JP2019161928A - Motor core - Google Patents

Motor core Download PDF

Info

Publication number
JP2019161928A
JP2019161928A JP2018047621A JP2018047621A JP2019161928A JP 2019161928 A JP2019161928 A JP 2019161928A JP 2018047621 A JP2018047621 A JP 2018047621A JP 2018047621 A JP2018047621 A JP 2018047621A JP 2019161928 A JP2019161928 A JP 2019161928A
Authority
JP
Japan
Prior art keywords
adhesive
mpa
electromagnetic steel
motor core
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018047621A
Other languages
Japanese (ja)
Other versions
JP6954195B2 (en
Inventor
智 鹿野
Satoshi Shikano
智 鹿野
藤村 浩志
Hiroshi Fujimura
浩志 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018047621A priority Critical patent/JP6954195B2/en
Publication of JP2019161928A publication Critical patent/JP2019161928A/en
Application granted granted Critical
Publication of JP6954195B2 publication Critical patent/JP6954195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

To provide a motor core with high adhesive strength of laminated electrical steel sheets.SOLUTION: In a motor core in which a plurality of punched electromagnetic steel plates 10 are stacked and the plate surfaces 10a of the plurality of electromagnetic steel plates 10 are bonded to each other, the sag height of the punched end surface 11 of the electromagnetic steel plate 10 is L (mm), and the sag width of the punched end surface 11 is W (mm), the amount of protrusion after drying from the punched end surface 11 of an adhesive layer 13 provided on the plate surface 10a of the electromagnetic steel sheet 10 is F (μm), and the following formulas (1) and (2) are satisfied. 0.01≤L/W≤0.04 (1). 1 μm≤F≤1 μm+250 μm×(L/W) (2).SELECTED DRAWING: Figure 3

Description

本発明は、電磁鋼板を積層して接着剤で固着したモータコアに関する。   The present invention relates to a motor core in which electromagnetic steel sheets are laminated and fixed with an adhesive.

近年、地球環境問題に対する取り組みへの高まりから、例えば、自動車(ハイブリッド自動車、電気自動車、燃料電池自動車など)や家電製品(エアコン、冷蔵庫など)の分野では、消費エネルギーの少ない製品の普及が進んでいる。これらの製品には、高速回転する高効率モータが使用されており、高効率モータのコアの材料として無方向性電磁鋼板が使用されている。   In recent years, due to the increase in efforts for global environmental problems, for example, in the fields of automobiles (hybrid cars, electric cars, fuel cell cars, etc.) and household appliances (air conditioners, refrigerators, etc.), products with low energy consumption have spread. Yes. These products use high-efficiency motors that rotate at high speed, and non-oriented electrical steel sheets are used as the core material of the high-efficiency motors.

モータコアには、ステータコアと、その内側に配置されるロータコアがある。それぞれ、無方向性電磁鋼板(以下、電磁鋼板と略称する。)を環状に切り出し、切り出し後の複数の板片を2枚以上積層して固定することで構成される。一般に積層した電磁鋼板を固定する方法は、かしめ、溶接あるいはボルト締めが広く採用される。   The motor core includes a stator core and a rotor core disposed inside the stator core. Each is configured by cutting out a non-oriented electrical steel sheet (hereinafter abbreviated as an electrical steel sheet) in an annular shape, and laminating and fixing two or more of the cut plate pieces. Generally, caulking, welding, or bolting is widely used as a method for fixing laminated electromagnetic steel sheets.

電磁鋼板を切り出し後、複数の板片を2枚以上積層して固定するまでの過程で積層した電磁鋼板をかしめやボルト締め、溶接で固定すると、電磁鋼板にひずみが導入される。このため、従来から知られている方法で電磁鋼板を固定した積層鉄心は、鉄損が増大する。そのため、モータ製造時に積層鉄心に導入されるひずみを低減して、磁気特性を向上するための種々の技術が検討されている。   After the electromagnetic steel sheet is cut out, when the electromagnetic steel sheets laminated in the process of laminating and fixing two or more pieces are fixed by caulking, bolting, or welding, strain is introduced into the electromagnetic steel sheet. For this reason, the core loss increases in the laminated iron core in which the electromagnetic steel sheet is fixed by a conventionally known method. For this reason, various techniques for reducing the strain introduced into the laminated iron core during motor manufacture and improving the magnetic characteristics have been studied.

この課題を解決するものとして、例えば電磁鋼板を打ち抜いた後、接着して鉄心を組む方法がある。特許文献1には、積層したモータコアの側面(バックヨーク側面)に接着剤を塗布したモータコア、特許文献2〜5には打ち抜いた電磁鋼板の板面に接着材を塗布したモータコアが記載されている。また、特許文献6、7には、モータコアに塗布する接着剤のはみ出しを防止する技術が記載されている。   As a solution to this problem, for example, there is a method in which an iron steel core is assembled by bonding after punching out an electromagnetic steel sheet. Patent Document 1 describes a motor core in which an adhesive is applied to the side surface (back yoke side surface) of the laminated motor core, and Patent Documents 2 to 5 describe a motor core in which an adhesive material is applied to the surface of a punched electromagnetic steel sheet. . Patent Documents 6 and 7 describe techniques for preventing the adhesive applied to the motor core from protruding.

特開2003−282330号公報JP 2003-282330 A 特開2010−136467号公報JP 2010-136467 A 特開2017−169249号公報JP 2017-169249 A 特開2012−120299号公報JP 2012-120299 A 特開2015−142453号公報Japanese Patent Laying-Open No. 2015-142453 特開2014−096429号公報JP 2014-096429 A WO2017−199527WO2017-199527

従来の技術では、乾燥後の接着剤のはみ出し量が増加するとともに接着強度が低下するため、打ち抜き端面からはみ出した接着剤を除去する必要があり、製造コストが増加する問題があった。   In the prior art, since the amount of the protruding adhesive after drying increases and the adhesive strength decreases, it is necessary to remove the adhesive protruding from the punched end surface, which increases the manufacturing cost.

そこで、本発明者らは、接着強度の高いモータコアを安価で製造する技術について検討した。その結果、電磁鋼板の打ち抜き端面からのダレ高さとダレ幅の比を所定の範囲にすることで、乾燥後の接着剤がはみ出しても接着強度が高く、はみ出した接着剤を除去する工程を省略することができ、製造コストを下げられる知見を得るに至った。   Therefore, the present inventors examined a technique for manufacturing a motor core having high adhesive strength at a low cost. As a result, by setting the ratio of the sagging height and sagging width from the punched end surface of the electrical steel sheet to a predetermined range, the adhesive strength is high even if the adhesive after drying protrudes, and the process of removing the protruding adhesive is omitted. This has led to the finding that manufacturing costs can be reduced.

本発明は前記知見に基づいてなされたもので、積層された電磁鋼板の接着強度が高いモータコアを提供することを目的とする。   The present invention has been made on the basis of the above knowledge, and an object thereof is to provide a motor core having high adhesive strength of laminated electromagnetic steel sheets.

前記目的を達成するために、本発明のモータコアは、打ち抜き加工された複数の電磁鋼板を積層、板面を接着して構成されるモータコアにおいて、
前記電磁鋼板の打ち抜き端面に発生しているダレのダレ高さL(mm)、ダレ幅W(mm)、および前記電磁鋼板の板面に設けられている前記接着層の前記電磁鋼板の打ち抜き端面からのはみ出し量F(μm)が、下記式(1)かつ式(2)を満足することを特徴とする。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W)(2)
In order to achieve the above object, the motor core of the present invention is a motor core configured by laminating a plurality of punched electromagnetic steel plates and bonding the plate surfaces.
The sag height L (mm), the sag width W (mm) of the sag generated on the punched end surface of the electromagnetic steel sheet, and the punched end surface of the adhesive steel sheet of the adhesive layer provided on the plate surface of the electromagnetic steel sheet The amount of protrusion F (μm) from the surface satisfies the following formulas (1) and (2).
0.01 ≦ L / W ≦ 0.04 (1)
1 μm ≦ F ≦ 1 μm + 250 μm × (L / W) (2)

ここで、打ち抜き端面に発生しているダレとは、打ち抜き加工によって電磁鋼板を形成する場合において、当該電磁鋼板の板面と打ち抜き端面との間に形成された傾斜面のことを言う。ダレ高さとは、ダレ(傾斜面)の上端と下端との間の板厚方向の寸法のことを言い、ダレ幅とは、ダレ(傾斜面)の上端と下端との間の幅方向の寸法のことを言う。   Here, the sagging generated on the punched end surface refers to an inclined surface formed between the plate surface of the electromagnetic steel plate and the punched end surface when the electromagnetic steel plate is formed by punching. The sagging height is the dimension in the plate thickness direction between the upper end and the lower end of the sagging (inclined surface), and the sagging width is the dimension in the width direction between the upper end and the lower end of the sagging (inclined surface). Say that.

