JP2019158204A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2019158204A
JP2019158204A JP2018043984A JP2018043984A JP2019158204A JP 2019158204 A JP2019158204 A JP 2019158204A JP 2018043984 A JP2018043984 A JP 2018043984A JP 2018043984 A JP2018043984 A JP 2018043984A JP 2019158204 A JP2019158204 A JP 2019158204A
Authority
JP
Japan
Prior art keywords
voltage
threshold
control unit
air conditioner
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018043984A
Other languages
Japanese (ja)
Other versions
JP7056251B2 (en
Inventor
利哉 野島
Toshiya Nojima
利哉 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018043984A priority Critical patent/JP7056251B2/en
Publication of JP2019158204A publication Critical patent/JP2019158204A/en
Application granted granted Critical
Publication of JP7056251B2 publication Critical patent/JP7056251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Air Conditioning Control Device (AREA)
  • Power Sources (AREA)
  • Rectifiers (AREA)

Abstract

To reduce the cost of a component related to low voltage protection, of an air conditioner.SOLUTION: An air conditioner 1 comprises an instantaneous interruption threshold selection unit 40 which stores a predetermined operating time threshold and a predetermined standby time threshold, selects the operating time threshold in a time period during which a compressor 29 and a fan motor 20 are driven, whereas selects the standby time threshold in a time period during which the compressor 29 and the fan motor 20 are idled, and outputs the selected threshold to a relay control part 31. Thereby, an optimum threshold can be used when the loads are driven and also can be used when both are idled, thus inrush current that flows upon voltage recovery of the instantaneous voltage fluctuation can be reduced. As a result, the cost of component such as main relays 23a and 23b, a rectifier 25 and a smoothing capacitor 26 can be reduced.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和機に係わり、より詳細には、瞬時電圧変動や瞬断が発生した場合の処理に関する。   The present invention relates to an air conditioner, and more particularly, to processing when instantaneous voltage fluctuation or instantaneous interruption occurs.

従来、空気調和機は圧縮機に供給する電圧が、予め定めた電圧の閾値(瞬断閾値)以下に低下した時に圧縮機の運転を停止させる低電圧保護機能を有している。(例えば、特許文献1参照。)。
一方、空気調和機は圧縮機が停止している待機状態であっても、圧縮機と電源を共有しているファンモータの制御などに支障がでるまで入力電圧が低下した場合、圧縮機やファンモータに供給する電圧を遮断しなければならない。一方、圧縮機を運転している時が消費電力が最も多くなる時であるため、圧縮機に供給する電圧もこの時に最も低下する。このため、運転時で、かつ、所定の瞬時電圧低下が発生した時のみ、低電圧保護機能が働くように瞬断閾値が決定されている。このため、運転時と待機時に共通の保護機能を使用し、その電圧の閾値として運転時の瞬断閾値を採用していた。
2. Description of the Related Art Conventionally, an air conditioner has a low voltage protection function that stops the operation of a compressor when a voltage supplied to the compressor drops below a predetermined voltage threshold (instantaneous interruption threshold). (For example, refer to Patent Document 1).
On the other hand, even if the air conditioner is in a standby state where the compressor is stopped, if the input voltage drops until it interferes with the control of the fan motor that shares power with the compressor, the compressor and fan The voltage supplied to the motor must be cut off. On the other hand, since the time when the compressor is operated is the time when the power consumption is the largest, the voltage supplied to the compressor is also the lowest at this time. For this reason, the instantaneous interruption threshold is determined so that the low-voltage protection function works only during operation and when a predetermined instantaneous voltage drop occurs. For this reason, a common protection function is used during operation and standby, and the instantaneous interruption threshold during operation is adopted as the threshold value of the voltage.

具体的に従来の空気調和機は低電圧保護機能として、その定格電圧範囲(定格入力電圧の±10%)のうち、下限定格電圧値(定格入力電圧の−10%)よりやや低い電圧を瞬断閾値とし、入力電圧がこの瞬断閾値以下になった時に圧縮機やファンモータに供給する電圧を遮断するようになっている。なお、この入力電圧を検出する方法として交流電圧を直接測定する方法に代わり、絶縁が不要であり回路が簡単な整流後の直流電圧を測定する方法が用いられる場合が多い。   Specifically, a conventional air conditioner has a low voltage protection function that instantaneously applies a voltage that is slightly lower than the lower rated voltage value (-10% of the rated input voltage) within the rated voltage range (± 10% of the rated input voltage). The cutoff threshold is set so that the voltage supplied to the compressor and the fan motor is cut off when the input voltage falls below the instantaneous cutoff threshold. As a method of detecting the input voltage, a method of measuring a DC voltage after rectification that does not require insulation and has a simple circuit is often used instead of a method of directly measuring an AC voltage.

ところで、欧州向けの空気調和機では入力電圧の定格電圧(相電圧)として、例えば、使用される国や地域により、AC240VとAC220Vとの二種類がある。このため、電源の設計を共通化して上限定格電圧値をAC240V+10%、下限定格電圧値をAC220V−10%とした電源装置を空気調和機に用いる場合が多い。なお、整流ダイオードと平滑コンデンサを用いた三相の電源装置の場合、線間電圧は前述の相電圧の値のルート3倍となり、これを整流した直流電圧はさらにルート2倍になる。例えば下限定格電圧値であるAC220V−10%の場合、整流した直流電圧は約485Vになり、また、上限定格電圧値であるAC240V+10%の場合、整流した直流電圧は約647Vになる。   By the way, in an air conditioner for Europe, there are two types of rated voltage (phase voltage) of the input voltage, for example, AC 240 V and AC 220 V, depending on the country or region used. For this reason, in many cases, a power supply device is used for an air conditioner that has a common power supply design and has an upper limit rated voltage value of AC 240 V + 10% and a lower limit rated voltage value of AC 220 V-10%. In the case of a three-phase power supply device using a rectifier diode and a smoothing capacitor, the line voltage becomes the root three times the value of the aforementioned phase voltage, and the DC voltage obtained by rectifying the line voltage further doubles the root. For example, in the case of AC220V-10% which is the lower rated voltage value, the rectified DC voltage is about 485V, and in the case of AC240V + 10% which is the upper rated voltage value, the rectified DC voltage is about 647V.

