マンガン含有鋼の溶製方法であって、請求項1〜4のいずれか1項に記載のマンガン原料の製造方法によって回収されたマンガン原料を、溶銑または溶鋼に添加することで、前記溶銑または前記溶鋼のマンガン濃度を調整することを特徴とするマンガン含有鋼の溶製方法。   It is a melting method of manganese containing steel, Comprising: The manganese raw material collect | recovered by the manufacturing method of the manganese raw material of any one of Claims 1-4 is added to hot metal or molten steel, The said hot metal or said A method for melting manganese-containing steel, comprising adjusting the manganese concentration of molten steel.
JP2018065704A 2018-03-29 2018-03-29 Manganese raw material manufacturing method and manganese-containing steel melting method Active JP6848920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018065704A JP6848920B2 (en) 2018-03-29 2018-03-29 Manganese raw material manufacturing method and manganese-containing steel melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018065704A JP6848920B2 (en) 2018-03-29 2018-03-29 Manganese raw material manufacturing method and manganese-containing steel melting method

Publications (2)

Publication Number Publication Date
JP2019173143A true JP2019173143A (en) 2019-10-10
JP6848920B2 JP6848920B2 (en) 2021-03-24

Family

ID=68166558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018065704A Active JP6848920B2 (en) 2018-03-29 2018-03-29 Manganese raw material manufacturing method and manganese-containing steel melting method

Country Status (1)

Country Link
JP (1) JP6848920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690011A (en) * 2021-07-13 2021-11-23 贵州金瑞新材料有限责任公司 Demagnetisation process for preparing battery-grade trimanganese tetroxide by manganese sheet method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488894A (en) * 1977-12-26 1979-07-14 Kobe Steel Ltd Converter slag treating method
CN101899564A (en) * 2010-09-03 2010-12-01 刘永红 Dressing and smelting process of magnetic iron ore with high manganese content, high sulfur content and high alkalinity
JP2010277987A (en) * 2009-04-28 2010-12-09 Jfe Steel Corp Method of recovering manganese oxide from dry battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488894A (en) * 1977-12-26 1979-07-14 Kobe Steel Ltd Converter slag treating method
JP2010277987A (en) * 2009-04-28 2010-12-09 Jfe Steel Corp Method of recovering manganese oxide from dry battery
CN101899564A (en) * 2010-09-03 2010-12-01 刘永红 Dressing and smelting process of magnetic iron ore with high manganese content, high sulfur content and high alkalinity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690011A (en) * 2021-07-13 2021-11-23 贵州金瑞新材料有限责任公司 Demagnetisation process for preparing battery-grade trimanganese tetroxide by manganese sheet method

Also Published As

Publication number Publication date
JP6848920B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
Yu et al. Effects of particle sizes of iron ore and coal on the strength and reduction of high phosphorus oolitic hematite-coal composite briquettes
Bölükbaşı et al. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality
Wang et al. Separation of silicon and iron in copper slag by carbothermic reduction-alkaline leaching process
JP2019173143A (en) Method of producing manganese raw material and method of producing manganese-containing steel
Bai et al. Effects of sodium carbonate on the carbothermic reduction of siderite ore with high phosphorus content
JP6590130B1 (en) Method for producing manganese raw material and method for melting manganese-containing steel
Youssef et al. Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed
JP5017846B2 (en) Reuse of chromium-containing steel refining slag
El-Geassy et al. Behaviour of manganese oxides during magnetising reduction of Baharia iron ore by CO–CO2 gas mixture
Radosavljevic et al. Mineral processing of a converter slag and its use in iron ore sintering
Kim et al. Upgrading of manganese from waste silicomanganese slag by a mechanical separation process
Lv et al. Beneficiation of High‐Phosphorus Siderite Ore by Acid Leaching and Alkaline Oxide Reinforced Carbothermic Reduction‐Magnetic Separation Process
Zhang et al. Phosphorus gasification during the carbothermic reduction of medium phosphorus magnetite ore by adding Na2CO3
JP2017205715A (en) Method for recovering valuables from dephosphorized slag
Yu Metal recovery from steelmaking slag
JP6140423B2 (en) Method for recovering metal containing desulfurized slag
Iwasaki et al. Removal of phosphorus from steelmaking slags: a literature survey
Zhang et al. Effect of the carbon mixing ratio on mineral evolution and gasification dephosphorization during the pre-reduction sintering process of bayan obo iron ore concentrate
Dan et al. The Formation, Properties and Use of Dispersed Iron-Graphite Metallurgical Waste
Gao et al. Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field
JP5524097B2 (en) Method for recovering valuable metals from steelmaking slag
JP5679836B2 (en) Recovery method of iron and manganese oxide from steelmaking slag
JP4532974B2 (en) Processing method of granular aluminum oxide
JP2017213481A (en) Valuable recovery method from dephosphorization slag
Chang Shi et al. Dry magnetic separation technology for the recovery of iron minerals in fine-grained steel slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150