JP2019172486A - Boron nitride powder and its production method - Google Patents

Boron nitride powder and its production method Download PDF

Info

Publication number
JP2019172486A
JP2019172486A JP2018060506A JP2018060506A JP2019172486A JP 2019172486 A JP2019172486 A JP 2019172486A JP 2018060506 A JP2018060506 A JP 2018060506A JP 2018060506 A JP2018060506 A JP 2018060506A JP 2019172486 A JP2019172486 A JP 2019172486A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride powder
powder
particles
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018060506A
Other languages
Japanese (ja)
Inventor
太志 磯部
Futoshi Isobe
太志 磯部
亜寿紗 飯盛
Azusa Iimori
亜寿紗 飯盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018060506A priority Critical patent/JP2019172486A/en
Publication of JP2019172486A publication Critical patent/JP2019172486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

To provide a boron nitride powder suitable for a material powder for a boron nitride-sintered body.SOLUTION: A boron nitride powder is formed with boron nitride particles 3, each having an average particle diameter of 0.5-50 μm and comprising a hexagonal boron nitride 3a and a cubic boron nitride 3b. A method for producing the boron nitride powder includes: a step of preparing the boron nitride powder 1 that has an average particle diameter of 0.5-50 μm and comprises the cubic boron nitride particles 3; and a heating step of heating the boron nitride powder 1 at a temperature range of 1,400-2,200°C under non-oxidation atmosphere.SELECTED DRAWING: Figure 1

Description

本開示は、窒化硼素粉末及びその製造方法に関する。   The present disclosure relates to boron nitride powder and a method for producing the same.

窒化硼素粉末は、高い硬度や熱伝導率、高い絶縁性を有することから、種々の用途に用いられている。高い熱伝導性を利用した例としては、樹脂と混合して、熱伝導性シートとして用いることが挙げられる。また、窒化硼素粉末は、窒化硼素焼結体の原料としても用いられている。   Boron nitride powder is used for various applications because it has high hardness, thermal conductivity, and high insulation. As an example using high thermal conductivity, it can be mixed with a resin and used as a thermal conductive sheet. Boron nitride powder is also used as a raw material for a boron nitride sintered body.

窒化硼素粉末に関し、これらの用途に利用するため、特許文献1では、粗製六方晶窒化硼素粉末に、Ca化合物を混合し、非酸化性雰囲気中で1300〜1800℃で加熱処理し、水洗浄処理を行ったのち、さらに、非酸化性雰囲気中で1800〜2100℃の温度範囲で加熱処理を行って、1次粒径10〜30μmの窒化硼素粉末を得る、結晶性の高い窒化硼素粉末の製造方法が記載されている。この方法によれば、得られる窒化硼素粉末は、各種工程を経る前と同様に六方晶の窒化硼素粉末となる。   In order to use boron nitride powder for these applications, in Patent Document 1, a crude hexagonal boron nitride powder is mixed with a Ca compound, heated in a non-oxidizing atmosphere at 1300 to 1800 ° C., and washed with water. Then, heat treatment is performed in a temperature range of 1800 to 2100 ° C. in a non-oxidizing atmosphere to obtain boron nitride powder having a primary particle size of 10 to 30 μm. Production of boron nitride powder with high crystallinity A method is described. According to this method, the obtained boron nitride powder becomes a hexagonal boron nitride powder as before the various steps.

また、窒化硼素粉末としては、立方晶のみの窒化硼素粉末が知られている。   Further, as boron nitride powder, cubic boron nitride powder is known.

特開平7―41311号公報JP 7-41311 A

窒化硼素焼結体の原料粉末に適した窒化硼素粉末を提供する。   A boron nitride powder suitable for a raw material powder of a boron nitride sintered body is provided.

本開示の窒化硼素粉末は、平均粒径が0.5〜50μmであり、六方晶窒化硼素および立方晶窒化硼素を含有する窒化硼素粒子からなる。   The boron nitride powder of the present disclosure has an average particle size of 0.5 to 50 μm and is made of boron nitride particles containing hexagonal boron nitride and cubic boron nitride.