空気調和機において圧縮機を運転すると運転開始前よりも消費電力が増加するため、前述した三相の電源装置を用いて圧縮機を運転した場合、消費電力増加の影響により下限定格電圧値と対応する直流電圧である485Vからさらに低下した電圧で圧縮機を駆動することになる。
一例として、ある三相の電源装置では直流電圧の485Vで圧縮機を運転した場合、消費電力増加の影響により約77Vだけドロップして408Vで圧縮機を駆動している。さらに、瞬時電圧変動に対する低電圧保護機能として直流電圧が360V以下になったら圧縮機やファンモータの電源を切断するようにしている。
When operating a compressor in an air conditioner, the power consumption increases compared to before the start of operation. Therefore, when the compressor is operated using the three-phase power supply device described above, it corresponds to the lower rated voltage value due to the effect of the increased power consumption. The compressor is driven with a voltage further lowered from 485 V, which is a direct current voltage.
As an example, when a compressor is operated at a DC voltage of 485V in a three-phase power supply device, the compressor is driven at 408V by dropping by about 77V due to the influence of increased power consumption. Further, as a low voltage protection function against instantaneous voltage fluctuation, the power source of the compressor and the fan motor is turned off when the DC voltage becomes 360 V or less.

一方、平滑コンデンサに流れる電流の観点から考えると、瞬時電圧変動が発生して直流電圧が360V付近まで低下し、その後、元の電圧に復帰した場合、平滑コンデンサに突入電流が流れ込む。例えば、下限定格電圧値と対応する直流電圧である485Vと、瞬時電圧変動が発生した時の直流電圧である360Vの電圧差は120Vである。一方、上限定格電圧値と対応する直流電圧である647Vと、この360Vの電圧差は287Vとなる。このため、この287Vの電圧差で発生する突入電流に対応して整流ダイオードや平滑コンデンサ、リレーなどの部品の最大定格電流に関するスペックを決定していた。   On the other hand, from the viewpoint of the current flowing through the smoothing capacitor, when an instantaneous voltage fluctuation occurs and the DC voltage drops to around 360 V, and then returns to the original voltage, an inrush current flows into the smoothing capacitor. For example, the voltage difference between 485 V, which is a DC voltage corresponding to the lower rated voltage value, and 360 V, which is a DC voltage when instantaneous voltage fluctuation occurs, is 120 V. On the other hand, the DC voltage corresponding to the upper rated voltage value is 647V and the voltage difference between this 360V is 287V. For this reason, specifications relating to the maximum rated current of components such as a rectifier diode, a smoothing capacitor, and a relay have been determined corresponding to the inrush current generated by the voltage difference of 287V.

しかしながら、この287Vの電圧差で発生する突入電流に対応した整流ダイオードや平滑コンデンサ、リレーなどの部品は最大電流定格が大きくなるに従ってコストが上昇する傾向があるため、結果的に低電圧保護に関連する部品のコストが上昇する問題があった。   However, the cost of components such as rectifier diodes, smoothing capacitors, and relays corresponding to the inrush current generated by this voltage difference of 287V tends to increase as the maximum current rating increases, resulting in low voltage protection. There is a problem that the cost of parts to be increased increases.

特開閉10−9686号公報(段落番号0021)Special Opening and Closing No. 10-9686 (paragraph number 0021)

本発明は以上述べた問題点を解決し、空気調和機の低電圧保護に関連する部品のコストを低減させることを目的とする。   An object of the present invention is to solve the above-described problems and reduce the cost of components related to the low voltage protection of an air conditioner.

本発明は上述の課題を解決するため、本発明の請求項1に記載の発明は、
交流電源が入力端に接続された整流器と、
前記交流電源と前記整流器の間に直列に接続された少なくとも一つのリレーと、
前記整流器の出力電圧を平滑する平滑コンデンサと、
前記平滑コンデンサの電圧を検出する直流電圧検出部と、
前記整流器の出力電圧で動作する負荷と、
前記直流電圧検出部で検出した直流電圧が予め定めた瞬断閾値以下になった時に前記リレーの接点を開にするリレー制御部とを備えた空気調和機であって、
前記空気調和機は、
前記瞬断閾値として予め定められた運転時閾値及び前記運転時閾値よりも大きな値の前記待機時閾値を備え、前記負荷が運転中の期間は前記運転時閾値を選択し、前記負荷が運転停止中の期間は前記待機時閾値を選択し、選択された閾値を前記リレー制御部に前記瞬断閾値として設定する瞬断閾値選択手段を備えたことを特徴とする。
In order to solve the above problems, the present invention according to claim 1 of the present invention provides:
A rectifier with an AC power supply connected to the input end;
At least one relay connected in series between the AC power source and the rectifier;
A smoothing capacitor for smoothing the output voltage of the rectifier;
A DC voltage detector for detecting the voltage of the smoothing capacitor;
A load operating at the output voltage of the rectifier;
An air conditioner including a relay control unit that opens a contact of the relay when the DC voltage detected by the DC voltage detection unit is equal to or less than a predetermined instantaneous interruption threshold;
The air conditioner
The threshold value at the time of operation that is predetermined as the threshold value at the time of interruption and the threshold value at the time of standby that is larger than the threshold value at the time of operation are selected. In the middle period, there is provided an instantaneous interruption threshold selection means for selecting the standby threshold and setting the selected threshold as the instantaneous interruption threshold in the relay control unit.

以上の手段を用いることにより、本発明による空気調和機によれば、
空気調和機が負荷を運転中の期間であるか停止中の期間であるかによって瞬断閾値選択手段が、直流電圧が低下した時にリレーを開とする瞬断閾値として運転時閾値又は待機時閾値のいずれかを選択する。このため、負荷を運転中の場合と停止中の場合とでそれぞれ最適な閾値を用いることができ、瞬時電圧変動の電圧復帰時に流れる突入電流を低減できるため、低電圧保護に関連する部品のコストを低減させることができる。
By using the above means, according to the air conditioner of the present invention,
Depending on whether the air conditioner is operating the load or in a period during which the load is operating, the instantaneous threshold selection means selects the operating threshold or standby threshold as the instantaneous threshold that opens the relay when the DC voltage drops Select one of the following. For this reason, optimal threshold values can be used when the load is in operation and when it is stopped, and the inrush current that flows during voltage recovery due to instantaneous voltage fluctuation can be reduced. Can be reduced.