本発明のモータコアによれば、モータコアサイズ、電磁鋼板の板厚、接着剤の塗布量、接着剤の組成にかかわらず、打ち抜き端面に発生しているダレのダレ高さとダレ幅のダレ比L/Wと接着剤はみ出し量を所定の範囲に制御することで、電磁鋼板の接着強度が高いモータコアを得ることができる。   According to the motor core of the present invention, the sag height L / sag ratio L / By controlling the amount of protrusion of W and the adhesive within a predetermined range, a motor core having a high adhesive strength of the electromagnetic steel sheet can be obtained.

また、本発明のモータコアの製造方法は、前記モータコアを製造する方法であって、平面視において前記打ち抜き端面からの接着剤塗布位置をX(mm)、接着時の加圧圧力をP(MPa)としたとき、ダレ比L/Wと接着時の加圧圧力Pに応じて、前記電磁鋼板の内側の板面に下記式(3)〜(7)のいずれかを満足する位置Xに接着剤を塗布することを特徴とする。
(A1)ダレ比0.01≦L/W≦0.024の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.1mm×P+0.15mm (3)
(A2)ダレ比0.01≦L/W≦0.024の場合でかつ125MPa×(L/W)+0.5MPa≦P≦3.5MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.1mm×P+0.15mm (4)
(A3)ダレ比0.01≦L/W≦0.024の場合でかつ3.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (5)
(B1)ダレ比0.024<L/W≦0.04の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaである場合、
0.02mm≦X≦0.1mm×P+0.15mm(3)
(B2)ダレ比0.024<L/W≦0.04の場合でかつ3.5MPa≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.5mm (6)
(B3)ダレ比0.024<L/W≦0.04の場合でかつ125MPa×(L/W)+0.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (7)
The motor core manufacturing method of the present invention is a method for manufacturing the motor core, wherein the adhesive application position from the punched end surface is X (mm) in plan view, and the pressure applied during bonding is P (MPa). In accordance with the sag ratio L / W and the pressure P applied at the time of bonding, the adhesive is placed at a position X satisfying any of the following formulas (3) to (7) on the inner plate surface of the electromagnetic steel sheet. It is characterized by applying.
(A1) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 0 ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (3)
(A2) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 125 MPa × (L / W) +0.5 MPa ≦ P ≦ 3.5 MPa,
0.1 mm × P-12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (4)
(A3) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 3.5 MPa ≦ P ≦ 125 MPa × (L / W) +5.3 MPa,
0.1 mm × P-12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.5 mm (5)
(B1) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 0 ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (3)
(B2) When the sagging ratio is 0.024 <L / W ≦ 0.04 and when 3.5 MPa ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.5 mm (6)
(B3) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 125 MPa × (L / W) +0.5 MPa ≦ P ≦ 125 MPa × (L / W) +5.3 MPa 0.1 mm × P −12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.5 mm (7)

本発明のモータコアの製造方法によれば、ダレ比と接着時の加圧圧力に応じて(3)〜(7)式のいずれか1つを満足する位置に接着剤を塗布すれば、はみ出し量を規定範囲に制御できるので、高い接着強度が得られる。   According to the motor core manufacturing method of the present invention, if the adhesive is applied to a position that satisfies any one of the expressions (3) to (7) according to the sagging ratio and the pressure applied during bonding, the amount of protrusion Can be controlled within a specified range, and high adhesive strength can be obtained.

本発明によれば、安価で積層された電磁鋼板の接着強度が高いモータコアが得られる。   According to the present invention, it is possible to obtain a motor core that is inexpensive and has high adhesive strength of laminated magnetic steel sheets.

本発明の実施の形態に係るモータコアを示すもので、モータコアを構成する電磁鋼板の平面図である。The motor core which concerns on embodiment of this invention is shown, and is a top view of the electromagnetic steel plate which comprises a motor core. 同、正面図である。FIG. 同、(a)はモータコアの要部の断面図、(b)は他のモータコアの要部の断面図、(c)電磁鋼板の要部の断面図である。(d)は電磁鋼板の腰部の断面図であり接着剤を塗布した図である。4A is a cross-sectional view of the main part of the motor core, FIG. 4B is a cross-sectional view of the main part of another motor core, and FIG. (D) is sectional drawing of the waist | lumbar part of an electromagnetic steel plate, and is the figure which applied the adhesive agent. 同、(a)は接着剤を塗布した状態の電磁鋼板の平面図、(b)は(a)における要部の拡大図である。(A) is a top view of the electromagnetic steel plate in the state which apply | coated the adhesive agent, (b) is an enlarged view of the principal part in (a). 接着強度を調査するときの引張方法を示す図である。It is a figure which shows the tension | pulling method when investigating adhesive strength. 接着強度とダレ比L/W、接着剤はみ出し量Fとの関係を示す図である。It is a figure which shows the relationship between adhesive strength, droop ratio L / W, and adhesive protrusion amount F. ダレ比L/W=0.013における、接着強度と加圧圧力P、接着剤塗布位置Xとの関係を示す図である。It is a figure which shows the relationship between adhesive strength, pressurization pressure P, and adhesive application position X in sagging ratio L / W = 0.013. ダレ比L/W=0.024における、接着強度と加圧圧力P、接着剤塗布位置Xとの関係を示す図である。It is a figure which shows the relationship between adhesive strength, pressurizing pressure P, and adhesive application position X in sagging ratio L / W = 0.024. ダレ比L/W=0.037における、接着強度と加圧圧力P、接着剤塗布位置Xとの関係を示す図である。It is a figure which shows the relationship between adhesive strength, pressurization pressure P, and adhesive application position X in sagging ratio L / W = 0.037.

(モータコア)
以下、図面を参照して本発明に係るモータコアの実施の形態について説明する。図1は実施の形態に係るモータコアを構成する電磁鋼板10の平面図、図2はモータコア101の正面図である。電磁鋼板10は、無方向性電磁鋼板や方向性電磁鋼板等の従来から知られている電磁鋼板を円環状に打ち抜き加工することで形成されたものであり、モータコア101の軸方向(図1において紙面と直交する方向、図2において上下方向)に複数積層されるとともに軸方向に隣接する電磁鋼板10、10どうしが接着剤で接着されることで、モータコア101を構成するものである。
(Motor core)
Hereinafter, embodiments of a motor core according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a magnetic steel sheet 10 constituting the motor core according to the embodiment, and FIG. 2 is a front view of the motor core 101. The electromagnetic steel sheet 10 is formed by punching a conventionally known electromagnetic steel sheet such as a non-oriented electrical steel sheet or a directional electromagnetic steel sheet into an annular shape, and the axial direction of the motor core 101 (in FIG. 1). The motor core 101 is configured by laminating a plurality of magnetic steel sheets 10 and 10 adjacent to each other in the axial direction while being laminated in a direction perpendicular to the plane of the paper (vertical direction in FIG. 2).

電磁鋼板10の表面には、モータコア(積層鉄心)101における各電磁鋼板10の電気的絶縁を維持するために絶縁被膜(図示略)が形成されている。絶縁被膜は、無機物や有機物からなる被膜あるいは無機物と有機物を混合した被膜等の従来から知られている絶縁被膜が使用されている。   An insulating coating (not shown) is formed on the surface of the electromagnetic steel sheet 10 in order to maintain electrical insulation of each electromagnetic steel sheet 10 in the motor core (laminated core) 101. As the insulating film, a conventionally known insulating film such as a film made of an inorganic material or an organic material or a film in which an inorganic material and an organic material are mixed is used.