また、本開示の窒化硼素粉末の製造方法は、平均粒径が0.5〜50μmの立方晶窒化硼素粒子からなる窒化硼素粉末を準備する工程と、前記窒化硼素粉末を非酸化性雰囲気で1400〜2200℃の温度域で熱処理する工程と、を有する。   Further, the method for producing boron nitride powder of the present disclosure includes a step of preparing boron nitride powder made of cubic boron nitride particles having an average particle size of 0.5 to 50 μm, and the boron nitride powder is 1400 in a non-oxidizing atmosphere. Heat-treating in a temperature range of ˜2200 ° C.

本開示の窒化硼素粉末は、焼結性が高い。   The boron nitride powder of the present disclosure has high sinterability.

本開示の窒化硼素粉末の製造方法によれば、焼結性が高い窒化硼素粉末を容易に得ることができる。   According to the method for producing boron nitride powder of the present disclosure, boron nitride powder with high sinterability can be easily obtained.

図1は、本開示の窒化硼素粉末の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of the boron nitride powder of the present disclosure. 図2は、本開示の窒化硼素粉末の他の一例を示す断面図である。FIG. 2 is a cross-sectional view illustrating another example of the boron nitride powder of the present disclosure. 図3は、本開示の窒化硼素粉末の他の一例を示す断面図である。FIG. 3 is a cross-sectional view illustrating another example of the boron nitride powder of the present disclosure.

以下、本開示の窒化硼素粉末について、図面を用いて詳細に説明する。但し、以下で参
照する各図は、説明の便宜上、必要な主要部分のみを簡略化して示したものである。
Hereinafter, the boron nitride powder of the present disclosure will be described in detail with reference to the drawings. However, each drawing referred to below shows only a necessary main part in a simplified manner for convenience of explanation.

図1に、本開示の窒化硼素粉末1を構成する窒化硼素粒子3の断面図を示す。窒化硼素粉末1は複数の窒化硼素粒子3からなる。窒化硼素粒子3の平均粒径は0.5〜50μmである。図1においては、球体として記載したが、多角形状であってもよい。   FIG. 1 shows a cross-sectional view of boron nitride particles 3 constituting the boron nitride powder 1 of the present disclosure. The boron nitride powder 1 is composed of a plurality of boron nitride particles 3. The average particle diameter of the boron nitride particles 3 is 0.5 to 50 μm. Although illustrated as a sphere in FIG. 1, it may be a polygonal shape.

窒化硼素粒子3は、六方晶窒化硼素3aと、立方晶窒化硼素3bとを有している。すなわち、窒化硼素粒子3は、一つの粒子中に、六方晶窒化硼素3aである部分と、立方晶窒化硼素3bである部分の両方を含有している。   The boron nitride particles 3 have hexagonal boron nitride 3a and cubic boron nitride 3b. That is, the boron nitride particles 3 contain both a portion that is hexagonal boron nitride 3a and a portion that is cubic boron nitride 3b in one particle.

このような構造を有する窒化硼素粒子3を含有する窒化硼素粉末1は、焼結性に優れている。   The boron nitride powder 1 containing the boron nitride particles 3 having such a structure is excellent in sinterability.

図1に示す窒化硼素粒子3では、窒化硼素粒子3の中心部に立方晶窒化硼素3bが存在し、窒化硼素粒子3の表層部分に六方晶窒化硼素3aが存在している。このような形態であると、窒化硼素粒子3の表面の全てに六方晶窒化硼素3aが存在していることから、表層において、熱伝導率が均一となる。このような窒化硼素粉末1は、焼結体の原料としてだけでなく、熱伝導性シートのフィラーとして適している。   In the boron nitride particles 3 shown in FIG. 1, cubic boron nitride 3 b exists at the center of the boron nitride particles 3, and hexagonal boron nitride 3 a exists at the surface layer portion of the boron nitride particles 3. In such a form, since the hexagonal boron nitride 3a exists on the entire surface of the boron nitride particles 3, the thermal conductivity becomes uniform in the surface layer. Such boron nitride powder 1 is suitable not only as a raw material for a sintered body but also as a filler for a thermally conductive sheet.