本発明による空気調和機の実施例を示すブロック図である。It is a block diagram which shows the Example of the air conditioner by this invention. 本発明による瞬断閾値選択部の実施例を示すブロック図である。It is a block diagram which shows the Example of the instantaneous interruption threshold value selection part by this invention. 本発明の概念を説明する説明図である。It is explanatory drawing explaining the concept of this invention. 本発明による空気調和機の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the air conditioner by this invention.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。なお、本発明と直接関係のない冷媒回路については図示と説明を省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings. Note that illustration and description of refrigerant circuits not directly related to the present invention are omitted.

図1は三相交流電源4に接続される空気調和機1を示すブロック図である。空気調和機1は三相交流電源4に接続される室外機2と、室外機2に通信接続された室内機3で構成されている。
室外機2は、三相交流電源4が供給される電源端子21aと電源端子21bと電源端子21cと、これらの電源端子が3つの入力端25a,25b,25cのそれぞれに接続される整流器(三相ブリッジダイオード)25と、電源端子21aと入力端25aの間に直列に接続されたメインリレー23aと、電源端子21bと入力端25bの間に直列に接続されたメインリレー23bと、メインリレー23aの2つの接点に並列に接続された、サブリレー22と抵抗24の直列回路とを備えている。
FIG. 1 is a block diagram showing an air conditioner 1 connected to a three-phase AC power source 4. The air conditioner 1 includes an outdoor unit 2 connected to a three-phase AC power source 4 and an indoor unit 3 connected to the outdoor unit 2 by communication.
The outdoor unit 2 includes a power supply terminal 21a, a power supply terminal 21b, and a power supply terminal 21c to which a three-phase AC power supply 4 is supplied, and a rectifier (three) connected to each of the three input terminals 25a, 25b, and 25c. Phase bridge diode) 25, a main relay 23a connected in series between the power supply terminal 21a and the input end 25a, a main relay 23b connected in series between the power supply terminal 21b and the input end 25b, and the main relay 23a The sub-relay 22 and the series circuit of the resistor 24 are connected in parallel to the two contact points.

また、室外機2は、整流器25の出力電圧が出力される正極出力端25d、及び負極出力端25eがそれぞれ入力端に接続されたインバータ28と、インバータ28で駆動される圧縮機(負荷)29と、整流器25の正極出力端25dと負極出力端25eの間にそれぞれ接続された平滑コンデンサ26と直流電圧検出部27とファンモータ(負荷)20と、メインリレー23a,23bとサブリレー22とインバータ28とファンモータ20を制御する室外機制御部30を備えている。なお、直流電圧検出部27で検出したDC電圧値は室外機制御部30に入力されている。さらに、室外機制御部30は室内機3と通信接続されている。   The outdoor unit 2 includes an inverter 28 having a positive output terminal 25d and a negative output terminal 25e to which the output voltage of the rectifier 25 is output, and a compressor (load) 29 driven by the inverter 28, respectively. The smoothing capacitor 26, the DC voltage detector 27, the fan motor (load) 20, the main relays 23a and 23b, the sub-relay 22 and the inverter 28 connected between the positive output terminal 25d and the negative output terminal 25e of the rectifier 25, respectively. And an outdoor unit controller 30 for controlling the fan motor 20. The DC voltage value detected by the DC voltage detection unit 27 is input to the outdoor unit control unit 30. Further, the outdoor unit control unit 30 is connected to the indoor unit 3 for communication.

室外機制御部30は、メインリレー23a,23bとサブリレー22を制御するリレー制御部31と、インバータ28を制御する圧縮機制御部33と、室外機2全体を制御すると共に圧縮機制御部33やファンモータ20を制御する運転制御部32と、DC電圧値が低下した時にメインリレー23a,23bを開放して圧縮機29の運転を中止させるための電圧の閾値である瞬断閾値を選択して出力する瞬断閾値選択部(瞬断閾値選択手段)40を備えている。なお、運転制御部32は室内機3と通信接続されており、室内機3は運転の開始や停止、冷暖房の選択などの運転指示信号を運転制御部32へ出力する。   The outdoor unit controller 30 includes a relay controller 31 that controls the main relays 23a and 23b and the sub-relay 22, a compressor controller 33 that controls the inverter 28, the entire outdoor unit 2, and the compressor controller 33 and the like. Select an operation control unit 32 that controls the fan motor 20 and an instantaneous interruption threshold that is a voltage threshold for opening the main relays 23a and 23b and stopping the operation of the compressor 29 when the DC voltage value decreases. An instantaneous interruption threshold selection unit (instantaneous interruption threshold selection means) 40 is provided. The operation control unit 32 is connected to the indoor unit 3 by communication, and the indoor unit 3 outputs operation instruction signals such as start / stop of operation and selection of cooling / heating to the operation control unit 32.

運転制御部32は室内機3から圧縮機29の運転を開始する運転指示信号を受け取ると、インバータ28やファンモータ20を駆動する電圧を供給するための電源指示信号をリレー制御部31へ出力する。電源指示信号が入力されたリレー制御部31は、メインリレー23a,23bの接点を接続する前に平滑コンデンサ26への突入電流を制限するためサブリレー22へサブリレー信号をローレベルからハイレベルにして出力する。ハイレベルのサブリレー信号が入力されたサブリレー22は自身の接点を接続する。   When the operation control unit 32 receives the operation instruction signal for starting the operation of the compressor 29 from the indoor unit 3, the operation control unit 32 outputs a power supply instruction signal for supplying a voltage for driving the inverter 28 and the fan motor 20 to the relay control unit 31. . The relay control unit 31 to which the power supply instruction signal is input outputs the sub relay signal from the low level to the high level to the sub relay 22 in order to limit the inrush current to the smoothing capacitor 26 before connecting the contacts of the main relays 23a and 23b. To do. The sub-relay 22 to which the high-level sub-relay signal is input connects its own contact.

リレー制御部31は直流電圧検出部27で検出したDC電圧値が入力されており、抵抗24を介して流れる突入電流により平滑コンデンサ26の電圧が徐々に上昇して一定電圧に達した時、つまり突入電流が一定値以下に減少した時、メインリレー信号をローレベルからハイレベルにして出力し、メインリレー23a,23bの接点を接続し、その後、サブリレー信号をハイレベルからローレベルにしてサブリレー22の接点を開放する。   The relay control unit 31 receives the DC voltage value detected by the DC voltage detection unit 27, and when the voltage of the smoothing capacitor 26 gradually increases due to the inrush current flowing through the resistor 24, that is, reaches a certain voltage. When the inrush current decreases below a certain value, the main relay signal is output from the low level to the high level, the contacts of the main relays 23a and 23b are connected, and then the sub relay signal is changed from the high level to the low level. Open the contact.