打ち抜き加工された電磁鋼板10の打ち抜き端面11には、図3(a)〜図3(c)に示すように、ダレ12が発生する。打ち抜き端面11のダレ12とは、図3(c)に示すように、電磁鋼板10の板面10aと打ち抜き端面11との間に形成された傾斜面12のことを言う。   As shown in FIGS. 3A to 3C, a sag 12 is generated on the punched end surface 11 of the punched electromagnetic steel sheet 10. The sagging 12 of the punched end surface 11 refers to an inclined surface 12 formed between the plate surface 10a of the electromagnetic steel sheet 10 and the punched end surface 11 as shown in FIG.

また、図3(a)に示すように、乾燥後の接着剤の先端が、平面視において打ち抜き端面11より電磁鋼板10の外側にある場合が多いが、図3(b)に示すように、平面視において打ち抜き端面11より電磁鋼板10の内側にある場合もある。
この場合、乾燥後の接着剤の先端が打ち抜き端面11より電磁鋼板10の外側にある場合、乾燥後はみ出し量Fは、打ち抜き端面11から何μmとし、電磁鋼板10の内側にある場合、乾燥後はみ出し量Fは、打ち抜き端面11から−(マイナス)何μmとする。
また、本実施の形態では、モータコアサイズ、電磁鋼板の板厚、接着剤の塗布量、接着剤の組成にかかわらず乾燥後の接着剤はみ出し量F(μm)と、平面視において電磁鋼板10の打ち抜き端面11から電磁鋼板10の内側にあるダレ高さL(mm)、ダレ幅W(mm)の比L/Wが下記式(1)、(2)を満足する。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W) (2)
Moreover, as shown in FIG. 3A, the tip of the adhesive after drying is often outside the electromagnetic steel sheet 10 from the punched end surface 11 in a plan view, but as shown in FIG. In some cases, it may be inside the electromagnetic steel sheet 10 from the punched end face 11 in a plan view.
In this case, when the front end of the adhesive after drying is outside the punched end surface 11 and outside the electromagnetic steel sheet 10, the amount of protrusion F after drying is set to how many μm from the punched end face 11, and when it is inside the electromagnetic steel sheet 10, after drying The protruding amount F is set to − (minus) how many μm from the punched end face 11.
Moreover, in this Embodiment, the adhesive protrusion F (micrometer) after drying regardless of a motor core size, the plate | board thickness of an electromagnetic steel plate, the application amount of an adhesive agent, and a composition of an adhesive agent, and the electromagnetic steel plate 10 of planar view. The ratio L / W of the sag height L (mm) and the sag width W (mm) inside the electromagnetic steel sheet 10 from the punched end surface 11 satisfies the following formulas (1) and (2).
0.01 ≦ L / W ≦ 0.04 (1)
1 μm ≦ F ≦ 1 μm + 250 μm × (L / W) (2)

式(1)の限定理由について実験結果に基づいて説明する。
(A)接着剤はみ出し量及び接着強度に及ぼすモータコアサイズの影響
表1のA−1〜15の通り、板厚0.25mmの電磁鋼板をクリアランスを変えて打ち抜き、モータコアの外径、内径、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、以下の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
なお、前記クリアランスとは、素材から電磁鋼板を打ち抜く際に使用されるパンチとダイとの間の隙間のことを言う。
(1)接着強度
接着強度として、特許文献5の方法に倣い図5に矢印で示すように、モータコア101を軸方向に平行に引張って、板面どうしが接着された電磁鋼板10,10に剥離が生じたときの荷重を測定し、80N以上を合格とした。
(2)ダレ高さL、ダレ幅W、接着剤はみ出し量Fの評価
剥離した箇所について図3(a)のような観察面になるようにモータコアの断面を切り出した。その後、ダレは高さとダレ幅は、図3(c)の通り測定した。一方接着剤はみ出し量は図3(a)の通り、打ち抜き端面から最も張り出した箇所を測定した。
The reason for limiting equation (1) will be described based on experimental results.
(A) Effect of motor core size on adhesive protrusion and adhesive strength As shown in A-1 to 15 in Table 1, electromagnetic steel sheets with a thickness of 0.25 mm are punched with different clearances, and the outer diameter, inner diameter, and punching of the motor core The sagging ratio L / W of the end face was changed. After that, for each of the outer peripheral part and inner peripheral part of the motor core, an adhesive was applied at a position of 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, 12 layers were laminated, and then pressurized at 3 MPa. Glued. After the adhesive was dried, the adhesive strength, sagging height, sagging width, and adhesive protruding amount were evaluated by the following methods.
The clearance refers to a gap between a punch and a die used when punching out a magnetic steel sheet from a material.
(1) Adhesive strength Following the method of Patent Document 5, as shown by the arrow in FIG. 5, the motor core 101 is pulled parallel to the axial direction and peeled off to the magnetic steel plates 10 and 10 to which the plate surfaces are bonded. The load at the time of occurrence was measured, and 80N or more was regarded as acceptable.
(2) Evaluation of sagging height L, sagging width W, and adhesive protrusion amount F A cross section of the motor core was cut out so that the peeled portion became an observation surface as shown in FIG. Thereafter, the sagging height and sagging width were measured as shown in FIG. On the other hand, the protruding amount of the adhesive was measured as shown in FIG.

(B)接着剤はみ出し量及び接着強度に及ぼす板厚の影響
表1のB−1〜15の通り、板厚0.15〜0.30mmの電磁鋼板をクリアランスを変えて打ち抜き、モータコアの打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、(A)と同様の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
(B) Influence of plate thickness on adhesive protrusion amount and adhesive strength As shown in B-1 to 15 in Table 1, punching end surfaces of motor cores by punching out electromagnetic steel plates having thicknesses of 0.15 to 0.30 mm with different clearances. The sag ratio L / W was changed. After that, for each of the outer peripheral part and inner peripheral part of the motor core, an adhesive was applied at a position of 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, 12 layers were laminated, and then pressurized at 3 MPa. Glued. After the adhesive was dried, the adhesive strength, the sagging height, the sagging width, and the protruding amount of the adhesive were evaluated by the same method as in (A).

(C)接着剤はみ出し量及び接着強度に及ぼす接着剤塗布量の影響
表1のC−1〜15の通り、板厚0.25mmの電磁鋼板をクリアランスを変えて打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1〜1.0mm、幅0.03〜0.3mm、またはモータコアの板面全体として塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、(A)と同様の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
(C) Effect of adhesive application amount on adhesive protrusion amount and adhesive strength As shown in C-1 to 15 in Table 1, a steel plate having a thickness of 0.25 mm was punched with a different clearance, and the sag ratio L of the punched end face / W was changed. Thereafter, the outer peripheral portion and the inner peripheral portion of the motor core are respectively punched with an adhesive at a position of 0.3 mm from the end face, and have a height of 0.1 to 1.0 mm, a width of 0.03 to 0.3 mm, or the entire plate surface of the motor core. Then, after 12 sheets were laminated, they were pressed and bonded at 3 MPa. After the adhesive was dried, the adhesive strength, the sagging height, the sagging width, and the protruding amount of the adhesive were evaluated by the same method as in (A).

(D)接着剤はみ出し量及び接着強度に及ぼす接着剤の組成の影響
表1のC−1〜15の通り、板厚0.25mmの電磁鋼板をクリアランスを変えて打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤組成を変えて、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mm塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、(A)と同様の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
(D) Influence of adhesive composition on adhesive protrusion amount and adhesive strength As shown in C-1 to 15 in Table 1, electromagnetic steel sheets with a thickness of 0.25 mm are punched out with different clearances, and the sag ratio L of the punched end face / W was changed. After that, after changing the adhesive composition on the outer periphery and inner periphery of the motor core, applying the adhesive 0.1 mm high and 0.03 mm wide at the position 0.3 mm from the punched end face, and laminating 12 sheets It was pressed and bonded at 3 MPa. After the adhesive was dried, the adhesive strength, the sagging height, the sagging width, and the protruding amount of the adhesive were evaluated by the same method as in (A).