また、図2に示すように、窒化硼素粒子3の表層部分に、立方晶窒化硼素3bと六方晶窒化硼素3aの双方が存在していてもよい。このような窒化硼素粒子3を含有する窒化硼素粉末1は、表層に立方晶窒化硼素3bと六方晶窒化硼素3aの境界が存在するため、焼結性の高い原料粉末となる。このような形態の窒化硼素粒子3は、図1に示した表層部分に六方晶窒化硼素3aが存在する窒化硼素粒子3に荷重をかけて、割ることで得られる。   In addition, as shown in FIG. 2, both cubic boron nitride 3 b and hexagonal boron nitride 3 a may exist in the surface layer portion of boron nitride particles 3. The boron nitride powder 1 containing such boron nitride particles 3 is a raw material powder having high sinterability because the boundary between the cubic boron nitride 3b and the hexagonal boron nitride 3a exists in the surface layer. The boron nitride particles 3 having such a form can be obtained by applying a load to the boron nitride particles 3 in which the hexagonal boron nitride 3a is present in the surface layer portion shown in FIG.

また、図3に示すように、窒化硼素粒子3は、表層に開口する亀裂5を有していてもよい。このような構造を有すると、亀裂5がない場合に比べると窒化硼素粉末の比表面積が大きくなる。窒化硼素粉末の見かけ上の平均粒径は維持したまま、比表面積が大きくなる。比表面積が大きいと、焼結体の原料として用いた場合、焼結性に優れた原料となるため、焼成に要するエネルギーが小さくなる。   In addition, as shown in FIG. 3, the boron nitride particles 3 may have cracks 5 that open in the surface layer. With such a structure, the specific surface area of the boron nitride powder becomes larger than when there is no crack 5. The specific surface area increases while maintaining the apparent average particle diameter of the boron nitride powder. When the specific surface area is large, when it is used as a raw material for a sintered body, it becomes a raw material having excellent sinterability, so that energy required for firing becomes small.

また、亀裂5の大きさが、窒化硼素粒子3の粒径の半分よりも大きい場合には、窒化硼素粒子3が割れやすい。このような窒化硼素粒子3を溶液に分散させた砥粒として用いると、溶液中では分散しやすく、砥粒として対象物と摩擦させるときには、割れて小さな砥粒として機能する。   Further, when the size of the crack 5 is larger than half of the particle size of the boron nitride particles 3, the boron nitride particles 3 are easily cracked. When such boron nitride particles 3 are used as abrasive grains dispersed in a solution, they are easily dispersed in the solution, and when they are rubbed against an object as abrasive grains, they break and function as small abrasive grains.

この亀裂5の壁面は、窒化硼素粒子3の断面において、直線状であってもよい。亀裂の壁面が直線状であると、亀裂5が多くなっても比表面積が大きくなりにくい。そのため、溶液や樹脂と窒化硼素粒子3とを混合して用いる場合には、混合体の粘度が高くなりにくく、窒化硼素粒子3の割合を多くすることができる。   The wall surface of the crack 5 may be linear in the cross section of the boron nitride particles 3. If the wall surface of the crack is linear, the specific surface area is unlikely to increase even if the number of cracks 5 increases. Therefore, when a solution or resin and boron nitride particles 3 are mixed and used, the viscosity of the mixture is hardly increased and the proportion of boron nitride particles 3 can be increased.

本開示の窒化硼素粉末1は、硼素と窒素の含有割合の合計が、99%以上であってもよい。このような高純度の窒化硼素粉末1は、高い熱伝導率を有する。言い換えると、窒化硼素粉末1は、純度が99%以上であるとよい。   In the boron nitride powder 1 of the present disclosure, the total content ratio of boron and nitrogen may be 99% or more. Such a high purity boron nitride powder 1 has a high thermal conductivity. In other words, the boron nitride powder 1 preferably has a purity of 99% or more.

本開示の窒化硼素粉末1は、上述のほかにも、特異な構造を有することを利用した様々な用途に用いることができる。   In addition to the above, the boron nitride powder 1 of the present disclosure can be used for various applications utilizing a unique structure.