リレー制御部31はメインリレー23a,23bの接点を接続すると、インバータ28やファンモータ20を運転できる電圧が供給されたと判断して電源状態信号をローレベル(切断)からハイレベル(接続)にして運転制御部32と瞬断閾値選択部40に出力する。ハイレベルの電源状態信号が入力された運転制御部32は運転を開始するため圧縮機制御部33へ回転数指示信号を出力する。同時に運転制御部32は運転状態信号をローレベル(待機)からハイレベル(運転)にして瞬断閾値選択部40へ出力する。   When the relay control unit 31 connects the contacts of the main relays 23a and 23b, the relay control unit 31 determines that the voltage that can operate the inverter 28 and the fan motor 20 is supplied, and changes the power state signal from low level (disconnected) to high level (connected). Output to the operation control unit 32 and the instantaneous interruption threshold selection unit 40. The operation control unit 32 to which the high-level power state signal is input outputs a rotation speed instruction signal to the compressor control unit 33 in order to start operation. At the same time, the operation control unit 32 changes the operation state signal from the low level (standby) to the high level (operation) and outputs it to the instantaneous interruption threshold selection unit 40.

瞬断閾値選択部40は室外機2が待機中、つまり、インバータ28やファンモータ20が運転停止中の時に使用する待機時閾値と、室外機2が運転中、つまり、インバータ28やファンモータ20が運転状態の時に使用する運転時閾値のいずれかをリレー制御部31へ出力する。瞬断閾値選択部40は運転状態信号がローレベル(待機)の場合は待機時閾値を、また、運転状態信号がハイレベル(運転)の場合は運転時閾値をそれぞれ選択して出力する。この選択された閾値が入力されたリレー制御部31は、この閾値を瞬断閾値として設定し、次に閾値が入力されるまで現在の閾値を使用する。   The instantaneous interruption threshold selection unit 40 is a standby threshold value used when the outdoor unit 2 is on standby, that is, when the inverter 28 or the fan motor 20 is stopped, and the outdoor unit 2 is operating, that is, the inverter 28 or the fan motor 20. One of the driving threshold values used when is in the driving state is output to the relay control unit 31. The instantaneous interruption threshold selection unit 40 selects and outputs a standby threshold value when the driving state signal is at a low level (standby), and a driving threshold value when the driving state signal is at a high level (operation). The relay control unit 31 to which the selected threshold value is input sets this threshold value as an instantaneous interruption threshold value, and uses the current threshold value until the next threshold value is input.

図2は瞬断閾値選択部40の内部を示すブロック図である。瞬断閾値選択部40は、待機時閾値42と運転時閾値43が予め記憶された記憶部44と、待機時閾値42と運転時閾値43のいずれかを選択して読み出す選択部41を備えている。選択部41には電源状態信号が入力されており、この信号がハイレベルの間、つまり、インバータやファンモータ20に電源が供給されている間、瞬断閾値選択部40の動作が許可される。   FIG. 2 is a block diagram showing the inside of the instantaneous interruption threshold selection unit 40. The instantaneous interruption threshold selection unit 40 includes a storage unit 44 in which a standby threshold 42 and an operation threshold 43 are stored in advance, and a selection unit 41 that selects and reads either the standby threshold 42 or the operation threshold 43. Yes. A power state signal is input to the selection unit 41. While this signal is at a high level, that is, while power is supplied to the inverter and the fan motor 20, the operation of the instantaneous interruption threshold selection unit 40 is permitted. .

一方、電源状態信号がハイレベル(動作が許可)の場合、瞬断閾値選択部40は運転状態信号がハイレベルなら運転時閾値43を選択し、運転状態信号がローレベルなら待機時閾値42を選択して記憶部44から読み出し、読み出した値をリレー制御部31へ出力する。なお、電源状態信号がローレベル(動作が禁止)の場合、運転状態信号の状態に関わらず瞬断閾値選択部40は待機時閾値42を出力したままとなる。   On the other hand, when the power state signal is high level (operation is permitted), the instantaneous interruption threshold selection unit 40 selects the driving time threshold 43 if the driving state signal is high level, and sets the standby threshold value 42 if the driving state signal is low level. The selected value is read from the storage unit 44 and the read value is output to the relay control unit 31. When the power supply state signal is at a low level (operation is prohibited), the instantaneous interruption threshold selection unit 40 continues to output the standby threshold 42 regardless of the state of the operation state signal.

本実施例では待機時閾値をDC439V、運転時閾値をDC360Vにしている。従ってリレー制御部31は、DC電圧値がこれらの閾値以下になった時、メインリレー信号とサブリレー信号を共にローレベルにする。この結果、サブリレー22の接点、及びメインリレー23a,23bの接点が解放され、リレー制御部31は、電源状態信号をローレベル(切断)にして出力する。このローレベルの電源状態信号が入力された運転制御部32は、圧縮機制御部33へ指示してインバータ28の運転を停止させ、また、ファンモータ20を停止させる。そして空気調和機1は室内機3を介してユーザーの指示を待つ。   In this embodiment, the standby threshold is set to DC439V and the operating threshold is set to DC360V. Therefore, when the DC voltage value falls below these threshold values, the relay control unit 31 sets both the main relay signal and the sub relay signal to a low level. As a result, the contacts of the sub-relay 22 and the contacts of the main relays 23a and 23b are released, and the relay control unit 31 outputs the power state signal at a low level (disconnected). The operation control unit 32 to which the low-level power state signal is input instructs the compressor control unit 33 to stop the operation of the inverter 28 and also stops the fan motor 20. Then, the air conditioner 1 waits for a user instruction via the indoor unit 3.