Figure 2019161928
Figure 2019161928

(A)〜(D)の実験結果からダレ比が同等であれば、モータコアサイズ、電磁鋼板の板厚、モータコア1枚当たりの接着剤塗布量、接着剤の組成が異なっても、はみ出し量や接着強度には影響しないことが分かる。その一方で、ダレ比が異なれば、はみ出し量、接着強度が変化することが分かる。   If the droop ratio is equivalent from the experimental results of (A) to (D), even if the motor core size, the thickness of the magnetic steel sheet, the amount of adhesive applied per motor core, and the composition of the adhesive differ, It can be seen that the adhesive strength is not affected. On the other hand, when the droop ratio is different, it can be seen that the amount of protrusion and the adhesive strength change.

式(2)の限定理由について実験結果に基づいて説明する。
板厚0.25mmの無方向性電磁鋼板を、クリアランスを変えて外径180mm、内径120mmの中空円形状にモータコアを打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層したのち、1〜10MPaで加圧処理して、はみ出し量Fを変化させた。接着剤を硬化、乾燥させた後、表1と同様の方法で打ち抜き端面からのはみ出し量を測定し、このモータコアの接着強度を調査した。
The reason for limiting equation (2) will be described based on experimental results.
A non-oriented electrical steel sheet having a thickness of 0.25 mm was punched into a hollow circular shape having an outer diameter of 180 mm and an inner diameter of 120 mm by changing the clearance, and the sag ratio L / W of the punched end face was changed. Then, on the outer periphery and inner periphery of the motor core, an adhesive was applied at a position of 0.3 mm from the punched end surface with a height of 0.1 mm and a width of 0.03 mm, and after laminating 12 sheets, the pressure was applied at 1 to 10 MPa. The amount F of protrusion was changed by pressure treatment. After the adhesive was cured and dried, the amount of protrusion from the punched end face was measured in the same manner as in Table 1, and the adhesive strength of the motor core was investigated.

Figure 2019161928
Figure 2019161928

図6に、横軸を接着剤はみ出し量F(μm)、縦軸をダレ比(L/W)として表2の結果をプロットした。なお、図6において「〇」は、接着強度が80N以上で高い場合、「×」は接着強度が80N未満で低い場合を示している。
表2および図6に示すように、ダレ比L/Wが0.01未満または0.04超の場合には、接着剤はみ出し量が変化しても接着強度80N未満と比較的低い。これに対し、ダレ比が0.01〜0.04の場合には、接着強度を80N以上得るための接着剤はみ出し量の上限は、ダレ比が大きいほど許容範囲が広くなる。すなわち、接着剤のはみ出し量の上限は、ダレ比L/Wに依存し、F≦1μm+250μm×(L/W)の時に80N以上になることが分かる。
In FIG. 6, the results in Table 2 are plotted with the horizontal axis as the adhesive protrusion F (μm) and the vertical axis as the sagging ratio (L / W). In FIG. 6, “◯” indicates a case where the adhesive strength is high at 80 N or more, and “X” indicates a case where the adhesive strength is less than 80 N and is low.
As shown in Table 2 and FIG. 6, when the sag ratio L / W is less than 0.01 or more than 0.04, the adhesive strength is relatively low as less than 80 N even if the amount of protrusion of the adhesive changes. On the other hand, when the sag ratio is 0.01 to 0.04, the upper limit of the adhesive protrusion amount for obtaining an adhesive strength of 80 N or more has a wider allowable range as the sag ratio is larger. That is, it is understood that the upper limit of the protruding amount of the adhesive depends on the sag ratio L / W and is 80 N or more when F ≦ 1 μm + 250 μm × (L / W).

(1)ダレ比:L/W(−)
0.01≦L/W≦0.04
表1の結果より、ダレ比の下限は0.01以上とする。ダレ比が0.01未満であると接着に必要な空間が少なくなるため、接着強度の向上が見込めない。
一方、ダレ比の上限は0.04以下とする。ダレ比が0.04超であると接着剤とその上に積層した電磁鋼板の接着面積が減少するため、接着強度の向上が見込めない。
(1) Sag ratio: L / W (-)
0.01 ≦ L / W ≦ 0.04
From the results in Table 1, the lower limit of the sagging ratio is 0.01 or more. If the sagging ratio is less than 0.01, the space required for bonding is reduced, so that improvement in bonding strength cannot be expected.
On the other hand, the upper limit of the sagging ratio is 0.04 or less. If the sagging ratio is more than 0.04, the adhesive area between the adhesive and the electrical steel sheet laminated thereon is reduced, so that improvement of the adhesive strength cannot be expected.

(2)打ち抜き端面からの乾燥後接着剤はみ出し量:F(μm)
1μm≦F≦1μm+250μm×(L/W)
打ち抜き端面からの乾燥後接着剤はみ出し量F(μm)は、板面接着において接着強度を低下させる。Fが1μm未満(はみ出し量が負の値を含む)では接着面積が減少するため、接着強度が80N未満である。したがってFの下限は1μm以上とする。
一方、表2の結果より、Fが大きくなると接着強度が低下する。また、ダレ比によって接着強度が変化するためFの上限は変化する。そのため接着強度を確保する観点からFの上限は1μm+250μm×(L/W)以下とする。したがって、打ち抜き端面からの接着剤はみ出し量は1μm≦F≦1μm+250μm×(L/W)とする。
(2) Adhesive protrusion after drying from punched end face: F (μm)
1 μm ≦ F ≦ 1 μm + 250 μm × (L / W)
The amount F (μm) of the adhesive protruding after drying from the punched end surface decreases the adhesive strength in bonding the plate surface. When F is less than 1 μm (the amount of protrusion includes a negative value), the adhesion area decreases, so the adhesion strength is less than 80N. Therefore, the lower limit of F is 1 μm or more.
On the other hand, from the results shown in Table 2, when F increases, the adhesive strength decreases. Moreover, since the adhesive strength changes depending on the sagging ratio, the upper limit of F changes. Therefore, from the viewpoint of securing adhesive strength, the upper limit of F is 1 μm + 250 μm × (L / W) or less. Therefore, the amount of adhesive protruding from the punched end surface is 1 μm ≦ F ≦ 1 μm + 250 μm × (L / W).

(モータコアの製造方法)
以下、図面を参照して本発明に係るモータコアの製造方法の実施の形態について説明する。
(Manufacturing method of motor core)
Embodiments of a method for manufacturing a motor core according to the present invention will be described below with reference to the drawings.

接着剤塗布位置13は、図4に示すように、電磁鋼板10の板面10aにおいて、電磁鋼板10の外周側に設けられた接着剤塗布位置13a、電磁鋼板10の内周側に設けられた接着剤塗布位置13b、ティース15の側面側に設けられた接着剤塗布位置13c、およびティース15の先端側に設けられた接着剤塗布位置13dによって構成されている。
接着剤塗布位置13aは電磁鋼板10の外周に沿って平面視円形状に配置し、平面視において打ち抜き端面(バックヨーク端面)11aからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
接着剤塗布位置13bは電磁鋼板10の内周に沿って平面視間欠円形状に配置し、平面視において打ち抜き端面(ヨーク内周端面)11bからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
接着剤塗布位置13cは各ティース15の互いに平行な側面に沿って直線状に配置し、平面視において打ち抜き端面(ティース側面)11cからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
接着剤塗布位置13dは各ティース15の先端に沿って直線状に配置し、平面視において打ち抜き端面(ティース端面)11dからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
As shown in FIG. 4, the adhesive application position 13 is provided on the plate surface 10 a of the electromagnetic steel sheet 10, the adhesive application position 13 a provided on the outer peripheral side of the electromagnetic steel sheet 10, and the inner peripheral side of the electromagnetic steel sheet 10. An adhesive application position 13b, an adhesive application position 13c provided on the side surface of the tooth 15, and an adhesive application position 13d provided on the tip side of the tooth 15 are configured.
The adhesive application position 13 a is arranged in a circular shape in plan view along the outer periphery of the electromagnetic steel sheet 10, and is adhesive so that the punched end face (back yoke end face) 11 a is X (mm) in the plan view and inside the electromagnetic steel sheet 10. Apply.
The adhesive application position 13b is arranged in an intermittent circular shape in plan view along the inner periphery of the electromagnetic steel plate 10, and is X (mm) from the punched end surface (yoke inner peripheral end surface) 11b in the plan view, so as to be inside the electromagnetic steel plate 10. Apply adhesive to
The adhesive application position 13c is linearly arranged along the side surfaces parallel to each other of each tooth 15, and the adhesive is disposed so as to be X (mm) from the punched end surface (tooth side surface) 11c in the plan view and inside the electromagnetic steel sheet 10. Apply.
The adhesive application position 13d is arranged linearly along the tip of each tooth 15, and the adhesive is applied so that it is X (mm) from the punched end surface (tooth end surface) 11d in the plan view and inside the electromagnetic steel sheet 10. .