以下に本開示の窒化硼素粉末の製造方法について説明する。   Hereinafter, a method for producing the boron nitride powder of the present disclosure will be described.

まず、平均粒径が0.5〜50μmの立方晶の窒化硼素粉末を準備する。次に、この立方晶窒化硼素粉末をNガスやArガスなどの非酸化性雰囲気中で、1400〜2200℃の温度域で熱処理する。この熱処理する工程で、立方晶窒化硼素粉末の表面から立方晶窒化硼素が六方晶窒化硼素に変化する。そして、窒化硼素粉末に含まれている立方晶窒化硼素の全てが六方晶窒化硼素に相転移する前に熱処理を止めることで、本開示の窒化硼素粉末を製造することができる。 First, cubic boron nitride powder having an average particle size of 0.5 to 50 μm is prepared. Next, this cubic boron nitride powder is heat-treated in a temperature range of 1400 to 2200 ° C. in a non-oxidizing atmosphere such as N 2 gas or Ar gas. In the heat treatment step, the cubic boron nitride changes from the surface of the cubic boron nitride powder to hexagonal boron nitride. Then, the boron nitride powder of the present disclosure can be manufactured by stopping the heat treatment before all of the cubic boron nitride contained in the boron nitride powder is phase-transformed into hexagonal boron nitride.

立方晶窒化硼素の少なくとも一部が六方晶窒化硼素に相転移するために要する時間は、1400℃であれば、4時間程度である。2200℃であれば、30分程度である。   The time required for phase transition of at least part of cubic boron nitride to hexagonal boron nitride is about 4 hours at 1400 ° C. If it is 2200 degreeC, it will be about 30 minutes.

原料粉末として、0.5〜30μm程度の平均粒径の立方晶の窒化硼素粉末を用いると、窒化硼素粉末の比表面積が比較的大きい。したがって、比較的、短い時間で六方晶窒化硼素の割合を増加させることができる。   When cubic boron nitride powder having an average particle diameter of about 0.5 to 30 μm is used as the raw material powder, the specific surface area of the boron nitride powder is relatively large. Therefore, the ratio of hexagonal boron nitride can be increased in a relatively short time.

原料粉末として、30μmよりも大きい窒化硼素粉末を用いると、窒化硼素粉末の比表面積が比較的小さい。したがって、六方晶窒化硼素の割合を増加させるためには比較的長い時間をかけるとよい。   When boron nitride powder larger than 30 μm is used as the raw material powder, the specific surface area of the boron nitride powder is relatively small. Therefore, it is preferable to take a relatively long time to increase the ratio of hexagonal boron nitride.

原料として、平均粒径が5μm以上の立方晶の窒化硼素粉末を準備し、熱処理時間と熱処理時間を調整して、窒化硼素粉末の半径の半分を六方晶窒化硼素とすると、窒化硼素粒子の表面に開口を有する亀裂が得られやすい。   When a cubic boron nitride powder having an average particle size of 5 μm or more is prepared as a raw material, and the heat treatment time and the heat treatment time are adjusted so that half the radius of the boron nitride powder is hexagonal boron nitride, the surface of the boron nitride particles A crack having an opening is easily obtained.

熱処理によって立方晶が六方晶に変化すると、体積変化が生じる。その体積変化に起因して亀裂が生じる。この亀裂は、熱処理温度が高いほど生じやすく、原料として用いる立方晶の窒化硼素粉末の平均粒径が大きいほど生じやすい。例えば、5μm以上の立方晶の窒化硼素粉末に対して、1800℃以上の温度で、2時間以上の熱処理を行うと、亀裂が生じやすい。   When cubic crystal changes to hexagonal crystal by heat treatment, volume change occurs. Cracks occur due to the volume change. This crack is more likely to occur as the heat treatment temperature is higher, and the crack is more likely to occur as the average particle size of the cubic boron nitride powder used as a raw material is larger. For example, if a cubic boron nitride powder of 5 μm or more is subjected to a heat treatment for 2 hours or more at a temperature of 1800 ° C. or more, cracks are likely to occur.