図3は本発明の概念を説明する説明図である。図3の横軸は時間であり、縦軸はDC電圧である。なお、空気調和機1の定格電圧はAC240V〜AC220Vであるため、上限定格電圧はAC240V+10%、また、下限定格電圧はAC220V−10%となる。三相交流電源4のAC電圧(相電圧)が整流された直流電圧において、上限定格電圧はDC647Vとなり、下限定格電圧はDC485Vとなる。   FIG. 3 is an explanatory diagram for explaining the concept of the present invention. The horizontal axis in FIG. 3 is time, and the vertical axis is DC voltage. Since the rated voltage of the air conditioner 1 is AC240V to AC220V, the upper limit rated voltage is AC240V + 10%, and the lower limit rated voltage is AC220V-10%. In the DC voltage obtained by rectifying the AC voltage (phase voltage) of the three-phase AC power supply 4, the upper limit rated voltage is DC647V and the lower limit rated voltage is DC485V.

図3において空気調和機1が下限定格電圧(DC485V)で待機状態の時、瞬断閾値選択部40は待機時閾値(DC439V)を出力している。ここでユーザーの指示により空調運転が開始されて圧縮機29が運転を開始すると、DC電圧は負荷の増大によりDC408Vまで低下する。空調運転中では瞬断閾値選択部40は運転時閾値(DC360V)を出力している。このためDC電圧がDC408Vまで低下してもリレー制御部31はメインリレー23a,23bの接点を接続状態のままとする。
また、空調運転状態の時に瞬時電圧変動が発生してDC電圧がさらに低下した場合、この電圧低下における最低電圧が運転時閾値(DC360V)よりも高い電圧ならば、リレー制御部31はメインリレー23a,23bの接点を接続状態のままとする。
In FIG. 3, when the air conditioner 1 is in a standby state at the lower limit rated voltage (DC485V), the instantaneous interruption threshold selection unit 40 outputs a standby threshold (DC439V). Here, when the air conditioning operation is started by the user's instruction and the compressor 29 starts operation, the DC voltage decreases to DC 408V due to the increase in load. During the air conditioning operation, the instantaneous interruption threshold selection unit 40 outputs an operation threshold (DC 360 V). For this reason, even if the DC voltage drops to DC408V, the relay control unit 31 keeps the contact points of the main relays 23a and 23b in the connected state.
Further, when the instantaneous voltage fluctuation occurs in the air-conditioning operation state and the DC voltage further decreases, if the minimum voltage in the voltage decrease is higher than the operation threshold (DC 360 V), the relay control unit 31 causes the main relay 23a. , 23b remains connected.

一方、空気調和機1が上限定格電圧(DC647V)で待機状態の時、瞬断閾値選択部40は待機時閾値(DC439V)を出力している。ここでユーザーの指示により空調運転が開始されて圧縮機29が運転を開始すると、DC電圧は負荷の増大によりDC570Vまで低下する。空調運転中では瞬断閾値選択部40は運転時閾値(DC360V)を出力している。このためDC電圧がDC570Vまで低下してもリレー制御部31はメインリレー23a,23bの接点を接続状態のままとする。   On the other hand, when the air conditioner 1 is in the standby state at the upper rated voltage (DC647V), the instantaneous interruption threshold selection unit 40 outputs the standby threshold (DC439V). Here, when the air conditioning operation is started by the user's instruction and the compressor 29 starts the operation, the DC voltage decreases to DC 570V due to the increase of the load. During the air conditioning operation, the instantaneous interruption threshold selection unit 40 outputs an operation threshold (DC 360 V). For this reason, even if the DC voltage decreases to DC570V, the relay control unit 31 keeps the contact points of the main relays 23a and 23b in the connected state.

また、上限定格電圧(DC647V)で空調運転状態となった時に瞬時電圧変動が発生してDC電圧がさらに低下した場合、この電圧低下における最低電圧が運転時閾値(DC360V)よりも高い電圧ならば、リレー制御部31はメインリレー23a,23bの接点を接続状態のままとする。
この場合、空調運転状態時の瞬時電圧変動の電圧変動幅は210Vになる。つまり、瞬時電圧低下が終了して元のDC570Vまで復帰する場合、この変動幅に対応する突入電流が流れる。
In addition, when instantaneous voltage fluctuation occurs when the air conditioning operation state is reached at the upper rated voltage (DC647V) and the DC voltage further decreases, if the minimum voltage in this voltage decrease is higher than the operating threshold (DC360V) The relay control unit 31 keeps the contact points of the main relays 23a and 23b in the connected state.
In this case, the voltage fluctuation width of the instantaneous voltage fluctuation in the air conditioning operation state is 210V. That is, when the instantaneous voltage drop is completed and the original DC 570V is restored, an inrush current corresponding to this fluctuation width flows.

一方、上限定格電圧(DC647V)で待機状態の時、瞬時電圧変動が発生してDC電圧が低下した場合、この電圧低下における最低電圧が待機時閾値(DC439V)よりも高い電圧ならば、リレー制御部31はメインリレー23a,23bの接点を接続状態のままとする。
従来の空気調和機では空調運転時と待機時では同じ電圧閾値(DC360V)を用いていたので、上限定格電圧(DC647V)で待機状態の時、瞬時電圧変動が発生してDC電圧が低下した場合、この電圧低下における最低電圧がこの電圧閾値(DC360V)よりも高い電圧ならば、リレー制御部31はメインリレー23a,23bの接点を接続状態のままとする。
On the other hand, in the standby state at the upper limit rated voltage (DC647V), when the instantaneous voltage fluctuation occurs and the DC voltage decreases, if the minimum voltage in the voltage drop is higher than the standby threshold (DC439V), relay control is performed. The unit 31 keeps the contact points of the main relays 23a and 23b in the connected state.
In conventional air conditioners, the same voltage threshold (DC360V) is used during air-conditioning operation and standby, so when the voltage is lowered due to instantaneous voltage fluctuations during standby in the upper rated voltage (DC647V) If the lowest voltage in the voltage drop is higher than the voltage threshold (DC 360 V), the relay control unit 31 keeps the contact points of the main relays 23a and 23b in the connected state.

つまり、従来の空気調和機では上限定格電圧(DC647V)で待機状態の時、瞬時電圧変動が発生して電圧閾値(DC360V)の直前まで電圧が低下した後、元の電圧まで復帰した場合、この電圧の差は287Vに達することになり、この電圧差に対応した突入電流がメインリレー23a,23bや、整流器25や平滑コンデンサ26に流れることになる。従ってこれらの部品はこの時の投入電流に耐えるスペックが必要になる。   In other words, when the conventional air conditioner is in the standby state at the upper limit rated voltage (DC 647 V), when instantaneous voltage fluctuation occurs and the voltage drops to just before the voltage threshold (DC 360 V), and then returns to the original voltage, The voltage difference reaches 287V, and an inrush current corresponding to this voltage difference flows through the main relays 23a and 23b, the rectifier 25 and the smoothing capacitor 26. Therefore, these parts need specifications that can withstand the input current at this time.