接着剤塗布位置Xはダレ比L/Wと加圧圧力Pの値によって、接着剤はみ出し量が(2)式の範囲に入るように決定される。打ち抜き端面11から下記式(3)〜(7)のいずれか一つを満足する範囲で電磁鋼板10の内側にX(mm)の範囲で塗布する。
(A1)ダレ比0.01≦L/W≦0.024の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.1mm×P+0.15mm (3)
(A2)ダレ比0.01≦L/W≦0.024の場合でかつ125MPa×(L/W)+0.5MPa≦P≦3.5MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.1mm×P+0.15mm (4)
(A3)ダレ比0.01≦L/W≦0.024の場合でかつ3.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (5)
(B1)ダレ比0.024<L/W≦0.04の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaである場合、
0.02mm≦X≦0.1mm×P+0.15mm(3)
(B2)ダレ比0.024<L/W≦0.04の場合でかつ3.5MPa≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.5mm (6)
(B3)ダレ比0.024<L/W≦0.04の場合でかつ125MPa×(L/W)+0.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (7)
The adhesive application position X is determined by the values of the sag ratio L / W and the pressure P so that the amount of adhesive protrusion falls within the range of equation (2). It is applied in the range of X (mm) from the punched end face 11 to the inside of the electromagnetic steel sheet 10 within a range that satisfies any one of the following formulas (3) to (7).
(A1) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 0 ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (3)
(A2) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 125 MPa × (L / W) +0.5 MPa ≦ P ≦ 3.5 MPa,
0.1 mm × P-12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (4)
(A3) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 3.5 MPa ≦ P ≦ 125 MPa × (L / W) +5.3 MPa,
0.1 mm × P-12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.5 mm (5)
(B1) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 0 ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (3)
(B2) When the sagging ratio is 0.024 <L / W ≦ 0.04 and when 3.5 MPa ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.5 mm (6)
(B3) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 125 MPa × (L / W) +0.5 MPa ≦ P ≦ 125 MPa × (L / W) +5.3 MPa 0.1 mm × P −12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.5 mm (7)

接着剤塗布位置Xの下限について説明する。X<0.02mm、またはX<0.1mm×P−12.5mm×(L/W)−0.03mmの場合、接着材はみ出し量が増えすぎて、接着強度80N以上が得られない。したがって接着剤塗布位置の下限はX≧0.02mmまたはX≧0.1mm×P−12.5mm×(L/W)−0.03mmとする。
接着剤塗布位置Xの上限について説明する。X>0.5mm、またはX>0.1mm×P+0.15mmの場合、接着材はみ出し量は1μm未満になり、はみ出し量としては従来通りであるが、ダレ部分に接着剤が十分に行きわたらないため、その上に積層した電磁鋼板の接着面積が減少する。その結果、接着強度80N以上が得られない。したがって接着剤塗布位置の上限はX≦0.5mmまたはX≦0.1mm×P+0.15mmとする。
The lower limit of the adhesive application position X will be described. When X <0.02 mm, or X <0.1 mm × P-12.5 mm × (L / W) −0.03 mm, the amount of protrusion of the adhesive is excessively increased, and an adhesive strength of 80 N or more cannot be obtained. Therefore, the lower limit of the adhesive application position is X ≧ 0.02 mm or X ≧ 0.1 mm × P-12.5 mm × (L / W) −0.03 mm.
The upper limit of the adhesive application position X will be described. When X> 0.5 mm, or X> 0.1 mm × P + 0.15 mm, the amount of protruding adhesive is less than 1 μm, and the amount of protruding is the same as before, but the adhesive does not reach the sagging part sufficiently. Therefore, the adhesion area of the electromagnetic steel sheets laminated thereon is reduced. As a result, an adhesive strength of 80 N or more cannot be obtained. Therefore, the upper limit of the adhesive application position is set to X ≦ 0.5 mm or X ≦ 0.1 mm × P + 0.15 mm.

接着時の加圧圧力Pはダレ比L/Wに応じて、接着剤のはみ出しが生じない範囲で変化させることができる。好ましくは0〜10MPaである。   The pressurizing pressure P at the time of bonding can be changed within a range in which the adhesive does not protrude according to the sag ratio L / W. Preferably it is 0-10MPa.

本実施の形態では、接着剤として、2液混合タイプのエポキシ系接着剤を使用する例について説明したが、他に、加熱により硬化する1液型熱硬化性エポキシ系接着剤を用いることができる。
エポキシ樹脂としては、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、線状脂肪族エポキサイド型、脂環族エポキサイド型等から選ばれるエポキシ樹脂が挙げられる。特にグリシジルエーテル型のエポキシ等量150〜300の範囲のものが好ましい。これらのエポキシ樹脂は、強度、靭性、誘電性、浸透性、歪み抑制性、速硬化性等の所望の特性に応じて、その1種を単独で用いるか、あるいは2種以上を組み合わせて使用する。組み合わせとしては、ウレタン変性のエポキシ樹脂との併用が好ましい。通常のエポキシ樹脂とウレタン変性エポキシ樹脂との割合は、所望の強靭性を付与するために、0.2:0.8 〜 0.7:0.3の範囲が好ましい。
In this embodiment, an example in which a two-component mixed epoxy adhesive is used as the adhesive has been described. Alternatively, a one-component thermosetting epoxy adhesive that cures by heating can be used. .
Examples of the epoxy resin include epoxy resins selected from a glycidyl ether type, a glycidyl ester type, a glycidyl amine type, a linear aliphatic epoxide type, an alicyclic epoxide type, and the like. In particular, a glycidyl ether type epoxy equivalent in the range of 150 to 300 is preferable. These epoxy resins are used singly or in combination of two or more according to desired properties such as strength, toughness, dielectric properties, permeability, strain suppression, and fast curability. . The combination is preferably combined with a urethane-modified epoxy resin. The ratio of the normal epoxy resin and the urethane-modified epoxy resin is preferably in the range of 0.2: 0.8 to 0.7: 0.3 in order to impart desired toughness.

その他、必要に応じて防錆剤(たとえばトリポリリン酸二水素アルミニウム、リン酸亜鉛、リン酸アルミニウム等)、充填剤(たとえば炭酸カルシウム、クレー、タルク、シリカ、カーボン、酸化鉄、マイカ等)、反応性希釈剤(たとえばアリルグリシジルエーテル、フェニルグリシジルエーテル等)、可塑剤(たとえばフタル酸エステル、フルフリルアルコール等)、合成ゴム(たとえばNBR、SBR等)を適宜配合できる。   In addition, rust preventives (for example, aluminum dihydrogen phosphate, zinc phosphate, aluminum phosphate, etc.), fillers (for example, calcium carbonate, clay, talc, silica, carbon, iron oxide, mica, etc.), reaction as necessary A suitable diluent (for example, allyl glycidyl ether, phenyl glycidyl ether, etc.), a plasticizer (for example, phthalate ester, furfuryl alcohol, etc.), and a synthetic rubber (for example, NBR, SBR, etc.) can be appropriately blended.

接着剤を硬化させる際には、室温硬化させても良いが、加熱して硬化させることも可能である。加熱硬化は、接着剤固着積層鉄心の生産性を向上できる。   When the adhesive is cured, it may be cured at room temperature, but may be cured by heating. Heat curing can improve the productivity of the adhesive-fixed laminated iron core.