また、例えば、平均粒径が30μmの立方晶の窒化硼素粉末を用い、亀裂を生じさせる場合には、1900℃以上の温度で、3時間以上の熱処理を行うとよい。   For example, when a cubic boron nitride powder having an average particle size of 30 μm is used and cracks are generated, heat treatment is preferably performed at a temperature of 1900 ° C. or more for 3 hours or more.

窒化硼素粒子の直径に対して、発生した亀裂が大きい場合には、熱処理の最中や降温時に窒化硼素粒子が割れることがある。その様な場合には、窒化硼素粒子の表層に立方晶窒化硼素と六方晶窒化硼素の双方が存在することがある。また、部分的に六方晶窒化硼素の占める割合が均一でなくなることがある。   If the generated cracks are larger than the diameter of the boron nitride particles, the boron nitride particles may break during the heat treatment or when the temperature is lowered. In such a case, both cubic boron nitride and hexagonal boron nitride may exist in the surface layer of the boron nitride particles. In addition, the proportion of hexagonal boron nitride may not be uniform.

また、製造した窒化硼素粉末を粉砕すると、窒化硼素粉末の中心部にあった立方晶窒化硼素が表層に露出する。   Further, when the produced boron nitride powder is pulverized, cubic boron nitride at the center of the boron nitride powder is exposed on the surface layer.

原料として用いる、立方晶の窒化硼素粉末は、99%以上の純度を有する高純度のものであってもよい。また、立方晶の窒化硼素粉末を製造する際に用いた触媒成分を含有するものであってもよい。99%未満の純度の原料粉末を用いてもよい。   The cubic boron nitride powder used as a raw material may be high-purity having a purity of 99% or more. Moreover, the catalyst component used when manufacturing cubic boron nitride powder may be contained. A raw material powder having a purity of less than 99% may be used.

以上、本開示の窒化硼素粉末およびその製造方法について説明したが、上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよい。   The boron nitride powder and the manufacturing method thereof of the present disclosure have been described above. However, the present invention is not limited to the above-described embodiment, and various improvements and modifications may be made without departing from the gist of the present disclosure.

1・・・窒化硼素粉末
3・・・窒化硼素粒子
3a・・六方晶窒化硼素
3b・・立方晶窒化硼素
5・・・亀裂
DESCRIPTION OF SYMBOLS 1 ... Boron nitride powder 3 ... Boron nitride particle 3a ... Hexagonal boron nitride 3b ... Cubic boron nitride 5 ... Crack

Claims (5)

平均粒径が0.5〜50μmであり、
六方晶窒化硼素と立方晶窒化硼素を含有する窒化硼素粒子からなる窒化硼素粉末。
The average particle size is 0.5-50 μm,
Boron nitride powder comprising boron nitride particles containing hexagonal boron nitride and cubic boron nitride.
前記窒化硼素粒子は、中心部分に立方晶窒化硼素を含有し、表層部分に六方晶窒化硼素を含有する、請求項1に記載の窒化硼素粉末。   2. The boron nitride powder according to claim 1, wherein the boron nitride particles contain cubic boron nitride in a central portion and hexagonal boron nitride in a surface layer portion. 前記窒化硼素粒子は、表層に開口する亀裂を有する、請求項1または2に窒化硼素粉末。   The boron nitride powder according to claim 1, wherein the boron nitride particles have a crack opening in a surface layer. 前記硼素と窒素の含有割合の合計が、99質量%以上である、請求項1〜3のいずれかに記載の窒化硼素粉末。   The boron nitride powder according to any one of claims 1 to 3, wherein a total content ratio of the boron and nitrogen is 99 mass% or more. 平均粒径が0.5〜50μmの立方晶窒化硼素粒子からなる窒化硼素粉末を準備する工程と、
前記窒化硼素粉末を非酸化性雰囲気で1400〜2200℃の温度域で熱処理する工程と、を有する窒化硼素粉末の製造方法。
Preparing a boron nitride powder comprising cubic boron nitride particles having an average particle size of 0.5 to 50 μm;
Heat-treating the boron nitride powder in a non-oxidizing atmosphere at a temperature range of 1400 to 2200 ° C. to produce a boron nitride powder.
JP2018060506A 2018-03-27 2018-03-27 Boron nitride powder and its production method Pending JP2019172486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018060506A JP2019172486A (en) 2018-03-27 2018-03-27 Boron nitride powder and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060506A JP2019172486A (en) 2018-03-27 2018-03-27 Boron nitride powder and its production method