一方、本発明による空気調和機1の場合、上限定格電圧(DC647V)で待機状態の時、瞬時電圧変動が発生して待機時閾値(DC439V)の直前まで電圧が低下した後、元の電圧まで復帰した場合、この電圧変動幅は最大208Vになり、この電圧差に対応した突入電流がメインリレー23a,23bや、整流器25や平滑コンデンサ26に流れることになる。当然、この電圧の差は従来の空気調和機よりも79Vも小さいため、これらの部品はこの投入電流に耐えるスペックを従来の空気調和機の場合よりも小さいものにすることができ、結果的にこれらの部品をコストダウンすることができる。   On the other hand, in the case of the air conditioner 1 according to the present invention, when it is in the standby state at the upper limit rated voltage (DC647V), the instantaneous voltage fluctuation occurs and the voltage drops to just before the standby threshold (DC439V) and then to the original voltage. When the voltage is restored, the voltage fluctuation width becomes 208 V at the maximum, and an inrush current corresponding to this voltage difference flows through the main relays 23a and 23b, the rectifier 25 and the smoothing capacitor 26. Naturally, since this voltage difference is 79V smaller than that of the conventional air conditioner, these components can make the spec to withstand this input current smaller than that of the conventional air conditioner. These parts can be reduced in cost.

図4は本発明による空気調和機1の動作を示す説明図である。図4において横軸は時間を表している。縦軸に関して図4(1)はDC電圧を、図4(2)はサブリレー信号を、図4(3)はメインリレー信号を、図4(4)は運転指示信号を、図4(5)は電源指示信号を、図4(6)は電源状態信号を、図4(7)は運転状態信号を、図4(8)は回転数指示信号を、図4(9)は選択された瞬断閾値を、図4(10)はファン駆動信号を、それぞれ示している。なお、t0〜t15は時刻である。また、t0において全ての信号はローレベル、DC電圧は0Vであり、瞬断閾値は待機時閾値(DC439V)が瞬断閾値選択部40から出力されている。さらに交流電圧は上限定格電圧になっている。   FIG. 4 is an explanatory view showing the operation of the air conditioner 1 according to the present invention. In FIG. 4, the horizontal axis represents time. 4 (1) is a DC voltage, FIG. 4 (2) is a sub-relay signal, FIG. 4 (3) is a main relay signal, FIG. 4 (4) is an operation instruction signal, and FIG. 4 (6) is a power supply state signal, FIG. 4 (7) is an operation state signal, FIG. 4 (8) is a rotation speed instruction signal, and FIG. 4 (9) is a selected moment. FIG. 4 (10) shows the cutoff threshold, and FIG. 4 (10) shows the fan drive signal. Note that t0 to t15 are times. Further, at t0, all signals are at a low level, the DC voltage is 0V, and the instantaneous interruption threshold is output from the instantaneous interruption threshold selection unit 40 as a standby threshold (DC 439V). Furthermore, the AC voltage is the upper rated voltage.

図4(4)に示すように室内機3からt1で「運転開始」の運転指示信号が出力されると、これを受信した運転制御部32は、まず、最初にインバータ28やファンモータ20などの負荷に電源を供給するため、電源指示信号をローレベル(切断)からハイレベル(接続)にして出力する。この信号が入力されたリレー制御部31は平滑コンデンサ26を徐々に充電させるためにサブリレー信号をローレベル(接点開放)からハイレベル(接点接続)にする。この結果DC電圧は徐々に上昇する。   As shown in FIG. 4 (4), when the operation instruction signal “start operation” is output from the indoor unit 3 at t 1, the operation control unit 32 that has received the signal first starts with the inverter 28, the fan motor 20, etc. In order to supply power to the other load, the power instruction signal is output from the low level (disconnection) to the high level (connection). The relay control unit 31 to which this signal is input changes the sub relay signal from a low level (contact open) to a high level (contact connection) in order to gradually charge the smoothing capacitor 26. As a result, the DC voltage gradually increases.

リレー制御部31はt2でDC電圧が所定の電圧、例えばDC485Vになった時、メインリレー信号をローレベル(接点開放)からハイレベル(接点接続)にする。この結果DC電圧は一気に、上限定格電圧(DC647V)まで上昇する。その後、リレー制御部31はt3でサブリレー信号をハイレベル(接点接続)からローレベル(接点開放)にする。   The relay control unit 31 changes the main relay signal from a low level (contact open) to a high level (contact connection) when the DC voltage becomes a predetermined voltage, for example, DC485 V, at t2. As a result, the DC voltage rises to the upper rated voltage (DC647V) at a stretch. Thereafter, the relay control unit 31 changes the sub relay signal from high level (contact connection) to low level (contact release) at t3.

一方、リレー制御部31はt2でメインリレー23a,23bの接点を接続したため、これに対応して電源状態信号をローレベル(切断)からハイレベル(接続)にする。電源状態信号がハイレベルになったため、瞬断閾値選択部40は動作を開始するが、運転状態信号がローレベル(待機状態)のため、待機時閾値(DC439V)をリレー制御部31へ出力する。   On the other hand, since the relay control unit 31 has connected the contacts of the main relays 23a and 23b at t2, the power supply state signal is changed from low level (disconnected) to high level (connected) accordingly. Since the power supply state signal has become high level, the instantaneous interruption threshold selection unit 40 starts operation. However, since the operation state signal is low level (standby state), the standby threshold value (DC439V) is output to the relay control unit 31. .