成分のゴム成分は、合成ゴムが好ましく、特に常温でゴム状弾性を有するものが好ましい。ゴム成分としては、アクリルゴム、ニトリルゴム、スチレンブタジエンゴム、ブタジエンメチルアクリレートアクリロニトリルゴム、ブタジエンゴム、カルボキシ含有アクリロニトリルブタジエンゴム、ビニル含有アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、ポリビニルブチラール等の合成ゴム、ゴム変性のエポキシ樹脂等のゴム変性高分子化合物、質量平均分子量1万以上の高分子エポキシ樹脂等が挙げられる。 The rubber component is preferably a synthetic rubber, and particularly preferably has rubber-like elasticity at room temperature. As rubber components, acrylic rubber, nitrile rubber, styrene butadiene rubber, butadiene methyl acrylate acrylonitrile rubber, butadiene rubber, carboxy-containing acrylonitrile butadiene rubber, vinyl-containing acrylonitrile butadiene rubber, synthetic rubber such as silicone rubber, urethane rubber, polyvinyl butyral, rubber Examples thereof include rubber-modified polymer compounds such as modified epoxy resins, and polymer epoxy resins having a mass average molecular weight of 10,000 or more.

ゴム成分の含有量は、熱硬化性樹脂組成物の固形分中、40質量%以上を用いる。ゴム成分の含有量40質量%未満であると、加熱加圧時の熱硬化性樹脂組成物の流動性が大きくなり、積層コアとしたときに電磁鋼板の内外周部からの熱硬化性樹脂組成物(接着層)のはみ出し量が多くなる。ゴム成分の含有量は、熱硬化性樹脂組成物の固形分中、80質量%以下が好ましい。   40 mass% or more is used for content of a rubber component in solid content of a thermosetting resin composition. When the content of the rubber component is less than 40% by mass, the fluidity of the thermosetting resin composition at the time of heating and pressurization increases, and the thermosetting resin composition from the inner and outer peripheral portions of the electrical steel sheet when the laminated core is formed. The amount of protrusion of the object (adhesive layer) increases. As for content of a rubber component, 80 mass% or less is preferable in solid content of a thermosetting resin composition.

塗布する接着材の厚みは、0.2mm以下が好ましい。0.2mmを超えると、接着コストが増加するため、0.2mm以下が好ましい。 The thickness of the adhesive to be applied is preferably 0.2 mm or less. If it exceeds 0.2 mm, the bonding cost increases, so 0.2 mm or less is preferable.

塗布する接着材の幅は、0.1mmを超えると、接着コストが増加するため、0.1mm以下が好ましい。 If the width of the adhesive to be applied exceeds 0.1 mm, the bonding cost increases, so 0.1 mm or less is preferable.

打ち抜いた電磁鋼板1枚あたりに塗布する接着材の重量は、2.0mg/枚を超えると、接着コストが増加するため、2.0mg/枚以下が好ましい。 If the weight of the adhesive applied per punched electrical steel sheet exceeds 2.0 mg / sheet, the adhesion cost increases, so 2.0 mg / sheet or less is preferable.

モータコアに使用する電磁鋼板の板厚は限定しない。しかし、板厚が薄くなるほどモータコアをカシメることが困難になる。したがってかしめることが困難になる板厚0.25mm以下の電磁鋼板を用いることが好ましい。   The thickness of the electromagnetic steel sheet used for the motor core is not limited. However, the thinner the plate thickness, the more difficult it is to crimp the motor core. Therefore, it is preferable to use a magnetic steel sheet having a thickness of 0.25 mm or less, which makes it difficult to caulk.

電磁鋼板から打ち抜くときのモータコアの寸法は特に限定しない。必要な用途に応じて打ち抜き寸法を可変することができる。   The dimensions of the motor core when punching from the electromagnetic steel sheet are not particularly limited. The punching dimensions can be varied according to the required application.

次に実施例について説明する。   Next, examples will be described.

板厚0.20mmの無方向性電磁鋼板を、クリアランスを変えて外径180mm、内径120mmの中空円形状にモータコアを打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部にそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層接着したのち、1〜10MPaで加圧処理して、はみ出し量Fを変化させた。接着剤を硬化、乾燥させた後、表1と同様の方法で打ち抜き端面からのはみ出し量を測定し、このモータコアの接着強度を調査した。接着強度は80N以上を合格とした。結果を表3、図6に示す。











A non-oriented electrical steel sheet having a thickness of 0.20 mm was punched into a hollow circular shape having an outer diameter of 180 mm and an inner diameter of 120 mm by changing the clearance, and the sag ratio L / W of the punched end face was changed. After that, the adhesive was applied to the outer peripheral part and inner peripheral part of the motor core at a position of 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, and 12 sheets were laminated and bonded at 1 to 10 MPa. The amount F of protrusion was changed by pressure treatment. After the adhesive was cured and dried, the amount of protrusion from the punched end face was measured in the same manner as in Table 1, and the adhesive strength of the motor core was investigated. Adhesive strength set 80N or more as the pass. The results are shown in Table 3 and FIG.











Figure 2019161928
Figure 2019161928

ダレ比L/W=0.004であるNo.1〜7ではいずれも接着強度が80Nに未満であった。
ダレ比L/W=0.013、0.024、0.037であるNo.8、15、22は、いずれもはみ出し量が従来例である1μm未満であり、接着強度は80N未満であった。No.11〜14、20〜21、28は接着剤はみ出し量の増加とともに接着強度は減少し、接着強度は80Nに未満であった。
ダレ比L/W=0.045であるNo.29〜35ではいずれも接着強度が80Nに未満であった。
これらに対しNo.9〜10、16〜19、23〜27は、ダレ比L/Wと接着剤はみ出し量Fが適正な範囲にあるので接着強度が80N以上となった。
No. in which the sag ratio L / W = 0.004. In each of 1 to 7, the adhesive strength was less than 80N.
Sagging ratio L / W = 0.013, 0.024, 0.037 Nos. 8, 15, and 22 all had a protruding amount of less than 1 μm, which is the conventional example, and an adhesive strength of less than 80N. No. In Nos. 11 to 14, 20 to 21, and 28, the adhesive strength decreased with an increase in the amount of protruding adhesive, and the adhesive strength was less than 80N.
No. in which the sag ratio L / W = 0.045. In 29 to 35, the adhesive strength was less than 80 N in all cases.
No. 9 to 10, 16 to 19, and 23 to 27 had a sag ratio L / W and an adhesive protrusion amount F in an appropriate range, so the adhesive strength was 80 N or more.

図6より、ダレ比L/Wが0.01未満では接着に必要な空間が少なくなるため、接着強度の向上が見込めない。ダレ比が0.04超では、接着面積が減少したため接着強度の向上が見込めない。ダレ比が0.01〜0.04では、はみ出し量Fが1μm未満でも接着強度の向上が見込めない。はみ出し量F(μm)が1μm+250μm×(L/W)を超えると接着強度が80N未満となる。これらに対して、ダレ比が0.01〜0.04においてはみ出し量が下記式(1)、(2)を満足する場合に十分な接着強度が得られることが分かる。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W) (2)
As shown in FIG. 6, when the sag ratio L / W is less than 0.01, the space necessary for bonding is reduced, so that improvement in bonding strength cannot be expected. When the sagging ratio is more than 0.04, the adhesion area cannot be improved because the adhesion area is reduced. When the sagging ratio is 0.01 to 0.04, no improvement in adhesive strength can be expected even if the protrusion amount F is less than 1 μm. When the protrusion amount F (μm) exceeds 1 μm + 250 μm × (L / W), the adhesive strength is less than 80N. On the other hand, it can be seen that when the sagging ratio is 0.01 to 0.04, the amount of protrusion is sufficient when the following formulas (1) and (2) are satisfied.
0.01 ≦ L / W ≦ 0.04 (1)
1 μm ≦ F ≦ 1 μm + 250 μm × (L / W) (2)

板厚0.20mmの無方向性電磁鋼板を、クリアランスを変えて外径180mm、内径120mmの中空円形状にモータコアを打ち抜き、打ち抜き端面のダレ比L/Wを0.013、0.024、0.037にそれぞれ変化させた。その後、モータコアの外周部と内周部についてそれぞれ12枚積層して接着剤の厚さは0.1mm、幅は0.03mmとし、内外周それぞれの打ち抜き端面から0.01mm、0.03mm、0.15mm、0.30mm、0.45mm、0.60mm位置に塗布した。接着後に圧力は1〜10MPaで加圧処理して、はみ出し量Fを変化させた。接着剤を硬化、乾燥させた後、打ち抜き端面からのはみ出し量を測定し、このモータコアの接着強度を調査した。結果を表4〜表6に示す。また、図7〜9にそれぞれダレ比L/Wが0.013、0.024、0.037の場合について、接着強度が80N以上になる接着剤塗布位置と加圧圧力の範囲を示す。
図7〜図9は、それぞれ横軸を接着剤塗布位置X(mm)、縦軸を加圧圧力P(MPa)として表4〜表6の結果をプロットした。なお、図7〜図9において「〇」は、接着強度が80N以上で高い場合、「×」は接着強度が80N未満で低い場合を示している。




