Publications (1)

Publication Number Publication Date
JP2019172486A true JP2019172486A (en) 2019-10-10

Family

ID=68169208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060506A Pending JP2019172486A (en) 2018-03-27 2018-03-27 Boron nitride powder and its production method

Country Status (1)

Country Link
JP (1) JP2019172486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526475A (en) * 2020-04-17 2021-10-22 燕山大学 Novel sp2-sp3Hybrid crystalline boron nitride and method for preparing same
JPWO2022013910A1 (en) * 2020-07-13 2022-01-20

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526475A (en) * 2020-04-17 2021-10-22 燕山大学 Novel sp2-sp3Hybrid crystalline boron nitride and method for preparing same
JP2021172579A (en) * 2020-04-17 2021-11-01 燕山大学Yanshan University NOVEL sp2-sp3 HYBRID CRYSTAL BORON NITRIDE AND METHOD FOR PREPARING THE SAME
JP7182299B2 (en) 2020-04-17 2022-12-02 燕山大学 Method for preparing novel sp2-sp3 hybrid crystal boron nitride
JP2022188080A (en) * 2020-04-17 2022-12-20 燕山大学 Novel sp2-sp3 hybrid crystal boron nitride
US11708268B2 (en) 2020-04-17 2023-07-25 Yanshan University sp2-sp3 Hybrid crystalline boron nitride and its preparation process
JP7440726B2 (en) 2020-04-17 2024-02-29 燕山大学 New sp2-sp3 hybrid crystal boron nitride
JPWO2022013910A1 (en) * 2020-07-13 2022-01-20
JP7420254B2 (en) 2020-07-13 2024-01-23 日本電信電話株式会社 Manufacturing method of light emitting device

Similar Documents

Publication Publication Date Title
JP5735046B2 (en) Insulation
US11059751B2 (en) Coated member, coating material, and method of manufacturing coated member
JP7362151B2 (en) High-purity, low-aluminum spherical β-silicon nitride powder, its manufacturing method and applications
JP2019172486A (en) Boron nitride powder and its production method
CN105948748B (en) A kind of Si-B-C-N zircon ceramic composite material and preparation method
JPWO2016129591A1 (en) Coating member and method for manufacturing coating member
KR102007358B1 (en) Silicon carbide sintered body and preparing method of the same
JP7450701B2 (en) Fluorescent ceramics and their manufacturing method, light source device
JP2014014813A5 (en)
CN103171207A (en) Heat sink material and preparation method thereof
US7658903B2 (en) High purity nuclear graphite
KR20230124741A (en) Manufacturing method of low viscosity high thermal conductivity spherical alumina
Son et al. Fabrication of translucent AlN ceramics with MgF2 additive by spark plasma sintering
US3538205A (en) Method of providing improved lossy dielectric structure for dissipating electrical microwave energy
JP2017178752A (en) Spherical ain particles, spherical ain filler and manufacturing method of spherical ain particles
Fu et al. Optical and Microwave Dielectric Properties of Z n‐Doped M g A l2 O 4 Transparent Ceramics Fabricated by Spark Plasma Sintering
KR102205178B1 (en) MgO AND METHOD FOR MANUFACTURING THE SAME, AND HIGH THERMAL CONDUCTIVE MgO COMPOSITION, AND MgO CERAMICS USING THE SAME
CN101671193A (en) Carbon fiber/boron carbide composite ceramic and preparation method thereof
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
JPH10172738A (en) Glass like carbon heating element
JP2009249248A (en) Method for producing ceramic
US20160238331A1 (en) Heat transfer device and method of making the same
CN109179370B (en) Carbon hollow microsphere and preparation method thereof
JP2015038365A (en) Heat insulation material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914