図4(1)に示すようにt4直前まで交流電圧は上限定格電圧(DC647V)になっていたが、t4で瞬時電圧変動が発生し、t4からDC電圧が低下し始めてt5で待機時閾値(DC439V)直前まで低下し、t6で元の電圧(DC647V)まで復帰している。t0以降t6時点では圧縮機29とファンモータ20が停止した待機状態であるため瞬断閾値選択部40はこの間、待機時閾値(DC439V)をリレー制御部31へ出力している。   As shown in FIG. 4 (1), the AC voltage was the upper rated voltage (DC647V) until just before t4. However, instantaneous voltage fluctuation occurred at t4, and the DC voltage started to decrease from t4, and the standby threshold ( DC439V) immediately before, and at t6, the original voltage (DC647V) is restored. Since the compressor 29 and the fan motor 20 are in a standby state from t0 to t6, the instantaneous interruption threshold selection unit 40 outputs the standby threshold (DC439V) to the relay control unit 31 during this period.

一方、t6以降に交流電圧が低下しt7で下限定格電圧(DC485V)になり、t8まで継続している。t8以降、運転制御部32は圧縮機制御部33へ徐々に回転数を上昇させた回転数指示信号を出力し、t9以降一定の回転数を指示している。運転制御部32はt8で回転数指示信号の出力を開始したため、ここで運転状態信号をローレベル(待機)からハイレベル(運転)にして瞬断閾値選択部40へ出力する。また、運転制御部32はt8で同時にファン駆動信号をローレベル(停止)からハイレベル(回転)にする。この結果、ファンモータ20が回転する。   On the other hand, the AC voltage decreases after t6, reaches the lower limit rated voltage (DC485V) at t7, and continues until t8. After t8, the operation control unit 32 outputs a rotation number instruction signal that gradually increases the rotation number to the compressor control unit 33, and instructs a constant rotation number after t9. Since the operation control unit 32 starts outputting the rotation speed instruction signal at t8, the operation state signal is changed from the low level (standby) to the high level (operation) and is output to the instantaneous interruption threshold selection unit 40. Further, the operation control unit 32 simultaneously changes the fan drive signal from the low level (stop) to the high level (rotation) at t8. As a result, the fan motor 20 rotates.

ハイレベルの運転状態信号が入力された瞬断閾値選択部40は、待機時閾値(DC439V)を運転時閾値(DC360V)に切り換えて出力する。一方、圧縮機29が運転を開始したため負荷が増大してDC電圧が408Vまで低下するが、運転時閾値(DC360V)よりも高いためリレー制御部31は、メインリレー23a,23bの接点を接続状態のままとする。さらに、t10〜t12で瞬時電圧変動が発生するが、運転時閾値(DC360V)よりも高いためリレー制御部31は、メインリレー23a,23bの接点を接続状態のままとする。   The instantaneous interruption threshold selection unit 40 to which the high-level driving state signal is input switches the standby threshold (DC439V) to the driving threshold (DC360V) and outputs the result. On the other hand, since the compressor 29 starts operation, the load increases and the DC voltage decreases to 408V, but the relay control unit 31 connects the contacts of the main relays 23a and 23b because the DC voltage is higher than the operation threshold (DC 360V). Leave as it is. Furthermore, although instantaneous voltage fluctuation occurs at t10 to t12, the relay control unit 31 keeps the contact points of the main relays 23a and 23b in the connected state because they are higher than the operating threshold value (DC360V).

そしてt13で「運転停止」の運転指示信号が室内機3から出力されると、運転制御部32は圧縮機29の回転数を徐々に低下させ、t14で完全に圧縮機29を停止させる。そして運転制御部32はt14で運転状態信号をハイレベル(運転)からローレベル(待機)にして瞬断閾値選択部40へ出力すると共にファン駆動信号をハイレベル(回転)からローレベル(停止)にする。この結果、ファンモータ20が停止する。同時に運転制御部32は、電源指示信号をハイレベル(接続)からローレベル(切断)にして出力する。この信号が入力されたリレー制御部31はメインリレー23a,23bの接点を開放させる。同時にリレー制御部31は電源状態信号をハイレベル(接続)からローレベル(切断)にする。   When the operation instruction signal “stop operation” is output from the indoor unit 3 at t13, the operation control unit 32 gradually decreases the rotational speed of the compressor 29, and completely stops the compressor 29 at t14. Then, at t14, the operation control unit 32 changes the operation state signal from the high level (operation) to the low level (standby) and outputs it to the instantaneous interruption threshold selection unit 40, and the fan drive signal from the high level (rotation) to the low level (stop). To. As a result, the fan motor 20 stops. At the same time, the operation control unit 32 outputs the power instruction signal from the high level (connection) to the low level (disconnection). The relay control unit 31 to which this signal is input opens the contacts of the main relays 23a and 23b. At the same time, the relay control unit 31 changes the power state signal from the high level (connection) to the low level (disconnection).

この電源状態信号が入力された瞬断閾値選択部40は、運転時閾値(DC360V)から待機時閾値(DC439V)に切り換えて出力する。従ってこの後に瞬時電圧変動が発生した場合、リレー制御部31は待機時閾値を用いて動作する。一方、DC電圧はt14以降徐々に低下しt15で0Vになる。   The instantaneous interruption threshold selection unit 40 to which the power supply state signal is input switches from the operation threshold (DC 360 V) to the standby threshold (DC 439 V) and outputs it. Therefore, when an instantaneous voltage fluctuation occurs thereafter, the relay control unit 31 operates using the standby threshold value. On the other hand, the DC voltage gradually decreases after t14 and becomes 0V at t15.

以上説明したように、室外機2が負荷(圧縮機29やファンモータなど)を運転中の期間であるか停止中の期間であるかによって瞬断閾値選択部40が、DC電圧が低下した時にリレーを開とする瞬断閾値として運転時閾値又は待機時閾値のいずれかを選択する。このため、負荷を運転中の場合と停止中の場合とでそれぞれ最適な閾値を用いることができ、瞬時電圧変動の電圧復帰時に流れる突入電流を低減できるため、メインリレー23a,23bや、整流器25や平滑コンデンサ26などの部品のコストを低減させることができる。   As explained above, when the outdoor unit 2 is in a period during which the load (compressor 29, fan motor, etc.) is operating or is in a period during which the instantaneous interruption threshold selection unit 40 decreases the DC voltage. Either the driving threshold or the standby threshold is selected as the instantaneous interruption threshold for opening the relay. For this reason, optimum threshold values can be used respectively when the load is operating and when the load is stopped, and the inrush current that flows at the time of voltage recovery due to instantaneous voltage fluctuation can be reduced. Therefore, the main relays 23a and 23b and the rectifier 25 can be reduced. And the cost of components such as the smoothing capacitor 26 can be reduced.