A non-oriented electrical steel sheet with a thickness of 0.20 mm is punched into a hollow circular shape with an outer diameter of 180 mm and an inner diameter of 120 mm by changing the clearance, and the sag ratio L / W of the punched end face is 0.013, 0.024, 0 .037 respectively. Thereafter, twelve of each of the outer periphery and inner periphery of the motor core were laminated, the thickness of the adhesive was 0.1 mm, the width was 0.03 mm, and 0.01 mm, 0.03 mm, 0 from the punched end surface of each inner and outer periphery .15 mm, 0.30 mm, 0.45 mm, and 0.60 mm positions were applied. After bonding, the pressure was applied at 1 to 10 MPa to change the protrusion amount F. After the adhesive was cured and dried, the amount of protrusion from the punched end face was measured, and the adhesive strength of the motor core was investigated. The results are shown in Tables 4-6. FIGS. 7 to 9 show the adhesive application position and the pressure range where the adhesive strength is 80 N or more when the sag ratio L / W is 0.013, 0.024, and 0.037, respectively.
7 to 9, the results of Tables 4 to 6 are plotted with the horizontal axis as the adhesive application position X (mm) and the vertical axis as the pressure P (MPa). 7 to 9, “◯” indicates a case where the adhesive strength is high at 80 N or more, and “X” indicates a case where the adhesive strength is less than 80 N.




















Figure 2019161928
Figure 2019161928







Figure 2019161928
Figure 2019161928







Figure 2019161928
Figure 2019161928



表4および図7に示すように、ダレ比L/W=0.013の時、a−1、a−4〜7、a−11〜14、a−18〜21、a−24〜28、a−30〜42での接着剤塗布位置と加圧圧力の組合せでは、接着剤はみ出し量が1μm未満、または4μm超となり、接着強度が80N未満となり不合格であった。これに対し、a−2〜3、a−8〜10、a−15〜17、a−22〜23、a−29での接着剤塗布位置と加圧圧力の組合せでは、(3)〜(5)式を満足し、接着剤はみ出し量が1〜4μmとなり、接着強度が80N以上となり合格であった。   As shown in Table 4 and FIG. 7, when the sag ratio L / W = 0.013, a-1, a-4 to 7, a-11 to 14, a-18 to 21, a-24 to 28, In the combination of the adhesive application position and pressure applied at a-30 to 42, the amount of protruding adhesive was less than 1 μm or more than 4 μm, and the adhesive strength was less than 80 N, which was unacceptable. On the other hand, in the combination of the adhesive application position and pressurization pressure in a-2 to 3, a-8 to 10, a-15 to 17, a-22 to 23, and a-29, (3) to ( 5) The expression was satisfied, the amount of protruding adhesive was 1 to 4 μm, and the adhesive strength was 80 N or more, which was acceptable.

表5および図8に示すように、ダレ比L/W=0.024の時、b−1、b−4〜7、b−11〜13、b−18〜20、b−24〜27、b−30〜34、b−36〜42での接着剤塗布位置と加圧圧力の組合せでは、接着剤はみ出し量が1μm未満、または7μm超となり、接着強度が80N未満となり不合格であった。これに対し、b−2〜3、b−8〜10、b−14〜17、b−21〜23、b−28〜29、b−35での接着剤塗布位置と加圧圧力の組合せでは、(3)〜(5)式を満足し、接着剤はみ出し量が1〜7μmとなり、接着強度が80N以上となり合格であった。   As shown in Table 5 and FIG. 8, when the sag ratio L / W = 0.024, b-1, b-4 to 7, b-11 to 13, b-18 to 20, b-24 to 27, In the combination of the adhesive application position and the pressure applied at b-30 to 34 and b-36 to 42, the adhesive protrusion amount was less than 1 μm or more than 7 μm, and the adhesive strength was less than 80 N, which was unacceptable. On the other hand, in the combination of the adhesive application position and the pressurizing pressure in b-2 to 3, b-8 to 10, b-14 to 17, b-21 to 23, b-28 to 29, and b-35 , (3) to (5) were satisfied, the protruding amount of the adhesive was 1 to 7 μm, and the adhesive strength was 80 N or more, which was acceptable.

表6および図9に示すように、ダレ比L/W=0.037の時、c−1、c−4〜7、c−11〜13、c−18〜19、c−24〜26、c−30〜33、c−36〜40、c−42での接着剤塗布位置と加圧圧力の組合せでは、接着剤はみ出し量が1μm未満、または10μm超となり、接着強度が80N未満となり不合格であった。これに対し、c−2〜3、c−8〜10、c−14〜17、c−20〜23、c−28〜29、c−34〜35、c−41での接着剤塗布位置と加圧圧力の組合せでは、(3)、(6)、(7)式を満足し、接着剤はみ出し量が1〜10μmとなり、接着強度が80N以上となり合格であった。   As shown in Table 6 and FIG. 9, when the sag ratio L / W = 0.037, c-1, c-4 to 7, c-11 to 13, c-18 to 19, c-24 to 26, In the combination of the adhesive application position and pressure applied in c-30 to 33, c-36 to 40, and c-42, the amount of adhesive protruding is less than 1 μm or more than 10 μm, and the adhesive strength is less than 80 N, which is rejected. Met. In contrast, the adhesive application positions at c-2 to 3, c-8 to 10, c-14 to 17, c-20 to 23, c-28 to 29, c-34 to 35, and c-41 In the combination of the pressurizing pressures, the expressions (3), (6), and (7) were satisfied, the adhesive protrusion amount was 1 to 10 μm, and the adhesive strength was 80 N or more and passed.

以上により、接着剤塗布位置Xはダレ比L/Wと加圧圧力Pの値によって、接着剤はみ出し量が前記(2)式の範囲に入るように決定され、打ち抜き端面11から前記(3)〜(7)式のいずれか一つを満足する範囲で電磁鋼板10の内側にX(mm)の範囲で塗布することによって、はみ出し量を規定範囲に制御して、高い接着強度が得られることが分かる。   As described above, the adhesive application position X is determined by the values of the sag ratio L / W and the pressurizing pressure P so that the adhesive protrusion amount falls within the range of the expression (2). By applying within X (mm) in the range of X (mm) to the inside of the electromagnetic steel sheet 10 within a range that satisfies any one of the formulas (7), high adhesive strength can be obtained by controlling the amount of protrusion to the specified range. I understand.

10 電磁鋼板
10a 板面
11、11a〜11d 打ち抜き端面
12 ダレ
13、13a〜13d 接着層
15 ティース
101 モータコア
DESCRIPTION OF SYMBOLS 10 Electromagnetic steel plate 10a Plate surface 11, 11a-11d Punching end surface 12 Sag 13, 13a-13d Adhesive layer 15 Teeth 101 Motor core

Claims (2)

打ち抜き加工された複数の電磁鋼板を積層し、複数の前記電磁鋼板の板面を互いに接着したモータコアにおいて、
前記電磁鋼板の打ち抜き端面のダレ高さをL(mm)、打ち抜き端面のダレ幅をW(mm)、および前記電磁鋼板の板面に設けられている前記接着層の前記電磁鋼板の打ち抜き端面からの乾燥後はみ出し量をF(μm)として、下記式(1)かつ式(2)を満足することを特徴とするモータコア。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W) (2)
In a motor core in which a plurality of punched electromagnetic steel sheets are laminated and the plate surfaces of the plurality of electromagnetic steel sheets are bonded to each other,
From the punched end surface of the electromagnetic steel sheet of the adhesive layer provided on the plate surface of the electromagnetic steel sheet, the sag height of the punched end surface of the electromagnetic steel sheet is L (mm), the sag width of the punched end surface is W (mm) A motor core characterized by satisfying the following formulas (1) and (2), wherein the amount of protrusion after drying is F (μm).
0.01 ≦ L / W ≦ 0.04 (1)
1 μm ≦ F ≦ 1 μm + 250 μm × (L / W) (2)
請求項1に記載のモータコアを製造するモータコアの製造方法であって、
平面視において前記打ち抜き端面からの接着剤塗布位置をX(mm)、接着時の加圧圧力をP(MPa)としたとき、ダレ比L/Wと接着時の加圧圧力Pに応じて、前記電磁鋼板の内側の板面に下記式(3)〜(7)のいずれかを満足する位置に接着剤を塗布することを特徴とするモータコアの製造方法。
(A1)ダレ比0.01≦L/W≦0.024の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.1mm×P+0.15mm (3)
(A2)ダレ比0.01≦L/W≦0.024の場合でかつ125MPa×(L/W)+0.5MPa≦P≦3.5MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.1mm×P+0.15mm (4)
(A3)ダレ比0.01≦L/W≦0.024の場合でかつ3.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (5)
(B1)ダレ比0.024<L/W≦0.04の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaである場合、
0.02mm≦X≦0.1mm×P+0.15mm(3)
(B2)ダレ比0.024<L/W≦0.04の場合でかつ3.5MPa≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.5mm (6)
(B3)ダレ比0.024<L/W≦0.04の場合でかつ125MPa×(L/W)+0.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (7)
A motor core manufacturing method for manufacturing the motor core according to claim 1,
In plan view, when the adhesive application position from the punched end face is X (mm) and the pressure applied during bonding is P (MPa), depending on the sag ratio L / W and the pressure P applied during bonding, A method for manufacturing a motor core, wherein an adhesive is applied to a plate surface inside the electromagnetic steel plate at a position satisfying any of the following formulas (3) to (7).
(A1) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 0 ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (3)
(A2) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 125 MPa × (L / W) +0.5 MPa ≦ P ≦ 3.5 MPa,
0.1 mm × P-12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (4)
(A3) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and 3.5 MPa ≦ P ≦ 125 MPa × (L / W) +5.3 MPa,
0.1 mm × P-12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.5 mm (5)
(B1) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 0 ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.1 mm × P + 0.15 mm (3)
(B2) When the sagging ratio is 0.024 <L / W ≦ 0.04 and when 3.5 MPa ≦ P ≦ 125 MPa × (L / W) +0.5 MPa,
0.02 mm ≦ X ≦ 0.5 mm (6)
(B3) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 125 MPa × (L / W) +0.5 MPa ≦ P ≦ 125 MPa × (L / W) +5.3 MPa 0.1 mm × P −12.5 mm × (L / W) −0.03 mm ≦ X ≦ 0.5 mm (7)
JP2018047621A 2018-03-15 2018-03-15 Motor core Active JP6954195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047621A JP6954195B2 (en) 2018-03-15 2018-03-15 Motor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047621A JP6954195B2 (en) 2018-03-15 2018-03-15 Motor core

Publications (2)

Publication Number Publication Date
JP2019161928A true JP2019161928A (en) 2019-09-19
JP6954195B2 JP6954195B2 (en) 2021-10-27

Family

ID=67992697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047621A Active JP6954195B2 (en) 2018-03-15 2018-03-15 Motor core

Country Status (1)

Country Link
JP (1) JP6954195B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070795A1 (en) * 2019-10-08 2021-04-15 日本製鉄株式会社 Rotor, rotor design method, and rotor manufacturing method
JP7019106B1 (en) * 2021-03-02 2022-02-14 三菱電機株式会社 Manufacturing method of laminated iron core and manufacturing equipment of laminated iron core
RU2798143C1 (en) * 2019-10-08 2023-06-16 Ниппон Стил Корпорейшн Rotor, rotor assembly method and rotor manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442742A (en) * 1990-06-07 1992-02-13 Toshiba Corp Machine method of core for electric rotating machine
JP2000273575A (en) * 1999-03-24 2000-10-03 Kawasaki Steel Corp 1/4 hard cold rolled steel sheet and its production
JP2003282330A (en) * 2002-03-27 2003-10-03 Jfe Steel Kk Adhesive-fixed laminated iron core and its manufacturing method
JP2008067459A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Laminated core and stator
JP2014096429A (en) * 2012-11-08 2014-05-22 Kyocera Chemical Corp Method of manufacturing laminated core
JP2015142453A (en) * 2014-01-29 2015-08-03 Jfeスチール株式会社 Manufacturing method of laminated core, and laminated core
JP2015164389A (en) * 2014-01-29 2015-09-10 Jfeスチール株式会社 Laminate iron core manufacturing method, laminate iron core manufacturing apparatus and laminate iron core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442742A (en) * 1990-06-07 1992-02-13 Toshiba Corp Machine method of core for electric rotating machine
JP2000273575A (en) * 1999-03-24 2000-10-03 Kawasaki Steel Corp 1/4 hard cold rolled steel sheet and its production
JP2003282330A (en) * 2002-03-27 2003-10-03 Jfe Steel Kk Adhesive-fixed laminated iron core and its manufacturing method
JP2008067459A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Laminated core and stator
JP2014096429A (en) * 2012-11-08 2014-05-22 Kyocera Chemical Corp Method of manufacturing laminated core
JP2015142453A (en) * 2014-01-29 2015-08-03 Jfeスチール株式会社 Manufacturing method of laminated core, and laminated core
JP2015164389A (en) * 2014-01-29 2015-09-10 Jfeスチール株式会社 Laminate iron core manufacturing method, laminate iron core manufacturing apparatus and laminate iron core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070795A1 (en) * 2019-10-08 2021-04-15 日本製鉄株式会社 Rotor, rotor design method, and rotor manufacturing method
JPWO2021070795A1 (en) * 2019-10-08 2021-04-15
CN114402506A (en) * 2019-10-08 2022-04-26 日本制铁株式会社 Rotor, method for designing rotor, and method for manufacturing rotor
RU2798143C1 (en) * 2019-10-08 2023-06-16 Ниппон Стил Корпорейшн Rotor, rotor assembly method and rotor manufacturing method
JP7381940B2 (en) 2019-10-08 2023-11-16 日本製鉄株式会社 Rotor, rotor design method, and rotor manufacturing method
JP7019106B1 (en) * 2021-03-02 2022-02-14 三菱電機株式会社 Manufacturing method of laminated iron core and manufacturing equipment of laminated iron core

Also Published As

Publication number Publication date
JP6954195B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP7486434B2 (en) Adhesive laminated core for stator and rotating electric machine
US11742129B2 (en) Adhesively-laminated core, manufacturing method thereof, and electric motor
KR102573664B1 (en) Manufacturing method of laminated core, core block, rotary electric machine and core block
US11923130B2 (en) Laminated core and electric motor
WO2020129921A1 (en) Adhered/layered core for stator and rotating electrical machine
US11915860B2 (en) Laminated core and electric motor
KR102607589B1 (en) Laminated core and rotating electrical machines
JPWO2020129929A1 (en) Adhesive laminated core for stator and rotary electric machine
KR20210082511A (en) Laminated Cores and Rotating Electrical Machines
KR20210088642A (en) Laminated Cores and Rotating Electrical Machines
KR102335462B1 (en) Composite materials for stator laminates and rotor laminates
JP2019161928A (en) Motor core
TWI792355B (en) Electromagnetic steel sheets, laminated iron cores, and rotating electrical machines
JP2003282330A (en) Adhesive-fixed laminated iron core and its manufacturing method
US20220209592A1 (en) Core block, laminated core, and electric motor
JP7096016B2 (en) Manufacturing method of electrical steel sheet
EA041718B1 (en) GLUE-SLATED CORE FOR STATOR AND ELECTRIC MOTOR
EA042563B1 (en) GLUE-SLATED CORE FOR STATOR AND ELECTRIC MOTOR
EA040618B1 (en) GLUE-SLATED CORE FOR STATOR AND ELECTRIC MOTOR
JP2010171438A (en) Laminated core having excellent dimension precision
JP2005340709A (en) Laminated core improved in dimension precision

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6954195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151