本実施例では三相交流電源用の空気調和機として説明しているが、これに限るものでなく、単相交流電源用の空気調和機であってもよい。
また、運転時閾値や待機時閾値の値はこれに限るものでなく、各機器の仕様に合わせて適宜変更してもよい。
Although this embodiment has been described as an air conditioner for a three-phase AC power supply, the present invention is not limited to this and may be an air conditioner for a single-phase AC power supply.
Moreover, the value of the threshold value at the time of operation or the threshold value at the time of standby is not limited to this, and may be appropriately changed according to the specifications of each device.

1 空気調和機
2 室外機
3 室内機
4 三相交流電源
20 ファンモータ(負荷)
21a、21b、21c 電源端子
22 サブリレー
23a、23b メインリレー
24 抵抗
25 整流器
25a、25b、25c 入力端
25d 正極出力端
25e 負極出力端
26 平滑コンデンサ
27 直流電圧検出部
28 インバータ
29 圧縮機(負荷)
30 室外機制御部
31 リレー制御部
32 運転制御部
33 圧縮機制御部
40 瞬断閾値選択部(瞬断閾値選択手段)
41 選択部
42 待機時閾値
43 運転時閾値
44 記憶部
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 4 Three-phase alternating current power supply 20 Fan motor (load)
21a, 21b, 21c Power supply terminal 22 Sub relay 23a, 23b Main relay 24 Resistance 25 Rectifier 25a, 25b, 25c Input terminal 25d Positive electrode output terminal 25e Negative electrode output terminal 26 Smoothing capacitor 27 DC voltage detector 28 Inverter 29 Compressor (load)
30 outdoor unit control unit 31 relay control unit 32 operation control unit 33 compressor control unit 40 instantaneous interruption threshold selection unit (instantaneous interruption threshold selection means)
41 selection unit 42 standby threshold value 43 driving threshold value 44 storage unit

Claims (1)

交流電源が入力端に接続された整流器と、
前記交流電源と前記整流器の間に直列に接続された少なくとも一つのリレーと、
前記整流器の出力電圧を平滑する平滑コンデンサと、
前記平滑コンデンサの電圧を検出する直流電圧検出部と、
前記整流器の出力電圧で動作する負荷と、
前記直流電圧検出部で検出した直流電圧が予め定めた瞬断閾値以下になった時に前記リレーの接点を開にするリレー制御部とを備えた空気調和機であって、
前記空気調和機は、
前記瞬断閾値として予め定められた運転時閾値及び前記運転時閾値よりも大きな値の前記待機時閾値を備え、前記負荷が運転中の期間は前記運転時閾値を選択し、前記負荷が運転停止中の期間は前記待機時閾値を選択し、選択された閾値を前記リレー制御部に前記瞬断閾値として設定する瞬断閾値選択手段を備えたことを特徴とする空気調和機。

A rectifier with an AC power supply connected to the input end;
At least one relay connected in series between the AC power source and the rectifier;
A smoothing capacitor for smoothing the output voltage of the rectifier;
A DC voltage detector for detecting the voltage of the smoothing capacitor;
A load operating at the output voltage of the rectifier;
An air conditioner including a relay control unit that opens a contact of the relay when the DC voltage detected by the DC voltage detection unit is equal to or less than a predetermined instantaneous interruption threshold;
The air conditioner
The threshold value at the time of operation that is predetermined as the threshold value at the time of interruption and the threshold value at the time of standby that is larger than the threshold value at the time of operation are selected. An air conditioner comprising: an instantaneous interruption threshold selection unit that selects the standby threshold during a middle period and sets the selected threshold as the instantaneous interruption threshold in the relay control unit.

JP2018043984A 2018-03-12 2018-03-12 Air conditioner Active JP7056251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018043984A JP7056251B2 (en) 2018-03-12 2018-03-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043984A JP7056251B2 (en) 2018-03-12 2018-03-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019158204A true JP2019158204A (en) 2019-09-19
JP7056251B2 JP7056251B2 (en) 2022-04-19

Family

ID=67995130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043984A Active JP7056251B2 (en) 2018-03-12 2018-03-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP7056251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023046076A1 (en) * 2021-09-23 2023-03-30 海信(广东)空调有限公司 Air conditioner and control method for air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110109164A1 (en) * 2008-12-08 2011-05-12 Tycka Design Private Limited Intuitive Electronic Circuit
JP2013062957A (en) * 2011-09-14 2013-04-04 Fujitsu General Ltd Power-supply device
JP2013242081A (en) * 2012-05-21 2013-12-05 Fujitsu General Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110109164A1 (en) * 2008-12-08 2011-05-12 Tycka Design Private Limited Intuitive Electronic Circuit
JP2013062957A (en) * 2011-09-14 2013-04-04 Fujitsu General Ltd Power-supply device
JP2013242081A (en) * 2012-05-21 2013-12-05 Fujitsu General Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023046076A1 (en) * 2021-09-23 2023-03-30 海信(广东)空调有限公司 Air conditioner and control method for air conditioner

Also Published As

Publication number Publication date
JP7056251B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US9577534B2 (en) Power converter and air conditioner
JP6537596B2 (en) Refrigeration cycle device
US8987947B2 (en) Air conditioner
US11506412B2 (en) Air conditioner
US8987946B2 (en) Air conditioner
JP5793645B2 (en) Air conditioner
JP7056251B2 (en) Air conditioner
JP2012244863A (en) Air conditioner
JP2001157452A (en) Worldwide power supply
JPH1172261A (en) Air conditioner
JP2012197998A (en) Air conditioner
KR101965180B1 (en) Air conditioner
JP7095555B2 (en) Air conditioner
KR100308563B1 (en) Outdoor unit power supply and method of the separate air conditioner
JP2016213978A (en) Power supply circuit and air conditioner having the same
JP5999141B2 (en) Power converter
US20240102686A1 (en) Air conditioner
JPH05168172A (en) Power supply device for air conditioner
JP2019007709A (en) Electronic apparatus
JPH04198648A (en) Air conditioner of two-way power supply
JP2018119701A (en) Air conditioner
JP6615387B2 (en) Outdoor unit control device
JP2013135495A (en) Air conditioner
JP2016052159A (en) Air conditioner
KR20200106675A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R151 Written notification of patent or utility model registration

Ref document number: 7056251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151